Sample records for stable amorphous phase

  1. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  2. Self Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ma, Chung; Li, Xiaopu; Lu, Jiwei; Poon, Joseph; Comes, Ryan; Devaraj, Arun; Spurgeon, Steven

    Amorphous ferrimagetic TbFeCo and TbSmFeCo thin films are found to exhibit strong perpendicular magnetic anisotropy. Self exchange bias effect and bi-stable magneto-resistance states are observed near compensation temperature by magnetic hysteresis loop, anomalous Hall effect and transverse magneto-resistance measurements. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb concentration distributed within the amorphous films. The observed exchange anisotropy originates from the exchange interaction between the two nanoscale amorphous phases. Exchange bias effect is used for increasing stability in spin valves and magnetic tunneling junctions. This study opens up a new platform for using amorphous ferrimagnetic thin films that require no epitaxial growth in nanodevices.. The work was supported by the Defense Threat Reduction Agency Grant and the U.S. Department of Energy.

  3. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  4. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  5. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji

    2012-04-01

    Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.

  6. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  7. Biogenic Fish-gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata

    PubMed Central

    Foran, Elizabeth; Weiner, Steve; Fine, Maoz

    2013-01-01

    The main source of calcium carbonate (CaCO3) in the ocean comes from the shells of calcifying planktonic organisms, but substantial amounts of CaCO3 are also produced in fish intestines. The precipitation of CaCO3 assists fish in intestinal water absorption and aids in whole body Ca2+ homeostasis. Here we report that the product formed in the intestinal lumen of the gilt-head seabream, Sparus aurata, is an amorphous calcium carbonate (ACC) phase. With FTIR spectroscopy and SEM imaging, our study shows that the fish-derived carbonates from S. aurata are maintained as a stable amorphous phase throughout the intestinal tract. Moreover, intestinal deposits contained up to 54 mol% Mg2+, the highest concentration yet reported in biogenic ACC. Mg is most likely responsible for stabilizing this inherently unstable mineral. The fish carbonates also displayed initial rapid dissolution when exposed to seawater, exhibiting a significant increase in carbonate concentration. PMID:23609008

  8. Effect of Se substitution on the phase change properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Shekhawat, Roopali; Rangappa, Ramanna; Gopal, E. S. R.; Ramesh, K.

    2018-05-01

    Ge2Sb2Te5 popularly known as GST is being explored for non-volatile phase change random access memory(PCRAM) applications. Under high electric field, thin films of amorphous GST undergo a phase change from amorphous to crystalline with a high contrast in electrical resistivity (about 103). The phase change is between amorphous and metastable NaCl structure occurs at about 150°C and not to the stable hexagonal phase which occurs at a high temperature (> 250 °C). In GST, about 50 % of Te substituted by Se (Ge2Sb2Te2.5Se2.5) is found to increase the contrast in electrical resistivity by 7 orders of magnitude (about 4 orders of magnitude higher than GST). The phase transition in Se added GST also found to be between amorphous and the stable hexagonal structure. The threshold voltage at which the Ge2Sb2Te2.5Se2.5 switches to the high conducting state increases to 9V as compared to 2V in GST. Interestingly, the threshold current decrease to 1mA as compared to 1.8mA in GST indicating the Se substitution reduces the power needed for switching between the low and high conducting states. The reduction in power needed for phase change, high contrast in electrical resistivity with high thermal stability makes Ge2Sb2Te2.5Se2.5 as a better candidate for PCRAM.

  9. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    PubMed

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  10. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.

  11. Polyamorphism in tetrahedral substances: Similarities between silicon and ice

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2015-07-01

    Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.

  12. Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases

    NASA Astrophysics Data System (ADS)

    Weiner, S.

    2003-12-01

    The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.

  13. Quantitative Phase Analysis of Plasma-Treated High-Silica Materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Abzaev, Yu. A.; Vlasov, V. A.

    2018-06-01

    The paper presents the X-ray diffraction (XRD) analysis of the crystal structure of SiO2 in two modifications, namely quartzite and quartz sand before and after plasma treatment. Plasma treatment enables the raw material to melt and evaporate after which the material quenches and condenses to form nanoparticles. The Rietveld refinement method is used to identify the lattice parameters of SiO2 phases. It is found that after plasma treatment SiO2 oxides are in the amorphous state, which are modeled within the microcanonical ensemble. Experiments show that amorphous phases are stable, and model X-ray reflection intensities approximate the experimental XRD patterns with fine precision. Within the modeling, full information is obtained for SiO2 crystalline and amorphous phases, which includes atom arrangement, structural parameters, atomic population of silicon and oxygen atoms in lattice sites.

  14. Structural transformations in Ge{sub 2}Sb{sub 2}Te{sub 5} under high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mio, A. M.; Privitera, S., E-mail: stefania.privitera@imm.cnr.it; D'Arrigo, G.

    2015-08-14

    The structural transformations occurring in Ge{sub 2}Sb{sub 2}Te{sub 5} films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt andmore » of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.« less

  15. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-12-01

    Co-amorphization represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300d of storage than samples prepared by intermediate cooling and slow cooling. Intermediate cooling was subsequently used to prepare co-amorphous NAP/IND at different blend ratios. In a previous study, it was postulated that the equimolar (0.5:0.5) co-amorphous blend of NAP/IND is most stable. However, in the present study the physically most stable blend was found for a NAP/IND ratio of 0.6:0.4, which also represents the eutectic composition of the crystalline NAP/γ-IND system. This indicates that the eutectic point may be of major importance for the stability of binary co-amorphous systems. Slight deviations from the optimal naproxen molar fraction led to significant recrystallization during storage. Either naproxen or γ-indomethacin recrystallized until a naproxen molar fraction of about 0.6 in the residual co-amorphous phase was reached again. In conclusion, the physical stability of co-amorphous NAP/IND may be significantly improved, if suitable preparation conditions and the optimal phase composition are chosen. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  17. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  18. High pressure synthesis of amorphous TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing

    2015-09-01

    Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  19. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    NASA Astrophysics Data System (ADS)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  20. Equation of state and pressure induced amorphization of beta-boron from X-ray measurements up to 100 GPa.

    PubMed

    Sanz, Delia Nieto; Loubeyre, Paul; Mezouar, Mohamed

    2002-12-09

    The equation of state of boron has been measured up to 100 GPa by single-crystal x-ray diffraction with helium as the pressure transmitting medium. Rhombohedral beta-boron is the stable structure up to 100 GPa under hydrostatic conditions. Nonhydrostatic stress stabilizes a different rhombohedral structure. At about 100 GPa a pressure-induced amorphization is observed. The amorphous phase can be quenched to ambient pressure. An explanation is proposed based on the different stability under pressure between intraicosahedra and intericosahedra bonds.

  1. The Structure of Liquid and Amorphous Hafnia.

    PubMed

    Gallington, Leighanne C; Ghadar, Yasaman; Skinner, Lawrie B; Weber, J K Richard; Ushakov, Sergey V; Navrotsky, Alexandra; Vazquez-Mayagoitia, Alvaro; Neuefeind, Joerg C; Stan, Marius; Low, John J; Benmore, Chris J

    2017-11-10

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.

  2. The Structure of Liquid and Amorphous Hafnia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less

  3. The Structure of Liquid and Amorphous Hafnia

    DOE PAGES

    Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie; ...

    2017-11-10

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less

  4. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.

  5. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  6. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  7. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  8. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  9. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  10. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  11. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  12. Nanoscale Transforming Mineral Phases in Fresh Nacre

    DOE PAGES

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.; ...

    2015-09-24

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  14. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bum Ho, E-mail: bhchoi@kitech.re.kr; Lee, Jong Ho

    2014-08-04

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10{sup −6} g/(m{sup 2} day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are freemore » from intermixed interface defects effectively block water vapor permeation into active layer.« less

  15. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing

    DOE PAGES

    Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...

    2017-06-12

    The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less

  16. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and

  17. Probing microstructure and phase evolution of α-MoO 3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy

    DOE PAGES

    Xia, Weiwei; Xu, Feng; Zhu, Chongyang; ...

    2016-07-15

    The fundamental electrochemical reaction mechanisms and the phase transformation pathways of layer-structured α-MoO 3 nanobelt during the sodiation/desodiation process to date remain largely unknown. In this study, to observe the real-time sodiation/desodiaton behaviors of α-MoO 3 during electrochemical cycling, we construct a MoO 3 anode sodium-ion battery inside a transmission electron microscope (TEM). Utilizing in situ TEM and electron diffraction pattern (EDP) observation, α-MoO 3 nanobelts are found to undergo a unique multi-step phase transformation. Upon the first sodiation, α-MoO 3 nanobelts initially form amorphous Na xMoO3 phase and are subsequently sodiated into intermediate phase of crystalline NaMoO 2, finallymore » resulting in the crystallized Mo nanograins embedded within the Na 2O matrix. During the first desodiation process, Mo nanograins are firstly re-oxidized into intermediate phase NaMoO 2 that is further transformed into amorphous Na 2MoO 3, resulting in an irreversible phase transformation. Upon subsequent sodiation/desodiation cycles, however, a stable and reversible phase transformation between crystalline Mo and amorphous Na2MoO 3 phases has been revealed. In conclusion, our work provides an in-deepth understanding of the phase transformation pathways of α-MoO 3 nanobelts upon electrochemical sodiation/desodiation processes, with the hope of assistance in designing sodium-ion batteries with enhanced performance.« less

  18. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass

    NASA Astrophysics Data System (ADS)

    Palenta, Theresia; Fuhrmann, Sindy; Greaves, G. Neville; Schwieger, Wilhelm; Wondraczek, Lothar

    2015-02-01

    We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si4+, Al3+) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

  19. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films

    PubMed Central

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-01-01

    The structure evolution and crystallization processes of Sb2Te-TiO2 films have been investigated. The Sb2Te-rich nanocrystals, surrounded by TiO2 amorphous phases, are observed in the annealed Sb2Te-TiO2 composite films. The segregated domains exhibit obvious chalcogenide/TiOx interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge2Sb2Te5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb2Te)94.7(TiO2)5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb2Te)94.7(TiO2)5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications. PMID:28397858

  20. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films.

    PubMed

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-04-11

    The structure evolution and crystallization processes of Sb 2 Te-TiO 2 films have been investigated. The Sb 2 Te-rich nanocrystals, surrounded by TiO 2 amorphous phases, are observed in the annealed Sb 2 Te-TiO 2 composite films. The segregated domains exhibit obvious chalcogenide/TiO x interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge 2 Sb 2 Te 5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications.

  1. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    PubMed Central

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2018-01-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6–8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover. PMID:29675340

  2. Effect of silver on the phase transition and wettability of titanium oxide films

    PubMed Central

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  3. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.

  4. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.

    PubMed

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas

    2013-11-01

    Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The dissolution rate of all co-amorphous drug-amino acid mixtures was significantly increased over that of the respective crystalline and amorphous pure drugs. Amino acids thus appear as promising excipients to solve challenges connected with the stability and dissolution of amorphous drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  6. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  7. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  8. A molecular approach to self-supported cobalt-substituted ZnO materials as remarkably stable electrocatalysts for water oxidation.

    PubMed

    Pfrommer, Johannes; Lublow, Michael; Azarpira, Anahita; Göbel, Caren; Lücke, Marcel; Steigert, Alexander; Pogrzeba, Martin; Menezes, Prashanth W; Fischer, Anna; Schedel-Niedrig, Thomas; Driess, Matthias

    2014-05-12

    In regard to earth-abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt-substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low-temperature solvolysis of molecular heterobimetallic Co(4-x)Zn(x) O4 (x = 1-3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self-supported water-oxidation electrocatalyst, which was observed by HR-TEM on FIB lamellas of the EPD layers. The Co-rich hydroxide-oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.

  10. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.

  11. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  12. Proposed truncated Cu-Hf tight-binding potential to study the crystal-to-amorphous phase transition

    NASA Astrophysics Data System (ADS)

    Cui, Yuanyuan; Li, Jiahao; Dai, Ye; Liu, Baixin

    2010-09-01

    Proposed truncated Cu-Hf tight-binding potential was constructed by fitting the physical properties of Cu, Hf, and their stable compounds, i.e., Cu5Hf, Cu8Hf3, Cu10Hf7, and CuHf2. Based on the constructed potentials, molecular dynamics simulations were carried out to compare the relative stability of the crystalline solid solution and the disordered state. Simulation results not only reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing when the solute atoms exceeding the critical concentration, but also predict that the glass forming range (GFR) of the Cu-Hf system is 21-77 at. % Cu, which covers the GFRs determined by various metallic glass-producing techniques. Ion beam mixing experiments of the Cu-Hf system were conducted using 200 keV xenon ions and the results show that a uniform amorphous phase can be obtained in the Cu23Hf77 sample, matching well with the GFR determined by the interatomic potential, which, in turn, provides additional evidence to the relevance of the constructed Cu-Hf potential.

  13. Prediction of Formation of Amorphous Alloys During Annealing of Ti-binary Alloys and Validation of the Same

    DTIC Science & Technology

    2009-11-22

    The authors argued that the occurrence of the reversible step in the specific heat reflected “the freezing and unfreezing of some degree of freedom...of steel, the austenite phase is sometimes formed in a composition range where ferrite and liquid are the equilibrium phases. The formation of the...austenite is explained by the construction of a meta-stable extension of the (austenite+liquid) field into the ( ferrite +liquid) region. The

  14. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-03-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  15. Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Colin; Laurencin, Danielle; Burnell, Victoria

    2012-10-25

    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilizers, by utilizing pyrophosphates (P{sub 2}O{sub 7}{sup 4-}); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O and Sr{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O (3.8more » < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond 8 {angstrom} in both phases, with this local order found to resemble crystalline analogues. Further studies, including {sup 1}H and {sup 31}P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P{sub 2}O{sub 7} units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to 450 C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P{sub 2}O{sub 7} anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO{sub 4}{sup 2-} anions within the amorphous matrix. The latter anions then recombined into P{sub 2}O{sub 7} ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme-assisted resorption and establish factors crucial to isolate further stable amorphous inorganic materials.« less

  16. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    PubMed

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  17. The investigations of characteristics of Sb2Te as a base phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Zhu, Min; Song, Zhitang; Rao, Feng; Song, Sannian; Cheng, Yan

    2017-09-01

    Chalcogenide alloys are paid much attention in the study of nonvolatile phase-change memory (PCM). A comprehensive research is investigated on Sb2Te (ST), a base material, from properties to performances in this paper. For the characteristics of ST films, the sheet resistance is extremely stable during cooling process in resistance-temperature measurement and the thickness change of ST film is 5.7%. However, low 10-year data retention temperature (∼55 °C) and large crystal grain are the demerits for ST. In addition, the structure characteristics show stable hexagonal phase and large grain of several hundred nanometers at crystalline state after annealing. As for electrical properties, although the ST-based PCM devices are characterized by fast operation speed of ∼20 ns, only about 8 × 103 times of stable operation cycles can be obtained. After that, the endurance performance deteriorates gradually due to the growth of grains. About resistance drift, the drift coefficients are very small both in crystalline state and in amorphous state.

  18. Non-crosslinked, amorphous, block copolymer electrolyte for batteries

    DOEpatents

    Mayes, Anne M.; Ceder, Gerbrand; Chiang, Yet-Ming; Sadoway, Donald R.; Aydinol, Mehmet K.; Soo, Philip P.; Jang, Young-Il; Huang, Biying

    2006-04-11

    Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0.degree. C. to about 70.degree. C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of Li.sub.xM.sub.yN.sub.zO.sub.2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the M.sub.yN.sub.z portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.

  19. The role of amorphous precursors in the crystallization of La and Nd carbonates

    NASA Astrophysics Data System (ADS)

    Vallina, Beatriz; Rodriguez-Blanco, Juan Diego; Brown, Andrew P.; Blanco, Jesus A.; Benning, Liane G.

    2015-07-01

    Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion.Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01497b

  20. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  1. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation process employing the high energy concentration sources.

  2. Structural, stability, and vibrational properties of BinPm clusters

    NASA Astrophysics Data System (ADS)

    Shen, Wanting; Han, Lihong; Liang, Dan; Zhang, Chunfang; Ruge, Quhe; Wang, Shumin; Lu, Pengfei

    2018-04-01

    An in-depth investigation is performed on stability mechanisms, electronic and optical properties of III-V semiconductor vapor phases clusters. First principles electronic structure calculations of CAM-B3LYP are performed on neutral BinPm (n + m ≤ 14) clusters. The geometrical evolution of all stable structures remains amorphous as the clusters size increases. Binding energies (BEs), energy gains and highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps confirm that all four-atom structures of BinPm clusters have more stable optical properties. Orbitals composition and vibrational spectra of stable clusters are analyzed. Our calculations will contribute to the study of diluted bismuth alloys and compounds.

  3. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  4. Pressure-induced transformations in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  5. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  6. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  7. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  8. Orally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement.

    PubMed

    Ponnammal, Poovizhi; Kanaujia, Parijat; Yani, Yin; Ng, Wai Kiong; Tan, Reginald B H

    2018-03-16

    In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus ® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w / w . Molecular modeling was used to determine the miscibility of the drug with the carrier polymers by calculating the Hansen Solubility Parameters. Powder X-ray diffraction and differential scanning calorimetry (DSC) studies of powdered solid dispersions revealed the conversion of crystalline TAC to amorphous form. Fourier transform Infrared (FTIR) spectroscopy results indicated formation of hydrogen bond between TAC and polymers leading to stabilization of TAC in amorphous form. The extrudates were found to be stable under accelerated storage conditions for 3 months with no re-crystallization, indicating that hot melt extrusion is suitable for producing stable amorphous solid dispersions of TAC in PVP VA64, Soluplus ® and HPC. Stable solid dispersions of amorphous TAC exhibited higher dissolution rate, with the solid dispersions releasing more than 80% drug in 15 min compared to the crystalline drug giving 5% drug release in two hours. These stable solid dispersions were incorporated into orally-disintegrating tablets in which the solid dispersion retained its solubility, dissolution and stability advantage.

  9. Orally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement

    PubMed Central

    Ponnammal, Poovizhi; Kanaujia, Parijat; Ng, Wai Kiong; Tan, Reginald B. H.

    2018-01-01

    In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w/w. Molecular modeling was used to determine the miscibility of the drug with the carrier polymers by calculating the Hansen Solubility Parameters. Powder X-ray diffraction and differential scanning calorimetry (DSC) studies of powdered solid dispersions revealed the conversion of crystalline TAC to amorphous form. Fourier transform Infrared (FTIR) spectroscopy results indicated formation of hydrogen bond between TAC and polymers leading to stabilization of TAC in amorphous form. The extrudates were found to be stable under accelerated storage conditions for 3 months with no re-crystallization, indicating that hot melt extrusion is suitable for producing stable amorphous solid dispersions of TAC in PVP VA64, Soluplus® and HPC. Stable solid dispersions of amorphous TAC exhibited higher dissolution rate, with the solid dispersions releasing more than 80% drug in 15 min compared to the crystalline drug giving 5% drug release in two hours. These stable solid dispersions were incorporated into orally-disintegrating tablets in which the solid dispersion retained its solubility, dissolution and stability advantage. PMID:29547585

  10. An 11,000-year record of depositional environmental change based upon particulate organic matter and stable isotopes (C and N) in a lake sediment in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Lorente, Flávio Lima; Pessenda, Luiz Carlos Ruiz; Oboh-Ikuenobe, Francisca; Buso Junior, Antonio Alvaro; Rossetti, Dilce de Fátima; Giannini, Paulo César Fonseca; Cohen, Marcelo Cancela Lisboa; de Oliveira, Paulo Eduardo; Mayle, Francis Edward; Francisquini, Mariah Izar; França, Marlon Carlos; Bendassolli, José Albertino; Macario, Kita

    2018-07-01

    The aim of this paper is to reconstruct an 11,000-year history of depositional environmental change in southeastern Brazil, based upon the integration of particulate organic matter and stable isotope (C and N) data from a 136-cm sediment core from Lake Canto Grande. These proxies are used to explore the evolution of terrestrial and marine influence on the lake. Isotopic (δ13C: -27.87‰ to -31.9‰; δ15N: -0.07‰-4.9‰) and elemental (total organic carbon - TOC: 0.58%-37.19%; total nitrogen - TN: 0.08%-1.73%; C/N: 0.3 to 54.7) values recorded in Lake Canto Grande suggest that the sedimentary organic matter was derived from mostly C3 land plants and freshwater phytoplankton. Particulate organic matter and cluster analyses distinguished four associations characterized by the predominance of amorphous organic matter, followed by phytoclasts and palynomorphs. These results indicate two different phases of lake evolution. The first phase (136 - 65 cm; ∼10,943 cal yr. B.P. to ∼8529 cal yr. B.P.) is recorded by sand layers interbedded with mud, which contain amorphous organic matter (AOM, 45-59%) and phytoclasts (opaques - OP: 6-18%; non-opaques - NOP: 17-23%) which indicate a floodplain area. The second phase (65-0 cm; ∼8529 cal yr. B.P. to ∼662 cal yr. B.P.) comprises mud, AOM (68-86%) and palynomorphs (PAL, 8-16%) related to lake establishment comparable to modern conditions. Thus, characterizing particulate organic matter, in combination with stable isotopes, proved to be invaluable proxies for lacustrine paleoenvironmental change through the Holocene.

  11. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates.

    PubMed

    Alam, Mohd Aftab; Ali, Raisuddin; Al-Jenoobi, Fahad Ibrahim; Al-Mohizea, Abdullah M

    2012-11-01

    Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs. The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize(™), closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug-carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, Solumer(TM) used to prepare stable amorphous SD. Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.

  12. Phase change in CoTi2 induced by MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro

    2018-07-01

    The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.

  13. Amorphous-amorphous transition in a porous coordination polymer.

    PubMed

    Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki

    2017-07-04

    The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.

  14. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Y.; Morita, T.; Morimoto, Y.

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  15. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  16. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  17. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  18. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  19. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  1. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  2. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.

  3. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.

    PubMed

    Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C

    2015-08-05

    Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.

  4. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    PubMed

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

  5. The influence of Sc addition on the welding microstructure of Zr-based bulk metallic glass: The stability of the amorphous phase

    NASA Astrophysics Data System (ADS)

    Wang, Shing Hoa; Kuo, Pei Hung; Tsang, Hsiao Tsung; Jeng, Rong Ruey; Lin, Yu Lon

    2007-10-01

    Pulsed direct current autogeneous tungsten inert gas arc welding was conducted on rods of bulk metallic glasses (BMGs) Zr55Cu30Ni5Al10 and (Zr55Cu30Ni5Al10)99.98Sc0.02 under two different cooling conditions. The crystalline precipitates in the fusion zone of BMG Zr55Cu30Ni5Al10 were confirmed by microfocused x-ray diffraction pattern analysis as Zr2Ni and Zr2(Cu,Al) intermetallic compounds. In contrast, BMG with Sc addition (Zr55Cu30Ni5Al10)99.98Sc0.02 shows an excellent stable glass forming ability. The fusion zone of BMG (Zr55Cu30Ni5Al10)99.98Sc0.02 remains in the same amorphous state as that of the amorphous base metal when the weld is cooled with accelerated cooling.

  6. Multi-Step Crystallization of Barium Carbonate: Rapid Interconversion of Amorphous and Crystalline Precursors.

    PubMed

    Whittaker, Michael L; Smeets, Paul J M; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Joester, Derk

    2017-12-11

    The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 μm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds. We describe a bulk synthesis and report a first assessment of the composition, vibrational spectra, and structure of gortatowskite. Our findings indicate that transient amorphous and crystalline precursors can play a role in aqueous precipitation pathways that may often be overlooked owing to their extremely short lifetimes and small dimensions. However, such transient precursors may be integral to the formation of more stable phases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Calcium aluminates hydration in presence of amorphous SiO{sub 2} at temperatures below 90 deg. C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas Mercury, J.M.; Turrillas, X.; Aza, A.H. de

    2006-10-15

    The hydration behaviour of Ca{sub 3}Al{sub 2}O{sub 6}, Ca{sub 12}Al{sub 14}O{sub 33} and CaAl{sub 2}O{sub 4} with added amorphous silica at 40, 65 and 90 deg. C has been studied for periods ranging from 1 to 31 days. In hydrated samples crystalline phases like katoite (Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} ) and gibbsite, Al(OH){sub 3}, were identified, likewise amorphous phases like Al(OH) {sub x} , calcium silicate hydrates, C-S-H, and calcium aluminosilicate hydrates, C-S-A-H, were identified. The stoichiometry of Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} (0{<=}3-x{<=}0.334), which was themore » main crystalline product, was established by Rietveld refinement of X-ray and neutron diffraction data and by transmission electron microscopy. - Graphical abstract: Katoite, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} (0{<=}3-x{<=}0.334), was identified besides gibbsite, Al(OH){sub 3}, as a crystalline stable hydration products in Ca{sub 3}Al{sub 2}O{sub 6}, Ca{sub 12}Al{sub 14}O{sub 33} and CaAl{sub 2}O{sub 4} hydrated with added amorphous silica between 40 and 90 deg. C.« less

  8. The composition of secondary amorphous phases under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.

    2017-12-01

    X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.

  9. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  10. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  11. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  12. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  13. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  14. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-01

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  15. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy.

    PubMed

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-06

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  16. In situ observation of shear-driven amorphization in silicon crystals.

    PubMed

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  17. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadeesha Angadi, V.; Anupama, A.V.; Choudhary, Harish K.

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiatingmore » the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable ZnFe{sub 2}O{sub 4} phase retains its structure even after 50 KGy γ-irradiation. • The γ-irradiation degrades the magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics.« less

  18. Formation of a metastable hollandite phase from amorphous plagioclase: A possible origin of lingunite in shocked chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Kubo, Tomoaki; Kono, Mari; Imamura, Masahiro; Kato, Takumi; Uehara, Seiichiro; Kondo, Tadashi; Higo, Yuji; Tange, Yoshinori; Kikegawa, Takumi

    2017-11-01

    We conducted high-pressure experiments in plagioclase with different anorthite contents at 18-27 GPa and 25-1750 °C using both a laser-heated diamond anvil cell and a Kawai-type multi-anvil apparatus to clarify the formation conditions of the hollandite phase in shocked chondritic and Martian meteorites. Lingunite (NaAlSi3O8-rich hollandite) was found first to crystallize from amorphous oligoclase as a metastable phase before decomposing into the final stable state. This process might account for the origin of lingunite found along with maskelynite in shocked chondritic meteorites. Metastable lingunite appeared at ∼20-24 GPa and ∼1100-1300 °C in laboratory tests lasting tens of minutes; however, it might also form at the higher temperatures and shorter time periods of shock events. In contrast, the hollandite phase was not observed during any stage of crystallization when using albite or labradorite as starting materials. The formation process of (Ca,Na)-hollandite in the labradorite composition found in Martian shergottites remains unresolved. The orthoclase contents of the hollandite phase both in shocked meteorites (2.4-8.2 mol%) and our oligoclase sample (3.9 mol%) are relatively high compared to the albite and labradorite samples (0.6 and 1.9 mol%, respectively). This might critically affect the crystallization kinetics of hollandite phase.

  19. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.

    PubMed

    Politi, Yael; Metzler, Rebecca A; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P U P A; Gilbert, Pupa

    2008-11-11

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism.

  20. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  1. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    NASA Astrophysics Data System (ADS)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  2. Possible Existence of Two Amorphous Phases of D-Mannitol Related by a First-Order Transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John; Yu, Lian

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above Tg (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase (Phase X). The enthalpy of Phase X is roughly halfway between those of the known amorphous and crystalline phases. The amorphous nature of Phase X is suggested by its absence of birefringence, transparency, broad X-ray diffraction, and broad Raman and NIR spectra. Phase X has greater molecular spacing, higher molecular order, fewer intra- and more inter-molecular hydrogen bonds than the normal liquid. On fast heating, Phase X transforms back to SCL near 330 K. Upon temperature cycling, it shows a glass-transition-like change of heat capacity. The presence of D-sorbitol enables a first-order liquid-liquid transition (LLT) from SCL to Phase X. This is the first report of polyamorphism at 1 atm for a pharmaceutical relevant substance. As amorphous solids are explored for many applications, polyamorphism could offer a tool to engineer the properties of materials. (Ref: M. Zhu et al., J. Chem. Phys. 2015, 142, 244504)

  3. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  4. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    PubMed Central

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-01-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797

  5. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  6. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.

    PubMed

    Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-29

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  7. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  8. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Yong, Xue; Tse, John S.

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less

  9. Low power ovonic threshold switching characteristics of thin GeTe{sub 6} films using conductive atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manivannan, Anbarasu, E-mail: anbarasu@iiti.ac.in, E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar

    2014-12-15

    Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage,more » V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.« less

  10. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  11. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  12. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  13. Processing and characterization of Zr-based metallic glass by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Bae, Heehun

    Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.

  14. Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon.

    PubMed

    Wang, Wei; Zhang, Cheng; Zhang, Zhi-Wei; Li, Yi-Cheng; Yasir, Muhammad; Wang, Hai-Tao; Liu, Lin

    2017-06-22

    Toughening of Fe-based amorphous coatings meanwhile maintaining a good corrosion resistance remains challenging. This work reports a novel approach to improve the toughness of a FeCrMoCBY amorphous coating through in-situ formation of amorphous carbon reinforcement without reducing the corrosion resistance. The Fe-based composite coating was prepared by high velocity oxy-fuel (HVOF) thermal spraying using a pre-mixed Fe-based amorphous/nylon-11 polymer feedstock powders. The nylon-11 powders were in-situ carbonized to amorphous carbon phase during thermal spraying process, which homogeneously distributed in the amorphous matrix leading to significant enhancement of toughness of the coating. The mechanical properties, including hardness, impact resistance, bending and fatigue strength, were extensively studied by using a series of mechanical testing techniques. The results revealed that the composite coating reinforced by amorphous carbon phase exhibited enhanced impact resistance and nearly twice-higher fatigue strength than that of the monolithic amorphous coating. The enhancement of impact toughness and fatigue properties is owed to the dumping effect of the soft amorphous carbon phase, which alleviated stress concentration and decreased crack propagation driving force.

  15. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.

    PubMed

    Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka

    2012-01-01

    To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.

  17. Magnetotransport properties of microstructured AlCu2Mn Heusler alloy thin films in the amorphous and crystalline phase

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, José; Stiller, Markus; Esquinazi, Pablo D.; Quispe-Marcatoma, Justiniano; Häussler, Peter

    2018-06-01

    We have studied the resistance, magnetoresistance and Hall effect of AlCu2Mn Heusler alloy thin films prepared by flash evaporation on substrates cooled at 4He liquid temperature. The as-prepared samples were amorphous and were annealed stepwise to induce the transformation to the crystalline phase. The amorphous phase is metastable up to above room temperature and the transition to the crystalline phase was observed by means of resistance measurements. Using transmission electron microscopy, we have determined the structure factor S (K) and the pair correlation function g (r) , both results indicate that amorphous AlCu2Mn is an electronic stabilized phase. The X-ray diffraction of the crystallized film shows peaks corresponding to the well ordered L21 phase. The resistance shows a negative temperature coefficient in both phases. The magnetoresistance (MR) is negative in both phases, yet larger in the crystalline state compared to the amorphous one. The magnetic properties were studied further by anomalous Hall effect measurements, which were present in both phases. In the amorphous state, the anomalous Hall effect disappears at temperatures below 175 K and is present up to above room temperature in the case of crystalline AlCu2Mn.

  18. EFFECT OF PRE-ALLOYING CONDITION ON THE BULK AMORPHOUS ALLOY ND(60)FE(30)AL(10).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OCONNOR,A.S.; LEWIS,L.H.; MCCALLUM,R.W.

    Bulk metallic glasses are materials that require only modest cooling rates to obtain amorphous solids directly from the melt. Nd{sub 60}Fe{sub 30}Al{sub 10} has been reported to be a ferromagnetic bulk metallic glass that exhibits high coercivity, a combination unlike conventional Nd-based amorphous magnetic alloys. To clarify the relationship between short-range order and high coercivity in glassy Nd{sub 60}Fe{sub 30}Al{sub 10}, experiments were performed to verify the existence of a homogeneous liquid state prior to rapid solidification. Alloys were prepared by various pre-alloying routes and then melt-spun. Arc-melted alloys were prepared for melt spinning using three different protocols involving: (1)more » alloying all three elements at once, (2) forming a Nd-Fe alloy which was subsequently alloyed with Al, and (3) forming a Fe-Al alloy for subsequent alloying with Nd. XRD, DTA, and magnetic measurement data from the resultant ribbons indicate significant differences in both the glassy fraction and the crystalline phase present in the as-spun material. These observed differences are attributed to the presence of highly stable nanoscopic aluminide-and/or silicide-phases, or motes, present in the melt prior to solidification. These motes would affect the short-range order and coercivity of the resultant glassy state and are anticipated to provide heterogeneous nucleation sites for crystallization.« less

  19. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs).

    PubMed

    Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel

    2014-10-06

    Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.

  20. Using containerless methods to develop amorphous pharmaceuticals.

    PubMed

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high bioavailability. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  2. Ion migration in crystalline and amorphous HfOX

    NASA Astrophysics Data System (ADS)

    Schie, Marcel; Müller, Michael P.; Salinga, Martin; Waser, Rainer; De Souza, Roger A.

    2017-03-01

    The migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000 ≤T /K ≤2000 . Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions.

  3. Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qing; Xia, Yangyang; Zheng, Yonghui

    Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less

  4. Silicate Phases on the Surfaces of Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt objects were separated from Trojans during large planet migration.

  5. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    PubMed

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  6. Methotrexate intercalated calcium carbonate nanostructures: Synthesis, phase transformation and bioassay study.

    PubMed

    Dai, Chao-Fan; Wang, Wei-Yuan; Wang, Lin; Zhou, Lei; Li, Shu-Ping; Li, Xiao-Dong

    2016-12-01

    The formation and stabilization of amorphous calcium carbonate (ACC) is an active area of research owing to the presence of stable ACC in various biogenic minerals. In this paper, the synthesis of calcium carbonate (CaCO3) under the participation of methotrexate (MTX) via a facile gas diffusion route was reported. The results indicated that the addition of MTX can result in the phase transformation of CaCO3, and then two kinds of hybrids, i.e., MTX-vaterite and stable MTX-ACC came into being. Interestingly, the functional agent MTX served as both the target anticancer drug loaded and effective complexation agents to modify and control the morphology of final samples. The examination of MTX-ACC biodegradation process revealed that the collapse of MTX-ACC nanoparticles was due to the synergistic effect of drug release and the phase transformation. Finally, our study also proved that MTX-ACC exhibited the most excellent suppressing function on the viability of cancer cells, especially after long-time duration. Copyright © 2016. Published by Elsevier B.V.

  7. Investigating the Crystallization Propensity of Structurally Similar Organic Molecules From Amorphous State

    NASA Astrophysics Data System (ADS)

    Kalra, Arjun

    Combinatorial chemistry and high-throughput screening approaches utilized during drug discovery have resulted in many potent pharmacologically active molecules with low aqueous solubility and consequently poor bioavailability. Enabling technologies, such as amorphous solid dispersions (ASD's), can obviate these challenges and provide an efficient route to formulate the drug as an oral solid dosage form. However, high-energy amorphous materials have an inherent tendency to crystallize and in doing so can negate the apparent solubility advantage achieved by using such formulations. Crystallization can occur during (1) cooling the drug molecule from the melt state (such as during hot melt extrusion); (2) during storage of an amorphous formulation; (3) during pharmaceutical processing unit operations such as compression, granulation etc. Current knowledge with regards to the relationship between crystallization propensity of an active pharmaceutical ingredient (API) from the amorphous state (supercooled liquid and glass) and its thermodynamic, kinetic and molecular properties is limited. Furthermore, examining the mechanistic steps involved in crystallization of organic molecules under conditions of supercooling provides an opportunity to examine supramolecular aggregation events occurring during early stages of crystallization. Studying crystallization mechanism from amorphous state is important for pharmaceutical formulation development because a molecular-level understanding of the crystallization process would provide clues regarding the intermolecular interactions at the early stages of nucleation and help in rational selection of polymeric excipients to hinder such events. The primary goal of this research is to develop an understanding of phase transition from amorphous pharmaceuticals, specifically focusing on the role of thermodynamic, kinetic and molecular properties of a series of structurally similar compounds. It is hypothesized that the there exists a link between thermodynamics quantities, kinetic properties, molecular interactions and glass forming ability. Furthermore, it is hypothesized that the molecular heterogeneity in supercooled liquids and glassy state, manifested through intermolecular interactions and conformational flexibility impacts the observed crystallization behavior. Understanding the phase transition kinetics and mechanism of crystallization from amorphous pharmaceuticals is critical for development of stable formulations for drug delivery. The specific goals of this research include: (1) Investigating the link between thermodynamic and kinetic factors affecting the crystallization propensity of organic compounds from supercooled liquid state. (2) Evaluating the role of intermolecular interactions and conformational distribution on glass forming ability and stability. (3) Examining the relationship between supramolecular aggregates present in glassy state and polymorphic outcome. It is believed that successful completion of this research will provide a fundamental understanding of amorphous solid-state chemistry as well as provide useful tools for the implementation of ASD's as solid oral dosage forms.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Nobuaki; Toshiba Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017; Shigeta, Yukichi

    The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered.more » The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.« less

  9. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.

  10. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  11. Monotropic polymorphism in a glass-forming metallic alloy

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Maris, P.; Schäublin, R.; Uggowitzer, P. J.; Löffler, J. F.

    2018-06-01

    This study investigates the crystallization and phase transition behavior of the amorphous metallic alloy Au70Cu5.5Ag7.5Si17. This alloy has been recently shown to exhibit a transition of a metastable to a more stable crystalline state, occurring via metastable melting under strong non-equilibrium conditions. Such behavior had so far not been observed in other metallic alloys. In this investigation fast differential scanning calorimetry (FDSC) is used to explore crystallization and the solid–liquid–solid transition upon linear heating and during isothermal annealing, as a function of the conditions under which the metastable phase is formed. It is shown that the occurrence of the solid–liquid–solid transformation in FDSC depends on the initial conditions; this is explained by a history-dependent nucleation of the stable crystalline phase. The microstructure was investigated by scanning and transmission electron microscopy and x-ray diffraction. Chemical mapping was performed by energy dispersive x-ray spectrometry. The relationship between the microstructure and the phase transitions observed in FSDC is discussed with respect to the possible kinetic paths of the solid–liquid–solid transition, which is a typical phenomenon in monotropic polymorphism.

  12. Phase stability, porosity distribution and microstructural evolution of amorphous Al{sub 50}Ti{sub 50} powders consolidated by electrical resistance sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2015-03-30

    The effect of intensity and duration of the electrical resistance sintering process on the phase stability, porosity distribution and microstructural evolution of Al{sub 50}Ti{sub 50} amorphous powders is studied. The phase transformations during the consolidation process were determined by X-ray diffraction. The porosity distribution was observed by optical and scanning electron microscopy. The amorphous phase is partially transformed to the crystalline phase during the sintering process, and formation of AlTi and AlTi{sub 3} intermetallic compounds occurs for temperatures higher than 300 °C. Finally, it is observed that the compacts core have lower porosity and a higher tendency to the amorphous-crystallinemore » phase transformation than the periphery.« less

  13. Raman studies on molecular and ionic forms in solid layers of nitrogen dioxide - Temperature and light induced effects

    NASA Astrophysics Data System (ADS)

    Givan, A.; Loewenschuss, A.

    1990-12-01

    Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.

  14. Simultaneous Pressure-Induced Magnetic and Valence Transitions in Type-I Clathrate Eu8Ga16Ge30

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Tsutsui, Satoshi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Avila, Marcos A.; Yamamoto, Shuhei; Yamane, Haruki; Suekuni, Koichiro; Umeo, Kazunori; Kume, Tetsuji; Nakano, Satoshi; Takabatake, Toshiro

    2014-01-01

    We have performed X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) measurements at pressures up to 17 GPa for the clathrate Eu8Ga16Ge30 (Curie temperature TC = 36 K). The temperature dependence of the XMCD spectra agrees well with that of the DC magnetization at ambient pressure. The TC is gradually enhanced with increasing pressures up to 13.3 GPa, and the divalent state of the Eu ions with J = 7/2 remains stable, but at 17 GPa the XMCD intensity is strongly suppressed and a spectral weight corresponding to the trivalent state of Eu ions (with no magnetic moment) appears in the XAS spectrum. The concurrent change from the type-I clathrate structure to an amorphous phase has been observed by X-ray diffraction experiment. We conclude that the amorphization of this compound induces the mixed valence state, which collapses the ferromagnetism.

  15. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur; ...

    2018-01-01

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  16. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  17. β -B i2O3 under compression: Optical and elastic properties and electron density topology analysis

    NASA Astrophysics Data System (ADS)

    Pereira, A. L. J.; Gomis, O.; Sans, J. A.; Contreras-García, J.; Manjón, F. J.; Rodríguez-Hernández, P.; Muñoz, A.; Beltrán, A.

    2016-06-01

    We report a joint experimental and theoretical study of the optical properties of tetragonal bismuth oxide (β -B i2O3 ) at high pressure by means of optical absorption measurements combined with ab initio electronic band structure calculations. Our results are consistent with previous results that show the presence of a second-order isostructural phase transition in B i2O3 (from β to β') around 2 GPa and a phase transition above 15 GPa combined with a pressure-induced amorphization above 17-20 GPa. In order to further understand the pressure-induced phase transitions and amorphization occurring in β -B i2O3 , we theoretically studied the mechanical and dynamical stability of the tetragonal structures of β - and β'-B i2O3 at high pressure through calculations of their elastic constants, elastic stiffness coefficients, and phonon dispersion curves. The pressure dependence of the elastic stiffness coefficients and phonon dispersion curves confirms that the isostructural phase transition near 2 GPa is of ferroelastic nature. Furthermore, a topological study of the electron density shows that the ferroelastic transition is not caused by a change in number of critical points (cusp catastrophe), but by the equalization of the electron densities of both independent O atoms in the unit cell due to a local rise in symmetry. Finally, from theoretical simulations, β'-B i2O3 is found to be mechanically and dynamically stable at least up to 26.7 GPa under hydrostatic conditions; thus, the pressure-induced amorphization reported above 17-20 GPa in powder β'-B i2O3 using methanol-ethanol-water as pressure-transmitting medium could be related to the frustration of a reconstructive phase transition at room temperature and the presence of mechanical or dynamical instabilities under nonhydrostatic conditions.

  18. The Amorphous Composition of Three Mudstone Samples from Gale Crater: Implications for Weathering and Diagenetic Processes on Mars

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, R. T.; Rampe, E. B.; Morris, R. V.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Morrison, S. M.; Sutter, B.; hide

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.

  19. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  20. Amorphization reaction in thin films of elemental Cu and Y

    NASA Astrophysics Data System (ADS)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  1. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  2. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  3. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  4. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system

    NASA Astrophysics Data System (ADS)

    Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.

    2014-05-01

    Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.

  5. In situ observation of shear-driven amorphization in silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Zhong, Li; Fan, Feifei

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less

  6. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2015-10-27

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  7. Building solids inside nano-space: from confined amorphous through confined solvate to confined 'metastable' polymorph.

    PubMed

    Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z

    2015-10-14

    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids.

  8. Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A = Nd, Gd, and Yb)

    NASA Astrophysics Data System (ADS)

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; Palomares, Raul I.; Park, Changyong; Trautmann, Christina; Lang, Maik; Mao, Wendy L.; Ewing, Rodney C.

    2018-02-01

    The structural responses of A2BO5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb2TiO5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the high cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd2TiO5 and Gd2TiO5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. These compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.

  9. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed

    2005-05-15

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatiticmore » phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.« less

  10. The U.S. and Japanese amorphous silicon technology programs A comparison

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1984-01-01

    The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.

  11. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie; Raines, Lily

    2009-01-01

    Oort Cloud comets, as well as TNOs Makemake (2045 FYg), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System.

  12. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance.

    PubMed

    Chen, Huijun; Pui, Yipshu; Liu, Chengyu; Chen, Zhen; Su, Ching-Chiang; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Foster, Kimberly; Gudmundsson, Olafur; Qian, Feng

    2018-01-01

    Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Amorphization dynamics of Ge{sub 2}Sb{sub 2}Te{sub 5} films upon nano- and femtosecond laser pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, J.; Gawelda, W.; Puerto, D.

    2008-01-15

    Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less

  14. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  15. Amorphous silica maturation in chemically weathered clastic sediments

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  16. Multistimuli-responsive benzothiadiazole-cored phenylene vinylene derivative with nanoassembly properties.

    PubMed

    Dou, Chuandong; Chen, Dong; Iqbal, Javed; Yuan, Yang; Zhang, Hongyu; Wang, Yue

    2011-05-17

    A trifluoromethyl-substituted benzothiadiazole-cored phenylene vinylene fluorophore (1) was synthesized and displayed piezo- and vapochromism and thermo-induced fluorescence variation in solid phase. Grinding could disrupt the crystalline compound 1 with orange emission into amorphous compound 1 with green emission, and heating treatment could change the amorphous compound 1 into crystalline compound 1. Ultraviolet-visible (UV-vis) absorption spectra, (13)C nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous compound 1 possess different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. The ground sample exhibited vapochromic fluorescence property. Furthermore, compound 1 showed interesting supramolecular assembly characteristics in solution. Slowly cooling the hot N,N-dimethylformamide (DMF) solution of compound 1 resulted in the formation of orange fluorescent fibers, whereas sonication treatment of the cooling solution led to the generation of organic molecular gel. The field emission scanning electronic microscope (FESEM) and fluorescent microscopy images revealed smooth nano- or microfiber and network morphology properties. The PXRD spectra confirmed that these nano- or microstructures had a similar molecular-packing model with the crystalline state of compound 1. Slow evaporation of the toluene solution of compound 1 could produce green emissive microrods, which exhibited interesting thermo-induced fluorescence variation.

  17. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  18. High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Gu, Genda

    2013-03-27

    The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.

  19. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  20. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution.

    PubMed

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-10-12

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.

  1. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-04-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process.

  2. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  3. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  4. Ferroelectric/ferrimagnetic composite ceramics with depressed interfacial reaction and low dielectric loss

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Weng, Wenjian; Han, Gaorong; Du, Piyi

    2014-10-01

    (1-x)BaTiO3/xNi0.5Zn0.5Fe2O4 (NZFO) ferroelectric/ferrimagnetic composite ceramics with restricted interfacial reaction were prepared by adopting fine NZFO precursors synthesized by combustion method. The dielectric dispersion, loss, and conductivity are significantly reduced at most compositions, particularly at concentrations below the percolation threshold. At x = 0.3, a frequency-stable permittivity of 2300 and a low loss of 0.04 at 1 kHz is realized. The recovery of the dielectric/electric properties is attributed to the interfacial amorphous phase introduced by the fine NZFO precursors, which can act as barrier for ionic inter-diffusion between the two phases and hopping conduction among ferrites.

  5. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of themore » crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.« less

  6. Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131

  7. Ice polyamorphism in the minimal Mercedes-Benz model of water.

    PubMed

    Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás

    2012-12-28

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  8. Ice polyamorphism in the minimal Mercedes-Benz model of water

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás

    2012-12-01

    We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.

  9. Pressure-Induced Phase Transitions in GeTe-Rich Ge-Sb-Te Alloys across the Rhombohedral-to-Cubic Transitions.

    PubMed

    Krbal, Milos; Bartak, Jaroslav; Kolar, Jakub; Prytuliak, Anastasiia; Kolobov, Alexander V; Fons, Paul; Bezacier, Lucile; Hanfland, Michael; Tominaga, Junji

    2017-07-17

    We demonstrate that pressure-induced amorphization in Ge-Sb-Te alloys across the ferroelectric-paraelectric transition can be represented as a mixture of coherently distorted rhombohedral Ge 8 Sb 2 Te 11 and randomly distorted cubic Ge 4 Sb 2 Te 7 and high-temperature Ge 8 Sb 2 Te 11 phases. While coherent distortion in Ge 8 Sb 2 Te 11 does not prevent the crystalline state from collapsing into its amorphous counterpart in a similar manner to pure GeTe, the pressure-amorphized Ge 8 Sb 2 Te 11 phase begins to revert to the crystalline cubic phase at ∼9 GPa in contrast to Ge 4 Sb 2 Te 7 , which remains amorphous under ambient conditions when gradually decompressed from 40 GPa. Moreover, experimentally, it was observed that pressure-induced amorphization in Ge 8 Sb 2 Te 11 is a temperature-dependent process. Ge 8 Sb 2 Te 11 transforms into the amorphous phase at ∼27.5 and 25.2 GPa at room temperature and 408 K, respectively, and completely amorphizes at 32 GPa at 408 K, while some crystalline texture could be seen until 38 GPa (the last measurement point) at room temperature. To understand the origins of the temperature dependence of the pressure-induced amorphization process, density functional theory calculations were performed for compositions along the (GeTe) x - (Sb 2 Te 3 ) 1-x tie line under large hydrostatic pressures. The calculated results agreed well with the experimental data.

  10. Tin Sulfide Phase Exploration: Dependence of Optoelectronic Properties on Microstructural Growth and Chemical Variations in Thin Film Material

    NASA Astrophysics Data System (ADS)

    Banai, Rona Elinor

    Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.

  11. Exploring Molecular Speciation and Crystallization Mechanism of Amorphous 2-Phenylamino Nicotinic Acid.

    PubMed

    Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei

    2018-02-07

    Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.

  12. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite.

    PubMed

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2014-09-01

    Powders of α-tricalcium phosphate (α-TCP), which readily react with water to form calcium-deficient hydroxyapatite (CDHA), are frequently used in bone cements. As, for clinical applications, it is important to adjust the setting reaction of the cements to a reasonable reaction time, exact knowledge of the hydration mechanism is essential. It is known that prolonged milling results in partial amorphization of α-TCP powders and that dissolution of the amorphous phase significantly accelerates the hydration, but it is not clear yet when the amorphous phase reacts in comparison to the crystalline α-TCP. Therefore the aim of this study was to investigate the development of quantitative phase content of α-TCP samples during hydration. For this purpose, three α-TCP powders, containing 0, 16 and 71wt.% of amorphous phase (ATCP), were mixed with either deionized water or a 0.1M Na2HPO4 aqueous solution. The crystalline evolution of the paste was assessed quantitatively during the first 48h of hydration at 23°C by G-factor quantification. The present investigations demonstrate that ATCP reacted earlier than crystalline α-TCP. The results also suggest the formation of an X-ray amorphous phase during the hydraulic conversion formation of α-TCP into CDHA. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. The liquid⟷amorphous transition and the high pressure phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Robinson, David R.; Wilson, Mark

    2013-04-01

    The phase diagram of carbon is mapped to high pressure using a computationally-tractable potential model. The use of a relatively simple (Tersoff-II) potential model allows a large range of phase space to be explored. The coexistence (melting) curve for the diamond crystal/liquid dyad is mapped directly by modelling the solid/liquid interfaces. The melting curve is found to be re-entrant and belongs to a conformal class of diamond/liquid coexistence curves. On supercooling the liquid a phase transition to a tetrahedral amorphous form (ta-C) is observed. The liquid ⟷ amorphous coexistence curve is mapped onto the pT plane and is found to also be re-entrant. The entropy changes for both melting and the amorphous ⟶ liquid transitions are obtained from the respective coexistence curves and the associated changes in molar volume. The structural change on amorphization is analysed at different points on the coexistence curve including for transitions that are both isochoric and isocoordinate (no change in nearest-neighbour coordination number). The conformal nature of the melting curve is highlighted with respect to the known behaviour of Si. The relationship of the observed liquid/amorphous coexistence curve to the Si low- and high-density amorphous (LDA/HDA) transition is discussed.

  14. Piezochromism and structural and electronic properties of benz[a]anthracene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Zhang, Rong; Yao, Yansun

    2017-01-31

    We report a combined experimental and theoretical study of the high pressure behavior of a herringbone-type hydrocarbon benz[a]anthracene (BaA) using fluorescence spectroscopy, X-ray diffraction, optical absorption, photoconductivity measurements, and first-principles density functional theory (DFT) calculations. The ambient-pressure molecular solid phase of BaA was found to be stable up to ~15.0 GPa. Increasing the external pressure within this region would induce a reversible piezochromic colour change in the sample, from yellow-green to light brown. The reversibility of the colour change was confirmed by both optical observations and fluorescence measurements. Further compression beyond 15 GPa leads to polymerization of the sample andmore » formation of an amorphous hydrogenated carbon. The low pressure crystalline phase is not recoverable when the sample is decompressed from pressure above 15 GPa. DFT investigation of the structures at zero temperature suggests that the formation of a crystalline polymeric phase can take place between 30 and 117 GPa, however the kinetic barriers hinder the process at low pressure regions. The phase transition is therefore suggested to proceed along a gradual transition path to an amorphous phase at a lower reaction threshold, activated by finite temperature effects. Optical absorption measurements reveal that the band gap of BaA decreases at high pressure, from 2.4 eV at 0.5 GPa to 1.0 eV at 50.6 GPa. The DFT calculations further suggest that the band gap of BaA in the molecular phase could reduce to ~0.1 eV at 117 GPa. Photoconductivity measurements show a continuous increase of photocurrent in the molecular phase region, which most likely originated from the increase of carrier mobility under pressure.« less

  15. Monohydrocalcite: a promising remediation material for hazardous anions

    PubMed Central

    Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro

    2011-01-01

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3·H2O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite. PMID:27877452

  16. Monohydrocalcite: a promising remediation material for hazardous anions.

    PubMed

    Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro

    2011-12-01

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO 3 ·H 2 O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO 4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO 4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO 4 than calcite and aragonite. The modes of PO 4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite.

  17. Monohydrocalcite: a promising remediation material for hazardous anions

    NASA Astrophysics Data System (ADS)

    Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro

    2011-12-01

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3·H2O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite.

  18. Glass transitions and physical aging of cassava starch - corn oil blends.

    PubMed

    Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J

    2014-05-25

    Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. First-principles study of the liquid and amorphous phases of In2Te3

    NASA Astrophysics Data System (ADS)

    Dragoni, D.; Gabardi, S.; Bernasconi, M.

    2017-08-01

    Structural, dynamical, and electronic properties of the liquid and amorphous phase of the In2Te3 compound have been studied by means of density functional molecular dynamics simulations. This system is of interest as a phase change material, undergoing a fast and reversible change between the crystalline and amorphous phases upon heating. It can be seen as a constituent of ternary InSbTe alloys which are receiving attention for application in electronic phase change memories. Amorphous models of In2Te3 300 -atom large have been generated by quenching from the melt by using different exchange and correlation functionals and different descriptions of the van der Waals interaction. It turns out the local bonding geometry of the amorphous phase is mostly tetrahedral with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the InTe, In2Te3 , and In2Te5 compounds. Benchmark calculations on the crystalline α phase of In2Te3 in the defective zincblend geometry have also been performed. The calculations reveal that the high symmetric F 4 ¯3 m structure inferred experimentally from x-ray diffraction for the α phase must actually result from a random distribution of Te-Te bonds in different octahedral cages formed by the coalescence of vacancies in the In sublattice.

  20. Crystal-chemistry of alteration products of vitrified wastes: Implications on the retention of polluting elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpenich, Jerome

    2008-07-01

    Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO{sub 4} . nH{sub 2}O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes themore » altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.« less

  1. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  2. Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a.

    PubMed

    Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.

  3. Shock wave induced phase transition in α -FePO 4

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Suresh, N.; Jyoti, G.; Kulshreshtha, S. K.; Gupta, S. C.; Sikka, S. K.

    Shock wave induced response of the berlinite form of FePO 4 has been investigated up to 8.5 GPa. The X-ray diffraction measurements on the shock recovered samples reveal transition to the mixture of an amorphous phase and an orthorhombic phase around 5 GPa. The proportion of the amorphous material in the recovered sample is found to decrease at higher pressure. The results are interpreted in terms of a three-level free energy diagram for the crystal to amorphous transitions.

  4. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    PubMed

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  5. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-03-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  6. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-06-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  7. Rate-dependent behavior of the amorphous phase of spider dragline silk.

    PubMed

    Patil, Sandeep P; Markert, Bernd; Gräter, Frauke

    2014-06-03

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10(-6) Ns/m and 10(4) Ns/m(2), respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.

    PubMed

    Mosquera-Giraldo, Laura I; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.

  9. Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and l-Arginine.

    PubMed

    Ueda, Hiroshi; Wu, Wenqi; Löbmann, Korbinian; Grohganz, Holger; Müllertz, Anette; Rades, Thomas

    2018-05-07

    The use of co-amorphous systems containing a combination of low molecular weight drugs and excipients is a relatively new technology in the pharmaceutical field to improve the solubility of poorly water-soluble drugs. However, some co-amorphous systems show a lower glass transition temperature ( T g ) than many of their polymeric solid dispersion counterparts. In this study, we aimed at designing a stable co-amorphous system with an elevated T g . Carbamazepine (CBM) and citric acid (CA) were employed as the model drug and the coformer, respectively. co-amorphous CBM-CA at a 1:1 molar ratio was formed by ball milling, but a transition from the glassy to the supercooled melt state was observed under ambient conditions, due to the relatively low T g of 38.8 °C of the co-amorphous system and moisture absorption. To improve the T g of the coformer, salt formation of a combination of l-arginine (ARG) with CA was studied. First, ball milling of CA-ARG at molar ratios of 1:1, 1:2, and 1:3 forming co-amorphous systems was performed and led to a dramatic enhancement of the T g , depending on the CA-ARG ratio. Salt formation between CA and ARG was observed by infrared spectroscopy. Next, ball milling of CBM-CA-ARG at molar ratios of 1:1:1, 1:1:2, and 1:1:3 resulted in co-amorphous blends, which had a single T g at 77.8, 105.3, and 127.8 °C, respectively. These ternary co-amorphous samples remained in a solid amorphous form for 2 months at 40 °C. From these results, it can be concluded that blending of the salt coformer with a drug is a promising strategy to design stable co-amorphous formulations.

  10. Possible existence of two amorphous phases of d-mannitol related by a first-order transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian

    2015-06-01

    We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.

  11. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug.

    PubMed

    Indulkar, Anura S; Gao, Yi; Raina, Shweta A; Zhang, Geoff G Z; Taylor, Lynne S

    2016-06-06

    Recent studies on aqueous supersaturated lipophilic drug solutions prepared by methods including antisolvent addition, pH swing, or dissolution of amorphous solid dispersions (ASDs) have demonstrated that when crystallization is slow, these systems undergo liquid-liquid phase separation (LLPS) when the concentration of the drug in the medium exceeds its amorphous solubility. Following LLPS, a metastable equilibrium is formed where the concentration of drug in the continuous phase corresponds to the amorphous solubility while the dispersed phase is composed of a nanosized drug-rich phase. It has been reasoned that the drug-rich phase may act as a reservoir, enabling the rate of passive transport of the drug across a membrane to be maintained at the maximum value for an extended period of time. Herein, using clotrimazole as a model drug, and a flow-through diffusion cell, the reservoir effect is demonstrated. Supersaturated clotrimazole solutions at concentrations below the amorphous solubility show a linear relationship between the maximum flux and the initial concentration. Once the concentration exceeds the amorphous solubility, the maximum flux achieved reaches a plateau. However, the duration for which the high flux persists was found to be highly dependent on the number of drug-rich nanodroplets present in the donor compartment. Macroscopic amorphous particles of clotrimazole did not lead to the same reservoir effect observed with the nanodroplets formed through the process of LLPS. A first-principles mathematical model was developed which was able to fit the experimental receiver concentration-time profiles for concentration regimes both below and above amorphous solubility, providing support for the contention that the nanodroplet phase does not directly diffuse across the membrane but, instead, rapidly replenishes the drug in the aqueous phase that has been removed by transport across the membrane. This study provides important insight into the properties of supersaturated solutions and how these might in turn impact oral absorption through effects on passive membrane transport rates.

  12. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2017-12-01

    The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.

  13. Effect of characteristics of compounds on maintenance of an amorphous state in solid dispersion with crospovidone.

    PubMed

    Shibata, Yusuke; Fujii, Makiko; Kokudai, Makiko; Noda, Shinobu; Okada, Hideko; Kondoh, Masuo; Watanabe, Yoshiteru

    2007-06-01

    Solid dispersion (SD) of indomethacin with crospovidone (CrosPVP) shows useful characteristics for preparation of dosage forms. This study aimed to determine the types of drugs that could adopt a stable amorphous form in SD. Twenty compounds with various melting points (70-218 degrees C), molecular weights (135-504) and functional groups (amide, amino, carbonyl, hydroxyl, ketone etc.) were prepared in SD with CrosPVP. The CrosPVP SDs were prepared using a mechanical mixing and heating method. Melting point and molecular weight were found to have no influence on the ability of a compound to maintain an amorphous state in SD. All compounds containing hydrogen-bond-donor functional groups existed in an amorphous state in SD for at least 6 months. Infrared spectra suggested an interaction between the functional groups of these compounds and amide carbonyl group of CrosPVP. Compounds without hydrogen-bond-donor groups could not maintain an amorphous state and underwent recrystallization within 1 month. It was suggested that the presence of a hydrogen-bond-donor functional group in a compound is an important factor affecting the stable formation of SD with CrosPVP, which contains a hydrogen-bond acceptor.

  14. Linear Stability and Instability Patterns in Ion Bombarded Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Madi, Charbel Said

    2011-12-01

    This thesis is a combined experimental and theoretical study of the fundamental physical mechanisms governing nanoscale surface morphology evolution of Ar + ion bombarded silicon surfaces. I experimentally determined the topographical phase diagram resulting from Ar+ ion irradiation of Si surfaces at room temperature in the linear regime of surface dynamics as we vary the control parameters ion beam energy and incidence angle. At all energies, it is characterized by a diverging wavelength bifurcation from a smooth stable surface to parallel mode ripples (wavevector parallel to the projected ion beam on the surface) as the ion beam incidence angle is varied. At sufficiently high angles theta ≈ 85°, I observed perpendicular mode ripples (wavevector perpendicular to the ion beam). Through real-time Grazing-Incidence Small Angle X-ray Scattering, I have definitively established that ion-induced erosion, which is the consensus predominant cause of pattern formation, is not only of the wrong sign to explain the measured curvature coefficients responsible in driving the surface dynamics, but also is so small in magnitude as to be essentially negligible for pattern formation except possibly at the most grazing angles of incidence where both erosion and redistribution effects converge to zero. That the contribution of ion impact induced prompt atomic redistribution effects entirely overwhelms that of erosion in both the stabilizing and destabilizing regimes is of profound significance, as it overturns the erosion-based paradigm that has dominated the pattern formation field for over two decades. In situ wafer curvature measurements using the Multi-beam Optical Stress Sensor system were performed during amorphization of silicon by normal incidence 250 eV ion irradiation. An average compressive saturation stress built up in the amorphous layer was found to be as large as 1.5 GPa. By assuming the ion-induced amorphization layer to be modeled as a viscoelastic film that is anisotropically stressed by ion beam irradiation, we measure the deformation imparted per ion due to anisotropic deformation to be equal to A =1.15x10-16 cm2/ion. Although compressive stress is being injected into a thin viscoelastic ion-stimulated surface layer, the surface is unconditionally stable to topographic perturbations, corroborating the measured experimental phase diagram.

  15. Two-phase nc-TiN/a-(C,CN{sub x}) nanocomposite films: A HRTEM and MC simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J.; Lu, Y. H.; Hu, X. J.

    2013-06-18

    The grain growth in two-phase nanocomposite Ti-C{sub x}-N{sub y} thin films grown by reactive close-field unbalanced magnetron sputtering in an Ar-N{sub 2} gas mixture with microstructures comprising of nanocrystalline (nc-) Ti(N,C) phase surrounded by amorphous (a-) (C,CN{sub x}) phase was investigated by a combination of high-resolution transmission electron microscopy (HRTEM) and Monte Carlo (MC) simulations. The HRTEM results revealed that amorphous-free solid solution Ti(C,N) thin films exhibited polycrystallites with different sizes, orientations and irregular shapes. The grain size varied in the range between several nanometers and several decade nanometers. Further increase of C content (up to {approx}19 at.% C) mademore » the amorphous phase wet nanocrystallites, which strongly hindered the growth of nanocrystallites. As a result, more regular Ti(C,N) nanocrystallites with an average size of {approx}5 nm were found to be separated by {approx}0.5-nm amorphous phases. When C content was further increased (up to {approx}48 at.% in this study), thicker amorphous matrices were produced and followed by the formation of smaller sized grains with lognormal distribution. Our MC analysis indicated that with increasing amorphous volume fraction (i.e. increasing C content), the transformation from nc/nc grain boundary (GB)-curvature-driven growth to a/nc GB-curvature-driven growth is directly responsible for the observed grain growth from great inhomogeneity to homogeneity process.« less

  16. The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy

    NASA Astrophysics Data System (ADS)

    Romanov, I. Yu.; Gushchina, N. V.; Ovchinnikov, V. V.; Makhinko, F. F.; Stepanov, A. V.; Medvedev, A. I.; Starodubtsev, Yu. N.; Belozerov, V. Ya.; Loginov, B. A.

    2018-02-01

    Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm-2, irradiation time 2 s, ion-beam short-duration heating up to 350°C, which is 150°C lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.

  17. Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)

    DOE PAGES

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2017-09-28

    The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less

  18. Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang

    The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less

  19. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    PubMed

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. pH-Dependent Liquid-Liquid Phase Separation of Highly Supersaturated Solutions of Weakly Basic Drugs.

    PubMed

    Indulkar, Anura S; Box, Karl J; Taylor, Robert; Ruiz, Rebeca; Taylor, Lynne S

    2015-07-06

    Supersaturated solutions of poorly aqueous soluble drugs can be formed both in vivo and in vitro. For example, increases in pH during gastrointestinal transit can decrease the aqueous solubility of weakly basic drugs resulting in supersaturation, in particular when exiting the acidic stomach environment. Recently, it has been observed that highly supersaturated solutions of drugs with low aqueous solubility can undergo liquid-liquid phase separation (LLPS) prior to crystallization, forming a turbid solution such that the concentration of the drug in the continuous solution phase corresponds to the amorphous solubility while the colloidal phase is composed of a disordered drug-rich phase. Although it is well established that the equilibrium solubility of crystalline weakly basic drugs follows the Henderson-Hasselbalch relationship, the impact of pH on the LLPS phenomenon or the amorphous solubility has not been explored. In this work, the LLPS concentration of three weakly basic compounds-clotrimazole, nicardipine, and atazanavir-was determined as a function of pH using three different methods and was compared to the predicted amorphous solubility, which was calculated from the pH-dependent crystalline solubility and by estimating the free energy difference between the amorphous and crystalline forms. It was observed that, similar to crystalline solubility, the experimental amorphous solubility at any pH follows the Henderson-Hasselbalch relation and can be predicted if the amorphous solubility of the free base is known. Excellent agreement between the LLPS concentration and the predicted amorphous solubility was observed. Dissolution studies of amorphous drugs showed that the solution concentration can reach the corresponding LLPS concentration at that pH. Solid-state analysis of the precipitated material confirmed the amorphous nature. This work provides insight into the pH-dependent precipitation behavior of poorly water-soluble compounds and provides a fundamental basis with which to understand the performance of supersaturating dosage forms.

  1. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 1: thermodynamics of spontaneous amorphization.

    PubMed

    Qian, Ken K; Bogner, Robin H

    2011-07-01

    Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal molecules in the presence of mesoporous materials has been observed, for which pathway was suggested to be via the vapor phase, that is, sublimation of the crystalline molecules followed by adsorption on the porous media. The objective of this paper is to rigorously evaluate this amorphization pathway and to study the thermodynamics of spontaneous amorphization. Mesoporous silicon dioxide (SiO(2)) was used as a model system. Physical mixtures of SiO(2) and crystalline compounds were prepared and stored at 0% relative humidity (RH) and 40 °C. Loss of crystallinity of the model compounds was confirmed using powder X-ray diffraction and polarized light microscopy. Adsorption chamber was set up, in which naphthalene and SiO(2) were stored, without physical contact, under reduced pressure at 0% RH and 40 °C. Data confirmed that the rate and extent of sublimation and adsorption of naphthalene were significant for amorphization to occur on a pharmaceutically relevant timescale. Furthermore, a thermodynamic model has been developed to explain spontaneous amorphization. This unique phase transformation phenomenon can be a simple and effective method to improve the aqueous solubility and bioavailability of poorly soluble drug molecules. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  3. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switchingmore » using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.« less

  4. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine

    2015-11-01

    The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

  5. Addressing the amorphous content issue in quantitative phase analysis : the certification of NIST SRM 676a.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, J. P.; Von Dreele, R. B.; Winburn, R.

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  6. Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of NIST Standard Reference Material 676a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Cline; R Von Dreele; R Winburn

    2011-12-31

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  7. Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder.

    PubMed

    Ghosh, Indrajit; Snyder, Jennifer; Vippagunta, Radha; Alvine, Marilyn; Vakil, Ronak; Tong, Wei-Qin; Vippagunta, Sudha

    2011-10-31

    Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Classical vs. non-classical pathways of mineral formation (Invited)

    NASA Astrophysics Data System (ADS)

    De Yoreo, J. J.

    2013-12-01

    Recent chemical analyses, microscopy studies and computer simulations suggest many minerals nucleate through aggregation of pre-nucleation clusters and grow by particle-mediated processes that involve amorphous or disordered precursors. Still other analyses, both experimental and computational, conclude that even simple mineral systems like calcium carbonate form via a barrier-free process of liquid-liquid separation, which is followed by dehydration of the ion-rich phase to form the solid products. However, careful measurements of calcite nucleation rates on a variety of ionized surfaces give results that are in complete agreement with the expectations of classical nucleation theory, in which clusters growing through ion-by-ion addition overcome a free energy barrier through the natural microscopic density fluctuations of the system. Here the challenge of integrating these seemingly disparate observations and analyses into a coherent picture of mineral formation is addressed by considering the energy barriers to calcite formation predicted by the classical theory and the changes in those barriers brought about by the introduction of interfaces and clusters, both stable and metastable. Results from a suite of in situ TEM, AFM, and optical experiments combined with simulations are used to illustrate the conclusions. The analyses show that the expected barrier to homogeneous calcite nucleation is prohibitive even at concentrations exceeding the solubility limit of amorphous calcium carbonate. However, as demonstrated by experiments on self-assembled monolayers, the introduction of surfaces that moderately decrease the interfacial energy associated with the forming nucleus can reduce the magnitude of the barrier to a level that is easily surmounted under typical laboratory conditions. In the absence of such surfaces, experiments that proceed by continually increasing supersaturation with time can easily by-pass direct nucleation of calcite and open up pathways through all other solid phases, as well as dense liquid phases associated with a spinodal. Simulations predict that this phase boundary lies within the region of the calcium carbonate - water phase diagram accessible at room temperature. AFM and TEM analyses of other mineral systems, particularly calcium phosphate, suggest cluster aggregation can play important roles both in modifying barriers and in biasing pathways towards or away from amorphous phases. Most importantly, analysis of the energetic changes shows that barriers are only reduced if the clusters are metastable relative to the free ions and that the reduction is naturally accompanied by a bias towards formation of amorphous precursors. Finally, results from in situ TEM observations of nanoparticle interactions are used to understand the mechanisms controlling particle-mediated growth following formation of primary nuclei of either crystalline phases or disordered precursors. Measurements of the particle speeds and accelerations are used to estimate the magnitude of the attractive potential that drives particle-particle aggregation.

  9. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.

    2015-01-01

    In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.

  10. Transformation of amorphous TiO 2 to a hydronium oxofluorotitanate and applications as an HF sensor

    DOE PAGES

    Appelhans, Leah N.; Finnegan, Patrick S.; Massey, Lee T.; ...

    2015-12-24

    We examined amorphous titania thin films for use as the active material in a polarimetry based HF sensor. The amorphous titania films were found to be sensitive to vapor phase HF and the reaction product was identified as a hydronium oxofluorotitanate phase, which has previously only been synthesized in aqueous solution. The extent of reaction varied both with vapor phase HF concentration, relative humidity, and the exposure time. HF concentrations as low as 1 ppm could be detected for exposure times of 120 h.

  11. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  12. Possible existence of two amorphous phases of D-mannitol related by a first-order transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Men; Yu, Lian, E-mail: lian.yu@wisc.edu; Wang, Jun-Qiang

    2015-06-28

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature T{sub g} (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity.more » On fast heating, Phase X transforms back to the SCL near T{sub g} + 50 K, enabling a determination of their equilibrium temperature. The presence of D-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from D-mannitol’s SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near T{sub g} with substantial enthalpy decrease toward the crystalline phases; the processes in water and D-mannitol both strengthen the hydrogen bonds. In contrast to TPP, D-mannitol’s Phase X forms more rapidly and can transform back to the SCL. These features make D-mannitol a valuable new model for understanding polyamorphism.« less

  13. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® Dispersing.

    PubMed

    Hughey, Justin R; Keen, Justin M; Brough, Chris; Saeger, Sophie; McGinity, James W

    2011-10-31

    Poorly water-soluble drug substances that exhibit high melting points are often difficult to successfully process by fusion-based techniques. The purpose of this study was to identify a suitable polymer system for meloxicam (MLX), a high melting point class II BCS compound, and investigate thermal processing techniques for the preparation of chemically stable single phase solid dispersions. Thermal and solution based screening techniques were utilized to screen hydrophilic polymers suitable for immediate release formulations. Results of the screening studies demonstrated that Soluplus(®)(SOL) provided the highest degree of miscibility and solubility enhancement. A hot-melt extrusion feasibility study demonstrated that high temperatures and extended residence times were required in order to render compositions amorphous, causing significant degradation of MLX. A design of experiments (DOE) was conducted on the KinetiSol(®) Dispersing (KSD) process to evaluate the effect of processing conditions on the chemical stability and amorphous character of MLX. The study demonstrated that ejection temperature significantly impacted MLX stability. All samples prepared by KSD were substantially amorphous. Dissolution analysis of the KSD processed solid dispersions showed increased dissolution rates and extent of supersaturation over the marketed generic MLX tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

    NASA Astrophysics Data System (ADS)

    Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H.; Kühne, Thomas D.; Bernasconi, Marco

    2016-05-01

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  15. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds.

    PubMed

    Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H; Kühne, Thomas D; Bernasconi, Marco

    2016-05-28

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  16. MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal composite coating prepared by microarc oxidation on titanium.

    PubMed

    Zhou, Rui; Wei, Daqing; Yang, Haoyue; Feng, Wei; Cheng, Su; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-06-01

    Bioactive amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO2 nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Phase transitions in biogenic amorphous calcium carbonate.

    PubMed

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  18. Phase transitions in biogenic amorphous calcium carbonate

    PubMed Central

    Gong, Yutao U. T.; Killian, Christopher E.; Olson, Ian C.; Appathurai, Narayana P.; Amasino, Audra L.; Martin, Michael C.; Holt, Liam J.; Wilt, Fred H.; Gilbert, P. U. P. A.

    2012-01-01

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro. PMID:22492931

  19. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  20. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpretedmore » using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).« less

  1. Phase separation and crystallization process of amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhgalin, V. V.; Lad’yanov, V. I.

    2015-08-17

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneousmore » or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.« less

  2. The microstructural changes of Ge2Sb2Te5 thin film during crystallization process

    NASA Astrophysics Data System (ADS)

    Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun

    2018-05-01

    Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.

  3. Aging mechanisms in amorphous phase-change materials.

    PubMed

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  4. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    PubMed

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  5. On the structure of the disordered Bi 2Te 4O 11 phase

    NASA Astrophysics Data System (ADS)

    Masson, O.; Thomas, P.; Durand, O.; Hansen, T.; Champarnaud, J. C.; Mercurio, D.

    2004-06-01

    The structure of the disordered metastable Bi 2Te 4O 11 phase has been investigated using both neutron powder diffraction and reverse Monte Carlo (RMC) modelling. The average structure, of fluorite-type (space group Fm 3¯m ), is characterized by very high Debye-Waller parameters, especially for oxygen. Whereas the cations form a fairly well-defined FCC lattice, the oxygen sublattice is very disordered. It is shown that the local order is similar to that present in the stable monoclinic Bi 2Te 4O 11 phase. Clear differences are observed for the intermediate range order. The present phase is analogous to the "anti-glass" phases reported by Trömel in other tellurium-based mixed oxides. However, whereas Trömel defines anti-glass as having long range order but no short range order, it is shown here that this phase is best described as an intermediate state between the amorphous and crystalline states, i.e. having short and medium range order similar to that of tellurite glasses and a premise of long range order with the cations only.

  6. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  7. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  8. Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Deng, Zhigang; Li, Xiaopei; Zhang, Jinlong; Zhao, Jincai

    2005-10-01

    Visible light detoxification of methyl orange (MO) was achieved with a photo-stable 2,9,16,23-tetracarboxyl phthalocyanine (TcPc)/amorphous TiO 2 hybrid photocatalyst. TcPc/amorphous TiO 2 exhibits an excellent photocatalytic activity under visible irradiation ( λ > 550 nm). Besides the active oxygen species, sensitizer radical cation, TcPc + rad , was also found to react with MO directly and induce the photodegradation of MO significantly for the first time in dye sensitized photocatalytic system.

  9. Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastaldi, D., E-mail: dgastaldi@buzziunicem.it; Paul, G., E-mail: geo.paul@uniupo.it; Marchese, L.

    The hydration of four sulfoaluminate cements have been studied: three sulfoaluminate systems, having different content of sulfate and silicate, and one blend Portland-CSA-calcium sulfate binder. Hydration was followed up to 90 days by means of a combination of X-ray diffraction and solid state MAS-NMR; Differential scanning calorimetry and Scanning electron microscopy were also performed in order to help the interpretation of experimental data. High amount of amorphous phases were found in all the four systems: in low-sulfate cements, amorphous part is mainly ascribed to monosulfate and aluminium hydroxide, while strätlingite is observed if belite is present in the cement; inmore » the blend system, C-S-H contributes to the amorphous phase beyond monosulfate.« less

  10. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    PubMed

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  11. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  12. Interactions of hydrogen with amorphous hafnium oxide

    NASA Astrophysics Data System (ADS)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  13. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    PubMed

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e2S b2T e5 : An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.

    2018-04-01

    The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.

  15. Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories

    NASA Astrophysics Data System (ADS)

    Rizzi, M.; Spessot, A.; Fantini, P.; Ielmini, D.

    2011-11-01

    In a phase change memory (PCM), the device resistance increases slowly with time after the formation of the amorphous phase, thus affecting the stability of stored data. This work investigates the resistance drift in thin films of amorphous Ge2Sb2Te5 and in PCMs, demonstrating a common kinetic of drift in stressed/unstressed films and in the nanometer-size active volume of a PCM with different stress levels developed via stressor layers. It is concluded that stress is not the root cause of PCM drift, which is instead attributed to intrinsic structural relaxation due to the disordered, metastable nature of the amorphous chalcogenide phase.

  16. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys.

    PubMed

    Li, Xian-Bin; Liu, X Q; Liu, Xin; Han, Dong; Zhang, Z; Han, X D; Sun, Hong-Bo; Zhang, S B

    2011-07-01

    First-principles molecular dynamics simulation reveals the effects of electronic excitation in the amorphization of Ge-Sb-Te. The excitation makes the phase change an element-selective process, lowers the critical amorphization temperature considerably, for example, to below 700 K at a 9% excitation, and reduces the atomic diffusion coefficient with respect to that of melt by at least 1 order of magnitude. Noticeably, the resulting structure has fewer wrong bonds and significantly increased phase-change reversibility. Our results point to a new direction in manipulating ultrafast phase-change processes with improved controllability.

  17. High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes.

    PubMed

    Secor, Ethan B; Smith, Jeremy; Marks, Tobin J; Hersam, Mark C

    2016-07-13

    Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.

  18. Molybdenum Carbamate Nanosheets as a New Class of Potential Phase Change Materials.

    PubMed

    Zhukovskyi, Maksym; Plashnitsa, Vladimir; Petchsang, Nattasamon; Ruth, Anthony; Bajpai, Anshumaan; Vietmeyer, Felix; Wang, Yuanxing; Brennan, Michael; Pang, Yunsong; Werellapatha, Kalpani; Bunker, Bruce; Chattopadhyay, Soma; Luo, Tengfei; Janko, Boldizsar; Fay, Patrick; Kuno, Masaru

    2017-06-14

    We report for the first time the synthesis of large, free-standing, Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

  19. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Hudecki, A.; Wlodarczyk, A.; Kolano-Burian, A.

    2016-08-01

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don't form solid solutions and have eutectic point for xα = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  20. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studiesmore » revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.« less

  1. Thermodynamic analysis and purifying an amorphous phase of frozen crystallization centers

    NASA Astrophysics Data System (ADS)

    Lysov, V. I.; Tsaregradskaya, T. L.; Turkov, O. V.; Saenko, G. V.

    2017-12-01

    The possibility of dissolving frozen crystallization centers in amorphous alloys of the Fe-B system is considered by means of thermodynamic calculations. This can in turn improve the thermal stability of an amorphous alloy. The effect isothermal annealing has on the thermal stability of multicomponent amorphous alloys based on iron is investigated via the highly sensitive dilatometric technique, measurements of microsolidity, and electron microscopic investigations. The annealing temperature is determined empirically on the basis of the theses of the thermodynamic theory of the high temperature stability of multicomponent amorphous alloys, according to which there exists a range of temperatures that is characterized by a negative difference between the chemical potentials of phases in a heterogeneous amorphous matrix-frozen crystallization centers system. The thermodynamic condition of the possible dissolution of frozen crystallization centers is thus met. It is shown that introducing regimes of thermal processing allows us to expand the ranges of the thermal stability of iron-based amorphous alloys by 20-40 K through purifying an amorphous matrix of frozen crystallization centers. This conclusion is proved via electron microscopic investigations.

  2. Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials.

    PubMed

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios

    2017-10-30

    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.

  3. Shrinking water's no man's land by lifting its low-temperature boundary

    NASA Astrophysics Data System (ADS)

    Seidl, Markus; Fayter, Alice; Stern, Josef N.; Zifferer, Gerhard; Loerting, Thomas

    2015-04-01

    Investigation of the properties and phase behavior of noncrystalline water is hampered by rapid crystallization in the so-called "no man's land." We here show that it is possible to shrink the no man's land by lifting its low-temperature boundary, i.e., the pressure-dependent crystallization temperature Tx(p ) . In particular, we investigate two types of high-density amorphous ice (HDA) in the pressure range of 0.10 -0.50 GPa and show that the commonly studied unannealed state, uHDA, is up to 11 K less stable against crystallization than a pressure-annealed state called eHDA. We interpret this finding based on our previously established microscopic picture of uHDA and eHDA, respectively [M. Seidl et al., Phys. Rev. B 88, 174105 (2013), 10.1103/PhysRevB.88.174105]. In this picture the glassy uHDA matrix contains ice Ih-like nanocrystals, which simply grow upon heating uHDA at pressures ≤0.20 GPa . By contrast, they experience a polymorphic phase transition followed by subsequent crystal growth at higher pressures. In comparison, upon heating purely glassy eHDA, ice nuclei of a critical size have to form in the first step of crystallization, resulting in a lifted Tx(p ) . Accordingly, utilizing eHDA enables the study of amorphous ice at significantly higher temperatures at which we regard it to be in the ultraviscous liquid state. This will boost experiments aiming at investigating the proposed liquid-liquid phase transition.

  4. Influence of humidity on the phase behavior of API/polymer formulations.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele

    2015-08-01

    Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  6. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  7. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  8. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  9. Heavy ion irradiations on synthetic hollandite-type materials: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ming, E-mail: mtang@lanl.gov; Tumurugoti, Priyatham; Clark, Braeden

    2016-07-15

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phasemore » hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. - Graphical abstract: 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. This is also the first time that the critical amorphization fluence of single phase hollandite compounds were determined at a fluence of around 3.25×10{sup 14} Kr/cm{sup 2} by in situ 1 MeV Kr ion irradiation. Display Omitted.« less

  10. Local structure of the crystalline and amorphous states of Ga2Te3 phase-change alloy without resonant bonding: A combined x-ray absorption and ab initio study

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Krbal, M.; Mitrofanov, K.; Tominaga, J.; Uruga, T.

    2017-02-01

    Phase-change memories are usually associated with GeTe-Sb2Te3 quasibinary alloys, where the large optical contrast between the crystalline and amorphous phases is attributed to the formation of resonant bonds in the crystalline phase, which has a rocksalt-like structure. The recent findings that tetrahedrally bonded Ga2Te3 possesses a similarly large property contrast and very low thermal conductivity in the crystalline phase and undergoes low-energy switching [H. Zhu et al., Appl. Phys. Lett. 97, 083504 (2010), 10.1063/1.3483762; K. Kurosaki et al., Appl. Phys. Lett. 93, 012101 (2008), 10.1063/1.2940591] challenge the existing paradigm. In this work we report on the local structure of the crystalline and amorphous phases of Ga2Te3 obtained from x-ray absorption measurements and ab initio simulations. Based on the obtained results, a model of phase change in Ga2Te3 is proposed. We argue that efficient switching in Ga2Te3 is due to the presence of primary and secondary bonding in the crystalline phase originating from the high concentration of Ga vacancies, whereas the structural stability of both phases is ensured by polyvalency of Te atoms due to the presence of lone-pair electrons and the formation of like-atom bonds in the amorphous phase.

  11. Local bonding structure of tellurium and antimony in the phase change chalcogenides germanium-antimony-tellurium: A nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Bobela, David C.

    Recent technological applications of some chalcogenide materials, compounds containing a group VI atom, have prompted studies of the local atomic structure of the amorphous phase. In the case of Ge2Sb2Te 5, metastability in the local bonding structure is responsible for its usefulness as a phase-change memory material. There is no consensus on the exact phase-change mechanism, which is partly due to the inadequacy of standard scattering techniques to probe the structure of the amorphous phase. Nuclear magnetic resonance methods, on the other hand, are well suited to study local structural order even in the absence of a periodic lattice. In this technique, structural information is encoded as an oscillating voltage caused by the nuclear spin. For the tellurium isotope, 125Te (spin = 1/2 in the ground state), the dominant interaction comes from the core and valence electrons that carry angular momentum. This interaction is helpful in identifying Te sites of different local coordination since the number of neighboring atoms should markedly change the local electronic structure. The antimony isotope 125Sb has a spin = 5/2 in the ground state and possesses an asymmetric nuclear charge. This quadrupole moment will interact with an electric field gradient at the nuclear site, which is provided by an asymmetric electron cloud surrounding the nucleus. The frequency-space spectra will reflect the strength of the interaction as well as the symmetry of the local electronic environment. This work investigates the nuclear magnetic resonance spectrum of 125Te and 125Sb in the crystalline and amorphous forms of several GexSbyTe 1-x-y compounds where 0 < (x, y) < 1. Results from the crystalline phase 125Te data show a trend in the spectral position that can be related to the tellurium bonded to three and six neighbors. In the amorphous phase, the same trend is observed, and the nuclear magnetic resonance fingerprint of two-fold and three-fold coordinated tellurium is obtained. It is concluded, based upon this comparison that the Te atoms see a dramatically different bonding environment depending on which phase the lattice has. The 125Sb data for the crystalline phase indicate electric field gradients that are consistent with similarly bonded quadrupolar nuclei, such as Sb atoms in crystalline Sb or five-fold coordinated Sb in crystalline MnSb. The NMR data exemplify the consequences of combinatorial disorder on the spectra via the absence of certain line-shape features. In the amorphous phase, the electric field gradients are approximately seven times larger, and the fingerprints of both highly-symmetric and asymmetric antimony sites emerge. Details of field gradient, i.e. the magnitude and symmetry, are remarkably similar to those found in Sb containing compounds where the Sb sites are three-fold pyramidal, such as in crystalline Sb2X3 where X = O, S, or Se. The observations from the NMR data provide a critical litmus test for recent structural models of the amorphous phase. In particular, the amorphous phase data provides clear evidence that the Te atoms are two-fold and three-fold coordinated while the Sb atoms are most likely bonded in three-fold pyramidal configurations. These observations imply a structural model of the amorphous phase that agrees best with a models based upon the "8 minus n", or "8-n" rule for chemical bonding in amorphous semiconductors. Thus, the lattice of these compounds is arranged such that the constituent elements have enough bonds, on average, to satisfy their valence requirement. The implications of the NMR data on theoretical modeling data are immediate. Theoretical models of these systems must possess some aspect of the "8-n" mentality. With this idea as a foundation for physically realistic representations of the amorphous phase, the origin of the phase-change mechanism may be unraveled, which will ultimately speed the process of compositional optimization of phase-change materials.

  12. Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films

    NASA Astrophysics Data System (ADS)

    Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.

    2018-07-01

    Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.

  13. Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film

    PubMed Central

    Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol

    2015-01-01

    A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS. PMID:26365532

  14. Direct evidence on Ta-Metal Phases Igniting Resistive Switching in TaOx Thin Film

    NASA Astrophysics Data System (ADS)

    Kyu Yang, Min; Ju, Hyunsu; Hwan Kim, Gun; Lee, Jeon-Kook; Ryu, Han-Cheol

    2015-09-01

    A Ta/TaOx/Pt stacked capacitor-like device for resistive switching was fabricated and examined. The tested device demonstrated stable resistive switching characteristics including uniform distribution of resistive switching operational parameters, highly promising endurance, and retention properties. To reveal the resistive switching mechanism of the device, micro structure analysis using high-resolution transmission electron microscope (HR-TEM) was performed. From the observation results, two different phases of Ta-metal clusters of cubic α-Ta and tetragonal β-Ta were founded in the amorphous TaOx mother-matrix after the device was switched from high resistance state (HRS) to low resistance state (LRS) by externally applied voltage bias. The observed Ta metal clusters unveiled the origin of the electric conduction paths in the TaOx thin film at the LRS.

  15. A study of tantalum pentoxide Ta 2O 5 structures up to 28 GPa

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2017-05-02

    In this study, tantalum pentoxide Ta 2O 5 with the orthorhombic L-Ta 2O 5 structure has been experimentally studied up to 28.3 GPa (at ambient temperature) using synchrotron angle-dispersive powder X-ray diffraction (XRD). The ambient pressure phase remains stable up to 25 GPa where with increased pressure a crystalline to amorphous phase transition occurs. A detailed equation of state (EOS), including pressure dependent lattice parameters, is reported. The results of this study were compared with a previous high-pressure XRD study by Li et al. A clear discrepancy between the ambient-pressure crystal structures and, consequently, the reported EOSs between the twomore » studies was revealed. Finally, he origin of this discrepancy is attributed to two different crystal structures used to index the XRD patterns.« less

  16. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    NASA Astrophysics Data System (ADS)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  17. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism.

    PubMed

    Rodríguez-Navarro, Carlos; Ruiz-Agudo, Encarnación; Harris, Joe; Wolf, Stephan E

    2016-11-01

    Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO 3 mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO 3 minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  19. Pathways for Metastable Carbonate Synthesis

    NASA Astrophysics Data System (ADS)

    Whittaker, Michael L.

    Carbonate minerals are integral to life on earth, as reservoirs for CO 2 in the earth's natural carbon cycle and as the skeletal elements of abundant organisms like corals and plankton. Because of its relevance, availability, and low toxicity, calcium carbonate is also an important model system for phase transformations in aqueous solutions. However, it often does not conform to classical theories of nucleation, prompting a critical reevaluation of both the pathways of carbonate mineralization and the theories that describe them. Most importantly, it has been shown that amorphous calcium carbonate (ACC) is frequently a precursor to crystalline calcium carbonate during precipitation, in both biological and inorganic systems. Amorphous precursors influence phase transformations in several ways, including decoupling densification of ions in solution from their arrangement on a crystalline lattice, altering solution thermodynamics, creating new interfaces, and changing kinetic barriers. To exert control over these processes in vivo, organisms generally confine precipitation reactions to small volumes, often within lipid membrane vesicles. Herein, I describe in vitro model systems designed to elucidate and replicate biological mineralization pathways. Giant unilamellar vesicles are shown to slow the rate of crystallization of ACC by excluding nucleation accelerants, and by preserving the high kinetic barriers to lower energy phases that result. Phosphatidylcholine, one of the most abundant natural lipids, does not interact strongly with ACC, but the interfacial chemistry canbe tuned by changing the lipid charge or reducing steric shielding. Microfluidically produced water-in-oil emulsions were used as liposome analogs to study crystallization kinetics. In ensembles of hundreds of emulsion drops, we show that vaterite forms from ACC via a classical, two-step nucleation process. We also extend the classical theory of nucleation to highly confined aqueous systems, where the formation of a nucleus changes the system composition. In systems chemically similar to ACC, amorphous strontium carbonate (ASC) is also observed in liposomes, but crystallizes rapidly, while amorphous barium carbonate (ABC) is not. We show that ACC can be made with over 50% barium, forming ACBC, but crystallizes at a dramatically faster rate with increasing barium. I demonstrate that this process dramatically departs from the classical description applied to ACC crystallization. It can be explained by the increasing short- and mid-range order in ACBC with increasing barium, which resembles that of crystalline Ca1-xBaxCO3 and selectively lowers the barrier to its formation relative to lower-energy structures. This Ca1-xBaxCO3 phase has been misidentified as calcite in the literature, but we solve the structure, assign the new spacegroup R3m, and call it balcite. Balcite is only thermodynamically stable above 525°C, and is over 30% harder than calcite. In the absence of calcium, I show that ABC is a highly transient precursor to a previously uncharacterized BaCO3·H2 O phase. This phase forms as very thin (10 nm) and extremely anisotropic platelets, which themselves recrystallize rapidly into witherite (BaCO 3). These examples demonstrate the power of amorphous precursors to enable metastable crystalline materials through thermodynamically downhill transformations, and the ability of confined volumes to reduce the rate of these transformations and enable their quantification.

  20. Influence of the exchange and correlation functional on the structure of amorphous InSb and In{sub 3}SbTe{sub 2} compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabardi, Silvia; Caravati, Sebastiano; Bernasconi, Marco, E-mail: marco.bernasconi@mater.unimib.it

    2016-05-28

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In{sub 3}SbTe{sub 2} compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtainedmore » with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge{sub 2}Sb{sub 2}Te{sub 5} phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.« less

  1. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction.

    PubMed

    Qian, Ken K; Suib, Steven L; Bogner, Robin H

    2011-11-01

    Amorphization of crystalline compounds using mesoporous media is a promising technique to improve the solubility and dissolution rate of poorly soluble compounds. The objective of this paper is to determine the capacity of amorphization and understand the mechanisms of phase transformation. Commercial grades of mesoporous silicon dioxide (SiO(2)) samples (5- to 30-nm mean pore diameters) with either constant surface area or constant pore volume were used. The amorphization capacity of naphthalene was not proportional to either the surface area or the pore volume measured using adsorption chambers. Instead, the amorphization capacity correlated with surface curvature, that is, the smaller the pore diameter and the higher the surface curvature, the greater the amorphization capacity. The change in surface chemistry due to a highly curved surface may be responsible for the enhanced amorphization capacity as well. The amorphization of crystalline compounds was facilitated through capillary condensation, with the decrease in pore volume as the direct experimental evidence. The amorphization capacity was also enhanced by the dipole-dipole or dipole-induced dipole interaction, promoted by the hydroxyl groups on the surface of SiO(2). The enthalpy of vapor-solid condensation of crystalline compounds was a useful indicator to predict the rank order of amorphization capacity. Copyright © 2011 Wiley-Liss, Inc.

  2. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  3. Structural confirmation and spectroscopic study of a biomolecule: Norepinephrine.

    PubMed

    Yadav, T; Mukherjee, V

    2018-05-21

    The present work deals with the conformational and vibrational spectroscopic study of an important bio-molecule named norepinephrine in gas phase. The FTIR and FTRaman spectrum of norepinephrine in amorphous form were recorded in wavenumber range 4000-400 cm -1 and 4000-50 cm -1 respectively. We have investigated twenty-seven stable conformational structures of norepinephrine molecule. All the calculations have been done using Density Functional Theory with exchange functional B3LYP incorporated with the 6-31++G(d, p) basis set. The effect of hydrochloride on different bond lengths, bond angles and dihedral angles in the most stable conformer has also been studied. The total potential energy distribution for both the most stable conformer and the most stable conformer in hydrochloride was performed with the help Normal coordinate analysis method. Most of the calculated vibrational frequencies are in good agreement with the experimental frequencies. The natural bond orbital analysis was also performed to ensure the stability of electronic structures of norepinephrine. To know chemical reactivity of norepinephrine molecule we have calculated the energy gap between HOMO and LUMO orbitals and it has found above 5 eV in all the conformers. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  5. Activation of weak IR fundamentals of two species of astrochemical interest in the T(d) point group--the importance of amorphous ices.

    PubMed

    Hudson, R L; Gerakines, P A; Loeffler, M J

    2015-05-21

    New measurements are reported on the weak ν1 and ν2 fundamentals of frozen CH4, a solid of considerable astrochemical interest. Infrared spectra in the ν1 and ν2 regions are presented for three CH4-ice phases at 10-30 K with new absorption coefficients and band strengths to quantify the results. In contrast to the situation with the two crystalline phases of CH4, both ν1 and ν2 were seen clearly in methane's amorphous phase. To support our CH4 work, we also present new results for NH4SH, a component of Jupiter's atmosphere, showing that the ν2 vibration of NH4(+) undergoes a dramatic loss of intensity during an amorphous-to-crystalline phase transition, but is regenerated in equally-dramatic fashion by radiation-induced amorphization of the sample. Results are compared to work recently published in this journal and elsewhere.

  6. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Li, Zhuguo; Huang, Jian; Zhu, Yanyan

    2012-08-01

    Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power diode laser cladding. Scanning laser beam at high speeds was followed to remelt the surface of the coatings. Different laser cladding powers in the range of 700-1000 W were used to obtain various dilution ratios in the coating. The dilution effect on the chemical characterization, phase composition and microstructure is analyzed by energy dispersive spectroscopy, X-ray diffraction and scanning-electron microscopy. The microhardness distribution of the coatings after laser processing is also measured. The results reveal that Ni-based amorphous composite coatings have successfully been fabricated on mild steel substrate at low dilution ratio when the cladding power was 700 W, 800 W and 900 W. While at high laser power of 1000 W, no amorphous phase was found. The coatings with low dilution ratio exhibit the highest microhardness of 1200 HV0.5 due to their largest volume fraction of amorphous phase.

  7. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  8. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help determine the types and abundances of amorphous phases in the martian rocks and sand shadow. These models suggest that the rocks and sand shadow are composed of approx 30% amorphous phases. Sulfate-adsorbed allophane and ferrihydrite were measured by EGA to further understand the speciation of the sulfur present in the amorphous component. These data indicate that sulfate adsorbed onto the surfaces of amorphous phases could explain a portion of the SO2 evolution in the Rocknest SAM data. The additional constraints placed on the mineralogy and chemistry of the aqueous alteration phases through our laboratory measurements can help us better understand the nature of the fluids that affected the different samples and devise a history of aqueous alteration for the Sheepbed Member of the Yellowknife Bay Fm. at Gale crater.

  9. Far-infrared spectral studies of phase changes in water ice induced by proton irradiation

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie L.

    1992-01-01

    Changes in the FIR spectrum of crystalline and amorphous water ice as a function of temperature are reported. The dramatic differences between the spectra of these ices in the FIR are used to examine the effect of proton irradiation on the stability of the crystalline and amorphous ice phases from 13 to 77 K. In particular, the spectra near 13 K show interconversion between the amorphous and crystalline ice phases beginning at doses near 2 eV/molecule and continuing cyclically with increased dose. The results are used to estimate the stability of irradiated ices in astronomical environments.

  10. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure

    PubMed Central

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-01-01

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH2N4) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation. PMID:28218236

  11. Phase formation polycrystalline vanadium oxide via thermal annealing process under controlled nitrogen pressure

    NASA Astrophysics Data System (ADS)

    Jessadaluk, S.; Khemasiri, N.; Rahong, S.; Rangkasikorn, A.; Kayunkid, N.; Wirunchit, S.; Horprathum, M.; Chananonnawathron, C.; Klamchuen, A.; Nukeaw, J.

    2017-09-01

    This article provides an approach to improve and control crystal phases of the sputtering vanadium oxide (VxOy) thin films by post-thermal annealing process. Usually, as-deposited VxOy thin films at room temperature are amorphous phase: post-thermal annealing processes (400 °C, 2 hrs) under the various nitrogen (N2) pressures are applied to improve and control the crystal phase of VxOy thin films. The crystallinity of VxOy thin films changes from amorphous to α-V2O5 phase or V9O17 polycrystalline, which depend on the pressure of N2 carrier during annealing process. Moreover, the electrical resistivity of the VxOy thin films decrease from 105 Ω cm (amorphous) to 6×10-1 Ω cm (V9O17). Base on the results, our study show a simply method to improve and control phase formation of VxOy thin films.

  12. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure.

    PubMed

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-02-20

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH 2 N 4 ) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation.

  13. A thermodynamic approach to model the caloric properties of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Johlitz, Michael

    2016-05-01

    It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.

  14. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  15. An ultra-fast optical shutter exploiting total light absorption in a phase change material

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina

    2017-02-01

    In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.

  16. Characterization of Sodium Ion Electrochemical Reaction with Tin Anodes: Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggetto, Loic; Meisner, Roberta A; Ganesh, Panchapakesan

    2013-01-01

    Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to -Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated Na15Sn 4. With charging there are six plateaus, which are related to the formation of Na5Sn2 followed by the formation of amorphous phases and -Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed, leading to a single charge plateau at 0.2 V. Theoretical voltages calculated from existing crystal structures using DFT provide a goodmore » match with constant current measurements, however, the voltage is more negative compared to quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull, including the R-3m Na5Sn2 phase characterized experimentally. The presence of multiple phases in varying lattices with very similar formation energy suggests why the reaction mechanism is non-reversible. Interpretation of M ssbauer spectroscopy data is not yet elucidated due to the very low recoil-free fraction of the materials. The electrode surface is terminated with a SEI layer rich in carbonates such as Na2CO3 and Na alkyl carbonates as evidenced by XPS. After a full charge at 2V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after a full charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn.« less

  17. Observation of polyamorphism in the phase change alloy Ge1Sb2Te4

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Sen, S.; Cho, J.-Y.; Joo, Y.-C.; Clark, S. M.

    2012-10-01

    A high-pressure synchrotron x-ray diffraction study of the phase change alloy Ge1Sb2Te4 demonstrates the existence of a polyamorphic phase transition between the "as deposited" low density amorphous (LDA) phase and a high density amorphous (HDA) phase at ˜10 GPa. The entropy of the HDA phase is expected to be higher than that of the LDA phase resulting in a negative Clapeyron slope for this transition. These phase relations may enable the polyamorphic transition to play a role in the memory and data storage applications.

  18. Density functional simulations of Sb-rich GeSbTe phase change alloys.

    PubMed

    Gabardi, S; Caravati, S; Bernasconi, M; Parrinello, M

    2012-09-26

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge(1)Sb(1)Te(1) and Ge(2)Sb(4)Te(5). Comparison with previous results on the most studied Ge(2)Sb(2)Te(5) allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm(-1) are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge(2)Sb(2)Te(5). All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  19. Density functional simulations of Sb-rich GeSbTe phase change alloys

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Bernasconi, M.; Parrinello, M.

    2012-09-01

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge1Sb1Te1 and Ge2Sb4Te5. Comparison with previous results on the most studied Ge2Sb2Te5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm-1 are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge2Sb2Te5. All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  20. Size-dependent pressure-induced amorphization: a thermodynamic panorama.

    PubMed

    Machon, Denis; Mélinon, Patrice

    2015-01-14

    Below a critical particle size, some pressurized compounds (e.g. TiO2, Y2O3, PbTe) undergo a crystal-to-amorphous transformation instead of a polymorphic transition. This effect reflects the greater propensity of nanomaterials for amorphization. In this work, a panorama of thermodynamic interpretations is given: first, a descriptive analysis based on the energy landscape concept gives a general comprehension of the balance between thermodynamics and kinetics to obtain an amorphous state. Then, a formal approach based on Gibbs energy to describe the thermodynamics and phase transitions in nanoparticles gives a basic explanation of size-dependent pressure-induced amorphization. The features of this transformation (amorphization occurs at pressures lower than the polymorphic transition pressure!) and the nanostructuration can be explained in an elaborated model based on the Ginzburg-Landau theory of phase transition and on percolation theory. It is shown that the crossover between polymorphic transition and amorphization is highly dependent on the defect density and interfacial energy, i.e., on the synthesis process. Their behavior at high pressure is a quality control test for the nanoparticles.

  1. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    PubMed

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue. Copyright © 2015, American Association for the Advancement of Science.

  2. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  3. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles.

    PubMed

    Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei

    2015-11-11

    Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

  4. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  5. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  6. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  7. Extreme UV induced dissociation of amorphous solid water and crystalline water bilayers on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Sturm, J. M.; Lee, Chris J.; Bijkerk, Fred

    2016-04-01

    The extreme ultraviolet (EUV, λ = 13.5 nm) induced dissociation of water layers on Ru(0001) was investigated. We irradiated amorphous and crystalline water layers on a Ru crystal with EUV light, and measured the surface coverage of remaining water and oxygen as a function of radiation dose by temperature programmed desorption (TPD). The main reaction products are OH and H with a fraction of oxygen from fully dissociated water. TPD spectra from a series of exposures reveal that EUV promotes formation of the partially dissociated water overlayer on Ru. Furthermore, loss of water due to desorption and dissociation is also observed. The water loss cross sections for amorphous and crystalline water are measured at 9 ± 2 × 10- 19 cm2 and 5 ± 1 × 10- 19 cm2, respectively. Comparison between the two cross sections suggests that crystalline water is more stable against EUV induced desorption/dissociation. The dissociation products can oxidize the Ru surface. For this early stage of oxidation, we measured a smaller (compared to water loss) cross section at 2 × 10- 20 cm2, which is 2 orders of magnitude smaller than the photon absorption cross section (at 92 eV) of gas phase water. The secondary electron (SE) contributions to the cross sections are also estimated. From our estimation, SE only forms a small part (20-25%) of the observed photon cross section.

  8. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  9. Formulation and characterization of polymeric films containing combinations of antiretrovirals (ARVs) for HIV prevention.

    PubMed

    Akil, Ayman; Agashe, Hrushikesh; Dezzutti, Charlene S; Moncla, Bernard J; Hillier, Sharon L; Devlin, Brid; Shi, Yuan; Uranker, Kevin; Rohan, Lisa Cencia

    2015-02-01

    To develop polymeric films containing dual combinations of anti-HIV drug candidate tenofovir, maraviroc and dapivirine for vaginal application as topical microbicides. A solvent casting method was used to manufacture the films. Solid phase solubility was used to identify potential polymers for use in the film formulation. Physical and chemical properties (such as water content, puncture strength and in vitro release) and product stability were determined. The bioactivity of the film products against HIV was assessed using the TZM-bl assay and a cervical explant model. Polymers identified from the solid phase solubility study maintained tenofovir and maraviroc in an amorphous state and prevented drug crystallization. Three combination film products were developed using cellulose polymers and polyvinyl alcohol. The residual water content in all films was <10% (w/w). All films delivered the active agents with release of >50% of film drug content within 30 min. Stability testing confirmed that the combination film products were stable for 12 months at ambient temperature and 6 months under stressed conditions. Antiviral activity was confirmed in TZM-bl and cervical explant models. Polymeric films can be used as a stable dosage form for the delivery of antiretroviral combinations as microbicides.

  10. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    NASA Astrophysics Data System (ADS)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  11. Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.

    2011-06-01

    Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.

  12. Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p -type amorphous oxide semiconductors

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-01-01

    Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.

  13. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less

  14. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  15. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    NASA Astrophysics Data System (ADS)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  16. Diffusion of lithium ions in amorphous and crystalline PEO3:LiCF3SO3 polymer electrolytes: ab initio calculations and simulations

    NASA Astrophysics Data System (ADS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel; Wang, Sanwu

    The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline phase can conduct ions. In this work, we use ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined with first-principles density functional theory. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3has higher ionic conductivity than the crystalline phase. This work was supported by NASA Grant No. NNX13AN01A and by Tulsa Institute of Alternative Energy and Tulsa Institute of Nanotechnology. This research used resources of XSEDE, NERSC, and the Tandy Supercomputing Center.

  17. Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate.

    PubMed

    Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A

    Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. ACC present in earthworm CaCO 3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO 3 granules.

  18. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  19. High performance n-channel thin-film transistors with an amorphous phase C60 film on plastic substrate

    NASA Astrophysics Data System (ADS)

    Na, Jong H.; Kitamura, M.; Arakawa, Y.

    2007-11-01

    We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.

  20. Gold fillings unravel the vacancy role in the phase transition of GeTe

    NASA Astrophysics Data System (ADS)

    Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui

    2018-02-01

    Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.

  1. Local structure of amorphous Ag5In5Sb60Te30 and In3SbTe2 phase change materials revealed by X-ray photoelectron and Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.

    2017-07-01

    Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.

  2. Quasi-equilibrium size distribution of subcritical nuclei in amorphous phase change AgIn-Sb2Te

    NASA Astrophysics Data System (ADS)

    Darmawikarta, Kristof; Lee, Bong-Sub; Shelby, Robert M.; Raoux, Simone; Bishop, Stephen G.; Abelson, John R.

    2013-07-01

    We investigate the effect of low temperature annealing or of extended storage at room temperature on the subsequent nucleation behavior of amorphous AgIn-incorporated Sb2Te (AIST), a material for phase change memories. Time-resolved reflectivity measurements during pulsed laser crystallization reveal the rates of solid-phase transformation, while fluctuation transmission electron microscopy detects the nanoscale order in the amorphous phase prior to crystallization. The nanoscale order is postulated to consist of subcritical nuclei that coarsen upon annealing at temperatures ranging from 25 °C (for months) or 100 °C (for hours). Samples that have been annealed remain fully amorphous as evaluated by conventional diffraction experiments. Shorter nucleation times are consistently associated with the observation of increased nanoscale order. The effect of annealing is observed to saturate: there is no further reduction in nucleation time or increase in nanoscale order for annealing at 100 °C beyond three hours. This result supports the general prediction of classical nucleation theory that the size distribution of subcritical nuclei increases from the as-deposited state to a quasi-equilibrium.

  3. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media.

    PubMed

    Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2014-10-06

    The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.

  4. Amorphization driven by defect-induced mechanical instability.

    PubMed

    Jiang, Chao; Zheng, Ming-Jie; Morgan, Dane; Szlufarska, Izabela

    2013-10-11

    Using ab initio molecular dynamics simulations, we perform a comparative study of the defect accumulation process in silicon carbide (SiC) and zirconium carbide (ZrC). Interestingly, we find that the fcc Si sublattice in SiC spontaneously and gradually collapses following the continuous introduction of C Frenkel pairs (FPs). Above a critical amorphization dose of ~0.33 displacements per atom (dpa), the pair correlation function exhibits no long-range order. In contrast, the fcc Zr sublattice in ZrC remains structurally stable against C sublattice displacements up to the highest dose of 1.0 dpa considered. Consequently, ZrC cannot be amorphized by the accumulation of C FPs. We propose defect-induced mechanical instability as the key mechanism driving the amorphization of SiC under electron irradiation.

  5. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  6. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less

  7. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    PubMed

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikawa, Shinya, E-mail: aikawa@cc.kogakuin.ac.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015; Mitoma, Nobuhiko

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTsmore » with stable electrical properties.« less

  9. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa.

    PubMed

    Handle, Philip H; Loerting, Thomas

    2018-03-28

    The existence of more than one solid amorphous state of water is an extraordinary feature. Since polyamorphism might be connected to the liquid-liquid critical point hypothesis, it is particularly important to study the relations amongst the different amorphous ices. Here we study the polyamorphic transformations of several high pressure amorphous ices to low-density amorphous ice (LDA) at 4 MPa by isobaric heating utilising in situ volumetry and ex situ X-ray diffraction. We find that very-high density amorphous ice (VHDA) and unannealed high density amorphous ice (HDA) show significant relaxation before transforming to LDA, whereby VHDA is seen to relax toward HDA. By contrast, expanded HDA shows almost no relaxation prior to the transformation. The transition to LDA itself obeys criteria for a first-order-like transition in all cases. In the case of VHDA, even macroscopic phase separation is observed. These findings suggest that HDA and LDA are two clearly distinct polyamorphs. We further present evidence that HDA reaches the metastable equilibrium at 140 K and 0.1 GPa but only comes close to that at 140 K and 0.2 GPa. The most important is the path independence of the amorphous phase reached at 140 K and 0.1 GPa.

  10. Pressure-induced amorphization in single-crystal Ta2O5 nanowires: a kinetic mechanism and improved electrical conductivity.

    PubMed

    Lü, Xujie; Hu, Qingyang; Yang, Wenge; Bai, Ligang; Sheng, Howard; Wang, Lin; Huang, Fuqiang; Wen, Jianguo; Miller, Dean J; Zhao, Yusheng

    2013-09-18

    Pressure-induced amorphization (PIA) in single-crystal Ta2O5 nanowires is observed at 19 GPa, and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in situ synchrotron X-ray diffraction, pair distribution function, Raman spectroscopy, and transmission electron microscopy. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. On the basis of the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra (TaO6 octahedra or TaO7 bipyramids) at the particular weak-bonding positions along the a axis in the unit cell. The one-dimensional morphology is well-preserved for the pressure-induced amorphous Ta2O5, and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms. Such pressure-induced amorphous nanomaterials with unique properties surpassing those in either crystalline or conventional amorphous phases hold great promise for numerous applications in the future.

  11. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Loerting, Thomas

    2018-03-01

    The existence of more than one solid amorphous state of water is an extraordinary feature. Since polyamorphism might be connected to the liquid-liquid critical point hypothesis, it is particularly important to study the relations amongst the different amorphous ices. Here we study the polyamorphic transformations of several high pressure amorphous ices to low-density amorphous ice (LDA) at 4 MPa by isobaric heating utilising in situ volumetry and ex situ X-ray diffraction. We find that very-high density amorphous ice (VHDA) and unannealed high density amorphous ice (HDA) show significant relaxation before transforming to LDA, whereby VHDA is seen to relax toward HDA. By contrast, expanded HDA shows almost no relaxation prior to the transformation. The transition to LDA itself obeys criteria for a first-order-like transition in all cases. In the case of VHDA, even macroscopic phase separation is observed. These findings suggest that HDA and LDA are two clearly distinct polyamorphs. We further present evidence that HDA reaches the metastable equilibrium at 140 K and 0.1 GPa but only comes close to that at 140 K and 0.2 GPa. The most important is the path independence of the amorphous phase reached at 140 K and 0.1 GPa.

  12. Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.

    PubMed

    Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A

    2016-01-15

    A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.

  13. Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.

    PubMed

    Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H

    2007-06-20

    The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.

  14. Morphological analysis of GeTe in inline phase change switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Matthew R., E-mail: matthew.king2@ngc.com; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; El-Hinnawy, Nabil

    2015-09-07

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined bymore » variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.« less

  15. Overview of the amorphous precursor phase strategy in biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Mahamid, Julia; Politi, Yael; Ma, Yurong; Addadi, Lia

    2009-06-01

    It was assumed for a long time that organisms produce minerals directly from a saturated solution. A few exceptions were known, including the well documented mineralized teeth of the chiton. In 1997 it was demon-strated that sea urchin larvae form their calcitic spicules by first depositing a highly unstable mineral phase called amorphous calcium carbonate. This strategy has since been shown to be used by animals from other phyla and for both aragonite and calcite. Recent evidence shows that vertebrate bone mineral may also be formed via a precursor phase of amorphous calcium carbonate. This strategy thus appears to be widespread. The challenge now is to understand the mechanisms by which these unstable phases are initially formed, how they are temporarily stabilized and how they are destabilized and transform into a crystalline mature product.

  16. The relation between high-density and very-high-density amorphous ice.

    PubMed

    Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin

    2006-06-28

    The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.

  17. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE PAGES

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  18. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    PubMed Central

    Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.

    2015-01-01

    By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190

  19. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    PubMed

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  1. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.« less

  2. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE PAGES

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.; ...

    2017-02-07

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.« less

  3. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  4. Co-based amorphous thin films on silicon with soft magnetic properties

    NASA Astrophysics Data System (ADS)

    Masood, Ansar; McCloskey, P.; Mathúna, Cian Ó.; Kulkarni, S.

    2018-05-01

    The present work investigates the emergence of multiple modes in the high-frequency permeability spectrum of Co-Zr-Ta-B amorphous thin films. Amorphous thin films of different thicknesses (t=100-530 nm) were deposited by DC magnetron sputtering. Their static and dynamic soft magnetic properties were investigated to explore the presence of multi-magnetic phases in the films. A two-phase magnetic behavior of the thicker films (≥333 nm) was revealed by the in-plane hysteresis loops. Multiple resonance peaks were observed in the high-frequency permeability spectrum of the thicker films. The thickness dependent multiple resonance peaks below the main ferromagnetic resonance (FMR) can be attributed to the two-phase magnetic behaviors of the films.

  5. Influence of the local structure in phase-change materials on their dielectric permittivity.

    PubMed

    Shportko, Kostiantyn V; Venger, Eugen F

    2015-01-01

    Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.

  6. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    PubMed

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Pascal J.; Institut Interdisciplinaire d'Innovation Technologique; Canut, Bruno

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first timemore » such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.« less

  8. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5.

    PubMed

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G

    2015-08-28

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

  9. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  10. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  11. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.

    PubMed

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-25

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  12. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    PubMed Central

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748

  13. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  14. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    PubMed

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  16. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.

    PubMed

    Politi, Yael; Arad, Talmon; Klein, Eugenia; Weiner, Steve; Addadi, Lia

    2004-11-12

    The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of skeletal material, they probably all use this same mechanism. Deposition of transient amorphous phases as a strategy for producing single crystals with complex morphology may have interesting implications for the development of sophisticated materials.

  17. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  18. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.

    PubMed

    Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris

    2017-07-10

    A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.

  19. Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel

    PubMed Central

    Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming

    2016-01-01

    Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934

  20. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    PubMed

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute in a low molecular weight amorphous matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesizing skyrmion bound pairs in Fe-Gd thin films

    DOE PAGES

    Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; ...

    2016-07-11

    Here, we show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.

  2. Microstructural Evolution and Mechanical Properties of Nanointermetallic Phase Dispersed Al65Cu20Ti15 Amorphous Matrix Composite Synthesized by Mechanical Alloying and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Roy, D.; Mitra, R.; Ojo, O. A.; Lojkowski, W.; Manna, I.

    2011-08-01

    The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young's modulus (182 GPa) were obtained in the composite hot isostatically pressed ("hipped") at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.

  3. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  4. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  5. Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture

    NASA Astrophysics Data System (ADS)

    van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.

    2017-11-01

    The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.

  6. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  7. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  8. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ESR Measurement Of Crystallinity In Semicrystalline Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    Photogenerated free radicals decay at different rates in crystalline and amorphous phases. Degree of crystallinity in polymer having both crystalline and amorphous phases measured indirectly by technique based in part on electron-spin-resonance (ESR) spectroscopy. Accuracy of crystallinity determined by new technique equals or exceeds similar determinations by differential scanning calorimetry, wide-angle x-ray scattering, or measurement of density.

  10. First-principles study of the amorphous In3SbTe2 phase change compound

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  11. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Jagadeesha Angadi, V.; Anupama, A. V.; Choudhary, Harish K.; Kumar, R.; Somashekarappa, H. M.; Mallappa, M.; Rudraswamy, B.; Sahoo, B.

    2017-02-01

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe2O3 and ZnFe2O4 phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications.

  12. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials.

    PubMed

    Petronijevic, E; Sibilia, C

    2016-12-26

    Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.

  13. Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution

    PubMed Central

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Eom, KwangSup; Lee, Doh C.; Joh, Han-Ik; Fuller, Thomas F.

    2017-01-01

    Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (−157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution. PMID:28106126

  14. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    DOE PAGES

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...

    2015-03-11

    Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less

  15. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.

    PubMed

    Jung, Sung Chul; Jung, Dae Soo; Choi, Jang Wook; Han, Young-Kyu

    2014-04-03

    Despite the exceptionally large capacities in Li ion batteries, Si has been considered inappropriate for applications in Na ion batteries. We report an atomic-level study on the applicability of a Si anode in Na ion batteries using ab initio molecular dynamics simulations. While crystalline Si is not suitable for alloying with Na atoms, amorphous Si can accommodate 0.76 Na atoms per Si atom, corresponding to a specific capacity of 725 mA h g(-1). Bader charge analyses reveal that the sodiation of an amorphous Si electrode continues until before the local Na-rich clusters containing neutral Na atoms are formed. The amorphous Na0.76Si phase undergoes a volume expansion of 114% and shows a Na diffusivity of 7 × 10(-10) cm(2) s(-1) at room temperature. Overall, the amorphous Si phase turns out quite attractive in performance compared to other alloy-type anode materials. This work suggests that amorphous Si might be a competitive candidate for Na ion battery anodes.

  16. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Cui, Zhenzhen; Qin, Dongyu; Gong, Jianying; Nie, Qiulin

    2017-10-01

    Non-enzymatic electrochemical sensors for the detection of glucose were designed based on amorphous Ni(OH)2/CQDs microspheres. The amorphous Ni(OH)2/CQDs microspheres were prepared by a CQDs assistant crystallization inhibition process. The morphologies and composition of the microspheres were characterized by SEM, TEM, XRD, EDS, and TG/DSC. The results showed that the microspheres had uniform heterogeneous phases with amorphous Ni(OH)2 and CQDs. The sensor based on amorphous Ni(OH)2/CQDs microspheres showed remarkable electrocatalytic activity towards glucose oxidation comparing to the conventional crystalline Ni(OH)2, which included two linear range (20 μM-350 μM and 0.45mM-2.5 mM) with high selectivity of 2760.05 and 1853.64 μA mM-1cm-2. Moreover, the interference from the commonly interfering species such as urea, ascorbic acid, NaCl, L-proline and L-Valine, can be effectively avoided. The high sensitivity, wide glucose detection range and good selectivity of the electrode may be due to their synergistic effect of amorphous phase and CQDs incorporation. These findings may promote the application of amorphous Ni(OH)2 as advanced electrochemical glucose sensing materials.

  17. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  18. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    PubMed

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  19. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif

    2017-05-01

    Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.

  20. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes.

    PubMed

    Sun, Xiang; Zhou, Changgong; Xie, Ming; Hu, Tao; Sun, Hongtao; Xin, Guoqing; Wang, Gongkai; George, Steven M; Lian, Jie

    2014-09-21

    Uniform amorphous vanadium oxide films were coated on graphene via atomic layer deposition and the nano-composite displays an exceptional capacity of ~900 mA h g(-1) at 200 mAg(-1) with an excellent capacity retention at 1 A g(-1) after 200 cycles. The capacity contribution (1161 mA h g(-1)) from vanadium oxide only almost reaches its theoretical value.

  1. Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    PubMed

    Arnfast, Lærke; Kamruzzaman, Md; Löbmann, Korbinian; Aho, Johanna; Baldursdottir, Stefania; Rades, Thomas; Rantanen, Jukka

    2017-12-01

    Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated. Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC. Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO. Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.

  2. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  3. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radek, M.; Bracht, H., E-mail: bracht@uni-muenster.de; Johnson, B. C.

    2015-08-24

    The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that themore » SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.« less

  4. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.

    PubMed

    Guillot, Bertrand; Guissani, Yves

    2004-03-01

    With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization. Copyright 2004 American Institute of Physics

  5. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    PubMed

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong

    2017-11-01

    To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.

  7. Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie

    2016-10-01

    The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.

  8. Depressurization amorphization of single-crystal boron carbide.

    PubMed

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  9. A molecular view of the role of chirality in charge-driven polypeptide complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K. Q.; Perry, S. L.; Leon, L.

    Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less

  10. Formulation and Characterization of Polymeric Films Containing Combinations of Antiretrovirals (ARVs) for HIV Prevention

    PubMed Central

    Akil, Ayman; Agashe, Hrushikesh; Dezzutti, Charlene S.; Moncla, Bernard J.; Hillier, Sharon L.; Devlin, Brid; Shi, Yuan; Uranker, Kevin; Rohan, Lisa Cencia

    2014-01-01

    Purpose To develop polymeric films containing dual combinations of anti-HIV drug candidate tenofovir, maraviroc and dapivirine for vaginal application as topical microbicides. Methods A solvent casting method was used to manufacture the films. Solid phase solubility was used to identify potential polymers for use in the film formulation. Physical and chemical properties (such as water content, puncture strength and in vitro release) and product stability were determined. The bioactivity of the film products against HIV was assessed using the TZM-bl assay and a cervical explant model. Results Polymers identified from the solid phase solubility study maintained tenofovir and maraviroc in an amorphous state and prevented drug crystallization. Three combination film products were developed using cellulose polymers and polyvinyl alcohol. The residual water content in all films was < 10% (w/w). All films delivered the active agents with release of > 50% of film drug content within 30 minutes. Stability testing confirmed that the combination film products were stable for 12 months at ambient temperature and 6 months under stressed conditions. Antiviral activity was confirmed in TZM-bl and cervical explant models. Conclusions Polymeric films can be used as a stable dosage form for the delivery of antiretroviral combinations as microbicides. PMID:25079391

  11. New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Brundu, A.; Cappelletti, P.; Cerri, G.; de'Gennaro, B.; Farina, M.; Fumagalli, P.; Guaschino, L.; Lotti, P.; Mercurio, M.

    2016-10-01

    A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high- T X-ray powder diffraction, the combined P- T effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the "availability test" ("AVA test") protocol. A series of additional investigations were performed by WDS-electron microprobe analysis in order to describe the P- T-induced modification of the material texture, and to chemically characterize the starting material and the run products. The "AVA tests" of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to- Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., d P/d T > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, P- T phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as potential solid hosts for 137Cs γ-radiation source in sterilization applications. More in general, even the CsAlSi5O12-rich aggregate obtained by a clinoptilolite-rich epiclastic rock appears to be suitable for this type of utilizations.

  12. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  13. Enzyme-polymer composites with high biocatalytic activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease inmore » activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.« less

  14. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  15. Oxide formation and anodic polarization behavior of thin films of amorphous and crystalline FeCrP alloys prepared by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Demaree, J. D.; Was, G. S.; Sorensen, N. R.

    1991-07-01

    An experimental program has been conducted to determine the effect of phosphorus on the corrosion and passivation behavior of FeCrP alloys. Chemically homogeneous 60 nm films of Fe10Cr xP ( x from 0 to 35 at.%) were prepared by multilayer evaporation followed by ion beam mixing with Kr + ions. Films with a phosphorus content of at least 25 at.% were found to be entirely amorphous, while films with 15 at.% P consisted of both amorphous and bcc phases. Recrystallization of the amorphous phase was accomplished by heating the samples to 450°C in a purified argon flow furnace. Electrochemical polarization tests in an acid solution have shown the Fe10Cr xP films to be more corrosion resistant than Fe10Cr, with the corrosion resistance increasing with the amount of P present. The corrosion resistance is not significantly affected when the amorphous films are recrystallized, indicating that the behavior is chemically controlled and not a result of the amorphous structure. When examined by XPS, the phosphorus appears to enhance passivation by encouraging Cr enrichment in the oxide and by incorporating in the oxide as phosphate.

  16. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  17. Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zongyang; Liu, Xiansong; Feng, Shuangjiu; Rehman, Khalid Mehmood Ur

    2018-03-01

    In this study, the melt spinning method was used to develop Fe80.5Si7.5B6Nb5Cu amorphous ribbons in the first step. Then, the Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline core with a compact microstructure was obtained by multiple processes. The main properties of the magnetic powder core, such as micromorphology, thermal behavior, permeability, power loss and quality factor, have been analyzed. The obtained results show that an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline duplex core has high permeability (54.8-57), is relatively stable at different frequencies and magnetic fields, and the maximum power loss is only 313 W/kg; furthermore, it has a good quality factor.

  18. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less

  19. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE PAGES

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...

    2018-04-26

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  20. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  1. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    PubMed

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  2. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  3. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    PubMed Central

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials. PMID:29670302

  4. Amorphization of Ta2O5 under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.

    2017-09-01

    Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.

  5. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems.more » Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.« less

  7. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  8. Effect of particle size on phase transition among metastable alumina nanoparticles: A view from high resolution 2D solid-state 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    The detailed knowledge of atomic structures of diverse metastable/stable polymorphs in alumina nanoparticles is essential to understand their macroscopic properties. Alumina undergoes successive phase transitions from metastable γ-, δ-, and θ-alumina to stable α-alumina depending on types of precursors, annealing duration, and temperature. As large surface area of nanoparticles plays an important role in controlling their phase transitions, it is also necessary to explore the effect of particle size on nature of phase transition. Solid-state ^{27}Al NMR allows us to determine the atomic structure of Al sites in diverse amorphous/disordered silicates including alumina. However, generally, the crystallographically distinct Al sites among alumina polymorphs were not fully resolved in ^{27}Al magic angle spinning (MAS) NMR spectrum without performing a simulation of overlapped peaks for Al sites of metastable alumina in the spectra. Unfortunately, the simulation of 27Al MAS NMR spectra for alumina nanoparticles cannot be achieved well due to unconfirmed NMR parameters for Al sites of γ- and δ-alumina. The recent progress in triple-quantum (3Q) MAS can provide the much higher resolution for crystallographically distinct Al sites in amorphous alumina (Lee et al., 2009, Phys. Rev. Lett., 103, 095501; Lee et al., 2010, J. Phys. Chem. C, 114, 13890-13894) and aluminosilicate glasses (Lee, 2011, Proc. Natl. Acad. Sci., 108, 6847-6852) as well as crystalline layer silicates (Lee and Weiss, 2008, Am. Mineral. 93, 1066-1071). In this study, we report the ^{27}Al 2D 3QMAS and 1D MAS NMR spectra for alumina nanoparticles with varying particle size (e.g., 15, 19, and 27 nm) and temperature with an aim to explore the atomic structure of alumina polymorphs and nature of their phase transition sequence. The ^{27}Al 2D 3QMAS spectra show the resolved crystallographically distinct ^{[6]}Al and ^{[4]}Al sites in (γ, δ)-, θ-, and α-alumina in nanoparticles consisting of random mixtures of γ-, δ-, and θ-alumina phases. The fraction of θ-alumina gradually increases up to 1473 K at the expense of decrease in (γ, δ)-alumina. Onset of formation of α-alumina from metastable alumina is observed above 1493 K. The successive simulation of ^{27}Al MAS NMR spectra also can be achieved by using the NMR parameters for the Al sites of (γ, δ)-alumina in following Czjzek model, which is applicable to a wide range of disordered materials including γ-alumina. The simulation result shows the phase transition of γ, δ → θ phase is more gradual with that of θ → α phase transitions. This can be attributed to the different structural disorder between metastable (i.e., γ, δ, θ) phases and α-alumina. The transition temperature for θ → α phases apparently increases with increasing size of nanoparticles, indicating a larger energy penalty for phase transition of alumina nanoparticles with a larger particle size. The structural information of alumina polymorphs and mechanistic details shown in the current study provide insights into nature of phase transition mechanisms for other nanoparticles ubiquitous in the earth.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyeyoung; Allan, Phoebe K.; Hu, Yan-Yan

    Metallic germanium is a promising anode material in secondary lithium-ion batteries (LIBs) due to its high theoretical capacity (1623 mAh/g) and low operating voltage, coupled with the high lithium-ion diffusivity and electronic conductivity of lithiated Ge. Here, the lithiation mechanism of micron-sized Ge anodes has been investigated with X-ray diffraction (XRD), pair distribution function (PDF) analysis, and in-/ex-situ high-resolution Li-7 solid-state nuclear magnetic resonance (NMR), utilizing the structural information and spectroscopic fingerprints obtained by characterizing a series of relevant Li(x)Gey model compounds. In contrast to previous work, which postulated the formation of Li9Ge4 upon initial lithiation, we show that crystallinemore » Ge first reacts to form a mixture of amorphous and crystalline Li7Ge3 (space group P32(1)2). Although Li7Ge3 was proposed to be stable in a recent theoretical study of the Li-Ge phase diagram (Morris, A. J.; Grey, C. P.; Pickard, C. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 054111), it had not been identified in prior experimental studies. Further lithiation results in the transformation of Li7Ge3, via a series of disordered phases with related structural motifs, to form a phase that locally resembles Li7Ge2, a process that involves the gradual breakage of the Ge-Ge bonds in the Ge-Ge dimers (dumbbells) on lithiation. Crystalline Li15Ge4 then grows, with an overlithiated phase, Li15+delta Ge4, being formed at the end of discharge. This study provides comprehensive experimental evidence, by using techniques that probe short-, medium-, and long-range order, for the structural transformations that occur on electrochemical lithiation of Ge; the results are consistent with corresponding theoretical studies regarding stable lithiated LixGey phases.« less

  10. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  11. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.

    2017-06-01

    The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  12. Rod/Coil Block Copolyimides for Ion-Conducting Membranes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.

    2003-01-01

    Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.

  13. Structure-property relationships in semicrystalline copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into ionomers to achieve high ion content and in turn desirable physical properties. We assess the compatibility of various types of metal soaps with E/(M)AA ionomers, and investigate how the soap modifies the ionomers' structure and properties. The mechanical properties and phase behavior of these hybrids, which are found to differ significantly depending on the neutralizing cation type and crystallinizability of the metal soap, are traced back to various levels of molecular coassembly involving the hydrocarbon chains and/or the ionic groups of both entities.

  14. Towards a drift-free multi-level Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Ozdemir, Servet; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    For ultra-high density data storage applications, Phase Change Memory (PCM) is considered a potentially disruptive technology. Yet, the long-term reliability of the logic levels corresponding to the resistance states of a PCM device is an important issue for a stable device operation since the resistance levels drift uncontrollably in time. The underlying mechanism for the resistance drift is considered as the structural relaxation and spontaneous crystallization at elevated temperatures. We fabricated a nanoscale single active layer-phase change memory cell with three resistance levels corresponding to crystalline, amorphous and intermediate states by controlling the current injection site geometry. For the intermediate state and the reset state, the activation energies and the trap distances have been found to be 0.021 eV and 0.235 eV, 1.31 nm and 7.56 nm, respectively. We attribute the ultra-low and weakly temperature dependent drift coefficient of the intermediate state (ν = 0.0016) as opposed to that of the reset state (ν = 0.077) as being due to the dominant contribution of the interfacial defects in electrical transport in the case of the mixed phase. Our results indicate that the engineering of interfacial defects will enable a drift-free multi-level PCM device design.

  15. Creation and formation mechanism of new carbon phases constructed by amorphous carbon

    NASA Astrophysics Data System (ADS)

    Yao, Mingguang; Cui, Wen; Liu, Bingbing

    Our recent effort is focusing on the creation of new hard/superhard carbon phases constructed by disordered carbons or amorphous carbon clusters under high pressure. We showed that the pressure-induced amorphous hard carbon clusters from collapsed fullerenes can be used as building blocks (BBs) for constructing novel carbon structures. This new strategy has been verified by compressing a series of intercalated fullerides, pre-designed by selecting various dopants with special features. We demonstrate that the boundaries of the amorphous BBs are mediated by intercalated dopants and several new superhard materials have been prepared. We also found that the dopant-mediated BBs can be arranged in either ordered or disordered structures, both of which can be hard enough to indent the diamond anvils. The hardening mechanisms of the new phases have also been discussed. For the glassy carbon (GC) constructructed by disordered fullerene-like nanosized fragments, we also found that these disordered fragments can bond and the compressed GC transformed into a transparent superhard phase. Such pressure-induced transformation has been discovered to be driven by a novel mechanism (unpublished). By understanding the mechanisms we can clarify the controversial results on glassy carbon reported recently. The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 11474121, 51320105007).

  16. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  17. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  18. Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films

    PubMed Central

    Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.

    2015-01-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148

  19. On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Paine, David C.

    2011-06-01

    In2O3-based amorphous oxide channel materials are of increasing interest for thin film transisitor applications due, in part, to the remarkable stability of this class of materials amorphous structure and electronic properties. We report that this stability is degraded in the presence of Ti, which is widely used as a contact and/or adhesion layer. A cross-sectional transmission electron microscopy analysis, supported by glancing incident angle x-ray and selected area diffraction examination, shows that amorphous indium zinc oxide in contact with Ti undergoes crystallization to the bixbyite phase and reacts to form the rutile phase of TiO2 at a temperature of 200 °C. A basic thermodynamic analysis is presented and forms the basis of a model that describes both the crystallization and the resistivity decrease.

  20. Crystallization Behavior of A Bulk Amorphous Mg62Cu26Y12 Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Shyue-Sheng; Chin, Tsung-Shune; Su, Kuo-Chang

    1994-07-01

    The crystallization temperature, the associated activation energy and the crystallized structure of a bulk amorphous Mg62Cu26Y12 alloy with a diameter of 2.5 mm were studied. It possesses a one-step crystallization behavior. The crystallization reaction was found to be represented by: AM(MG62Cu26Y12)→Mg2Cu+MgY+CuY+Mg, ( Tx=188°C, Eac=134 kJ/mol) where AM represents the amorphous state, T x the crystallization temperature at an infinitesimal heating rate, and E ac the associated activation energy. The amount of crystalline phases were found to be Mg2Cu:MgY:CuY=76:17:7. The Mg phase is identifiable only by high resolution electron microscopy, not by X-ray diffraction. The crystallization leads to a sharp rise in electrical resistivity which is reversed to those of iron-based amorphous alloys.

  1. NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.

    1983-01-01

    The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).

  2. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  3. Revealing the Origins of Mechanically Induced Fluorescence Changes in Organic Molecular Crystals.

    PubMed

    Wilbraham, Liam; Louis, Marine; Alberga, Domenico; Brosseau, Arnaud; Guillot, Régis; Ito, Fuyuki; Labat, Frédéric; Métivier, Rémi; Allain, Clémence; Ciofini, Ilaria

    2018-05-29

    Mechanofluorochromic molecular materials display a change in fluorescence color through mechanical stress. Complex structure-property relationships in both the crystalline and amorphous phases of these materials govern both the presence and strength of this behavior, which is usually deemed the result of a mechanically induced phase transition. However, the precise nature of the emitting species in each phase is often a matter of speculation, resulting from experimental data that are difficult to interpret, and a lack of an acceptable theoretical model capable of capturing complex environmental effects. With a combined strategy using sophisticated experimental techniques and a new theoretical approach, here the varied mechanofluorochromic behavior of a series of difluoroboron diketonates is shown to be driven by the formation of low-energy exciton traps in the amorphous phase, with a limited number of traps giving rise to the full change in fluorescence color. The results highlight intrinsic structural links between crystalline and amorphous phases, and how these may be exploited for further development of powerful mechanofluorochromic assemblies, in line with modern crystal engineering approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Relation between bandgap and resistance drift in amorphous phase change materials

    PubMed Central

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-01-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533

  5. Relation between bandgap and resistance drift in amorphous phase change materials.

    PubMed

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  6. Chimeric Plastics : a new class of thermoplastic

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  7. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    PubMed

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  8. Anisotropic expansion and amorphization of Ga2O3 irradiated with 946 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2016-05-01

    The structural response of β-Ga2O3 to irradiation-induced electronic excitation was investigated. A polycrystalline pellet of this material was irradiated with 946 MeV Au ions and the resulting structural modifications were characterized using in situ X-ray diffraction analysis at various ion fluences, up to 1 × 1013 cm-2. Amorphization was induced, with the accumulation of the amorphous phase following a single-impact mechanism in which each ion produces an amorphous ion track along its path. Concurrent with this phase transformation, an increase in the unit cell volume of the material was observed and quantified using Rietveld refinement. This unit cell expansion increased as a function of ion fluence before saturating at 1.8%. This effect is attributed to the generation of defects in an ion track shell region surrounding the amorphous track cores. The unit cell parameter increase was highly anisotropic, with no observed expansion in the [0 1 0] direction. This may be due to the structure of β-Ga2O3, which exhibits empty channels of connected interstitial sites oriented in this direction.

  9. An electron tunneling study of superconductivity in amorphous Sn(sub 1-x)Cu(sub x) thin films

    NASA Technical Reports Server (NTRS)

    Naugle, D. G.; Watson, P. W., III; Rathnayaka, K. D. D.

    1995-01-01

    The amorphous phase of Sn would have a superconducting transition temperature near 8 K, much higher than that of crystalline Sn with T(sub c) = 3.5 K. To obtain the amorphous phase, however, it is necessary to use a Sn alloy, usually Cu, and quench condense the alloy films onto a liquid He temperature substrate. Alloying with Cu reduces the superconducting transition temperature almost linearly with Cu concentration with an extrapolation of T(sub c) to zero for x = 0.85. Analysis of the tunneling characteristics between a normal metal electrode with an insulating barrier and superconducting amorphous Sn-Cu films provides detailed information on the changes in the electron-phonon coupling which determines T(sub c) in these alloys. The change from very strong electron-phonon coupling to weak-coupling with the increase in Cu content of amorphous Sn-Cu alloys for the range 0.08 is less than or equal to x is less than or equal to 0.41 is presented and discussed in terms of theories of electron-phonon coupling in disordered metals.

  10. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.

    PubMed

    Becker, Alexander; Ziegler, Andreas; Epple, Matthias

    2005-05-21

    The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials.

  11. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  12. Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen

    2017-10-01

    The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.

  13. High temperature coercive field behavior of Fe-Zr powder

    NASA Astrophysics Data System (ADS)

    Mishra, Debabrata; Perumal, A.; Srinivasan, A.

    2009-04-01

    We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.

  14. Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30

    NASA Astrophysics Data System (ADS)

    Mardegan, J. R. L.; Fabbris, G.; Veiga, L. S. I.; Adriano, C.; Avila, M. A.; Haskel, D.; Giles, C.

    2013-10-01

    We investigate the low temperature structural and electronic properties of the type-I clathrate Eu8Ga16Ge30 under pressure using x-ray powder diffraction (XRD), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD) techniques. The XRD measurements reveal a transition to an amorphous phase above 18 GPa. Unlike previous reports on other clathrate compounds, no volume collapse is observed prior to the crystalline-amorphous phase transition which takes place when the unit cell volume is reduced to 81% of its ambient pressure value. Fits of the pressure-dependent relative volume to a Murnaghan equation of state yield a bulk modulus B0=65±3 GPa and a pressure derivative B0'=3.3±0.5. The Eu L2-edge XMCD data shows quenching of the magnetic order at a pressure coincident with the crystalline-amorphous phase transition. This information along with the persistence of an Eu2+ valence state observed in the XANES spectra up to the highest pressure point (22 GPa) indicates that the suppression of XMCD intensity is due to the loss of long range magnetic order. When compared with other clathrates, the results point to the importance of guest ion-cage interactions in determining the mechanical stability of the framework structure and the critical pressure for amorphization. Finally, the crystalline structure is not found to recover after pressure release, resulting in an amorphous material that is at least metastable at ambient pressure and temperature.

  15. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    PubMed

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  16. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2014-12-01

    An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.

  17. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    PubMed

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  19. Emptying and filling a tunnel bronze

    DOE PAGES

    Marley, Peter M.; Abtew, Tesfaye A.; Farley, Katie E.; ...

    2015-01-13

    The classical orthorhombic layered phase of V 2O 5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V 2O 5 (ζ-V 2O 5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodationmore » of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV 2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.« less

  20. A comparative study of Sm networks in Al-10 at.%Sm glass and associated crystalline phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiaobao; Ye, Zhuo; Sun, Yang

    Here, the Al–Sm system is selected as a model system to study the transition process from liquid and amorphous to crystalline states. In recent work, we have shown that, in addition to long-range translational periodicity, crystal structures display well-defined short-range local atomic packing motifs that transcends liquid, amorphous and crystalline states. In this paper, we investigate the longer range spatial packing of these short-range motifs by studying the interconnections of Sm–Sm networks in different amorphous and crystalline samples obtained from molecular dynamics simulations. In our analysis, we concentrate on Sm–Sm distances in the range ~5.0–7.2 Å, corresponding to Sm atomsmore » in the second and third shells of Sm-centred clusters. We discover a number of empirical rules characterising the evolution of Sm networks from the liquid and amorphous states to associated metastable crystalline phases experimentally observed in the initial stages of devitrification of different amorphous samples. As direct simulation of glass formation is difficult because of the vast difference between experimental quench rates and what is achievable on the computer, we hope these rules will be helpful in building a better picture of structural evolution during glass formation as well as a more detailed description of phase selection and growth during devitrification.« less

  1. A comparative study of Sm networks in Al-10 at.%Sm glass and associated crystalline phases

    DOE PAGES

    Lv, Xiaobao; Ye, Zhuo; Sun, Yang; ...

    2018-04-03

    Here, the Al–Sm system is selected as a model system to study the transition process from liquid and amorphous to crystalline states. In recent work, we have shown that, in addition to long-range translational periodicity, crystal structures display well-defined short-range local atomic packing motifs that transcends liquid, amorphous and crystalline states. In this paper, we investigate the longer range spatial packing of these short-range motifs by studying the interconnections of Sm–Sm networks in different amorphous and crystalline samples obtained from molecular dynamics simulations. In our analysis, we concentrate on Sm–Sm distances in the range ~5.0–7.2 Å, corresponding to Sm atomsmore » in the second and third shells of Sm-centred clusters. We discover a number of empirical rules characterising the evolution of Sm networks from the liquid and amorphous states to associated metastable crystalline phases experimentally observed in the initial stages of devitrification of different amorphous samples. As direct simulation of glass formation is difficult because of the vast difference between experimental quench rates and what is achievable on the computer, we hope these rules will be helpful in building a better picture of structural evolution during glass formation as well as a more detailed description of phase selection and growth during devitrification.« less

  2. Multi-level storage and ultra-high speed of superlattice-like Ge50Te50/Ge8Sb92 thin film for phase-change memory application.

    PubMed

    Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-10-06

    Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.

  3. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  4. Nuclear magnetic resonance analysis and activation energy spectrum of the irreversible structural relaxation of amorphous zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Miotto, F.; Rech, G. L.; Turatti, A. M.; Catafesta, J.; Zorzi, J. E.; Pereira, A. S.; Perottoni, C. A.

    2018-03-01

    Zirconium tungstate undergoes a sequence of phase transitions from cubic (α -ZrW2O8 ) to orthorhombic (γ -ZrW2O8 ) to amorphous (a -ZrW2O8 ) upon increasing pressure at room temperature. The amorphous phase is known to undergo anomalous endothermic recrystallization into a high-temperature β -ZrW2O8 phase above 600∘C at ambient pressure (and back to α -ZrW2O8 when brought to room temperature). The endothermic recrystallization of a -ZrW2O8 is preceded by an irreversible exothermic structural relaxation. New W-O bonds are formed upon amorphization, continuing a tendency of increasing W coordination number in going from α to γ -ZrW2O8 . In fact, contrarily to α -ZrW2O8 , in which one-quarter of the oxygen atoms are bonded only to one W (terminal oxygens), previous works found no evidence of single-bonded oxygen atoms in a -ZrW2O8 . It thus could be argued that the irreversible character of the structural relaxation of a -ZrW2O8 is due to W-O bond breaking upon annealing of the amorphous phase. To test this hypothesis, x-ray diffraction, 17O magic-angle spinning NMR, Raman, and far-infrared analyses were performed on samples of amorphous zirconium tungstate previously annealed to increasingly higher temperatures, looking for any evidence of features that could be assigned to the presence of terminal oxygen atoms. No evidence of single-bonded oxygen was found before the onset of recrystallization. Furthermore, the kinetics of the structural relaxation of a -ZrW2O8 is consistent with a continuous spectrum of activation energy, spanning all the range from 1 to 2.5 eV . These findings suggest that the structural relaxation of amorphous zirconium tungstate, however irreversible, is not accompanied by W-O bond breaking, but most probably characterized by a succession of (mostly) irreversible local atomic rearrangements.

  5. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca; Hu, M. Y.

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by randommore » packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.« less

  6. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl 4

    DOE PAGES

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; ...

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI 4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI 4 under ambient conditions. Although high pressure structures of SnI 4 were thought to be determined by random packingmore » of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less

  7. Impact of amorphization on the electronic properties of Zn-Ir-O systems.

    PubMed

    Muñoz Ramo, David; Bristowe, Paul D

    2016-09-01

    We analyze the geometry and electronic structure of a series of amorphous Zn-Ir-O systems using classical molecular dynamics followed by density functional theory taking into account two different charge states of Ir (+3 and  +4). The structures obtained consist of a matrix of interconnected metal-oxygen polyhedra, with Zn adopting preferentially a coordination of 4 and Ir a mixture of coordinations between 4 and 6 that depend on the charge state of Ir and its concentration. The amorphous phases display reduced band gaps compared to crystalline ZnIr2O4 and exhibit localized states near the band edges, which harm their transparency and hole mobility. Increasing amounts of Ir in the Ir(4+) phases decrease the band gap further while not altering it significantly in the Ir(3+) phases. The results are consistent with recent transmittance and resistivity measurements.

  8. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4.

    PubMed

    Liu, H; Tse, J S; Hu, M Y; Bi, W; Zhao, J; Alp, E E; Pasternak, M; Taylor, R D; Lashley, J C

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure (119)Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  9. Pressure-induced transformations in computer simulations of glassy water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2013-11-14

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  10. Pressure-induced transformations in computer simulations of glassy water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  11. Amorphization of cobalt monoxide nanocrystals and related explosive gas sensing applications.

    PubMed

    Li, L H; Xiao, J; Yang, G W

    2015-10-16

    Amorphous nanomaterials have attracted attention due to their excellent performances, highly comparable to their crystalline counterparts. Sensor materials with amorphous phases are usually evaluated to be unsuitable for sensors because of poor performance. As a matter of fact, amorphous nanomaterials have rather unique sensor behaviors. Here, we report the amorphousization of cobalt monoxide (CoO) nanocrystals driven by a unique process involved in laser ablation in liquid (LAL). We also established that a fast and nonequilibrium process created by LAL results in the amorphousization of nanocrystals. The as-prepared amorphous CoO (a-CoO) nanoflakes possess a high aspect ratio, which showed good sensing of explosive gases. The fabricated gas sensor can detect CO and H2 at levels as low as 5 and 10 ppm, respectively, at 100 °C. The performance characteristics of this sensor, including high sensitivity, low working temperature, and low detection limit, are superior to those of sensors made with crystalline phase oxides. Meanwhile, a temperature-dependent p-n transition was observed in the sensor's response to CO, suggesting that the sensing properties can be tailored by changing the carrier type, thus tuning the selectivity of sensors to different gases. These findings demonstrate the potential applications of amorphous nanomaterials as gas sensor components.

  12. Viscous friction between crystalline and amorphous phase of dragline silk.

    PubMed

    Patil, Sandeep P; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading.

  13. Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  14. Mineralogy of Sediments on a Cold and Icy Early Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-12-01

    The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.

  15. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose.

    PubMed

    Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R

    2001-05-01

    To assess differences in surface energy due to processing induced disorder and to understand whether the disorder dominated the surfaces of particles. Inverse gas chromatography was used to compare the surface energies of crystalline, amorphous, and ball milled lactose. The milling process made ca 1% of the lactose amorphous, however the dispersive contribution to surface energy was 31.2, 37.1, and 41.6 mJ m(-2) for crystalline, spray dried and milled lactose, respectively. A physical mixture of crystalline (99%) and amorphous (1%) material had a dispersive surface energy of 31.5 mJ m(-2). Milling had made the surface energy similar to that of the amorphous material in a manner that was very different to a physical mixture of the same amorphous content. The milled material will have similar interfacial interactions to the 100% amorphous material.

  16. Structural Inheritance and Redox Performance of Nanoporous Electrodes from Nanocrystalline Fe85.2B10-14P0-4Cu0.8 Alloys

    PubMed Central

    Fu, Chaoqun; Xu, Lijun; Dan, Zhenhua; Makino, Akihiro; Hara, Nobuyoshi; Qin, Fengxiang; Chang, Hui

    2017-01-01

    Nanoporous electrodes have been fabricated by selectively dissolving the less noble α-Fe crystalline phase from nanocrystalline Fe85.2B14–xPxCu0.8 alloys (x= 0, 2, 4 at.%). The preferential dissolution is triggered by the weaker electrochemical stability of α-Fe nanocrystals than amorphous phase. The final nanoporous structure is mainly composed of amorphous residual phase and minor undissolved α-Fe crystals and can be predicted from initial microstructure of nanocrystalline precursor alloys. The structural inheritance is proved by the similarity of the size and outlines between nanopores formed after dealloying in 0.1 M H2SO4 and α-Fe nanocrystals precipitated after annealing of amorphous Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys. The Redox peak current density of the nanoporous electrodes obtained from nanocrystalline Fe85.2B10P4Cu0.8 alloys is more than one order higher than those of Fe plate electrode and its counterpart nanocrystalline alloys due to the large surface area and nearly-amorphous nature of ligaments. PMID:28594378

  17. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean

    PubMed Central

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-01-01

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788

  18. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.

    PubMed

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-12-29

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileiadis, Thomas; Department of Materials Science, University of Patras, GR-26504 Rio-Patras; Yannopoulos, Spyros N., E-mail: sny@iceht.forth.gr

    Controlled photo-induced oxidation and amorphization of elemental trigonal tellurium are achieved by laser irradiation at optical wavelengths. These processes are monitored in situ by time-resolved Raman scattering and ex situ by electron microscopies. Ultrathin TeO₂ films form on Te surfaces, as a result of irradiation, with an interface layer of amorphous Te intervening between them. It is shown that irradiation, apart from enabling the controllable transformation of bulk Te to one-dimensional nanostructures, such as Te nanotubes and hybrid core-Te/sheath-TeO₂ nanowires, causes also a series of light-driven (athermal) phase transitions involving the crystallization of the amorphous TeO₂ layers and its transformationmore » to a multiplicity of crystalline phases including the γ-, β-, and α-TeO₂ crystalline phases. The kinetics of the above photo-induced processes is investigated by Raman scattering at various laser fluences revealing exponential and non-exponential kinetics at low and high fluence, respectively. In addition, the formation of ultrathin (less than 10 nm) layers of amorphous TeO₂ offers the possibility to explore structural transitions in 2D glasses by observing changes in the short- and medium-range structural order induced by spatial confinement.« less

  20. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    DOE PAGES

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less

  1. Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.

    2013-09-01

    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.

  2. Formation of Nanotwin Networks during High-Temperature Crystallization of Amorphous Germanium

    PubMed Central

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-01-01

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the 〈111〉 crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of 〈111〉 semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation. PMID:26607496

  3. Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Sánchez-López, J. C.; Donnet, C.; Lefèbvre, F.; Fernández-Ramos, C.; Fernández, A.

    2001-07-01

    Since the prediction of Liu and Cohen [Science 245, 841 (1989)] of the potential extraordinary mechanical properties of crystalline β-C3N4, many authors have attempted its synthesis. However, in most cases, the obtained materials are amorphous phases with a complex bonding structure. Their characterization is complicated due to the absence of a reference compound, the lack of long-range order, and the poor knowledge about their bonding structure. In this article, we present 1H, 13C, and 15N solid-state nuclear magnetic resonance (NMR) measurements for the determination of the bonding types in amorphous CNx films. NMR measurements do not require long-range order and are able to clearly identify the signals from the sp2- and sp3-bonded phases. The analysis of the data obtained by other characterization techniques, such as infrared spectroscopy, x-ray photoelectron spectroscopy, electron energy-loss spectroscopy, and x-ray absorption near-edge spectroscopy on the same sample, based on the information acquired by NMR, enables the description of a structure model for the studied amorphous-CNx phase prepared by dc-magnetron sputtering and to revise the interpretation found in the literature.

  4. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel – A macroscopic assessment

    DOE PAGES

    Simos, N.; Zhong, Z.; Dooryhee, E.; ...

    2017-03-23

    Here, this study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ~2 x 10 18 n/cm 2. At the higher neutron dose of ~2 x 10 19, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe 2Bmore » phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.« less

  5. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    NASA Astrophysics Data System (ADS)

    Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.

    2009-11-01

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  6. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizingmore » controllable high-performance stable transistors.« less

  7. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

  8. Nonequilibrium Phase Transitions in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  9. Miscibility as a factor for component crystallization in multisolute frozen solutions.

    PubMed

    Izutsu, Ken-Ichi; Shibata, Hiroko; Yoshida, Hiroyuki; Goda, Yukihiro

    2014-07-01

    The relationship between the miscibility of formulation ingredients and their crystallization during the freezing segment of the lyophilization process was studied. The thermal properties of frozen solutions containing myo-inositol and cosolutes were obtained by performing heating scans from -70 °C before and after heat treatment at -20 °C to -5 °C. Addition of dextran 40,000 reduced and prevented crystallization of myo-inositol. In the first scan, some frozen solutions containing an inositol-rich mixture with dextran showed single broad transitions (Tg's: transition temperatures of maximally freeze-concentrated solutes) that indicated incomplete mixing of the concentrated amorphous solutes. Heat treatment of these frozen solutions induced separation of the solutes into inositol-dominant and solute mixture phases (Tg' splitting) following crystallization of myo-inositol (Tg' shifting). The crystal growth involved myo-inositol molecules in the solute mixture phase. The amorphous-amorphous phase separation and resulting loss of the heteromolecular interaction in the freeze-concentrated inositol-dominant phase should allow ordered assembly of the solute molecules required for nucleation. Some dextran-rich and intermediate concentration ratio frozen solutions retained single Tg's of the amorphous solute mixture, both before and after heat treatments. The relevance of solute miscibility on the crystallization of myo-inositol was also indicated in the systems containing glucose or recombinant human albumin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    NASA Astrophysics Data System (ADS)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  11. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  12. The Effect of Shock on the Amorphous Component in Altered Basalt

    NASA Technical Reports Server (NTRS)

    Eckley, S. A.; Wright, S. P.; Rampe, E. B.; Niles, P. B.

    2017-01-01

    Investigation of the geochemical and mineralogical composition of the Martian surface provides insight into the geologic history of the predominantly basaltic crust. The Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover has returned the first X-Ray diffraction data from the Martian surface. However, large proportions (27 +/- 14 with some estimates as high as 50 weight percentage) of an amorphous component have been reported. As a remedy to this problem, mass balance equations using geochemistry, volatile chemistry, and mineralogy have been employed to constrain the geochemistry of the amorphous component. However, "the nature and number of amorphous phases that constitute the amorphous component is not unequivocally known". Multiple hypotheses have been proposed to explain the origin of this amorphous component: Allophane (Al2O); Basaltic glass (Volcanic and impact); Palagonite (Altered basaltic glass); Hisingerite (Fe (sup 3 plus)-bearing phyllosilicate); S/Cl-rich component (sulfates and/or akaganeite); Nanophase ferric oxide component (npOx). Establishing a multi-phase amorphous component from a basaltic precursor that has undergone physical and chemical weathering within geochemical constraints is of paramount importance to better understand the composition of a large portion of the Martian surface (up to 50 weight percentage). Shocked basalts from Lonar Crater in India are valuable analogs for the Martian surface because it is a well-preserved impact crater in a basaltic target. Having undergone pre- and post-shock aqueous alteration, these rocks provide crucial data regarding the effect of shock on the amorphous component in altered basalt. By conducting mass balance equations similar to what has been performed for Gale crater materials, we attempt to calculate the geochemistry of the amorphous component in altered basalts ranging from unshocked to Class 5 (Table 1). This has the potential to reveal the nature and origin (i.e. primary igneous, shock metamorphic, and/or aqueous alteration occurring before or after the impact event) of the amorphous component in shocked basalt with the goal of unravelling the history of the Martian surface.

  13. Hot Melt Extrusion: Development of an Amorphous Solid Dispersion for an Insoluble Drug from Mini-scale to Clinical Scale.

    PubMed

    Agrawal, Anjali M; Dudhedia, Mayur S; Zimny, Ewa

    2016-02-01

    The objective of the study was to develop an amorphous solid dispersion (ASD) for an insoluble compound X by hot melt extrusion (HME) process. The focus was to identify material-sparing approaches to develop bioavailable and stable ASD including scale up of HME process using minimal drug. Mixtures of compound X and polymers with and without surfactants or pH modifiers were evaluated by hot stage microscopy (HSM), polarized light microscopy (PLM), and modulated differential scanning calorimetry (mDSC), which enabled systematic selection of ASD components. Formulation blends of compound X with PVP K12 and PVP VA64 polymers were extruded through a 9-mm twin screw mini-extruder. Physical characterization of extrudates by PLM, XRPD, and mDSC indicated formation of single-phase ASD's. Accelerated stability testing was performed that allowed rapid selection of stable ASD's and suitable packaging configurations. Dissolution testing by a discriminating two-step non-sink dissolution method showed 70-80% drug release from prototype ASD's, which was around twofold higher compared to crystalline tablet formulations. The in vivo pharmacokinetic study in dogs showed that bioavailability from ASD of compound X with PVP VA64 was four times higher compared to crystalline tablet formulations. The HME process was scaled up from lab scale to clinical scale using volumetric scale up approach and scale-independent-specific energy parameter. The present study demonstrated systematic development of ASD dosage form and scale up of HME process to clinical scale using minimal drug (∼500 g), which allowed successful clinical batch manufacture of enabled formulation within 7 months.

  14. Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase

    NASA Astrophysics Data System (ADS)

    Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.

    1995-01-01

    Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages <= 6 ML chemical reactions at the Au/Sb interface occur, leading to the formation of a homogeneously intermixed amorphous layer with a maximum thickness of about 2.3 nm and Au concentrations as high as x~=80 at. %. This latter value corresponds to the limiting Au content where amorphous alloys can be prepared at low temperature (0 at. % <=x<= 80 at. %). For nominal coverages beyond 6 ML polycrystalline Au films were formed. Consequently, Au/Sb multilayers with sufficiently small modulation lengths, which were prepared at 130 K by ion-beam sputtering, were observed to grow as a homogeneous amorphous phase over a broad range of compositions, as evidenced by in situ resistance measurements and by comparing the obtained crystallization temperatures to those of vapor-quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.

  15. From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective.

    PubMed

    Gras, Pierre; Baker, Annabelle; Combes, Christèle; Rey, Christian; Sarda, Stéphanie; Wright, Adrian J; Smith, Mark E; Hanna, John V; Gervais, Christel; Laurencin, Danielle; Bonhomme, Christian

    2016-02-01

    Hydrated calcium pyrophosphates (CPP, Ca2P2O7·nH2O) are a fundamental family of materials among osteoarticular pathologic calcifications. In this contribution, a comprehensive multinuclear NMR (Nuclear Magnetic Resonance) study of four crystalline and two amorphous phases of this family is presented. (1)H, (31)P and (43)Ca MAS (Magic Angle Spinning) NMR spectra were recorded, leading to informative fingerprints characterizing each compound. In particular, different (1)H and (43)Ca solid state NMR signatures were observed for the amorphous phases, depending on the synthetic procedure used. The NMR parameters of the crystalline phases were determined using the GIPAW (Gauge Including Projected Augmented Wave) DFT approach, based on first-principles calculations. In some cases, relaxed structures were found to improve the agreement between experimental and calculated values, demonstrating the importance of proton positions and pyrophosphate local geometry in this particular NMR crystallography approach. Such calculations serve as a basis for the future ab initio modeling of the amorphous CPP phases. The general concept of NMR crystallography is applied to the detailed study of calcium pyrophosphates (CPP), whether hydrated or not, and whether crystalline or amorphous. CPP are a fundamental family of materials among osteoarticular pathologic calcifications. Their prevalence increases with age, impacting on 17.5% of the population after the age of 80. They are frequently involved or associated with acute articular arthritis such as pseudogout. Current treatments are mainly directed at relieving the symptoms of joint inflammation but not at inhibiting CPP formation nor at dissolving these crystals. The combination of advanced NMR techniques, modeling and DFT based calculation of NMR parameters allows new original insights in the detailed structural description of this important class of biomaterials. Copyright © 2016. Published by Elsevier Ltd.

  16. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  17. Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Bagmut, Aleksandr

    2018-06-01

    An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.

  18. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    PubMed

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  20. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  1. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  2. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.

  3. Experimental Study of the Microstructure and Micromechanical Properties of Laser Cladded Ni-based Amorphous Composite Coatings

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan

    2018-01-01

    (Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.

  4. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  5. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang; Lu, Xujie; Yang, Wenge

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  6. Reverse Micelle Based Synthesis of Microporous Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Dutta, Prabir K.

    1995-01-01

    Formation of zincophosphates from zinc and phosphate containing reverse micelles (water droplets in hexane) has been examined. The frameworks formed resemble that made by conventional hydrothermal synthesis. Dynamics of crystal growth are however quite different, and form the main focus of this study. In particular, the formation of zincophosphate with the sodalite framework was examined in detail. The intramicellar pH was found to have a strong influence on crystal growth. Crystals with a cubic morphology were formed directly from the micelles, without an apparent intermediate amorphous phase over a period of four days by a layer-bylayer growth at the intramicellar pH of 7.6. At a pH of 6.8, an amorphous precipitate rapidly sediments in hours. Sodalite was eventually formed from this settled phase via surface diffusion and reconstruction within four days. With a rotating cell, it was possible to minimize sedimentation and crystals were found to grow epitaxially from the spherical, amorphous particles. Intermediate pH's of 7.2 led to formation of aggregated sodalite crystals prior to settling, again without any indication of an intermediate amorphous phase. These diverse pathways were possible due to changes in intramicellar supersaturation conditions by minor changes in pH. In contrast, conventional syntheses in this pH range all proceeded by similar crystallization pathways through an amorphous gel. This study establishes that synthesis of microporous frameworks is not only possible in reverse micellar systems, but they also allow examination of possible crystallization pathways.

  7. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobir, S. A. M.; Nano-SciTech Centre,; Zainal, Z.

    2011-03-30

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheresmore » size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm{sup -1} for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.« less

  8. Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite.

    PubMed

    Wang, Yonggang; Lü, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng

    2015-09-02

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature. Two phase transformations below 2 GPa (from Pm3̅m to Im3̅, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.

  9. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE PAGES

    Wang, Yonggang; Lu, Xujie; Yang, Wenge; ...

    2015-08-18

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH 3NH 3PbBr 3 (MAPbBr 3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr 6 octahedra and destroying of long-rangemore » ordering of MA cations, respectively. The visible light response of MAPbBr 3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  10. Pressure-induced amorphization of La{sub 1/3}TaO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noked, O., E-mail: noked@bgu.ac.il; Physics Department, Ben-Gurion University, Beer Sheva 84105; Melchior, A.

    2013-06-15

    La{sub 1/3}TaO{sub 3}, an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E{sub g} and A{sub 1g} Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La{sub 1/3}Tao{sub 3} exhibits linear pressure–volume relationmore » until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La{sub 1/3}TaO{sub 3} has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La{sub 1/3}TaO{sub 3} undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition.« less

  11. Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.

    PubMed

    Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi

    2018-01-24

    Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.

  12. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  13. First principles prediction of amorphous phases using evolutionary algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in

    2016-07-07

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less

  14. Transmission electron microscope analyses of alteration phases in martian meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Ishii, H. A.; Bradley, J. P.; Taylor, G. J.

    2014-06-01

    The nakhlite group of martian meteorites found in the Antarctic contain varying abundances of both martian and terrestrial secondary alteration phases. The aim of this study was to use transmission electron microscopy (TEM) to compare martian and terrestrial alteration embodied within a single nakhlite martian meteorite find - MIL 090032. Martian alteration veins in MIL 090032 are composed of poorly ordered Fe-smectite phyllosilicate. This poorly-ordered smectite appears to be equivalent to the nanocrystalline phyllosilicate/hydrated amorphous gel phase previously described in the martian alteration veins of other nakhlites. Chemical differences in this nanocrystalline phyllosilicate between different nakhlites imply localised alteration, which occurred close to the martian surface in MIL 090032. Both structurally and compositionally the nakhlite nanocrystalline phyllosilicate shows similarities to the amorphous/poorly ordered phase recently discovered in martian soil by the Mars Curiosity Rover at Rocknest, Gale Crater. Terrestrially derived alteration phases in MIL 090032 include jarosite and gypsum, amorphous silicates, and Fe-oxides and hydroxides. Similarities between the mineralogy and chemistry of the MIL 090032 terrestrial and martian alteration phases suggest the alteration conditions on Mars were similar to those in the Antarctic. At both sites a small amount of fluid at low temperatures infiltrated the rock and became acidic as a result of the conversion of Fe2+ to Fe3+ under oxidising conditions.

  15. Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein

    2015-03-01

    Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.

  16. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOEpatents

    McCallum, R.W.; Branagan, D.J.

    1996-01-23

    A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

  17. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOEpatents

    McCallum, R. William; Branagan, Daniel J.

    1996-01-23

    A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

  18. Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion.

    PubMed

    Démuth, Balázs; Farkas, Attila; Balogh, Attila; Bartosiewicz, Karolina; Kállai-Szabó, Barnabás; Bertels, Johny; Vigh, Tamás; Mensch, Jurgen; Verreck, Geert; Van Assche, Ivo; Marosi, György; Nagy, Zsombor K

    2016-09-01

    Investigation of downstream processing of nanofibrous amorphous solid dispersions to generate tablet formulation is in a quite early phase. Development of high speed electrospinning opened up the possibility to study tableting of electrospun solid dispersions (containing polyvinylpyrrolidone-vinyl acetate and itraconazole [ITR] in this case). This work was conducted to investigate the influence of excipients on dissolution properties and the feasibility of scaled-up rotary press tableting. The dissolution rates from tablets proved to be mainly composition dependent. Magnesium stearate acted as a nucleation promoting agent (providing an active hydrophobic environment for crystallization of ITR) hindering the total dissolution of ITR. This crystallization process proved to be temperature dependent as well. However, the extent of dissolution of more than 95% was realizable when a less hydrophobic lubricant, sodium stearyl fumarate (soluble in the medium), was applied. Magnesium stearate induced crystallization even if it was put in the dissolution medium next to proper tablets. After optimization of the composition, scaled-up tableting on a rotary press was carried out. Appropriate dissolution of ITR from tablets was maintained for 3 months at 25°C/60% relative humidity. HPLC measurements confirmed that ITR was chemically stable both in the course of downstream processing and storage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  20. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  1. Absence of pressure-induced amorphization in LiKSO4.

    PubMed

    Machon, D; Pinheiro, C B; Bouvier, P; Dmitriev, V P; Crichton, W A

    2010-08-11

    Angle-resolved synchrotron radiation diffraction was used to investigate lithium potassium sulfate (LiKSO(4)) crystals under high pressure. We confirm that the title compound undergoes three phase transitions, α →β, β → γ and γ →δ, observed at around 0.8 GPa, 4.0 GPa and 7.0 GPa, respectively. Two competitive structures are proposed for the β-phase after powder diffraction data Rietveld refinements: an orthorhombic (space group Cmc 2(1)) or a monoclinic (space group Cc) structure. These structures correspond to the models of the low temperature phases. The γ-phase is indexed by a monoclinic structure. Finally, the δ-phase is found to be highly disordered. No evidence of any pressure-induced amorphous phase was observed up to 24 GPa, even under imposed highly non-hydrostatic conditions, contrary to previous propositions.

  2. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    NASA Astrophysics Data System (ADS)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  3. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  4. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    PubMed

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  5. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  6. Development of High Strength Thermally Stable Al-based Alloys with Nanocomposite Structure

    DTIC Science & Technology

    2010-02-05

    Lin Z.G., Mezouar M ., Crichton W., Inoue A. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy // Appl...and (1.1–4.3)×1023 m -3, respectively, results in essential increasing of the microhardness (by 740–1740 MPa) in comparison with that of amorphous...crystallization event are in the ranges (0.22-0.59), (14.8–21.0) nm and (1.1–4.3)×1023 m -3, respectively. The lattice parameters of fcc Al nanocrystals have been

  7. High Infrared Blocking Cellulose Film Based on Amorphous to Anatase Transition of TiO2 via Atomic Layer Deposition.

    PubMed

    Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin

    2018-06-27

    A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.

  8. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  9. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  10. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200.

    PubMed

    Jiang, Shenghua; Ho, Cuong Tu; Lee, Ji-Hoon; Duong, Hieu Van; Han, Seunghee; Hur, Hor-Gil

    2012-05-01

    Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  12. Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster.

    PubMed

    Huang, Jingliang; Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2018-02-26

    Amorphous calcium carbonate (ACC) has long been shown to act as an important constituent or precursor phase for crystalline material in mollusks. However, the presence and the role of ACC in bivalve shell formation are not fully studied. In this study, we found that brown deposits containing heterogeneous calcium carbonates were precipitated when a shell disease occurred in the pearl oyster Pinctada fucata. Calcein-staining of the brown deposits indicated that numerous amorphous calcium deposits were present, which was further confirmed by Fourier-transform infrared spectroscopy (FTIR), Raman spectrum and X-ray difraction (XRD) analyses. So we speculate that ACC plays an important role in rapid calcium carbonate precipitation during shell repair process in diseased oysters. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Reversible pressure pre-amorphization of a piezochromic metal-organic framework.

    PubMed

    Andrzejewski, M; Casati, N; Katrusiak, A

    2017-11-07

    The piezochromic metal-organic framework Co 2 (Bdc) 2 Dabco·4DMF·H 2 O (Bdc denotes 1,4-benzenedicarboxylate, Dabco - 1,4-diazabicyclo[2.2.2]octane, and DMF - dimethylformamide) under ambient conditions is tetragonal (phase α) and at about 1.9 GPa undergoes a strong pressure-induced shortening of translational correlations in the sample. A broad gradual pre-amorphization process starting at about 0.7 GPa reduces the tetragonal symmetry and is described as phase β. The pre-amorphization mechanism involves several competing distortions of the Bdc linkers and Co(ii)-coordination schemes. These in turn, affect the crystal field around the cations and their optical absorption. The compression strongly affects the VIS absorption of this piezochromic compound visibly changing its colour from blue to red.

  14. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    PubMed

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. NREL/industry interaction: Amorphous silicon alloy research team formation

    NASA Astrophysics Data System (ADS)

    Luft, Werner

    1994-06-01

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to significant penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) would help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.

  16. NREL/industry interaction: Amorphous silicon alloy research team formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luft, W.

    1994-06-30

    The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to [ital significant] penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) wouldmore » help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.« less

  17. Stable prenucleation mineral clusters are liquid-like ionic polymers

    PubMed Central

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis

    2011-01-01

    Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886

  18. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  19. How fragility makes phase-change data storage robust: insights from ab initio simulations

    PubMed Central

    Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo

    2014-01-01

    Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316

  20. A Bragg glass phase in the vortex lattice of a type II superconductor.

    PubMed

    Klein, T; Joumard, I; Blanchard, S; Marcus, J; Cubitt, R; Giamarchi, T; Le Doussal, P

    2001-09-27

    Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order. The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into 'crystallites'. But a different theory predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The 'lattice' of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas. Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions and the dramatic jumps in the critical current associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals and the conductivity of electronic crystals.

Top