Generating mammalian stable cell lines by electroporation.
A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J
2013-01-01
Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.
Generation of stable cell line by using chitosan as gene delivery system.
Şalva, Emine; Turan, Suna Özbaş; Ekentok, Ceyda; Akbuğa, Jülide
2016-08-01
Establishing stable cell lines are useful tools to study the function of various genes and silence or induce the expression of a gene of interest. Nonviral gene transfer is generally preferred to generate stable cell lines in the manufacturing of recombinant proteins. In this study, we aimed to establish stable recombinant HEK-293 cell lines by transfection of chitosan complexes preparing with pDNA which contain LacZ and GFP genes. Chitosan which is a cationic polymer was used as gene delivery system. Stable HEK-293 cell lines were established by transfection of cells with complexes which were prepared with chitosan and pVitro-2 plasmid vector that contains neomycin drug resistance gene, beta gal and GFP genes. The transfection efficiency was shown with GFP expression in the cells using fluorescence microscopy. Beta gal protein expression in stable cells was examined by beta-galactosidase assay as enzymatically and X-gal staining method as histochemically. Full complexation was shown in the above of 1/1 ratio in the chitosan/pDNA complexes. The highest beta-galactosidase activity was obtained with transfection of chitosan complexes. Beta gal gene expression was 15.17 ng/ml in the stable cells generated by chitosan complexes. In addition, intensive blue color was observed depending on beta gal protein expression in the stable cell line with X-gal staining. We established a stable HEK-293 cell line that can be used for recombinant protein production or gene expression studies by transfecting the gene of interest.
Establishment of stable cell line for inducing KAP1 protein expression.
Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang
2015-06-01
Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.
Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G
2015-01-01
Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.
Recombinant protein production from stable mammalian cell lines and pools.
Hacker, David L; Balasubramanian, Sowmya
2016-06-01
We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.
Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao
2016-08-01
The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.
Therapeutic Inhibitors of LIN28/let-7 Pathway in Ovarian Cancer
2015-09-01
of-function cell lines to complement our already generated shRNA lines, we are developing handson experience with CrispR /Cas9 technology to...generate stable cell lines where our genes of interest will be inactivated. The advantage of the CrispR /Cas9 method is that stable lines can be...ovarian cancer cell lines using two distinct RNAi methods, shRNA and siRNA. We plan to explore the feasibility of using the CrispR /Cas9 system to
Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz
2012-04-01
To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.
Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.
Lei, Lei; Spradling, Allan C
2013-05-21
Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.
Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad
2010-06-01
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.
Generation of stable PDX derived cell lines using conditional reprogramming.
Borodovsky, Alexandra; McQuiston, Travis J; Stetson, Daniel; Ahmed, Ambar; Whitston, David; Zhang, Jingwen; Grondine, Michael; Lawson, Deborah; Challberg, Sharon S; Zinda, Michael; Pollok, Brian A; Dougherty, Brian A; D'Cruz, Celina M
2017-12-06
Efforts to develop effective cancer therapeutics have been hindered by a lack of clinically predictive preclinical models which recapitulate this complex disease. Patient derived xenograft (PDX) models have emerged as valuable tools for translational research but have several practical limitations including lack of sustained growth in vitro. In this study, we utilized Conditional Reprogramming (CR) cell technology- a novel cell culture system facilitating the generation of stable cultures from patient biopsies- to establish PDX-derived cell lines which maintain the characteristics of the parental PDX tumor. Human lung and ovarian PDX tumors were successfully propagated using CR technology to create stable explant cell lines (CR-PDX). These CR-PDX cell lines maintained parental driver mutations and allele frequency without clonal drift. Purified CR-PDX cell lines were amenable to high throughput chemosensitivity screening and in vitro genetic knockdown studies. Additionally, re-implanted CR-PDX cells proliferated to form tumors that retained the growth kinetics, histology, and drug responses of the parental PDX tumor. CR technology can be used to generate and expand stable cell lines from PDX tumors without compromising fundamental biological properties of the model. It offers the ability to expand PDX cells in vitro for subsequent 2D screening assays as well as for use in vivo to reduce variability, animal usage and study costs. The methods and data detailed here provide a platform to generate physiologically relevant and predictive preclinical models to enhance drug discovery efforts.
Fiedler, Nicola; Quant, Ellen; Fink, Ludger; Sun, Jianguang; Schuster, Ralph; Gerlich, Wolfram H; Schaefer, Stephan
2006-01-01
AIM: Hepatitis B virus protein X (HBx) has been shown to be weakly oncogenic in vitro. The transforming activities of HBx have been linked with the inhibition of several functions of the tumor suppressor p53. We have studied whether HBx may have different effects on p53 depending on the cell type. METHODS: We used the human hepatoma cell line HepG2 and the immortalized murine hepatocyte line AML12 and analyzed stably transfected clones which expressed physiological amounts of HBx. P53 was induced by UV irradiation. RESULTS: The p53 induction by UV irradiation was unaffected by stable expression of HBx. However, the expression of the cyclin kinase inhibitor p21waf/cip/sdi which gets activated by p53 was affected in the HBx transformed cell line AML12-HBx9, but not in HepG2. In AML-HBx9 cells, p21waf/cip/sdi-protein expression and p21waf/cip/sdi transcription were deregulated. Furthermore, the process of apoptosis was affected in opposite ways in the two cell lines investigated. While stable expression of HBx enhanced apoptosis induced by UV irradiation in HepG2-cells, apoptosis was decreased in HBx transformed AML12-HBx9. P53 repressed transcription from the HBV enhancer I, when expressed from expression vectors or after induction of endogenous p53 by UV irradiation. Repression by endogenous p53 was partially reversible by stably expressed HBx in both cell lines. CONCLUSION: Stable expression of HBx leads to deregulation of apoptosis induced by UV irradiation depending on the cell line used. In an immortalized hepatocyte line HBx acted anti-apoptotic whereas expression in a carcinoma derived hepatocyte line HBx enhanced apoptosis. PMID:16937438
Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.
2016-01-01
Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805
Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y
2013-01-01
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.
Therapeutic Inhibitors of LIN28/let-7 Pathway in Ovarian Cancer
2015-09-01
generate loss of function lines (siRNA and the CrispR /Cas9 system). Task 4. Determine oncogenic properties associated with TUTase and LIN28B loss in...of-function cell lines to complement our already generated shRNA lines, we are developing handson experience with CrispR /Cas9 technology to...generate stable cell lines where our genes of interest will be inactivated. The advantage of the CrispR /Cas9 method is that stable lines can be
Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C
1996-03-01
In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.
Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid
2015-01-01
Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221
LentiPro26: novel stable cell lines for constitutive lentiviral vector production.
Tomás, H A; Rodrigues, A F; Carrondo, M J T; Coroadinha, A S
2018-03-27
Lentiviral vectors (LVs) are excellent tools to promote gene transfer and stable gene expression. Their potential has been already demonstrated in gene therapy clinical trials for the treatment of diverse disorders. For large scale LV production, a stable producer system is desirable since it allows scalable and cost-effective viral productions, with increased reproducibility and safety. However, the development of stable systems has been challenging and time-consuming, being the selection of cells presenting high expression levels of Gag-Pro-Pol polyprotein and the cytotoxicity associated with some viral components, the main limitations. Hereby is described the establishment of a new LV producer cell line using a mutated less active viral protease to overcome potential cytotoxic limitations. The stable transfection of bicistronic expression cassettes with re-initiation of the translation mechanism enabled the generation of LentiPro26 packaging populations supporting high titers. Additionally, by skipping intermediate clone screening steps and performing only one final clone screening, it was possible to save time and generate LentiPro26-A59 cell line, that constitutively produces titers above 10 6 TU.mL -1 .day -1 , in less than six months. This work constitutes a step forward towards the development of improved LV producer cell lines, aiming to efficiently supply the clinical expanding gene therapy applications.
Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.
Kowarz, Eric; Löscher, Denise; Marschalek, Rolf
2015-04-01
Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C
2015-05-01
Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293. © 2014 Wiley Periodicals, Inc.
Yang, Maozhou; Zhang, Liang; Stevens, Jeff; Gibson, Gary
2014-12-01
The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Lixuan; Li, Jia
2015-05-01
To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.
Chung, Nancy P Y; Matthews, Katie; Kim, Helen J; Ketas, Thomas J; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W; Klasse, Per Johan; Wilson, Ian A; Ward, Andrew B; Marozsan, Andre J; Moore, John P; Cupo, Albert
2014-04-25
Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate amounts at an acceptable quality. Accomplishing such tasks by transient transfection is likely to be challenging. The traditional way to express recombinant proteins in large amounts is via a permanent cell line, usually of mammalian origin. Making cell lines that produce BG505 SOSIP.664 trimers requires the co-expression of the Furin protease to ensure that the cleavage site between the gp120 and gp41 subunits is fully utilized. We designed a vector capable of expressing Env and Furin, and used it to create Stable 293 T and CHO Flp-In™ cell lines through site-specific recombination. Both lines produce high quality, cleaved trimers at yields of up to 12-15 mg per 1 × 109 cells. Trimer expression at such levels was maintained for up to 30 days (10 passages) after initial seeding and was consistently superior to what could be achieved by transient transfection. Electron microscopy studies confirm that the purified trimers have the same native-like appearance as those derived by transient transfection and used to generate high-resolution structures. They also have appropriate antigenic properties, including the presentation of the quaternary epitope for the broadly neutralizing antibody PGT145. The BG505 SOSIP.664 trimer-expressing cell lines yield proteins of an appropriate quality for structural studies and animal immunogenicity experiments. The methodology is suitable for making similar lines under Good Manufacturing Practice conditions, to produce trimers for human clinical trials. Moreover, any env gene can be incorporated into this vector system, allowing the manufacture of SOSIP trimers from multiple genotypes, either by transient transfection or from stable cell lines.
Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei
2018-07-01
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.
Production of lentiviral vectors
Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara
2016-01-01
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581
Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S
2015-06-01
Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.
Generation of Two Stable Cell Lines that Express hERa or
hERa and b and Firefly Luciferase Genes for Endocrine Screening
K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reprod...
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun
2014-12-12
Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less
Feldman, Steven A; Xu, Hui; Black, Mary A; Park, Tristen S; Robbins, Paul F; Kochenderfer, James N; Morgan, Richard A; Rosenberg, Steven A
2014-08-01
Efforts to improve the biosafety of γ-retroviral-mediated gene therapy have resulted in a shift toward the use of self-inactivating (SIN) γ-retroviral vectors. However, scale-up and manufacturing of such vectors requires significant optimization of transient transfection-based processes or development of novel platforms for the generation of stable producer cell clones. To that end, we describe the use of the piggybac transposon to generate stable producer cell clones for the production of SIN γ-retroviral vectors. The piggybac transposon is a universal tool allowing for the stable integration of SIN γ-retroviral constructs into murine (PG13) and human 293-based Phoenix (GALV and RD114, respectively) packaging cell lines without reverse transcription. Following transposition, a high-titer clone is selected for manufacture of a master cell bank and subsequent γ-retroviral vector supernatant production. Packaging cell clones created using the piggybac transposon have comparable titers to non-SIN vectors generated via conventional methods. We describe herein the use of the piggybac transposon for the production of stable packaging cell clones for the manufacture of clinical-grade SIN γ-retroviral vectors for ex vivo gene therapy clinical trials.
Generation of stable human cell lines with Tetracycline-inducible (Tet-on) shRNA or cDNA expression.
Gomez-Martinez, Marta; Schmitz, Debora; Hergovich, Alexander
2013-03-05
A major approach in the field of mammalian cell biology is the manipulation of the expression of genes of interest in selected cell lines, with the aim to reveal one or several of the gene's function(s) using transient/stable overexpression or knockdown of the gene of interest. Unfortunately, for various cell biological investigations this approach is unsuitable when manipulations of gene expression result in cell growth/proliferation defects or unwanted cell differentiation. Therefore, researchers have adapted the Tetracycline repressor protein (TetR), taken from the E. coli tetracycline resistance operon(1), to generate very efficient and tight regulatory systems to express cDNAs in mammalian cells(2,3). In short, TetR has been modified to either (1) block initiation of transcription by binding to the Tet-operator (TO) in the promoter region upon addition of tetracycline (termed Tet-off system) or (2) bind to the TO in the absence of tetracycline (termed Tet-on system) (Figure 1). Given the inconvenience that the Tet-off system requires the continuous presence of tetracycline (which has a half-life of about 24 hr in tissue cell culture medium) the Tet-on system has been more extensively optimized, resulting in the development of very tight and efficient vector systems for cDNA expression as used here. Shortly after establishment of RNA interference (RNAi) for gene knockdown in mammalian cells(4), vectors expressing short-hairpin RNAs (shRNAs) were described that function very similar to siRNAs(5-11). However, these shRNA-mediated knockdown approaches have the same limitation as conventional knockout strategies, since stable depletion is not feasible when gene targets are essential for cellular survival. To overcome this limitation, van de Wetering et al.(12) modified the shRNA expression vector pSUPER(5) by inserting a TO in the promoter region, which enabled them to generate stable cell lines with tetracycline-inducible depletion of their target genes of interest. Here, we describe a method to efficiently generate stable human Tet-on cell lines that reliably drive either inducible overexpression or depletion of the gene of interest. Using this method, we have successfully generated Tet-on cell lines which significantly facilitated the analysis of the MST/hMOB/NDR cascade in centrosome(13,14) and apoptosis signaling(15,16). In this report, we describe our vectors of choice, in addition to describing the two consecutive manipulation steps that are necessary to efficiently generate human Tet-on cell lines (Figure 2). Moreover, besides outlining a protocol for the generation of human Tet-on cell lines, we will discuss critical aspects regarding the technical procedures and the characterization of Tet-on cells.
Characterization and differentiation of human embryonic stem cells.
Carpenter, M K; Rosler, E; Rao, M S
2003-01-01
Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.
Continuous human cell lines and method of making same
Stampfer, Martha R.
1989-01-01
Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.
Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Ghasemian-Yadegari, Javad; Khorrami, Arash
2014-07-01
pH-sensitive liposomes are designed to undergo acid-triggered destabilization. In the present study, we prepared polymer-modified, plasma stable, pH-sensitive fusogenic mitoxantrone liposomes to increase efficacy and selectivity on cancer cell lines. Conventional liposomes were prepared using cholesterol and dipalmitoyl-sn-glycero-3-phosphatidylethanolamine. Dioleoylphosphatidylethanolamine and a cholesteryl derivative, poly(monomethylitaconate)-co-poly(N,N-dimethylaminoethyl methacrylate) (PMMI-co-PDMAEMA), were used for the preparation of pH-sensitive fusogenic liposomes. Using polyethylene glycol (PEG)-poly(monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymers instead of cholesterol introduced pH-sensitive and plasma stability properties simultaneously in prepared liposomes. All formulations were prepared by thin film hydration method and subsequently, pH-sensitivity and stability in human serum were evaluated. The ability of pH-sensitive fusogenic liposomes to enhance the mitoxantrone cytotoxicity and selectivity in cancerous cell lines was assessed in vitro compared to normal cell line using human breast cancer cell line (MCF-7), human prostate cancer cell line (PC-3), and human umbilical vein endothelial cells line. Results revealed that both PMMI-co-PDMAEMA and PEG-PMMI-CholC6-based formulations showed pH-sensitive property and were found to rapidly release mitoxantrone under mildly acidic conditions. Nevertheless, only the PEG-PMMI-CholC6-based liposomes preserved pH-sensitivity after incubation in plasma. Mitoxantrone loaded-pH-sensitive fusogenic liposomes exhibited a higher cytotoxicity than the control conventional liposomes on MCF-7 and PC-3 cell lines. On the contrary, both pH-sensitive fusogenic liposomes showed lower cytotoxic effect on human umbilical vein endothelial cell line. Plasma stable, pH-sensitive fusogenic liposomes are promising carriers for enhancing the efficiency and selectivity, besides reduction of the side effects of anticancer agents. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Production of medakafish chimeras from a stable embryonic stem cell line.
Hong, Y; Winkler, C; Schartl, M
1998-03-31
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.
Production of medakafish chimeras from a stable embryonic stem cell line
Hong, Yunhan; Winkler, Christoph; Schartl, Manfred
1998-01-01
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology. PMID:9520425
Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules.
Negi, Seema; Singh, Shashi Kala; Kumar, Sanjay; Kumar, Subodh; Tyagi, Rakesh K
2018-06-19
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules. Copyright © 2018. Published by Elsevier Ltd.
Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff
2015-02-01
Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.
Continuous human cell lines and method of making same
Stampfer, M.R.
1985-07-01
Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.
Adventitious viruses in insect cell lines used for recombinant protein expression.
Geisler, Christoph; Jarvis, Donald L
2018-04-01
Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.
Casales, Erkuden; Aranda, Alejandro; Quetglas, Jose I; Ruiz-Guillen, Marta; Rodriguez-Madoz, Juan R; Prieto, Jesus; Smerdou, Cristian
2010-05-31
Semliki Forest virus (SFV) vectors lead to high protein expression in mammalian cells, but expression is transient due to vector cytopathic effects, inhibition of host cell proteins and RNA-based expression. We have used a noncytopathic SFV mutant (ncSFV) RNA vector to generate stable cell lines expressing two human therapeutic proteins: insulin-like growth factor I (IGF-I) and cardiotrophin-1 (CT-1). Therapeutic genes were fused at the carboxy-terminal end of Puromycin N-acetyl-transferase gene by using as a linker the sequence coding for foot-and-mouth disease virus (FMDV) 2A autoprotease. These cassettes were cloned into the ncSFV vector. Recombinant ncSFV vectors allowed rapid and efficient selection of stable BHK cell lines with puromycin. These cells expressed IGF-I and CT-1 in supernatants at levels reaching 1.4 and 8.6 microg/10(6)cells/24 hours, respectively. Two cell lines generated with each vector were passaged ten times during 30 days, showing constant levels of protein expression. Recombinant proteins expressed at different passages were functional by in vitro signaling assays. Stability at RNA level was unexpectedly high, showing a very low mutation rate in the CT-1 sequence, which did not increase at high passages. CT-1 was efficiently purified from supernatants of ncSFV cell lines, obtaining a yield of approximately 2mg/L/24 hours. These results indicate that the ncSFV vector has a great potential for the production of recombinant proteins in mammalian cells. 2010 Elsevier B.V. All rights reserved.
Lee, Suk Kyoo; Lee, Gyun Min
2003-06-30
Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.
USDA-ARS?s Scientific Manuscript database
In previous research, two alfalfa clonal lines (252, 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared to stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic suga...
Epigenetic Alterations Associated With CCCTC-Binding Factor Deregulation in Prostate Cancer
2011-07-01
HPV16 E6 and/or E7 prostate cell lines. We have established stable cell lines containing inducible CTCF shRNA in pTRIPZ vector in PPC-1, LNCaPs, 293T...and non-tumorigenic HPV16 E6 and/or E7 prostate cell lines. We are in process of conducting CTCF knockdown experiments using transient transfection...which express high levels of endogenous CTCF and in non- tumorigenic HPV16 E6 and/or E7 prostate cell lines. We see efficient knockdown of CTCF
Mironova, L L; Koniushko, O I; Popova, V D
2005-01-01
Long-term experiments have provided conditions for the optimal conditions for reproduction of vaccine strains of poliomyelitis, measles, tick-borne and Japan encephalitis on the continuous cell lines. This makes it possible to solve one of the most urgent problems of modern biotechnology, namely to refuse to use primary cell cultures in vaccinology and to apply a more accessible, safe, and reference biological substrate that are stable cell lines.
Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines
Crameri, Gary; Todd, Shawn; Grimley, Samantha; McEachern, Jennifer A.; Marsh, Glenn A.; Smith, Craig; Tachedjian, Mary; De Jong, Carol; Virtue, Elena R.; Yu, Meng; Bulach, Dieter; Liu, Jun-Ping; Michalski, Wojtek P.; Middleton, Deborah; Field, Hume E.; Wang, Lin-Fa
2009-01-01
Background Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. Methodology/Findings Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. Conclusions/Significance The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study. PMID:20011515
Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J
2012-10-12
Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Targeting TMPRSS2-ERG in Prostate Cancer
2017-11-01
phosphorylated proteins in ERG positive versus negative cell lines following suppression of kinases by shRNA or knockout using CRISPR /Cas9...the cofactor is below detection by silver staining. Future experiments are aimed at generating a stable cell line using CRISPR /Cas9 that has
Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R
2016-01-01
This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2016-01-01
Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756
Genetically fluorescent melanoma bone and organ metastasis models.
Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M
1999-11-01
We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.
Generation of ΔF508-CFTR T84 cell lines by CRISPR/Cas9-mediated genome editing.
Chung, Woo Young; Song, Myungjae; Park, Jinhong; Namkung, Wan; Lee, Jinu; Kim, Hyongbum; Lee, Min Goo; Kim, Joo Young
2016-12-01
To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.
Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V
2017-07-01
An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.
A human beta cell line with drug inducible excision of immortalizing transgenes
Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe
2015-01-01
Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308
Jean, Christian; Fragnet-Trapp, Laetitia; Rémy, Sylvie; Chabanne-Vautherot, Danièle; Montillet, Guillaume; Fuet, Aurélie; Denesvre, Caroline; Pain, Bertrand
2017-01-01
Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies. PMID:28406989
Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.
Riedlinger, J; Grencis, R K; Wakelin, D
1986-01-01
T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438
[Characterization of a human cell line from an anaplastic carcinoma of the thyroid gland].
Gioanni, J; Zanghellini, E; Mazeau, C; Zhang, D; Courdi, A; Farges, M; Lambert, J C; Duplay, H; Schneider, M
1991-11-01
A new cell line derived from a thyroid anaplastic carcinoma, CAL 62, has been established in culture. This line is constituted by highly tumorigenic cells. Their epithelial phenotype is stable in culture. Immunochemical staining for human thyroglobulin is negative. Cytogenetic analysis showed a gain of chromosome 20, the translocation i (14q), and breakpoints of centrometric chromatine. These results are similar to those previously reported by other investigators. CAL 62 radiosensibility has been studied. The survival curve of the in vitro irradiated cells has been adjusted with a linear-quadratic model. This cell line is thus showed to be radioresistant. Cell line CAL 62 constitutes an appropriate model for in vitro studies of thyroid anaplastic carcinoma.
Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E; Adams, Amie B; Greenberg, Phil D; Schmitt, Tom M; Trobridge, Grant D; Kiem, Hans-Peter
2016-08-01
Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.
Stec, Wojciech J; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr
2016-05-31
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII.The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.
Stec, Wojciech J.; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr
2016-01-01
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach. PMID:27004406
ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.
Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang
2017-06-01
Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.
Santoso, D; Thornburg, R
2000-08-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.
Santoso, Djoko; Thornburg, Robert
2000-01-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367
Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.
Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M
2017-11-01
Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.
Poeschla, Eric M.; Looney, David J.
1998-01-01
A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors. PMID:9658135
Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.
Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S
2004-08-01
Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.
2011-01-01
Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to be expressed from multi-cassette vectors in combination with various inserts of interest. PMID:21435248
Giri, Shibashish; Bader, Augustinus
2014-09-01
Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a conditional human fetal hepatocytes cell line with mesenchymal characteristics. Thus immortalization of human fetal hepatocytes cell line by telomerase biology offers a great challenge to examine basic biological mechanisms which are directly related to human and best cell source having unlimited population doubling for bioartificial support without any risk of replicative senescence and pathogenic risks.
Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.
Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C
2010-08-01
Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.
Generation of iPS-derived model cells for analyses of hair shaft differentiation.
Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei
2017-09-01
Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.
Establishment and characterization of outer root sheath (ORS) cell line from Jining grey goat.
Cui, Zhifeng; Hu, Yanxia; Wang, Hui; Zeng, Yongqing; Dong, Bin; Zhu, Houshun; Dong, Zhongdian; Liu, Zhiyuan
2012-03-01
A new line of outer root sheath (ORS) cells was established from hair follicles of Jining grey goat by using a mechanical separation combined with enzyme digestion. Cell morphology is described at different phases. The chromosome analysis of ORS cells, identification of the ORS cells and morphological reversion test were detected at the 4th and 40th passages. The ORS cells were healthy and the growth characteristics were stable with a population doubling time of 52 h. Chromosome analysis showed that >58% of cells were diploid. Test for ORS cell line CK19 expression was positive. This newly established ORS cell line not only lays the foundation for further studying on the growth, regeneration, development law of goat hair follicle but also provides a mirror for the research of human hair in medical field.
Environmentally Induced Gene Silencing in Breast Cancer
2007-07-01
fibrosarcoma cell line (HTD114), and a human breast cancer cell line (MCF7). The MLH1 promoter was only tested in the MCG7 cells. The control TRE-Luc...TRE- Luc MLH1 - Luc step in silencing is quite unstable. Nonetheless, cells that exhibit stable silencing of the HPRT construct can arise in...mechanism (i.e., gene repression). Finally, during the last year we have isolated or acquired functional promoters for the BRCA-1, MLH1 , and E
Yu, Da Young; Lee, Sang Yoon; Lee, Gyun Min
2018-05-01
Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX. © 2018 Wiley Periodicals, Inc.
Szczesny, Roman J.; Kowalska, Katarzyna; Klosowska-Kosicka, Kamila; Chlebowski, Aleksander; Owczarek, Ewelina P.; Warkocki, Zbigniew; Kulinski, Tomasz M.; Adamska, Dorota; Affek, Kamila; Jedroszkowiak, Agata; Kotrys, Anna V.; Tomecki, Rafal; Krawczyk, Pawel S.; Borowski, Lukasz S.; Dziembowski, Andrzej
2018-01-01
Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq. PMID:29590189
Generation of a stable cell line for constitutive miRNA expression.
Lieber, Diana
2013-01-01
miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.
Functions of Tenascin-C and Integrin alpha9beta1 in Mediating Prostate Cancer Bone Metastasis
2017-10-01
additional engineered cell lines for verification and we plan to also generate stable knockout cell lines using CRISPR /Cas 9 gene editing technology...addition to the proposed study, we plan to also produce VCaP cells that are null (knockout) for alpha 9 integrin using CRISPR /Cas9 gene editing protocols...We are experienced with CRISPR -Cas knockdown and have successfully engineered cells previously. We do not expect any particular difficulty in
2014-01-01
Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Christina T., E-mail: teng1@niehs.nih.gov; Beames, Burton; Alex Merrick, B.
Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axismore » that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.« less
2001-08-01
Utilization of green fluorescent protein for the identification of metastasis in an in vivo breast cancer model system. In Preparation. REPRINTS OF ALL...phenotype. Utilizing the SUM-159PT cell line stably transfected with pEGFP-Ci (enhanced green fluorescent protein ) we have been able to successfully...accurately detected. To develop a model with enhanced resolution of micrometastases we created a stable cell line expressing green fluorescent protein
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang
2016-08-01
Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.
Effects of SASH1 on melanoma cell proliferation and apoptosis in vitro.
Lin, Sheyu; Zhang, Junyu; Xu, Jiawei; Wang, Honglian; Sang, Qing; Xing, Qinghe; He, Lin
2012-12-01
The SAM and SH3 domain containing 1 (SASH1) gene was originally identified as a potential tumor suppressor gene in breast cancer, mapped on chromosome 6q24.3. The expression of SASH1 plays a prognostic role in human colon cancer. Its expression is frequently downregulated in several human malignancies. However, the biological function of SASH1 in melanoma cells is yet to be determined. In this study, in order to investigate the tumor suppressive effects of the SASH1 gene, an A-375 stable melanoma cell line was established, overexpressing the SASH1 gene. The stable cell line was examined using proliferation assay, apoptosis assay, cell cycle analysis and real-time PCR. The results indicated that the tumor suppressive activity of SASH1 derived from G2/M arrest in A-375 cells, and that the phosphorylation of Cdc2 or the disruption of cyclin B-Cdc2 binding may be responsible for the G2/M arrest.
Krishnapuram, Rashmi; Dhurandhar, Emily J.; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V.
2013-01-01
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin. PMID:23544159
Krishnapuram, Rashmi; Dhurandhar, Emily J; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V
2013-01-01
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.
Stornaiuolo, Anna; Piovani, Bianca Maria; Bossi, Sergio; Zucchelli, Eleonora; Corna, Stefano; Salvatori, Francesca; Mavilio, Fulvio; Bordignon, Claudio; Rizzardi, Gian Paolo; Bovolenta, Chiara
2013-08-01
Over the last two decades, several attempts to generate packaging cells for lentiviral vectors (LV) have been made. Despite different technologies, no packaging clone is currently employed in clinical trials. We developed a new strategy for LV stable production based on the HEK-293T progenitor cells; the sequential insertion of the viral genes by integrating vectors; the constitutive expression of the viral components; and the RD114-TR envelope pseudotyping. We generated the intermediate clone PK-7 expressing constitutively gag/pol and rev genes and, by adding tat and rd114-tr genes, the stable packaging cell line RD2-MolPack, which can produce LV carrying any transfer vector (TV). Finally, we obtained the RD2-MolPack-Chim3 producer clone by transducing RD2-MolPack cells with the TV expressing the anti-HIV transgene Chim3. Remarkably, RD114-TR pseudovirions have much higher potency when produced by stable compared with transient technology. Most importantly, comparable transduction efficiency in hematopoietic stem cells (HSC) is obtained with 2-logs less physical particles respect to VSV-G pseudovirions produced by transient transfection. Altogether, RD2-MolPack technology should be considered a valid option for large-scale production of LV to be used in gene therapy protocols employing HSC, resulting in the possibility of downsizing the manufacturing scale by about 10-fold in respect to transient technology.
Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.
Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S
2002-06-01
Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.
Shen, Xiao; Dojcinovic, Danijel; Baldi, Lucia; Hacker, David L; Luescher, Immanuel F; Wurm, Florian M
2018-01-01
To investigate the effects of operational process conditions on expression of MHC class II protein from a stable Drosophila S2 cell line. When the Drosophila S2 cells were grown in vented orbitally shaken TubeSpin bioreactor 600 containers, cell growth was improved three-fold and the yield of recombinant major histocompatibility (MHC) class II protein (HLA-DR1 2xHis ) increased four-fold over the levels observed for the same cells cultivated in roller bottles (RB) without vented caps. Culturing in RB with vented caps while increasing the rotation speed from 6 rpm to 18 rpm also improved cell growth five-fold and protein productivity three-fold which is comparable to the levels observed in the orbitally shaken containers. Protein activity was found to be almost identical between the two vessel systems tested. Optimized cell culture conditions and a more efficient vessel type can enhance gas transfer and mixing and lead to substantial improvement of recombinant product yields from S2 cells.
Aranda, Alejandro; Bezunartea, Jaione; Casales, Erkuden; Rodriguez-Madoz, Juan R; Larrea, Esther; Prieto, Jesus; Smerdou, Cristian
2014-12-01
We report a new method to generate high-expressing mammalian cell lines in a quick and efficient way. For that purpose, we developed a master cell line (MCL) containing an inducible alphavirus vector expressing GFP integrated into the genome. In the MCL, recombinant RNA levels increased >4,600-fold after induction, due to a doxycycline-dependent RNA amplification loop. The MCL maintained inducibility and expression during 50 passages, being more efficient for protein expression than a conventional cell line. To generate new cell lines, mutant LoxP sites were inserted into the MCL, allowing transgene and selection gene exchange by Cre-directed recombination, leading to quick generation of inducible cell lines expressing proteins of therapeutic interest, like human cardiotrophin-1 and oncostatin-M at several mg/l/24 h. These proteins contained posttranslational modifications, showed bioactivity, and were efficiently purified. Remarkably, this system allowed production of toxic proteins, like oncostatin-M, since cells able to express it could be grown to the desired amount before induction. These cell lines were easily adapted to growth in suspension, making this methodology very attractive for therapeutic protein production.
The Role of IQGAP1 in Breast Carcinoma
2011-10-01
study! of! the! pathogenesis! of! breast! cancer.! These! include! analysis ! of! intracellular! signaling!by!Western!blotting,! determination!of! cell...proliferation!by! sulforhodamine!B! staining,! fluorescence: activated!cell!sorting!(FACS)! analysis ,!stable!cell!line!generation,!production!of!and...transduction!using!retroviral! and!lentiviral!supernatants,! immunocytochemistry!and!confocal! laser!microscopy,! immunohistochemistry,!and! analysis
Development of a chick embryo heart cell for the cultivation of poliovirus.
PRIER, J E; SULLIVAN, R
1959-04-17
An epithelial-like cell has been developed in line culture that apparently is stable. Although initially isolated cells were incapable of supporting the growth of poliovirus, the cells of the sixth and later passages allowed virus to propagate. The early, nonsusceptible cells were fibroblastic in appearance, in contrast to the epithelial type, poliovirussusceptible, derived cell of later passages.
Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong
2015-01-01
The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.
Cytogenetics of small cell carcinoma of the lung.
Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H
1984-12-01
Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.
Greenberg, Lina; Hatini, Victor
2009-06-01
The Drosophila leg imaginal disc provides a paradigm with which to understand the fundamental developmental mechanisms that generate an intricate appendage structure. Leg formation depends on the subdivision of the leg proximodistal (PD) axis into broad domains by the leg gap genes. The leg gap genes act combinatorially to initiate the expression of the Notch ligands Delta (Dl) and Serrate (Ser) in a segmental pattern. Dl and Ser induce the expression of a set of transcriptional regulators along the segment border, which mediate leg segment growth and joint morphogenesis. Here we show that Lines accumulates in nuclei in the presumptive tarsus and the inter-joints of proximal leg segments and governs the formation of these structures by destabilizing the nuclear protein Bowl. Across the presumptive tarsus, lines modulates the opposing expression landscapes of the leg gap gene dachshund (dac) and the tarsal PD genes, bric-a-brac 2 (bab), apterous (ap) and BarH1 (Bar). In this manner, lines inhibits proximal tarsal fates and promotes medial and distal tarsal fates. Across proximal leg segments, lines antagonizes bowl to promote Dl expression by relief-of-repression. In turn, Dl signals asymmetrically to stabilize Bowl in adjacent distal cells. Bowl, then, acts cell-autonomously, together with one or more redundant factors, to repress Dl expression. Together, lines and bowl act as a binary switch to generate a stable Notch signaling interface between Dl-expressing cells and adjacent distal cell. lines plays analogous roles in developing antennae, which are serially homologous to legs, suggesting evolutionarily conserved roles for lines in ventral appendage formation.
Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C
1994-01-01
We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.
Sunaga, Noriaki; Shames, David S.; Girard, Luc; Peyton, Michael; Larsen, Jill E.; Imai, Hisao; Soh, Junichi; Sato, Mitsuo; Yanagitani, Noriko; Kaira, Kyoichi; Xie, Yang; Gazdar, Adi F.; Mori, Masatomo; Minna, John D.
2011-01-01
Oncogenic KRAS is found in >25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we performed microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines (HBECs) with and without oncogenic KRAS. We found that while the MAPK pathway is significantly down-regulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-EGFR, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment but may offer possibilities of combining anti-KRAS strategies with other targeted drugs. PMID:21306997
Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression
Tonack, Sarah; Patel, Sabina; Jalali, Mehdi; Nedjadi, Taoufik; Jenkins, Rosalind E; Goldring, Christopher; Neoptolemos, John; Costello, Eithne
2011-01-01
AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised. RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable. PMID:21528072
Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma
2009-03-01
Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta
2014-01-01
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951
Cryopreservation of Human Stem Cells for Clinical Application: A Review
Hunt, Charles J.
2011-01-01
Summary Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell. PMID:21566712
Cryopreservation of Human Stem Cells for Clinical Application: A Review.
Hunt, Charles J
2011-01-01
SUMMARY: Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.
Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye
2014-07-01
This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.
Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong
2013-10-01
This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.
Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut
2018-01-18
Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.
Stem cell maintenance by manipulating signaling pathways: past, current and future
Chen, Xi; Ye, Shoudong; Ying, Qi-Long
2015-01-01
Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581
Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki
2011-09-01
Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.
Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J
1992-01-01
Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
Ethanol reduces amyloid aggregation in vitro and prevents toxicity in cell lines.
Ormeño, David; Romero, Fernando; López-Fenner, Julio; Avila, Andres; Martínez-Torres, Ataulfo; Parodi, Jorge
2013-01-01
Alzheimer's disease (AD) alters cognitive functions. A mixture of soluble β-amyloid aggregates (Aβ) are known to act as toxic agents. It has been suggested that moderate alcohol intake reduces the development of neurodegenerative diseases, but the molecular mechanisms leading to this type of prevention have been elusive. We show the ethanol effect in the generation of complex Aβ in vitro and the impact on the viability of two cell lines. The effect of ethanol on the kinetics of β-amyloid aggregation in vitro was assessed by turbimetry. Soluble- and ethanol-treated β-amyloid were added to the cell lines HEK and PC-12 to compare their effects on metabolic activity using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In addition, we used molecular modeling to assess the impact of exposure to ethanol on the structure of β-amyloid. Exposure to soluble β-amyloid was toxic to both cell lines; however, exposing the cells to β-amyloid aggregated in 10 mmol ethanol prevented the effect. In silico modeling suggested that ethanol alters the dynamics for assembling Aβ by disrupting a critical salt bridge between residues Asp 23 and Lys 28, required for amyloid dimerization. Thus, ethanol prevented the formation of complex short (∼100 nm) Aβ, which are related to higher cell toxicity. Ethanol prevents the formation of stable Aβ dimers in vitro, thus protecting the cells maintained in culture. Accordingly, in silico modelling predicts that soluble β-amyloid molecules do not form stable multimers when exposed to ethanol. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Ara A.; Thomson, Scott; Edin, Matthew L.
Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stablemore » commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.« less
Liang, Yideng; Jiang, Haibing; Ratovitski, Tamara; Jie, Chunfa; Nakamura, Masayuki; Hirschhorn, Ricky R.; Wang, Xiaofang; Smith, Wanli W.; Hai, Tsonwin; Poirier, Michelle A.; Ross, Christopher A.
2009-01-01
Huntington's disease is a progressive neurodegenerative disorder caused by a polyglutamine expansion near the N-terminus of huntingtin. The mechanisms of polyglutamine neurotoxicity, and cellular responses are not fully understood. We have studied gene expression profiles by cDNA array using an inducible PC12 cell model expressing an N-terminal huntingtin fragment with expanded polyglutamine (Htt-N63-148Q). Mutant huntingtin Htt-N63 induced cell death and increased the mRNA and protein levels of activating transcription factor 3 (ATF3). Mutant Htt-N63 also significantly enhanced ATF3 transcriptional activity by a promoter-based reporter assay. Overexpression of ATF3 protects against mutant Htt-N63 toxicity and knocking down ATF3 expression reduced Htt-N63 toxicity in a stable PC12 cell line. These results indicated that ATF3 plays a critical role in toxicity induced by mutant Htt-N63 and may lead to a useful therapeutic target. PMID:19559011
Savage, Emilia Elizabeth; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick Michael; Furness, Sebastian George Barton
2013-04-01
Transient protein-protein interactions form the basis of signal transduction pathways in addition to many other biological processes. One tool for studying these interactions is bioluminescence resonance energy transfer (BRET). This technique has been widely applied to study signaling pathways, in particular those initiated by G protein-coupled receptors (GPCRs). These assays are routinely performed using transient transfection, a technique that has limitations in terms of assay cost and variability, overexpression of interacting proteins, vector uptake limited to cycling cells, and non-homogenous expression across cells within the assay. To address these issues, we developed bicistronic vectors for use with Life Technology's Gateway and flpIN systems. These vectors provide a means to generate isogenic cell lines for comparison of interacting proteins. They have the advantage of stable, single copy, isogenic, homogeneous expression with low inter-assay variation. We demonstrate their utility by assessing ligand-induced interactions between GPCRs and arrestin proteins.
Soni, Pankaj; Pradhan, Pravata K; Swaminathan, T R; Sood, Neeraj
2018-06-01
A cell line, designated as PHF, has been established from caudal fin of Pangasianodon hypophthalmus. The cell line was developed using explant method and PHF cells have been subcultured for more than 72 passages over a period of 14 months. The cells were able to grow at temperatures between 24 and 32° C, with an optimum temperature of 28° C. The growth rate of PHF cells was directly proportional to FBS concentration, with optimum growth observed at 20% FBS concentration. On the basis of immunophenotyping assay, PHF cells were confirmed to be of epithelial type. Karyotyping of PHF cells revealed diploid number of chromosomes (2n = 60) at 39th and 65th passage, which indicated that the developed cell line is chromosomally stable. The origin of the cell line was confirmed by amplification and sequencing of cytochrome oxidase c subunit I and 16S rRNA genes. The cell line was tested for Mycoplasma contamination and found to be negative. The cells were successfully transfected with GFP reporter gene suggesting that the developed cell line could be utilized for gene expression studies in future. The cell line could be successfully employed for evaluating the cytotoxicity of heavy metals, namely mercuric chloride and sodium arsenite suggesting that PHF cell line can be potential surrogate for whole fish for studying the cytotoxicity of water soluble compounds. The result of virus susceptibility to tilapia lake virus (TiLV) revealed that PHF cells were refractory to TiLV virus. The newly established cell line would be a useful tool for investigating disease outbreaks particularly of viral etiology, transgenic as well as cytotoxicity studies. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dyroff, Christoph; Fried, Alan; Richter, Dirk; Walega, James G.; Zahniser, Mark S.; McManus, J. Barry
2005-01-01
The present paper discusses a new, more stable, astigmatic Herriott cell employing carbon fiber stabilizing rods. Laboratory tests using a near-IR absorption feature of CO at 1564.168-nm revealed a factor of two improvement in measurement stability compared with the present commercial design when the sampling pressure was changed by +/-2 Torr around 50 Torr. This new cell should significantly enhance our efforts to measure trace gases employing pathlengths of 100 to 200-meters on airborne platforms with minimum detectable line center absorbances of less than 10(exp -6).
A Multi-Omics Analysis of Recombinant Protein Production in Hek293 Cells
Dietmair, Stefanie; Hodson, Mark P.; Quek, Lake-Ee; Timmins, Nicholas E.; Gray, Peter; Nielsen, Lars K.
2012-01-01
Hek293 cells are the predominant hosts for transient expression of recombinant proteins and are used for stable expression of proteins where post-translational modifications performed by CHO cells are inadequate. Nevertheless, there is little information available on the key cellular features underpinning recombinant protein production in Hek293 cells. To improve our understanding of recombinant protein production in Hek293 cells and identify targets for the engineering of an improved host cell line, we have compared a stable, recombinant protein producing Hek293 cell line and its parental cell line using a combination of transcriptomics, metabolomics and fluxomics. Producer cultures consumed less glucose than non-producer cultures while achieving the same growth rate, despite the additional burden of recombinant protein production. Surprisingly, there was no indication that producer cultures compensated for the reduction in glycolytic energy by increasing the efficiency of glucose utilization or increasing glutamine consumption. In contrast, glutamine consumption was lower and the majority of genes involved in oxidative phosphorylation were downregulated in producer cultures. We observed an overall downregulation of a large number of genes associated with broad cellular functions (e.g., cell growth and proliferation) in producer cultures, and therefore speculate that a broad adaptation of the cellular network freed up resources for recombinant protein production while maintaining the same growth rate. Increased abundance of genes associated with endoplasmic reticulum stress indicated a possible bottleneck at the point of protein folding and assembly. PMID:22937046
Differences in the incorporation of bromodeoxyuridine by human lymphoblastoid cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, E.E.; Strauss, B.
1975-08-01
Long term human lymphoblastoid lines differ in their ability to grow in medium containing bromodeoxyuridine (BrdU) and to incorporate analog into their DNA. Eight Burkitts' lymphoma cell lines divided at least twice in BrdU-containing medium and made DNA in which over 90 percent of the thymidine residues were substituted with analog in both strands. Three infectious mononucleosis-derived lines and 24 lines transformed in vitro were inhibited by BrdU after one cell division and made only hybrid DNA in which one strand was substituted with analog. One out of eight normal individuals from whom long term lines were prepared gave cellmore » lines which divided at least twice in BrdU and gave DNA in which both strands were substituted with analog. It would appear that intrinsic cellular factors regulate the response to BrdU and that Burkitt's tumor lines are characterized by their ability to make stable doubly substituted DNA containing a high proportion of halogenated analog.« less
Higaki, Shogo; Shimada, Manami; Koyama, Yoshie; Fujioka, Yasuhiro; Sakai, Noriyoshi; Takada, Tatsuyuki
2015-09-01
Establishing a cell line from endemic species facilitates the cell biological research of these species in the laboratory. In this study, an epithelium-like cell line RME1 was established from the blastula-stage embryos of the critically endangered cyprinid Honmoroko Gnathopogon caerulescens, which is endemic to ancient Lake Biwa in Japan. To the best of our knowledge, this is the first embryonic cell line from an endangered fish species. This cell line is well adapted to grow at 28°C in the culture medium, which was successfully used for establishing testicular and ovarian cell lines of G. caerulescens, and has displayed stable growth over 60 passages since its initiation in June 2011. Although RME1 did not express the genes detected in blastula-stage embryos, such as oct4, sox2, nanog, and klf4, it showed a high euploidy rate (2n = 50; 67.2%) with normal diploid karyotype morphology, suggesting that RME1 retains the genomic organization of G. caerulescens and can prove to be a useful tool to investigate the unique properties of endangered endemic fishes at cellular level.
Hamid, Sharifah; Lim, Kue Peng; Zain, Rosnah Binti; Ismail, Siti Mazlipah; Lau, Shin Hin; Mustafa, Wan Mahadzir Wan; Abraham, M Thomas; Nam, Noor Akmar; Teo, Soo-Hwang; Cheong, Sok Ching
2007-03-01
We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.
Direct regulation of androgen receptor-associated protein 70 by thyroid hormone and its receptors.
Tai, Pei-Ju; Huang, Ya-Hui; Shih, Chung-Hsuan; Chen, Ruey-Nan; Chen, Chi-De; Chen, Wei-Jan; Wang, Chia-Siu; Lin, Kwang-Huei
2007-07-01
Thyroid hormone (T3) regulates multiple physiological processes during development, growth, differentiation, and metabolism. Most T3 actions are mediated via thyroid hormone receptors (TRs) that are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. The effects of T3 treatment on target gene regulation was previously examined in TRalpha1-overexpressing hepatoma cell lines (HepG2-TRalpha1). Androgen receptor (AR)-associated protein 70 (ARA70) was one gene found to be up-regulated by T3. The ARA70 is a ligand-dependent coactivator for the AR and was significantly increased by 4- to 5-fold after T3 treatment by Northern blot analyses in the HepG2-TRalpha1 stable cell line. T3 induced a 1- to 2-fold increase in the HepG2-TRbeta1 stable cell line. Both stable cell lines attained the highest fold expression after 24 h treatment with 10 nM T3. The ARA70 protein was increased up to 1.9-fold after T3 treatment in HepG2-TRalpha1 cells. Similar findings were obtained in thyroidectomized rats after T3 application. Cycloheximide treatment did not suppress induction of ARA70 transcription by T3, suggesting that this regulation is direct. A series of deletion mutants of ARA70 promoter fragments in pGL2 plasmid were generated to localize the thyroid hormone response element (TRE). The DNA fragments (-234/-190 or +56/+119) gave 1.55- or 2-fold enhanced promoter activity by T3. Thus, two TRE sites exist in the upstream-regulatory region of ARA70. The TR-TRE interaction was further confirmed with EMSAs. Additionally, ARA70 could interfere with TR/TRE complex formation. Therefore, the data indicated that ARA70 suppresses T3 signaling in a TRE-dependent manner. These experimental results suggest that T3 directly up-regulates ARA70 gene expression. Subsequently, ARA70 negatively regulates T3 signaling.
Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y.
Constantinescu, R; Constantinescu, A T; Reichmann, H; Janetzky, B
2007-01-01
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in industrialized countries. Present cell culture models for PD rely on either primary cells or immortal cell lines, neither of which allow for long-term experiments on a constant population, a crucial requisite for a realistic model of slowly progressing neurodegenerative diseases. We differentiated SH-SY5Y human dopaminergic neuroblastoma cells to a neuronal-like state in a perfusion culture system using a combination of retinoic acid and mitotic inhibitors. The cells could be cultivated for two months without the need for passage. We show, by various means, that the differentiated cells exhibit, at the molecular level, many neuronal properties not characteristic to the starting line. This approach opens the possibility to develop chronic models, in which the effect of perturbations and putative counteracting strategies can be monitored over long periods of time in a quasi-stable cell population.
Shemesh, J; Rotem-Yehudar, R; Ehrlich, R
1991-01-01
Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404
Qiao, Junhua; Oumard, André; Wegloehner, Wolfgang; Bode, Juergen
2009-07-24
Site-specific recombinases have revolutionized the systematic generation of transgenic cell lines and embryonic stem cells/animals and will ultimately also reveal their potential in the genetic modification of induced pluripotent stem cells. Introduced in 1994, our Flp recombinase-mediated cassette exchange strategy permits the exchange of a target cassette for a cassette with the gene of interest, introduced as a part of an exchange vector. The process is "clean" in the sense that it does not co-introduce prokaryotic vector parts; neither does it leave behind a selection marker. Stringent selection principles provide master cell lines permitting subsequent recombinase-mediated cassette exchange cycles in the absence of a drug selection and with a considerable efficiency (approximately 10%). Exemplified by Chinese hamster ovary cells, the strategy proves to be successful even for cell lines with an unstable genotype.
A multi-landing pad DNA integration platform for mammalian cell engineering
Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron
2018-01-01
Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873
Endogenous protein "barcode" for data validation and normalization in quantitative MS analysis.
Lee, Wooram; Lazar, Iulia M
2014-07-01
Quantitative proteomic experiments with mass spectrometry detection are typically conducted by using stable isotope labeling and label-free quantitation approaches. Proteins with housekeeping functions and stable expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently used as endogenous controls. Recent studies have shown that the expression level of such common housekeeping proteins is, in fact, dependent on various factors such as cell type, cell cycle, or disease status and can change in response to a biochemical stimulation. The interference of such phenomena can, therefore, substantially compromise their use for data validation, alter the interpretation of results, and lead to erroneous conclusions. In this work, we advance the concept of a protein "barcode" for data normalization and validation in quantitative proteomic experiments. The barcode comprises a novel set of proteins that was generated from cell cycle experiments performed with MCF7, an estrogen receptor positive breast cancer cell line, and MCF10A, a nontumorigenic immortalized breast cell line. The protein set was selected from a list of ~3700 proteins identified in different cellular subfractions and cell cycle stages of MCF7/MCF10A cells, based on the stability of spectral count data generated with an LTQ ion trap mass spectrometer. A total of 11 proteins qualified as endogenous standards for the nuclear and 62 for the cytoplasmic barcode, respectively. The validation of the protein sets was performed with a complementary SKBR3/Her2+ cell line.
Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.
Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J
1990-06-01
The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.
Stamps, A C; Davies, S C; Burman, J; O'Hare, M J
1994-06-15
A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.
NASA Astrophysics Data System (ADS)
Zhao, Y. L.; Piao, C. Q.; Hei, T. K.
Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.
Zhu, Jie; Miao, Qiuhong; Tan, Yonggui; Guo, Huimin; Li, Chuanfeng; Chen, Zongyan; Liu, Guangqing
2016-11-01
Rabbit hemorrhagic disease virus (RHDV) is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, which limits the study of its pathogenesis. To bypass this obstacle, we established a cell line, RK13-VPg, stably expressing the VPg gene with a lentivirus packaging system in this study. In addition, the recently constructed RHDV replicon in our laboratory provided an appropriate model for studying the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon and RK13-VPg cell line, we further demonstrated that the presence of VPg protein is essential for efficient translation of an RHDV replicon. Therefore, the RK13-VPg cell line is a powerful tool for studying the replication and translation mechanisms of RHDV. Copyright © 2016 Elsevier B.V. All rights reserved.
An in vitro monocyte culture method and establishment of a human monocytic cell line (K63).
Kadoi, Katsuyuki
2011-01-01
A novel method of monocyte culture in vitro was developed. The fraction of monocytes was obtained by density centrifugation of heparinised human venous blood samples. Monocytes were suspended in a modified Rosewell Park Memorial Institute medium (RPMI)-1640 (mRPMI) supplemented with 10% non-inactivated autologous serum added to the feeder cells. An avian cell line was used for feeder cells. Only those monocytes that settled on feeder cells grew rapidly at 37°C-38°C into a formation of clumped masses within two to three days. The cell mass was harvested and subcultures were made without feeder cells. A stable cell line (K63) was established from subcultures using a limited dilution method and cell cloning in microplates. K63 cells were adapted for later growth in the mRPMI medium supplemented with 10% foetal calf serum. The cells were well maintained at over 50th passage levels. This method proved to be applicable for monocyte cultures of animals as well.
Establishment of optimized MDCK cell lines for reliable efflux transport studies.
Gartzke, Dominik; Fricker, Gert
2014-04-01
Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.
1996-01-01
Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135
Li, Yasha; Liu, Mengnan; Cui, Jiejie; Yang, Ke; Zhao, Li; Gong, Mengjia; Wang, Yi; He, Yun; He, Tongchuan; Bi, Yang
2018-05-01
Reliable animal models are required for the in vivo study of the molecular mechanisms and effects of chemotherapeutic drugs in hepatocarcinoma. In vivo tracing techniques based on firefly luciferase (FLuc) may optimize the non-invasive monitoring of experimental animals. The present study established a murine Hepa1-6-FLuc cell line that stably expressed a retrovirus-delivered FLuc protein gene. The cell morphology, proliferation, migration and invasion ability of Hepa1-6-FLuc cells were the same as that of the Hepa1-6 cells, and thus is suitable to replace Hepa1-6 cells in the construction of hepatocarcinoma animal models. No differences in subcutaneous tumor mass and its pathomorphology from implanted Hepa1-6-FLuc cells were observed compared with Hepa1-6 control tumors. Bioluminescence imaging indicated that the Luc signal of the Hepa1-6-FLuc cells was consistently strengthened with increases in tumor mass; however, the Luc signal of Hepa1-6-AdFLuc became weaker and eventually disappeared during tumor development. Therefore, compared with the transient expression by adenovirus, stable expression of the FLuc gene in Hepa1-6 cells may better reflect cell proliferation and survival in vivo , and provide a reliable source for the establishment of hepatocarcinoma models.
Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping
2017-01-01
Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522
Ni, Peiling; Zhang, Qian; Chen, Haixia; Chen, Lingyi
2014-01-01
Removing an antibiotic resistance gene allows the same antibiotic to be re-used in the next round of genetic manipulation. Here we applied the CRISPR/Cas system to disrupt the puromycin resistance gene in an engineered mouse embryonic stem cell line and then re-used puromycin selection in the resulting cells to establish stable reporter cell lines. With the CRISPR/Cas system, pre-engineered sequences, such as loxP or FRT, are not required. Thus, this technique can be used to disrupt antibiotic resistance genes that cannot be removed by the Cre-loxP and Flp-FRT systems.
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.
Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico
2014-09-03
The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.
Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro
2018-02-01
Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.
2012-01-01
Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies. PMID:22928481
Zhang, Lin; Inniss, Mara C; Han, Shu; Moffat, Mark; Jones, Heather; Zhang, Baohong; Cox, Wendy L; Rance, James R; Young, Robert J
2015-01-01
To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in-market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase-mediated cassette exchange (RMCE) system to build a site-specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT-flanked mAb expression cassette, we generated a clonal cell line with good productivity, long-term production stability, and low mAb gene-copy number indicating the vector was located in a 'hot-spot.' A SSI host cell line was made by removing the mAb genes from the 'hot-spot' by RMCE, creating a 'landing pad' containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP-based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened 'time-to-clinic' for therapeutic mAbs. © 2015 American Institute of Chemical Engineers.
Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith
2015-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439
Fraga, Ana M; Sukoyan, Marina; Rajan, Prithi; Braga, Daniela Paes de Almeida Ferreira; Iaconelli, Assumpto; Franco, José Gonçalves; Borges, Edson; Pereira, Lygia V
2011-01-01
Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-1, in commercial defined medium. In contrast to the other hES cell lines established in defined medium, BR-1 maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge, this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-1 and another 22 hES cell lines established elsewhere with those of the Brazilian population, finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.
HDM2 promotes WIP1-mediated medulloblastoma growth
Buss, Meghan C.; Read, Tracy-Ann; Schniederjan, Matthew J.; Gandhi, Khanjan; Castellino, Robert C.
2012-01-01
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma. PMID:22379189
Stelcer, Ewelina; Kulcenty, Katarzyna; Rucinski, Marcin; Jopek, Karol; Trzeciak, Tomasz; Richter, Magdalena; Wroblewska, Joanna P.; Suchorska, Wiktoria M.
2018-01-01
Human induced pluripotent stem cells (hiPSCs) constitute an important breakthrough in regenerative medicine, particularly in orthopedics, where more effective treatments are urgently needed. Despite the promise of hiPSCs only limited data on in vitro chondrogenic differentiation of hiPSCs are available. Therefore, we compared the gene expression profile of pluripotent genes in hiPSC-derived chondrocytes (ChiPS) to that of an hiPSC cell line created by our group (GPCCi001-A). The results are shown on heatmaps and plots and confirmed by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) analysis. Unlike the ChiPS, our GPCCi001-A cells maintained their pluripotency state during long-term culture, thus demonstrating that this cell line was comprised of stable, fully pluripotent hiPSCs. Moreover, these chondrocyte-like cells not only presented features that are characteristic of chondrocytes, but they also lost their pluripotency, which is an important advantage in favor of using this cell line in future clinical studies. PMID:29439516
Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo
2016-05-01
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Labenski, Verena; Suerth, Julia D; Barczak, Elke; Heckl, Dirk; Levy, Camille; Bernadin, Ornellie; Charpentier, Emmanuelle; Williams, David A; Fehse, Boris; Verhoeyen, Els; Schambach, Axel
2016-08-01
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Warburg and Crabtree Effects in Premalignant Barrett's Esophagus Cell Lines with Active Mitochondria
Suchorolski, Martin T.; Paulson, Thomas G.; Sanchez, Carissa A.; Hockenbery, David; Reid, Brian J.
2013-01-01
Background Increased glycolysis is a hallmark of cancer metabolism, yet relatively little is known about this phenotype at premalignant stages of progression. Periodic ischemia occurs in the premalignant condition Barrett's esophagus (BE) due to tissue damage from chronic acid-bile reflux and may select for early adaptations to hypoxia, including upregulation of glycolysis. Methodology/Principal Findings We compared rates of glycolysis and oxidative phosphorylation in four cell lines derived from patients with BE (CP-A, CP-B, CP-C and CP-D) in response to metabolic inhibitors and changes in glucose concentration. We report that cell lines derived from patients with more advanced genetically unstable BE have up to two-fold higher glycolysis compared to a cell line derived from a patient with early genetically stable BE; however, all cell lines preserve active mitochondria. In response to the glycolytic inhibitor 2-deoxyglucose, the most glycolytic cell lines (CP-C and CP-D) had the greatest suppression of extra-cellular acidification, but were able to compensate with upregulation of oxidative phosphorylation. In addition, these cell lines showed the lowest compensatory increases in glycolysis in response to mitochondrial uncoupling by 2,4-dinitrophenol. Finally, these cell lines also upregulated their oxidative phosphorylation in response to glucose via the Crabtree effect, and demonstrate a greater range of modulation of oxygen consumption. Conclusions/Significance Our findings suggest that cells from premalignant Barrett's esophagus tissue may adapt to an ever-changing selective microenvironment through changes in energy metabolic pathways typically associated with cancer cells. PMID:23460817
Muses, Sofia; Morgan, Jennifer E.; Wells, Dominic J.
2011-01-01
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease. PMID:21935475
Muses, Sofia; Morgan, Jennifer E; Wells, Dominic J
2011-01-01
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2K(b)-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.
Ghanbarzadeh, Saeed; Khorrami, Arash; Pourmoazzen, Zhaleh; Arami, Sanam
2015-05-01
The purpose of the present investigation was to prepare a plasma stable, pH-sensitive niosomal formulation to enhance Sirolimus efficacy and selectivity. pH-sensitive niosomal formulations bearing PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymers and cholesteryl hemisuccinate (CHEMS) were prepared by a modified ethanol injection method and characterized with regard to pH-responsiveness and stability in human serum. The ability of pH-sensitive niosomes to enhance the Sirolimus cytotoxicity was evaluated in vitro using human erythromyeloblastoid leukemia cell line (K562) and compared with cytotoxicity effect on human umbilical vein endothelial cells (HUVEC). This study showed that both formulations can be rendered pH-sensitive property and were found to rapidly release their contents under mildly acidic conditions. However, the CHEMS-based niosomes lost their pH-sensitivity after incubation in plasma, whereas, PEG-PMMI-CholC6 niosomes preserved their ability to respond to pH change. Sirolimus encapsulated in pH-sensitive niosomes exhibited a higher cytotoxicity than the control conventional formulation on K562 cell line. On the other hand, both pH-sensitive niosomes showed lower antiproliferative effect on HUVEC cells. Plasma stable, pH-sensitive PEG-PMMI-CholC6-based niosomes can improve the in vitro efficiency and also reduce the side effects of Sirolimus.
A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects.
Jeffries, Clark D; Johnson, Charles R; Zhou, Tong; Simpson, Dennis A; Kaufmann, William K
2012-01-01
This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.
WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway
2016-10-01
661, that disrupt the assembly of assembly of a specific signaling complex consisting of G, PI3K and AKT2, and blocked GPCR-stimulated PI3K/AKT...AKT2 with a higher efficacy than AKT1, and WDR26 also directly binds PI3K (Fig. 2). Second, we generated stable MDA-MB231 cell lines expressing...promotes Gβf signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and
Wajih, Nadeem; Owen, John; Wallin, Reidar
2008-01-01
Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.
Different Forms of Vanadate on Sugar Transport in Insulin Target and Nontarget Cells
2002-01-01
The effects of several vanadates (ie, orthovanadate, pervanadate, and two stable peroxovanadium compounds) on basal and insulin-stimulated 2-DG transport in insulin target and nontarget cell lines are reported, herein. In nontarget cells, exposure to vanadates (5 × 10−6 to 10−4 mol/L) resulted in 2-DG transport stimulatory responses similar to those observed in 2-DG transport post exposure to 667 nmol/L insulin alone, or insulin in combination with vanadates. In 3T3-L1 adipocytes and L6 myotubes, exposure to a vanadate compound or 67 nmol/L insulin, stimulated 2-DG transport dramatically. Again, this effect on stimulated transport was similar to 2-DG transport post-treatment with the effective vanadates in combination with insulin. While pervanadate or stable peroxovanadates stimulated 2-DG transport at 10−5 to 10−6 mol/L, orthovanadate up to 10−4 mol/L was not effective in stimulating 2-DG transport in any of the cell lines tested. The data indicate that the various peroxovanadates are clearly superior insulin mimetics while a more limited insulin mimesis is observed with orthovanadate over a wide variety of cell types. PMID:12488596
Different Forms of Vanadate on Sugar Transport in Insulin Target and Nontarget Cells.
Germinario, Ralph J.; Colby-Germinario, Susan P.; Posner, Barry I.; Nahm, K.
2002-01-01
The effects of several vanadates (ie, orthovanadate, pervanadate, and two stable peroxovanadium compounds) on basal and insulin-stimulated 2-DG transport in insulin target and nontarget cell lines are reported, herein. In nontarget cells, exposure to vanadates (5 x 10(-6) to 10(-4) mol/L) resulted in 2-DG transport stimulatory responses similar to those observed in 2-DG transport post exposure to 667 nmol/L insulin alone, or insulin in combination with vanadates. In 3T3-L1 adipocytes and L6 myotubes, exposure to a vanadate compound or 67 nmol/L insulin, stimulated 2-DG transport dramatically. Again, this effect on stimulated transport was similar to 2-DG transport post-treatment with the effective vanadates in combination with insulin. While pervanadate or stable peroxovanadates stimulated 2-DG transport at 10(-5) to 10(-6) mol/L, orthovanadate up to 10(-4) mol/L was not effective in stimulating 2-DG transport in any of the cell lines tested. The data indicate that the various peroxovanadates are clearly superior insulin mimetics while a more limited insulin mimesis is observed with orthovanadate over a wide variety of cell types.
Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase
Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee
2012-01-01
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360
Neurotensin is metabolized by endogenous proteases in prostate cancer cell lines.
Moody, T W; Mayr, C A; Gillespie, T J; Davis, T P
1998-01-01
The formation and processing of neurotensin (NT) by three prostate cancer cell lines was investigated. Neurotensin (NT) immunoreactivity was detected in conditioned media and extracts of LNCaP cells. Using HPLC techniques, the immunoreactivity extracted from LNCaP cells coeluted with synthetic NT standard. Metalloendopeptidase 3.4.24.15 activity was detected in PC-3, DU-145 and LNCaP cells, whereas high levels of neutral endopeptidase 3.4.24.1 1 activity was detected only in LNCaP cells. NT was relatively stable when incubated with PC-3 or D-145 cells but was rapidly degraded by LNCaP cells to NT1-11 and NT1-10. Phosphoramidon inhibited the metabolism of NT by LNCaP cells. These data suggest that NT is present in and metabolized by LNCaP cellular enzymes.
NANOG priming before full reprogramming may generate germ cell tumours.
Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A
2011-11-09
Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.
Epigenetic Alterations Associated with CCCTC-Binding Factor Deregulation in Prostate Cancer
2012-07-01
HPV16 E6 and/or E7 prostate cell lines. We have had to reestablish stable cell lines containing inducible multiple CTCF shRNA in pTRIPZ vector in PPC...1, LNCaPs, 293T and non‐tumorigenic HPV16 E6 5 and/or E7 prostate cell lines. We have had to rederive these due to leakage from the promoter...empty pTRIPZ vector and control scrambled shRNA. f. To test the tumorigenic ability of CTCF shRNA infected non‐tumorigenic E6 / E7 cells using colony
Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong
2017-11-01
Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
El-Maarri, Osman; Singer, Heike; Diaz-Lacava, Amalia; Nüsgen, Nicole; Niemann, Barbara; Watzka, Matthias; Reinsberg, Jochen; van der Ven, Hans; Wienker, Thomas; Stoffel-Wagner, Birgit; Schwaab, Rainer; Oldenburg, Johannes
2011-01-01
Previously, we reported on inter-individual and gender specific variations of LINE-1 methylation in healthy individuals. In this study, we investigated whether this variability could be influenced by age or sex hormones in humans. To this end, we studied LINE-1 methylation in vivo in blood-derived DNA from individuals aged 18 to 64 years and from young healthy females at various hormone levels during the menstrual cycle. Our results show that no significant association with age was observed. However, the previously reported increase of LINE-1 methylation in males was reconfirmed. In females, although no correlation between LINE-1 or Alu methylation and hormone levels was observed, a significant stable individual specific level of methylation was noted. In vitro results largely confirmed these findings, as neither estrogen nor dihydrotestosterone affected LINE-1 or Alu methylation in Hek293T, HUVEC, or MDA-kb2 cell lines. In contrast, a decrease in methylation was observed in estrogen-treated T47-Kbluc cell lines strongly expressing estrogen receptor. The very low expression of estrogen receptor in blood cells could explain the observed insensitivity of methylation at LINE-1 to natural hormonal variations in females. In conclusion, neither natural cycle of hormones nor age has a detectable effect on the LINE-1 methylation in peripheral blood cells, while gender remains an important factor. PMID:21311577
Peptidomic analysis of human cell lines
Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.
2011-01-01
Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522
Haemmerli, G; Sträuli, P
1981-05-15
The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.
[Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].
Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang
2013-08-01
This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.
Use of planar array electrophysiology for the development of robust ion channel cell lines.
Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J
2009-01-01
The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.
Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir; Ahmadvand, Davoud
2011-11-01
The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for highmore » and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.« less
Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase.
Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J
2011-11-01
The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Wu, Fei; Lin, Yun; Cui, Peng; Li, Hongyun; Zhang, Lechao; Sun, Zeqiang; Huang, Shengliang; Li, Shun; Huang, Shiming; Zhao, Qingli; Liu, Qingyong
2018-06-01
At least to date, no effective treatment for advanced castration-resistant prostate cancer (CRPC) has been established. Recent studies indicated that cell division cycle 20 homolog (Cdc20) overexpression is associated with poor prognosis in patients with castration-resistant prostate cancer. However, the mechanism of Cdc20 in the development of docetaxel resistance in CRPC remains elusive. In this study, the transcription of Cdc20 was confirmed in three independent CRPC cell lines derived from different tissues, including LNCaP, PC3, and DU145. Docetaxel resistant (DR) cell lines were generated within the background of DU145 and PC3. The protein levels of Cdc20 and the biological phenotype were detected in both wild-type and DR cell lines. To further explore the mechanism of Cdc20 overexpression, stable cell lines with Cdc20 or Bcl-2 interacting mediator of cell death (Bim) deprivation were generated and examined for biological parameters. In addition, a specific Cdc20 inhibitor was used in DR cell lines to explore the potential solution for docetaxel resistant CRPC. Here, we identified Cdc20 is overexpressed in docetaxel resistant CRPC cell lines, including LNCaP, PC3, and DU145. We also reported that DR cell lines, which mimic the recurrent prostate cancer cells after docetaxel treatment, have higher levels of Cdc20 protein compared with the CRPC cell lines. Interestingly, the protein levels of Bim, an E3 ligase substrate of Cdc20, were decreased in DR cell lines compared with the wild-type, while the mRNA levels were similar. More importantly, in DR cell lines, the biological phenotype induced by Cdc20 deletion could be significantly reversed by the additional knockdown of Bim. As a result, docetaxel resistant prostate cancer cells treated with the pharmacological Cdc20 inhibitor became sensitive to docetaxel treatment. In conclusion, our data collectively demonstrated that Cdc20 overexpression facilitates the docetaxel resistant of the CRPC cell lines in a Bim-dependent manner. Furthermore, additionally targeting Cdc20 might be a promising solution for the treatment of the CRPC with docetaxel resistance.
Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells.
Zheng, Liming; Zhai, Yuanxin; Li, Na; Wu, Chongyang; Zhu, Haijing; Wei, Zhuying; Bai, Chunling; Li, Guangpeng; Hua, Jinlian
2016-04-01
Tet (ten-eleven translocation) protein 1 is a key enzyme for DNA demethylation, which modulates DNA methylation and gene transcription. DNA methylation and histone methylation are critical elements in self-renewal of male germline stem cells (mGSCs) and spermatogenesis. mGSCs are the only type of adult stem cells able to achieve intergenerational transfer of genetic information, which is accomplished through differentiated sperm cells. However, numerous epigenetic obstacles including incomplete DNA methylation and histone methylation dynamics make establishment of stable livestock mGSC cell lines difficult. The present study was conducted to detect effects of DNA methylation and histone methylation dynamics in dairy goat mGSCs self-renewal and proliferation, through overexpression of Tet1. An immortalized dairy goat mGSC cell line bearing mouse Tet1 (mTet1) gene was screened and characteristics of the cells were assayed by quantitative real-time PCR (qRT-PCR), immunofluorescence assay, western blotting, fluorescence activated cell sorting (FACS) and use of the cell counting kit (CCK8) assay. The screened immortalized dairy goat mGSC cell line bearing mTet1, called mGSC-mTet1 cells was treated with optimal doxycycline (Dox) concentration to maintain Tet1 gene expression. mGSC-mTet1 cells proliferated at a significantly greater rate than wild-type mGSCs, and mGSCs-specific markers such as proliferating cell nuclear antigen (PCNA), cyclinD1 (CCND1), GDNF family receptor alpha 1 (Gfra1) and endogenic Tet1, Tet2 were upregulated. The cells exhibited not only reduction in level of histone methylation but also changes in nuclear location of that methylation marker. While H3K9me3 was uniformly distributed throughout the nucleus of mGSC-mTet1 cells, it was present in only particular locations in mGSCs. H3K27me3 was distributed surrounding the edges of nuclei of mGSC-mTet1 cells, while it was uniformly distributed throughout nuclei of mGSCs. Our results conclusively demonstrate that modification of mGSCs with mTet1 affected mGSC maintenance and seemed to promote establishment of stable goat mGSC cell lines. Taken together, our data suggest that Tet1 had novel and dynamic roles for regulating maintenance of pluripotency and proliferation of mGSCs by forming complexes with PCNA and histone methylation dynamics. This may provide new solutions for mGSCs stability and livestock mGSC cell line establishment. © 2016 John Wiley & Sons Ltd.
Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M
2007-02-01
There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.
Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick
2006-06-01
Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.
Yan, Li; Hu, Rui; Tu, Song; Cheng, Wen-Jun; Zheng, Qiong; Wang, Jun-Wen; Kan, Wu-Sheng; Ren, Yi-Jun
2015-01-01
TNFα played a dominant role in the development and progression of rheumatoid arthritis (RA). Clinical trials proved the efficacies of anti-TNFα agents for curing RA. However, most researchers were concentrating on their abilities of neutralizing TNFα, the potencies of different anti-TNFα agents varied a lot due to the antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). For better understanding and differentiating the potentiality of various candidate anti-TNF reagents at the stage of new drug research and development, present study established a cell model expressing the transmembrane TNFα for usage in in vitro ADCC or CDC assay, meanwhile, the assay protocol described here could provide guidelines for screening macromolecular antibody drugs. A stable cell subline bearing transmembrane TNFα was first established by conventional transfection method, the expression of transmembrane TNFα was approved by flow cytometer, and the performance of the stable subline in ADCC and CDC assay was evaluated, using human peripheral blood mononuclear cells as effector cells, and Adalimumab as the anti-TNFα reagent. The stable cell subline demonstrated high level of surface expression of transmembrane TNFα, and Adalimumab exerted both ADCC and CDC effects on this cell model. In conclusion, the stable cell line we established in present research could be used in ADCC or CDC assay for screening antibody drugs, which would provide in-depth understanding of the potencies of candidate antibody drugs in addition to the traditional TNFα neutralizing assay.
Wajih, Nadeem; Owen, John; Wallin, Reidar
2008-01-01
Introduction Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo γ-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational γ carboxylation, the recovery of fully γ-carboxylated and functional proteins is low. Materials and Methods In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K γ-carboxylase cofactor and in addition stably silenced the γ-carboxylase inhibitory protein calumenin. Results and Conclusions Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C. PMID:18177690
Establishment and Characterization of a Telomerase-Immortalized Sheep Trophoblast Cell Line.
Zhang, Yufei; Shi, Jing; Liu, Shuying
2016-01-01
The primary sheep trophoblast cells (STCs) have a finite lifespan in culture. This feature limits the scope for long-term in vitro studies with STCs. This study was an attempt to establish and characterize a telomerase-immortalized sheep trophoblast cell line. STCs were isolated and purified by using Percoll and specific immunoaffinity purification, respectively. The purified STCs were transfected with a plasmid carrying sequences of human telomerase reverse transcriptase (hTERT) to create immortalized sheep trophoblast cell line (hTERT-STCs). hTERT-STCs showed a stable expression of hTERT gene, serially passaged for a year, and showed active proliferation without signs of senescence. Cytokeratin 7 (CK-7), secreted human chorionic gonadotrophin subunit β (CG-β), placental lactogen (PL), and endogenous jaagsiekte sheep retrovirus (enJSRV) envelope genes were expressed in hTERT-STCs. Transwell cell invasion assay indicated that hTERT-STCs still possessed the same invasive characteristics as normal primary sheep trophoblast cells. hTERT-STCs could not grow in soft agar and did not develop into tumors in nude mice. In this study, we established a strain of immortalized sheep trophoblast cell line which could be gainfully employed in the future as an experimental model to study trophoblast cells with secretory function, invasive features, and probable biological function of enJSRV envelope genes.
Rocha, Cristina S J; Lundin, Karin E; Behlke, Mark A; Zain, Rula; El Andaloussi, Samir; Smith, C I Edvard
2016-12-01
New advances in oligonucleotide (ON) chemistry emerge continuously, and over the last few years, several aspects of ON delivery have been improved. However, clear knowledge regarding how certain chemistries behave alone, or in combination with various delivery vectors, is limited. Moreover, characterization is frequently limited to a single reporter cell line and, when different cell types are studied, experiments are commonly not carried out under similar conditions, hampering comparative analysis. To address this, we have developed a small "tissue" library of new, stable, pLuc/705 splice-switching reporter cell lines (named HuH7_705, U-2 OS_705, C2C12_705, and Neuro-2a_705). Our data show that, indeed, the cell type used in activity screenings influences the efficiency of ONs of different chemistry (phosphorothioate with locked nucleic acid or 2'-O-methyl with or without N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine). Likewise, the delivery method, Lipofectamine ® 2000, PepFect14 nanoparticles, or "naked" uptake, also demonstrates cell-type-dependent outcomes. Taken together, these cell lines can potentially become useful tools for future in vitro evaluation of new nucleic acid-based oligomers as well as delivery compounds for splice-switching approaches and cell-specific therapies.
EphA3 maintains radioresistance in head and neck cancers through epithelial mesenchymal transition.
Kim, Song Hee; Lee, Won Hyeok; Kim, Seong Who; Je, Hyoung Uk; Lee, Jong Cheol; Chang, Hyo Won; Kim, Young Min; Kim, Kyungbin; Kim, Sang Yoon; Han, Myung Woul
2018-07-01
Radiotherapy is a well-established therapeutic modality used in the treatment of many cancers. However, radioresistance remains a serious obstacle to successful treatment. Radioresistance can cause local recurrence and distant metastases in some patients after radiation treatment. Thus, many studies have attempted to identify effective radiosensitizers. Eph receptor functions contribute to tumor development, modulating cell-cell adhesion, invasion, neo-angiogenesis, tumor growth and metastasis. However, the role of EphA3 in radioresistance remains unclear. In the current study, we established a stable radioresistant head and neck cancer cell line (AMC HN3R cell line) and found that EphA3 was expressed predominantly in the radioresistant head and neck cancer cell line through DNA microarray, real time PCR and Western blotting. Additionally, we found that EphA3 was overexpressed in recurrent laryngeal cancer specimens after radiation therapy. EphA3 mediated the tumor invasiveness and migration in radioresistant head and neck cancer cell lines and epithelial mesenchymal transition- related protein expression. Inhibition of EphA3 enhanced radiosensitivity in the AMC HN 3R cell line in vitro and in vivo study. In conclusion, our results suggest that EphA3 is overexpressed in radioresistant head and neck cancer and plays a crucial role in the development of radioresistance in head and neck cancers by regulating the epithelial mesenchymal transition pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Singh, Pooja; Singh, Mahendra; Kanoujia, Jovita; Arya, Malti; Saraf, Shailendra K; Saraf, Shubhini A
2016-10-01
The objective of the present work was to formulate a novel stable delivery system which would not only overcome the solubility issue of silymarin, but also help to increase the therapeutic value by better permeation, anticancer action and reduced toxicity. This was envisaged through the recent developments in nanotechnology, combined with the activity of the phytoconstituent silymarin. A 2(3) full factorial design based on three independent variables was used for process optimization of nanostructured lipid carriers (NLC). Developed formulations were evaluated on the basis of particle size, morphology, in vitro drug release, photostability and cell line studies. Optimized silymarin-NLC was incorporated into carbopol gel and further assessed for rheological parameters. Stable behaviour in presence of light was proven by photostability testing of formulation. Permeability parameters were significantly higher in NLC as compared to marketed phytosome formulation. The NLC based gel described in this study showed faster onset, and prolonged activity up to 24 h and better action against edema as compared to marketed formulation. In case of anticancer activity of silymarin-NLC against SK-MEL 2 cell lines, silymarin-NLC proved to possess anticancer activity in a dose-dependent manner (10-80 μM) and induced apoptosis at 80 μM in SK-MEL 2 cancer cells. This work documents for the first time that silymarin can be formulated into nanostructured lipoidal carrier system for enhanced permeation, greater stability as well as anticancer activity for skin.
Cheng, Qingsu; Bilgin, Cemal Cagatay; Fontenay, Gerald; Chang, Hang; Henderson, Matthew; Han, Ju; Parvin, Bahram
2016-07-07
The effects of the stiffness of the microenvironment on the molecular response of 3D colony organization, at the maximum level of mammographic density (MD), are investigated. Phenotypic profiling reveals that 3D colony formation is heterogeneous and increased stiffness of the microenvironment, within the range of the MD, correlates with the increased frequency of aberrant 3D colony formation. Further integrative analysis of the genome-wide transcriptome and phenotypic profiling hypothesizes overexpression of ERBB2 in the premalignant MCF10A cell lines at a stiffness value that corresponds to the collagen component at high mammographic density. Subsequently, ERBB2 overexpression has been validated in the same cell line. Similar experiments with a more genetically stable cell line of 184A1 also revealed an increased frequency of aberrant colony formation with the increased stiffness; however, 184A1 did not demonstrate overexpression of ERBB2 at the same stiffness value of the high MD. These results suggest that stiffness exacerbates premalignant cell line of MCF10A.
Acevedo-Acevedo, Débora; Matta, Jaime; Meléndez, Enrique
2010-01-01
Four new water soluble molybdenocene complexes were synthesized in aqueous solution at pH 7.0. The new species, [(η5-C5H5)2Mo(L)]Cl (L= 6-mercaptopurine, 2-amino-6-mercaptopurine, (-)-2-amino-6-mercaptopurine ribose and 6-mercaptopurine ribose), were characterized by spectroscopic methods. NMR spectroscopic data showed the presence of two coordination isomers, S(6), N(7) and S(6), N(1), in aqueous solution, being S(6), N(7) the most stable. The antiproliferative activities of the new species were investigated in HT-29 colon and MCF-7 breast cancer cell lines. The incorporation of molybdenocene (Cp2Mo2+) into the thionucleobases/thionucleosides decreases their cytotoxic activities in HT-29 colon cancer cell line. In contrast, in the MCF-7 cell line, [Cp2Mo(2-amino-6-mercaptopurine)]Cl showed a high cytotoxic activity. This is most likely a consequence of the enhanced lipophilic character on the thionucleobase combined with synergism between Cp2Mo2+ and the thionucleobase ligand. PMID:21399723
Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar
2014-01-01
An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.
Sakumoto, Marimu; Takahashi, Mami; Oyama, Rieko; Takai, Yoko; Kito, Fusako; Shiozawa, Kumiko; Qiao, Zhiwei; Yoshida, Akihiko; Endo, Makoto; Kawai, Akira; Kondo, Tadashi
2017-10-01
Leiomyosarcoma (LMS) is one of most aggressive mesenchymal malignancies that differentiate towards smooth muscle. The clinical outcome of LMS patients is poor; as such, there is an urgent need for novel therapeutic approaches. Experimental models such as patient-derived cell lines are invaluable tools for pre-clinical studies. In the present study, we established a stable cell line from the tumor tissue of a patient with a primary LMS of the bone. Despite the urgent need for novel therapeutic strategies in LMS, there are only a few LMS cell lines available in public cell banks, none of which are primary to the bone. Bone primary LMS tumor tissues were sampled to establish cell lines. Morphological and proteomic analyses were performed and sensitivity to pazopanib was evaluated. NCC-LMS1-C1 cells were maintained for over 100 passages. The cells exhibited a spindle shape and aggressive growth; they also expressed smooth muscle actin, reflecting the original LMS tissue (i.e. smooth muscle cells). The cells also showed tumor characteristics such as colony formation on soft agar and sensitivity to pazopanib, doxorubicin and cisplatin, with half-maximal inhibitory concentrations of 4.5, 0.11 and 20 μM, respectively. Proteomic analyses by mass spectrometry and antibody array revealed some differences in the protein expression profiles of these cells as compared to the original tumor tissue. Our results indicate that the NCC-LMS1-C1 cell lines will be useful for LMS research. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Pamela D.; Sakwe, Amos; Koumangoye, Rainelli
2014-02-15
This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels ofmore » AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head and neck squamous cell carcinoma cell lines synthesize and secret AHSG. • AHSG depleted cell lines are significantly inhibited in their ability to proliferate, adhere, migrate, invade and protect MMP-9. • Human AHSG and bovine fetuin-A are functionally equivalent in regards to growth promotion of cancer cell lines.« less
Kaur, Punit; Nagaraja, Ganachari M; Zheng, Hongying; Gizachew, Dawit; Galukande, Moses; Krishnan, Sunil; Asea, Alexzander
2012-03-27
Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Taken together, we have developed a TNBC-TICs model system based on the 4T1 cells which is a very useful metastasis model with the advantage of being able to be transplanted into immune competent recipients. Our data demonstrates that the TNBC-TICs model system could be a useful tool for studies on the pathogenesis and therapeutic treatment for TNBC.
2012-01-01
Background Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. Methods To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. Results We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Conclusions Taken together, we have developed a TNBC-TICs model system based on the 4T1 cells which is a very useful metastasis model with the advantage of being able to be transplanted into immune competent recipients. Our data demonstrates that the TNBC-TICs model system could be a useful tool for studies on the pathogenesis and therapeutic treatment for TNBC. PMID:22452810
Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Khorrami, Arash
2014-03-01
pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tokes, Z. A.; Rogers, K. E.; Rembaum, A.
1982-01-01
Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.
Quantitative High-throughput Luciferase Screening in Identifying CAR Modulators
Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang
2017-01-01
Summary The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621
Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.
Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang
2016-01-01
The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.
Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun
2012-01-01
Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.
Bendre, Shweta; Hall, Conrad; Lin, Yu-Chih
2016-01-01
The dynamic regulation of microtubules (MTs) during mitosis is critical for accurate chromosome segregation and genome stability. Cancer cell lines with hyperstabilized kinetochore MTs have increased segregation errors and elevated chromosomal instability (CIN), but the genetic defects responsible remain largely unknown. The MT depolymerase MCAK (mitotic centromere-associated kinesin) can influence CIN through its impact on MT stability, but how its potent activity is controlled in cells remains unclear. In this study, we show that GTSE1, a protein found overexpressed in aneuploid cancer cell lines and tumors, regulates MT stability during mitosis by inhibiting MCAK MT depolymerase activity. Cells lacking GTSE1 have defects in chromosome alignment and spindle positioning as a result of MT instability caused by excess MCAK activity. Reducing GTSE1 levels in CIN cancer cell lines reduces chromosome missegregation defects, whereas artificially inducing GTSE1 levels in chromosomally stable cells elevates chromosome missegregation and CIN. Thus, GTSE1 inhibition of MCAK activity regulates the balance of MT stability that determines the fidelity of chromosome alignment, segregation, and chromosomal stability. PMID:27881713
Reimann-Berg, Nicola; Walter, Ingrid; Fuchs-Baumgartinger, Andrea; Wagner, Siegfried; Kovacic, Boris; Essler, Sabine E.; Schwendenwein, Ilse; Nolte, Ingo; Saalmüller, Armin; Escobar, Hugo Murua
2012-01-01
Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2−/−γc −/− mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45+, MHCII+, CD11a+ and CD79αcy+. PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies. PMID:22761949
Rütgen, Barbara C; Willenbrock, Saskia; Reimann-Berg, Nicola; Walter, Ingrid; Fuchs-Baumgartinger, Andrea; Wagner, Siegfried; Kovacic, Boris; Essler, Sabine E; Schwendenwein, Ilse; Nolte, Ingo; Saalmüller, Armin; Murua Escobar, Hugo
2012-01-01
Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2(-/-)γ(c) (-/-) mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45(+), MHCII(+), CD11a(+) and CD79αcy(+). PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies.
Derivation and characterization of human embryonic stem cell lines from poor quality embryos.
Liu, Weiqiang; Yin, Yifei; Long, Xiaolin; Luo, Yumei; Jiang, Yonghua; Zhang, Wenhong; Du, Hongzi; Li, Shaoying; Zheng, Yuhong; Li, Qing; Chen, Xinjie; Liao, Baoping; Xiao, Guohong; Wang, Weihua; Sun, Xiaofang
2009-04-01
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.
M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.
Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike
2013-01-01
HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.
Mahmud, Mohamed; Piwoni, Adriana; Filipczak, Nina; Janicka, Martyna; Gubernator, Jerzy
2016-01-01
The incorporation of hydrophobic drugs into liposomes improve their bioavailability and leads to increased stability and anticancer activity, along with decreased drug toxicity. Curcumin (Cur) is a natural polyphenol compound with a potent anticancer activity in pancreatic adenocarcinoma (PA). In the present study, different types of Cur-loaded liposomal formulations were prepared and characterized in terms of size, shape, zeta potential, optimal drug-to-lipid ratio and stability at 4°C, 37°C; and in human plasma in vitro. The best formulation in terms of these parameters was PEGylated, cholesterol-free formulation based upon hydrogenated soya PC (HSPC:DSPE-PEG2000:Cur, termed H5), which had a 0.05/10 molar ratio of drug-to-lipid, was found to be stable and had a 96% Cur incorporation efficiency. All Cur-loaded liposomal formulations had potent anticancer activity on the PA cancer cell lines AsPC-1 and BxPC-3, and were less toxic to a normal cell line (NHDF). Furthermore, apoptosis-induction induced by Cur in PA cells was associated with morphological changes including cell shrinkage, cytoplasmic blebbing, irregularity in shape and the externalization of cell membrane phosphatidylserine, which was preceded by an increase in intracellular reactive oxygen species (ROS) generation and caspase 3/7 activation. Because the liposomal formulations tested here, especially the H5 variant which exhibited slow release of the Cur in the human plasma test, the formulation may be stable enough to facilitate the accumulation of pharmacologically active amounts of Cur in target cancer tissue by EPR. Therefore, our formulations could serve as a promising therapeutic approach for pancreatic cancer and other cancers.
Hu, P F; Guan, W J; Li, X C; Zhang, W X; Li, C L; Ma, Y H
2013-01-01
Establishment of fibroblast cell lines of endangered goat breeds and research on the gene or protein functions based on the cells made a significant contribution to the conservation and utilization of genetic resources. In this study, a fibroblast cell line of Liaoning cashmere goat, frozen in 174 cryovials with 5 × 10(6) cells each, was successfully established from 60 goats ear marginal tissues using explant culture and cryopreservation techniques. Biological analysis of in vitro cultured cell line showed that, the cells were morphologically consistent with fibroblasts; the average viability of the cells was 94.9 % before freezing and 90.1 % after thawing; the growth process of cells was consisted of a lag phase, a logarithmic phase and a plateau phase; cell population doubling time was 65.5 h; more than 90 % of cells were diploid prior to the 6th generation; Neither microbial contamination nor cross-contamination was detected. To determine cell permeability, intracellular path and stability of exogenous proteins during the transduction, a TAT protein transduction domain was fused to the C-terminus of enhanced green fluorescent protein, the established fibroblast cell line was treated with the purified exogenous proteins at various concentrations by adding them to the cell culture media for 1-24 h and assayed cell morphology and protein presence, it was found that the purified exogenous proteins readily entered cells at a concentration of 0.1 mg/ml within 1.5 h and some of them could translocate into nucleus, moreover, the exogenous proteins appeared to be stable inside cells for up to 24 h.
Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta
2015-07-01
Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.
Traction Stresses Exerted by Adherent Cells: From Angiogenesis to Metastasis
NASA Astrophysics Data System (ADS)
Reinhart-King, Cynthia
2010-03-01
Cells exert traction stresses against their substrate that mediate their ability to sense the mechanical properties of their microenvironment. These same forces mediate cell adhesion, migration and the formation of stable cell-cell contacts during tissue formation. In this talk, I will present our data on the traction stresses generated by endothelial cells and metastatic breast cancer cells focused on understanding the processes of angiogenesis and metastasis, respectively. In the context of capillary formation, our data indicate that the mechanics of the substrate play a critical role in establishing endothelial cell-cell contacts. On more compliant substrates, endothelial cell shape and traction stresses polarize and promote the formation of stable cell-cell contacts. On stiffer substrates, traction stresses are less polarized and cell connectivity is disrupted. These data indicate that the mechanical properties of the microenvironment may drive cell connectivity and the formation of stable cell-cell contacts through the reorientation of traction stresses. In our studies of metastatic cell migration, we have found that traction stresses increase with increasing metastatic potential. We investigated three lines of varying metastatic potential (MCF10A, MCF7 and MDAMB231). MDAMB231, which are the most invasive, exert the most significant forces as measured by Traction Force Microscopy. These data present the possibility that cellular traction stress generation aids in the ability of metastatic cells to migrate through the matrix-dense tumor microenvironment. Such measurements are integral to link the mechanical and chemical microenvironment with the resulting response of the cell in health and disease.
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2015-01-01
Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103
Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2015-01-01
Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.
Long-term cultivation of human corneal endothelial cells by telomerase expression.
Liu, Zhiping; Zhuang, Jing; Li, Chaoyang; Wan, Pengxia; Li, Naiyang; Zhou, Qiang; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong
2012-07-01
The objective of this study was to explore the potential role of human telomerase reverse transcriptase (TERT) in extending the proliferative lifespan of human corneal endothelial cells (HCECs) under long-term cultivation. A primary culture was initiated with a pure population of HCECs in DMEM/F12 media containing 10% fetal bovine serum and other various supplements. TERT gene was successfully transfected into normal HCECs. A stable HCECs cell line (TERT-HCECs) that expressed TERT was established. The cells could be subcultured for 36 passages. Within this line of cells, TERT not only extended proliferative lifespan and inhibited apoptosis but also enhanced the cell line remaining the normal characteristics similar to HCECs. There were no significantly differences in the expression of the pump function related proteins voltage dependent anion channel 3 (VDAC3), sodium bicarbonate cotransporter member 4 (SLC4A4), chloride channel protein 3 (CLCN3), Na(+)/K(+)-ATPase α1, and ZO-1 in the cell line TERT-HCECs and primary HCECs. TERT-HCECs formed a monolayer cell sheet, maintained similar cell junction formation and pump function with primary HCECs. Karyotype analysis exhibited normal chromosomal numbers. The soft agar colony assay and tumor formation in nude mice assay showed no malignant alterations in TERT-HCECs. Our findings indicated that we had established a cell line with its similar phenotype and properties to primary HCECs. Further study of the TERT-HCECs may be valuable in studying the function of the cells in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.
Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta
2015-01-01
Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133
Nair, Nisha R; Chidambareswaren, M; Manjula, S
2014-09-01
Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.
Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.
Drexler, H G; Matsuo, A Y; MacLeod, R A
2000-11-01
Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.
Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.
Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro
2015-05-14
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.
Decreased RECQL5 correlated with disease progression of osteosarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junlong; Zhi, Liqiang; Dai, Xin
Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressedmore » lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment. - Highlights: • The expression of RECQL5 was downregulated in osteosarcoma tissues and cells. • Decreased RECQL5 correlated with osteosarcoma Enneking surgical classification. • We constructed a stable RECQL5 overexpression cell line by CRISPR/Cas9 system. • RECQL5 overexpression inhibited proliferation of MG-63 cells. • RECQL5 overexpression promoted apoptosis of MG-63 cells.« less
Gronwald, John W; Bucciarelli, Bruna
2013-08-30
In previous research, two alfalfa clonal lines (252 and 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared with stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic sugar residues. These results suggest greater deposition of secondary xylem and a reduction in pith in stems of 252 compared with 1283. The stem morphology and anatomy of first-cut and second-cut harvests of field-grown 1283 and 252 were examined. For both harvests, stems of 1283 were thicker and had a higher leaf/stem ratio compared with stems of 252. Stem cross-sections of both genotypes were stained for lignin, and the proportions of stem area that were pith and secondary xylem were measured using ImageJ. Stems of 252 exhibited greater deposition of secondary xylem and a reduction in pith proportion compared with stems of 1283 for the first-cut harvest, but this difference was not statistically significant for the second-cut harvest. The results indicate that the proportions of secondary xylem and pith are not environmentally stable in these two genotypes and hence cannot be the sole basis for the differences in cell wall concentration/composition. © 2012 Society of Chemical Industry.
Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram
2018-01-01
In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluating the Significance of CDK2-PELP1 Axis in Tumorigenesis and Hormone Therapy Resistance
2011-02-01
reagents an breast cancer cells MCF7, ZR75, IMR-90, NIH3T3, 93T were obtained from the American Type Culture tion. All stable cell lines were generated...galactosidase activity or tal protein concentration. ime PCR and cell cycle microarray s were harvested with Trizol Reagent (Invitrogen), and NA was isolated...Margue, F Huselstein, G, Grignard , W Dippel, M, Nathan, S Giacchi, R Scheiden. ILK as a potential marker gene to ascertain specific adenocarcinoma
Butler, W B
1984-08-15
A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.
Yang, Diqi; Wang, Lei; Lin, Pengfei; Jiang, Tingting; Wang, Nan; Zhao, Fan; Chen, Huatao; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping
2017-02-16
With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4-6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells.
Paliouras, Miltiadis; Diamandis, Eleftherios P
2008-06-01
The androgen receptor (AR) plays an important role in early prostate cancer by activating transcription of a number of genes participating in cell proliferation and growth and cancer progression. However, as the cancer progresses, prostate cancer cells transform from an androgen-dependent to an androgen-independent state. Androgen-independent prostate cancer can manifest itself in several forms, including a percentage of cancers that show reduced levels of prostate-specific antigen (PSA) and can progress without the need for the ligand or active receptor. Therefore, our goal was to examine the role of intracellular signaling pathways in an androgen-independent prostate cancer in vitro model. Using the cell line PC3(AR)(2), we stimulated cells with 5-alpha-dihydrotestosterone (DHT) and epidermal growth factor (EGF) and then analyzed PSA expression. We observed lower PSA expression when cells were jointly stimulated with DHT and EGF, and this was associated with an increase in AKT activity. We examined the role of AKT in AR activity and PSA expression by creating stable PC3(AR)(2) cell lines transfected with a PI3K-Ras-effector loop mutant. These cell lines showed lower DHT-stimulated PSA expression that correlated to changes in the phosphorylated state of AR. Therefore, we propose an in vitro androgen-independent model in which a PI3K/AKT activity threshold and subsequent AR transactivation regulate PSA expression.
An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells
Chicaybam, Leonardo; Barcelos, Camila; Peixoto, Barbara; Carneiro, Mayra; Limia, Cintia Gomez; Redondo, Patrícia; Lira, Carla; Paraguassú-Braga, Flávio; Vasconcelos, Zilton Farias Meira De; Barros, Luciana; Bonamino, Martin Hernán
2017-01-01
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza’s Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology. PMID:28168187
Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai
2017-11-01
Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.
Expression of recombinant sea urchin cellulase SnEG54 using mammalian cell lines.
Okumura, Fumihiko; Kameda, Hiroyuki; Ojima, Takao; Hatakeyama, Shigetsugu
2010-05-07
We previously identified the cellulase SnEG54 from Japanese purple sea urchin Strongylocentrotus nudus, the molecular mass of which is about 54kDa on SDS-PAGE. It is difficult to express and purify a recombinant cellulase protein using bacteria such as Escherichia coli or yeast. In this study, we generated mammalian expression vectors encoding SnEG54 to transiently express SnEG54 in mammalian cells. Both SnEG54 expressed in mammalian cells and SnEG54 released into the culture supernatant showed hydrolytic activity toward carboxymethyl cellulose. By using a retroviral expression system, we also established a mammalian cell line that constitutively produces SnEG54. Unexpectedly, SnEG54 released into the culture medium was not stable, and the peak time showing the highest concentration was approximately 1-2days after seeding into fresh culture media. These findings suggest that non-mammalian sea urchin cellulase can be generated in human cell lines but that recombinant SnEG54 is unstable in culture medium due to an unidentified mechanism. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Tuppurainen, E.S.M.; Venter, E.H.; Coetzer, J.A.W.; Bell-Sakyi, L.
2015-01-01
Lumpy skin disease (LSD) is of substantial economic importance for the cattle industry in Africa and the Near and Middle East. Several insect species are thought to transmit the disease mechanically. Recent transmission studies have demonstrated the first evidence for a role of hard (ixodid) ticks as vectors of lumpy skin disease virus (LSDV). The aim of this study was to attempt in vitro growth of the virus in Rhipicephalus spp. tick cell lines and investigate in vivo the presence of the virus in ticks collected from cattle during LSD outbreaks in Egypt and South Africa. No evidence was obtained for replication of LSDV in tick cell lines although the virus was remarkably stable, remaining viable for 35 days at 28 °C in tick cell cultures, in growth medium used for tick cells and in phosphate buffered saline. Viral DNA was detected in two-thirds of the 56 field ticks, making this the first report of the presence of potentially virulent LSDV in ticks collected from naturally infected animals. PMID:25468765
Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.
Wu, Ting-Hsiang; Sagullo, Enrico; Case, Dana; Zheng, Xin; Li, Yanjing; Hong, Jason S; TeSlaa, Tara; Patananan, Alexander N; McCaffery, J Michael; Niazi, Kayvan; Braas, Daniel; Koehler, Carla M; Graeber, Thomas G; Chiou, Pei-Yu; Teitell, Michael A
2016-05-10
mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L
2014-01-01
The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.
Sugiyama, Kazuo; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Sakasegawa, Noriko; Murakami, Yuko; Chu, Po-sung; Usui, Shingo; Ishibashi, Yuka; Wakayama, Yuko; Taniki, Nobuhito; Murata, Hiroko; Saito, Yoshimasa; Fukasawa, Masayoshi; Saito, Kyoko; Yamagishi, Yoshiyuki; Wakita, Takaji; Takaku, Hiroshi; Hibi, Toshifumi; Saito, Hidetsugu; Kanai, Takanori
2014-01-01
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems. PMID:24718268
NASA Technical Reports Server (NTRS)
Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.
2001-01-01
Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtchevsky, D.
1960-01-01
The effect of D/sub 2/O on the growth of three stable mammalian cell lines (HeLa, L, and L-5178Y) was investigated. As D/sub 2/O concentration is increased, all cells show an increased water content and dry weight and a decreased growth rate. Cytologically an increase is seen in ths number of multinucleated cells and sudanophilic material. Chemical investigation of the three stable D/sub 2/O-grown cell lines shows a decrease in phosphorus compounds of all types and in ribose compounds. An increase in total glyceride, a questionable increase in ester sterol in L5l78Y and L, and a decrease in free sterol aremore » noted. In HeLa, a definite increase in estsr sterol and a questionable change in free sterol are seen. Swiss mice were maintained on a regimen of 25% D/sub 2/O for three weeks. The mice were slightly smaller than H/ sub 2/O-fed controls, but the liver weight/ body weight ratio was greater. There were no significant differences in liver lipid or cholesterol. Histologic examination showed progressive vacuolization and loss of basophilia, with changes in the mitochondrial distribution in the cytoplasm. These alterations did not show any specific localization in the hepatic lobule. There was a progressive reduction in the ability of liver homogenates from D/sub 2/O-fed mice to convent acetate-2-C-14 to cholesterol and fatty acid. Incubation of normal mouse livers in media containing 75% D/sub 2/O resulted in significant enhancement of cholesterol and fatty acid biosynthetic capacity. The reduced lipogenesis in D/ sub 2/O-fed mice appears to be due to derangements in cell structure, rather than to inhibition of enzyme activity, The effect of D/sub 2/O on bacteriophage replication was examined. Ths burst size of T5 was somewhat reduced in deuterated E. coli, but the burst size of T7 was significantly increased. These differences might be explained by the fact that although the bulk of T5 DNA is derived from the medium, most of the T7 DNA is derived from the host. With increased size of the host, more DNA and protein production might be expected. Studies of the multiplication of poliovirus in deuterated HeLa and monkey kidney cells show a marked increase in burst size. An attenuated type 1 polio virus (CHAT) that does not normally multiply at elevated temperatares will do so in deuterated media. This strain of polio will also grow well on stable lines of monkey kidney in deuterated media; in aqueous media the growth of CHAT on this cell line is very poor. (auth)« less
Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R
2001-09-01
To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.
Functional importance of GLP-1 receptor species and expression levels in cell lines.
Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan
2012-04-10
Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.
Gröschl, Benedikt; Bettstetter, Marcus; Giedl, Christian; Woenckhaus, Matthias; Edmonston, Tina; Hofstädter, Ferdinand; Dietmaier, Wolfgang
2013-04-01
DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p < 0.001). Consistently, MSI-H CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC. Copyright © 2012 UICC.
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K
2018-03-01
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Eliminating Late Recurrence to Eradicate Breast Cancer
2015-09-01
induction of autophagy and antioxidant responses in Drosophila melanogaster . PLoS Genet. 9, e1003664 34 Rouschop, K.M. et al. (2010) The unfolded protein... genomic editing in human cells [8]. In contrast to RNA interference, CRISPR results in stable genetic changes in cell lines. We have generated the ...upcoming year. Since subtask 1d was delayed to pursue studies in the Fig 2. CRISP/Cas9-Mediated Genomic Deletion of cATGs. Top: Construct
Sequeira, Daniela P; Correia, Ricardo; Carrondo, Manuel J T; Roldão, António; Teixeira, Ana P; Alves, Paula M
2018-05-24
Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×10 6 cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×10 6 cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×10 6 cells/mL showed comparable HA titers per cell to those of CCI of 2×10 6 cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable with baculovirus-mediated expression in insect cells as an efficient platform for production of multi-HA influenza VLPs, surpassing the drawbacks of traditional co-infection strategies and/or the use of larger, unstable vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.
CellTrans: An R Package to Quantify Stochastic Cell State Transitions.
Buder, Thomas; Deutsch, Andreas; Seifert, Michael; Voss-Böhme, Anja
2017-01-01
Many normal and cancerous cell lines exhibit a stable composition of cells in distinct states which can, e.g., be defined on the basis of cell surface markers. There is evidence that such an equilibrium is associated with stochastic transitions between distinct states. Quantifying these transitions has the potential to better understand cell lineage compositions. We introduce CellTrans, an R package to quantify stochastic cell state transitions from cell state proportion data from fluorescence-activated cell sorting and flow cytometry experiments. The R package is based on a mathematical model in which cell state alterations occur due to stochastic transitions between distinct cell states whose rates only depend on the current state of a cell. CellTrans is an automated tool for estimating the underlying transition probabilities from appropriately prepared data. We point out potential analytical challenges in the quantification of these cell transitions and explain how CellTrans handles them. The applicability of CellTrans is demonstrated on publicly available data on the evolution of cell state compositions in cancer cell lines. We show that CellTrans can be used to (1) infer the transition probabilities between different cell states, (2) predict cell line compositions at a certain time, (3) predict equilibrium cell state compositions, and (4) estimate the time needed to reach this equilibrium. We provide an implementation of CellTrans in R, freely available via GitHub (https://github.com/tbuder/CellTrans).
Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.
Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris
2010-04-01
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.
Shen, Chengpin; Yu, Yanyan; Li, Hong; Yan, Guoquan; Liu, Mingqi; Shen, Huali; Yang, Pengyuan
2012-06-01
Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].
Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min
2015-05-01
To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.
Bota, Daniela A; Alexandru, Daniela; Keir, Stephen T; Bigner, Darell; Vredenburgh, James; Friedman, Henry S
2013-12-01
Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.
Wang, Yan-Yang; Zhou, Shun; Zhao, Ren; Hai, Ping; Zhe, Hong
2016-01-01
CDDO-Me has exhibited a potent anticancer effect in human esophageal squamous cell carcinoma (ESCC) cells in our previous study, but the molecular interactome remains elusive. We applied the approach of stable-isotope labeling by amino acids in cell culture (SILAC) to assess the proteomic responses of CDDO-Me treatment in human ESCC Ec109 cells. The data were subsequently validated using Western blot assay. The results of our study revealed that CDDO-Me increased the expression level of 543 protein molecules, but decreased the expression level of 709 protein molecules in Ec109 cells. Among these modulated protein molecules, calcium/calmodulin-dependent protein kinase type II subunit α (CaMKIIα) was highly expressed in all tested ESCC cell lines, whereas its expression levels were substantially lower in normal control cell line. Its silencing by small interfering RNA inhibited CDDO-Me induced apoptosis and autophagy in ESCC cells. Collectively, these data demonstrate that the therapeutic response of CDDO-Me in the human ESCC cells is mediated by CaMKIIα.
Konerding, W S; Janssen, H; Hubka, P; Tornøe, J; Mistrik, P; Wahlberg, L; Lenarz, T; Kral, A; Scheper, V
2017-07-01
Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation). Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Hong J; Kim, Kwang S; Kim, Eun J; Choi, Hyun B; Lee, Kwang H; Park, In H; Ko, Yong; Jeong, Sang W; Kim, Seung U
2007-05-01
We have generated stable, immortalized cell lines of human NSCs from primary human fetal telencephalon cultures via a retroviral vector encoding v-myc. HB1.F3, one of the human NSC lines, expresses a normal human karyotype of 46, XX, and nestin, a cell type-specific marker for NSCs. F3 has the ability to proliferate continuously and differentiate into cells of neuronal and glial lineage. The HB1.F3 human NSC line was used for cell therapy in a mouse model of intracerebral hemorrhage (ICH) stroke. Experimental ICH was induced in adult mice by intrastriatal administration of bacterial collagenase; 1 week after surgery, the rats were randomly divided into two groups so as to receive intracerebrally either human NSCs labeled with beta-galactosidase (n = 31) or phosphate-buffered saline (PBS) (n = 30). Transplanted NSCs were detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactoside histochemistry or double labeling with beta-galactosidase (beta-gal) and mitogen-activated protein (MAP)2, neurofilaments (both for neurons), or glial fibrillary acidic protein (GFAP) (for astrocytes). Behavior of the animals was evaluated for period up to 8 weeks using modified Rotarod tests and a limb placing test. Transplanted human NSCs were identified in the perihematomal areas and differentiated into neurons (beta-gal/MAP2(+) and beta-gal/NF(+)) or astrocytes (beta-gal/GFAP(+)). The NSC-transplanted group showed markedly improved functional performance on the Rotarod test and limb placing after 2-8 weeks compared with the control PBS group (p < .001). These results indicate that the stable immortalized human NSCs are a valuable source of cells for cell replacement and gene transfer for the treatment of ICH and other human neurological disorders. Disclosure of potential conflicts of interest is found at the end of this article.
Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying
2013-02-01
Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.
Pereira, João Kleber Novais; Machado-Neto, João Agostinho; Lopes, Matheus Rodrigues; Morini, Beatriz Corey; Traina, Fabiola; Costa, Fernando Ferreira; Saad, Sara Teresinha Olalla; Favaro, Patricia
2015-09-01
Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.
Ben-Hayyim, G; Kochba, J
1983-07-01
A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.
Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1
Ben-Hayyim, Gozal; Kochba, Joshua
1983-01-01
A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering
NASA Astrophysics Data System (ADS)
Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.
2016-12-01
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Genomic Analysis and Isolation of RNA Polymerase II Dependent Promoters from Spodoptera frugiperda.
Bleckmann, Maren; Fritz, Markus H-Y; Bhuju, Sabin; Jarek, Michael; Schürig, Margitta; Geffers, Robert; Benes, Vladimir; Besir, Hüseyin; van den Heuvel, Joop
2015-01-01
The Baculoviral Expression Vector System (BEVS) is the most commonly used method for high expression of recombinant protein in insect cells. Nevertheless, expression of some target proteins--especially those entering the secretory pathway--provides a severe challenge for the baculovirus infected insect cells, due to the reorganisation of intracellular compounds upon viral infection. Therefore, alternative strategies for recombinant protein production in insect cells like transient plasmid-based expression or stable expression cell lines are becoming more popular. However, the major bottleneck of these systems is the lack of strong endogenous polymerase II dependent promoters, as the strong baculoviral p10 and polH promoters used in BEVS are only functional in presence of the viral transcription machinery during the late phase of infection. In this work we present a draft genome and a transcriptome analysis of Sf21 cells for the identification of the first known endogenous Spodoptera frugiperda promoters. Therefore, putative promoter sequences were identified and selected because of high mRNA level or in analogy to other strong promoters in other eukaryotic organism. The chosen endogenous Sf21 promoters were compared to early viral promoters for their efficiency to trigger eGFP expression using transient plasmid based transfection in a BioLector Microfermentation system. Furthermore, promoter activity was not only shown in Sf21 cells but also in Hi5 cells. The novel endogenous Sf21 promoters were ranked according to their activity and expand the small pool of available promoters for stable insect cell line development and transient plasmid expression in insect cells. The best promoter was used to improve plasmid based transient transfection in insect cells substantially.
Calreticulin Regulates VEGF-A in Neuroblastoma Cells.
Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu
2015-08-01
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Joint morphogenetic cells in the adult mammalian synovium
Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo
2017-01-01
The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891
He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y
2009-06-01
Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.
Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocchi, P.; Ferreri, A.M.; Capucci, A.
1981-01-01
Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (less than 8 x 10(-6)). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTr) mutants up to 1000-fold. The maximum recovery of DTr mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages.
Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocchi, P.; Ferreri, A.M.; Capucci, A.
1981-01-01
Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (< 8 x 10/sup -6/). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTsup(r)) mutants up to 1000-fold. The maximum recovery of DTsup(r) mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages.
Development of a gas cell-based laser ion source for RIKEN PALIS
NASA Astrophysics Data System (ADS)
Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T.; Iimura, H.; Matsuo, Y.; Kubo, T.; Shinozuka, T.; Wakui, T.; Mita, H.; Naimi, S.; Furukawa, T.; Itou, Y.; Schury, P.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y.; Hirayama, Y.
2013-04-01
We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
2017-07-01
followed by RNA isolation and qPCR analysis. CRISPR Based Overexpression of PCAT14 Stable cell lines overexpressing PCAT14 endogenously were made using...Supplementary Figure 2B, C). To overexpress PCAT14, we used a CRISPR (clustered regularly interspaced short palindromic repeat)- Cas9 Synergistic...the workflow to endogenously overexpress PCAT14 in prostate cancer cells using CRISPR /SAM system. B. Bar plots represent fold increase in PCAT14 level
La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Da Pozzo, Eleonora; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano
2015-08-13
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.
La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Pozzo, Eleonora Da; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano
2015-01-01
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethox-yphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4–7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20–50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer. PMID:26132075
Photo-crosslinked hyaluronic acid coated upconverting nanoparticles
NASA Astrophysics Data System (ADS)
Mrazek, Jiri; Kettou, Sofiane; Matuska, Vit; Svozil, Vit; Huerta-Angeles, Gloria; Pospisilova, Martina; Nesporova, Kristina; Velebny, Vladimir
2017-02-01
Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY0.80Yb0.18Er0.02F4@NaYF4 nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.
Neuberger, M S; Rajewsky, K
1981-01-01
From a hybrid mouse cell line (B1-8) that secreted an IgM, lambda 1 anti-(4-hydroxy-3-nitrophenyl)acetyl antibody but that had no detectable surface IgM, selection for a variant with lambda 1 chains on the surface resulted in the isolation of a line that had switched from mu to delta expression. The surface and secreted Igs of this line were typed as IgD with two monoclonal antibodies, and the parental IgM and variant IgD molecules carried the same variable regions as judged by hapten-binding and idiotypic analysis. The surface and secreted delta chains of the IgD variant have apparent molecular weights of 64,000 and 61,000, respectively. However, the unglycosylated secreted delta polypeptide chain has a molecular weight of only 44,000. The secreted IgD exists predominantly in the delta 2 lambda A2 form, does not contain J protein, is relatively stable in serum, and does not fix complement. Images PMID:6940132
Yuan, W; Sui, C G; Ma, X; Ma, J
2018-05-23
Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P <0.05); the proportion of S phase was decreased from (45±2)% to (30±2)% ( P <0.05), and the migration ability was enhanced from (32 ±1) cells per field to (158±5) cells per field ( P <0.01). The expression of multidrug resistance-related genes MRP2, MDR1, LRP and MSX2 was increased in JF305/CDDP cells ( P <0.05). Knockdown of MSX2 in JF305 cells reduced the expression of MRP2, whereas overexpression of MSX2 in PANC-1 cells upregulated MRP2 level ( P <0.05). Conclusions: Two stable multidrug resistant cell lines of pancreatic cancer, JF305/CDDP and PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.
A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.
Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao
2011-08-15
A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.
Tuppurainen, E S M; Venter, E H; Coetzer, J A W; Bell-Sakyi, L
2015-03-01
Lumpy skin disease (LSD) is of substantial economic importance for the cattle industry in Africa and the Near and Middle East. Several insect species are thought to transmit the disease mechanically. Recent transmission studies have demonstrated the first evidence for a role of hard (ixodid) ticks as vectors of lumpy skin disease virus (LSDV). The aim of this study was to attempt in vitro growth of the virus in Rhipicephalus spp. tick cell lines and investigate in vivo the presence of the virus in ticks collected from cattle during LSD outbreaks in Egypt and South Africa. No evidence was obtained for replication of LSDV in tick cell lines although the virus was remarkably stable, remaining viable for 35 days at 28°C in tick cell cultures, in growth medium used for tick cells and in phosphate buffered saline. Viral DNA was detected in two-thirds of the 56 field ticks, making this the first report of the presence of potentially virulent LSDV in ticks collected from naturally infected animals. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.
Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli
2018-01-01
Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.
Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M
2017-05-01
We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.
Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G
1992-08-01
Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.
Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel
2017-12-01
Skin biopsies were obtained from two male patients with X-linked Alport syndrome (XLAS) with hemizygous COL4A5 mutations in exon 41 or exon 46. Dermal fibroblasts were extracted and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53 shRNA. The generated induced Pluripotent Stem Cell (iPSC) lines AS-FiPS2-Ep6F-28 and AS-FiPS3-Ep6F-9 were free of genomically integrated reprogramming genes, had the specific mutations, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. These iPSC lines offer a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Yang, Qiang; Wang, Lai-Xi
2016-01-01
Understanding the biosynthetic pathway of protein glycosylation in various expression cell lines is important for controlling and modulating the glycosylation profiles of recombinant glycoproteins. We found that expression of erythropoietin (EPO) in a HEK293S N-acetylglucosaminyltransferase I (GnT I)−/− cell line resulted in production of the Man5GlcNAc2 glycoforms, in which more than 50% were core-fucosylated, implicating a clear GnT I-independent core fucosylation pathway. Expression of GM-CSF and the ectodomain of FcγIIIA receptor led to ∼30% and 3% core fucosylation, suggesting that the level of core fucosylation also depends on the nature of the recombinant proteins. To elucidate the GnT I-independent core fucosylation pathway, we generated a stable HEK293S GnT I−/− cell line with either knockdown or overexpression of FUT8 by a highly efficient lentivirus-mediated gene transfer approach. We found that the EPO produced from the FUT8 knockdown cell line was the pure Man5GlcNAc2 glycoform, whereas that produced from the FUT8-overexpressing cell line was found to be fully core-fucosylated oligomannose glycan (Man5GlcNAc2Fuc). These results provide direct evidence that FUT8, the mammalian α1,6-fucosyltransferase, is the sole enzyme responsible for the GnT I-independent core fucosylation pathway. The production of the homogeneous core-fucosylated Man5GlcNAc2 glycoform of EPO in the FUT8-overexpressed HEK293S GnT I−/− cell line represents the first example of production of fully core-fucosylated high-mannose glycoforms. PMID:27008861
Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald
2017-07-01
In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.
Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M
2013-06-27
WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.
Navarre, Catherine; Smargiasso, Nicolas; Duvivier, Laurent; Nader, Joseph; Far, Johann; De Pauw, Edwin; Boutry, Marc
2017-06-01
Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.
Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus.
Alió Del Barrio, Jorge L; El Zarif, Mona; de Miguel, María P; Azaar, Albert; Makdissy, Norman; Harb, Walid; El Achkar, Ibrahim; Arnalich-Montiel, Francisco; Alió, Jorge L
2017-08-01
The aim of this phase 1 study was to preliminarily evaluate the safety and efficacy of autologous adipose-derived adult stem cell (ADASC) implantation within the corneal stroma of patients with advanced keratoconus. Five consecutive patients were selected. Autologous ADASCs were obtained by elective liposuction. ADASCs (3 × 10) contained in 1 mL saline were injected into the corneal stroma through a femtosecond-assisted 9.5-mm diameter lamellar pocket under topical anesthesia. Patients were reviewed at 1 day, 1 week, 1, 3, and 6 months postoperatively. Visual function, manifest refraction, slit-lamp biomicroscopy, intraocular pressure, endothelial cell density, corneal topography, corneal optical coherence tomography, and corneal confocal biomicroscopy were recorded. No intraoperative or postoperative complications were recorded, with full corneal transparency recovery within 24 hours. Four patients completed the full follow-up. All patients improved their visual function (mean: 1 line of unaided and spectacle-corrected distance vision and 2 lines of rigid contact lens distance vision). Manifest refraction and topographic keratometry remained stable. Corneal optical coherence tomography showed a mean improvement of 16.5 μm in the central corneal thickness, and new collagen production was observed as patchy hyperreflective areas at the level of the stromal pocket. Confocal biomicroscopy confirmed the survival of the implanted stem cells at the surgical plane. Intraocular pressure and endothelial cell density remained stable. Cellular therapy of the human corneal stroma in vivo with autologous ADASCs appears to be safe. Stem cells survive in vivo with intrastromal new collagen production. Future studies with larger samples are required to confirm these preliminary results.
Sliedrecht, Tale; Zhang, Chao; Shokat, Kevan M; Kops, Geert J P L
2010-04-22
Proper execution of chromosome segregation relies on tight control of attachment of chromosomes to spindle microtubules. This is monitored by the mitotic checkpoint that allows chromosome segregation only when all chromosomes are stably attached. Proper functioning of the attachment and checkpoint processes is thus important to prevent chromosomal instability. Both processes rely on the mitotic kinase Mps1. We present here two cell lines in which endogenous Mps1 has been stably replaced with a mutant kinase (Mps1-as) that is specifically inhibited by bulky PP1 analogs. Mps1 inhibition in these cell lines is highly penetrant and reversible. Timed inhibition during bipolar spindle assembly shows that Mps1 is critical for attachment error-correction and confirms its role in Aurora B regulation. We furthermore show that Mps1 has multiple controls over mitotic checkpoint activity. Mps1 inhibition precludes Mad1 localization to unattached kinetochores but also accelerates mitosis. This acceleration correlates with absence of detectable mitotic checkpoint complex after Mps1 inhibition. Finally, we show that short-term inhibition of Mps1 catalytic activity is sufficient to kill cells. Mps1 is involved in the regulation of multiple key processes that ensure correct chromosome segregation and is a promising target for inhibition in anti-cancer strategies. We report here two cell lines that allow specific and highly penetrant inhibition of Mps1 in a reproducible manner through the use of chemical genetics. Using these cell lines we confirm previously suggested roles for Mps1 activity in mitosis, present evidence for novel functions and examine cell viability after short and prolonged Mps1 inhibition. These cell lines present the best cellular model system to date for investigations into Mps1 biology and the effects of penetrance and duration of Mps1 inhibition on cell viability.
Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita
2017-01-01
Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Hao; Fu, Xiaodong; Gao, Yingjian; Li, Xiaomiao; Shen, Yi; Wang, Weili
2018-06-01
Osteosarcoma is the most widespread primary carcinoma in bones. Osteosarcoma cells are highly metastatic and frequently develop resistance to chemotherapy making this disease harder to treat. This identifies an urgent need of novel therapeutic strategies for osteosarcoma. G-Protein-coupled receptor 137 (GPR137) is involved in several human cancers and may be a novel therapeutic target. The expression of GPR137 was assessed in one osteoblast and three human osteosarcoma cell lines via the quantitative real-time polymerase chain reaction and western blot assays. Stable GPR137 knockdown cell lines were established using an RNA interference lentivirus system. Viability, colony formation, and flow cytometry assays were performed to measure the effects of GPR137 depletion on cell growth. The underlying molecular mechanism was determined using signaling array analysis and western blot assays. GPR137 expression was higher in the three human osteosarcoma cell lines, Saos-2, U2OS, and SW1353, than in osteoblast hFOB 1.19 cells. Lentivirus-mediated small interfering RNA targeting GPR137 successfully knocked down GPR137 mRNA and protein expression in both Saos-2 and U2OS cells. In the absence of GPR137, cell viability and colony formation ability were seriously impaired. The extent of apoptosis was also increased in both cell lines. Moreover, AMP-activated protein kinase α, proline-rich AKT substrate of 40 kDa, AKT, and extracellular signal-regulated kinase phosphorylation levels were down-regulated in GPR137 knockdown cells. The results of this study highlight the crucial role of GPR137 in promoting osteosarcoma cell growth in vitro . GPR137 could serve as a potential therapeutic target against osteosarcoma.
Kurtz, Brian M.; Singletary, Lauren B.; Kelly, Sean D.; Frampton, Arthur R.
2010-01-01
In this study, Equus caballus major histocompatibility complex class I (MHC-I) was identified as a cellular entry receptor for the alphaherpesvirus equine herpesvirus type 1 (EHV-1). This novel EHV-1 receptor was discovered using a cDNA library from equine macrophages. cDNAs from this EHV-1-susceptible cell type were inserted into EHV-1-resistant B78H1 murine melanoma cells, these cells were infected with an EHV-1 lacZ reporter virus, and cells that supported virus infection were identified by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining. Positive cells were subjected to several rounds of purification to obtain homogeneous cell populations that were shown to be uniformly infected with EHV-1. cDNAs from these cell populations were amplified by PCR and then sequenced. The sequence data revealed that the EHV-1-susceptible cells had acquired an E. caballus MHC-I cDNA. Cell surface expression of this receptor was verified by confocal immunofluorescence microscopy. The MHC-I cDNA was cloned into a mammalian expression vector, and stable B78H1 cell lines were generated that express this receptor. These cell lines were susceptible to EHV-1 infection while the parental B78H1 cells remained resistant to infection. In addition, EHV-1 infection of the B78H1 MHC-I-expressing cell lines was inhibited in a dose-dependent manner by an anti-MHC-I antibody. PMID:20610718
2012-09-01
and tissue oxygenation. Moreover, by introducing hypoxia reporter gene ( HRE -luciferase) into breast tumor lines, we will be able to use...hypoxia reporter gene, HRE -ODD-luc. The single nodule lesion was visualized and followed up by both BLI and MRI. As an example presented in Figure 1...MDA-MB231 cells with stable transfection of a hypoxia reporter gene, HRE -ODD-luc. a. 3 × 105 MDA-MB231/5HRE-ODD-luc cells incubated in each well of
de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga
2014-08-01
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
Zhang, Hong-Lei; Ye, Han-Qing; Deng, Cheng-Lin; Liu, Si-Qing; Shi, Pei-Yong; Qin, Cheng-Feng; Yuan, Zhi-Ming; Zhang, Bo
2017-05-01
West Nile virus (WNV), a mosquito-borne flavivirus, is an important neurotropic human pathogen. As a biosafety level-3 (BSL-3) agent, WNV is strictly to BSL-3 laboratories for experimentations, thus greatly hindering the development of vaccine and antiviral drug. Here, we developed a novel pseudo-infectious WNV reporter virus expressing the Gaussia luciferase (Gluc). A stable 293T NS1 cell line expressing NS1 was selected for trans-supplying NS1 protein to support the replication of WNV-ΔNS1 virus and WNV-ΔNS1-Gluc reporter virus with large-fragment deletion of NS1. WNV-ΔNS1 virus and WNV-Gluc-ΔNS1 reporter virus were confined to complete their replication cycle in this 293T NS1 cell line, displaying nearly identical growth kinetics to WT WNV although the viral titers were lower than those of WT WNV. The reporter gene was stably maintained in virus genome at least within three rounds of passage in 293T NS1 cell line. Using a known flaviviruses inhibitor, NITD008, we demonstrated that the pseudo-infectious WNV-Gluc-ΔNS1 could be used for antiviral screening. Furthermore, a high-throughput screening (HTS) assay in a 96-well format was optimized and validated using several known WNV inhibitors, indicating that the optimized HTS assay was suitable for high-throughput screening WNV inhibitors. Our work provides a stable and safe tool to handle WNV outside of a BSL-3 facility and facilitates high throughput screening for anti-WNV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Wilkinson, Daniel S.; Ghosh, Debjani; Nickle, Rebecca A.; Moorman, Cody D.; Mannie, Mark D.
2017-01-01
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible “iTregs” because Tregs from 2D2-FIG Rag1−/− mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy. PMID:29312311
Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G
2015-01-01
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.
First complete and productive cell culture model for members of the genus Iridovirus.
D'Costa, Susan M; Vigerust, David J; Perales-Hull, Marsha R; Lodhi, Sundus A; Viravathana, Polrit; Bilimoria, Shän L
2012-11-01
Chilo iridescent virus (CIV; the type strain of the genus Iridovirus) replicates productively in larvae of the boll weevil, Anthonomus grandis. This study focuses on characterizing productive infections of a boll weevil cell line, BRL-AG-3A (AG3A), starting with CIV reared in the waxworm, Galleria mellonella. We show that CIV can be continually and productively passaged to high titer in AG3A cells. The replication of larval-derived CIV in AG3A was analyzed by observing viral DNA replication and restriction endonuclease digestion profiles, morphogenesis, and infectivity using TCID(50) assays with AG3A as an indicator cell line. The data showed that virus passaged in the AG3A host is stable. AG3A cells are more efficient than previously utilized CF-124T cells from Choristoneura fumiferana. This system constitutes a superior model for cellular and molecular studies on CIV; it represents the first complete, productive cell culture model for the replication of CIV or any member of the genus Iridovirus.
Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.
Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li
2018-01-01
Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might be a therapeutic target and potential diagnostic marker in PCa.
De Filippis, Lidia; Lamorte, Giuseppe; Snyder, Evan Y; Malgaroli, Antonio; Vescovi, Angelo L
2007-09-01
The discovery and study of neural stem cells have revolutionized our understanding of the neurogenetic process, and their inherent ability to adopt expansive growth behavior in vitro is of paramount importance for the development of novel therapeutics based on neural cell replacement. Recent advances in high-throughput assays for drug development and gene discovery dictate the need for rapid, reproducible, long-term expansion of human neural stem cells (hNSCs). In this view, the complement of wild-type cell lines currently available is insufficient. Here we report the establishment of a stable human neural stem cell line (immortalized human NSCs [IhNSCs]) by v-myc-mediated immortalization of previously derived wild-type hNSCs. These cells demonstrate three- to fourfold faster proliferation than wild-type cells in response to growth factors but retain rather similar properties, including multipotentiality. By molecular biology, biochemistry, immunocytochemistry, fluorescence microscopy, and electrophysiology, we show that upon growth factor removal, IhNSCs completely downregulate v-myc expression, cease proliferation, and differentiate terminally into three major neural lineages: astrocytes, oligodendrocytes, and neurons. The latter are functional, mature cells displaying clear-cut morphological and physiological features of terminally differentiated neurons, encompassing mostly the GABAergic, glutamatergic, and cholinergic phenotypes. Finally, IhNSCs produce bona fide oligodendrocytes in fractions up to 20% of total cell number. This is in contrast to the negligible propensity of hNSCs to generate oligodendroglia reported so far. Thus, we describe an immortalized hNSC line endowed with the properties of normal hNSCs and suitable for developing the novel, reliable assays and reproducible high-throughput gene and drug screening that are essential in both diagnostics and cell therapy studies.
Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Ahn, Sungeun; Castro-Aceituno, Verónica; Yang, Deok Chun
2017-01-01
The present study investigates a simple and convenient one-step procedure for the preparation of bovine serum albumin (BSA)-Rh2 nanoparticles (NPs) at room temperature. In this work, ginsenoside Rh2 was entrapped within the BSA protein to form BSA-Rh2 NPs to enhance the aqueous solubility, stability, and therapeutic efficacy of Rh2. The physiochemical characterization by high-performance liquid chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy, field emission transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis confirmed that the prepared BSA-Rh2 NPs were spherical, highly monodispersed, and stable in aqueous systems. In addition, the stability of NPs in terms of different time intervals, pHs, and temperatures (20°C-700°C) was analyzed. The results obtained with different pHs showed that the synthesized BSA-Rh2 NPs were stable in the physiological buffer (pH 7.4) for up to 8 days, but degraded under acidic conditions (pH 5.0) representing the pH inside tumor cells. Furthermore, comparative analysis of the water solubility of BSA-Rh2 NPs and standard Rh2 showed that the BSA nanocarrier enhanced the water solubility of Rh2. Moreover, in vitro cytotoxicity assays including cell viability assays and morphological analyses revealed that Rh2-entrapped BSA NPs, unlike the free Rh2, demonstrated better in vitro cell viability in HaCaT skin cell lines and that BSA enhanced the anticancer effect of Rh2 in A549 lung cell and HT29 colon cancer cell lines. Additionally, anti-inflammatory assay of BSA-Rh2 NPs and standard Rh2 performed using RAW264.7 cells revealed decreased lipopolysaccharide-induced nitric oxide production by BSA-Rh2 NPs. Collectively, the present study suggests that BSA can significantly enhance the therapeutic behavior of Rh2 by improving its solubility and stability in aqueous systems, and hence, BSA-Rh2 NPs may potentially be used as a ginsenoside delivery vehicle in cancer and inflammatory cell lines.
Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D
2014-10-01
Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.
Chen, Can; Fan, Wenhui; Li, Jing; Zheng, Weinan; Zhang, Shuang; Yang, Limin; Liu, Di; Liu, Wenjun; Sun, Lei
2018-01-01
Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN-sensitive vaccine virus and a stable Vero cell line expressing NS1 to propagate the IFN-sensitive vaccine virus. The IFN-deficient system is applicable for the manufacture of IFN-sensitive vaccine virus.
Androgen receptor mediated epigenetic regulation of CRISP3 promoter in prostate cancer cells.
Pathak, Bhakti R; Breed, Ananya A; Deshmukh, Priyanka; Mahale, Smita D
2018-07-01
Cysteine-rich secretory protein 3 (CRISP3) is one of the most upregulated genes in prostate cancer. Androgen receptor (AR) plays an important role not only in initial stages of prostate cancer development but also in the advanced stage of castration-resistant prostate cancer (CRPC). Role of AR in regulation of CRISP3 expression is not yet known. In order to understand the regulation of CRISP3 expression, various overlapping fragments of CRISP3 promoter were cloned in pGL3 luciferase reporter vector. All constructs were transiently and stably transfected in PC3 (CRISP3 negative) and LNCaP (CRISP3 positive) cell lines and promoter activity was measured by luciferase assay. Promoter activity of LNCaP stable clones was significantly higher than PC3 stable clones. Further in CRISP3 negative PC3 and RWPE-1 cells, CRISP3 promoter was shown to be silenced by histone deacetylation. Treatment of LNCaP cells with DHT resulted in increase in levels of CRISP3 transcript and protein. AR dependency of CRISP3 promoter was also evaluated in LNCaP stable clones by luciferase assay. To provide molecular evidence of epigenetic regulation of CRISP3 promoter and its response to DHT, ChIP PCR was performed in PC3 and LNCaP cells. Our results demonstrate that CRISP3 expression in prostate cancer cells is androgen dependent and in AR positive cells, CRISP3 promoter is epigenetically regulated by AR. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
Sun, Guohui; Zhao, Lijiao; Fan, Tengjiao; Ren, Ting; Zhong, Rugang
2016-10-15
The repair of DNA mediated by O(6)-alkylguanine-DNA alkyltransferase (AGT) provides protection against DNA damage from endogenous or exogenous alkylation of the O(6) position of guanine. However, this repair acts as a double-edged sword in cancer treatment, as it not only protects normal cells from chemotherapy-associated toxicities, but also results in cancer cell resistance to guanine O(6)-alkylating antitumour agents. Thus, AGT plays an important role in predicting the individual susceptibility to guanine O(6)-alkylating carcinogens and chemotherapies. Accordingly, it is necessary to establish a quantitative method for determining AGT activity with high accuracy, sensitivity and practicality. Here, we describe a novel nonradioactive method for measuring AGT activity using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). This method is based on the irreversibility of the removal of the O(6)-alkyl group from guanine by AGT and on the high affinity of O(6)-benzylguanine (O(6)-BG) as an AGT substrate. HPLC-ESI-MS/MS was used to measure the AGT activities in cell protein extracts from eight tumour lines, demonstrating that AGT activity was quite variable among different cell lines, ranging from nondetectable to 1021 fmol/mg protein. The experiments performed in intact tumour cells yielded similar results but exhibited slightly higher activities than those observed in cell protein extracts. The accuracy of this method was confirmed by an examination of AGT expression levels using western blotting analysis. To our knowledge, this method is the first mass spectrometry-based AGT activity assay, and will likely provide assistance in the screening of cancer risk or the application of chemotherapies. Copyright © 2016 Elsevier B.V. All rights reserved.
Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S; Royer-Pokora, Brigitte
2016-01-01
We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.
Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte
2016-01-01
We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811
Ansari, Israr-ul H.; Longacre, Melissa J.; Stoker, Scott W.; Kendrick, Mindy A.; O’Neill, Lucas M.; Zitur, Laura J.; Fernandez, Luis A.; Ntambi, James M.; MacDonald, Michael J.
2017-01-01
Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ~ 50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion. PMID:28193492
Miyauchi, Eisaku; Inoue, Akira; Kobayashi, Kunihiko; Maemondo, Makoto; Sugawara, Shunichi; Oizumi, Satoshi; Isobe, Hiroshi; Gemma, Akihiko; Saijo, Yasuo; Yoshizawa, Hirohisa; Hagiwara, Koichi; Nukiwa, Toshihiro
2015-07-01
Epidermal growth factor receptor tyrosine kinase inhibitors are effective as first-line therapy for advanced non-small cell lung cancer patients harboring epidermal growth factor receptor mutations. However, it is unknown whether second-line platinum-based chemotherapy after epidermal growth factor receptor tyrosine kinase inhibitor therapy could lead to better outcomes. We evaluated the efficacy of second-line platinum-based chemotherapy after gefitinib for advanced non-small cell lung cancers harboring epidermal growth factor receptor mutations (the NEJ002 study). Seventy-one non-small cell lung cancers, treated with gefitinib as first-line therapy and then receiving platinum-based chemotherapy as second-line therapy were evaluated in NEJ002. Patients were evaluated for antitumor response to second-line chemotherapy by computed tomography according to the criteria of the Response Evaluation Criteria in Solid Tumors group (version 1.0). Of the 71 patients receiving platinum-based chemotherapy after first-line gefitinib, a partial response was documented in 25.4% (18/71), stable disease in 43.7% (31/71) and progression of disease in 21.1% (15/71). The objective response and disease control rates were 25.4% (18/71) and 69% (49/71), respectively. There was no significant difference between first- and second-line chemotherapy in objective response and disease control rates for advanced non-small cell lung cancer harboring activating epidermal growth factor receptor mutations. In the analysis of epidermal growth factor receptor mutation types, the objective responses of deletions in exon 19 and a point mutation in exon 21 (L858R) were 27.3% (9/33) and 28.1% (9/32), respectively, but these differences between objective response rates were not significant. The efficacy of second-line platinum-based chemotherapy followed at progression by gefitinib was similar to first-line platinum-based chemotherapy, and epidermal growth factor receptor mutation types did not influence the efficacy of second-line platinum-based chemotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sherchand, Shardulendra P.; Ibana, Joyce A.; Zea, Arnold H.; Quayle, Alison J.; Aiyar, Ashok
2016-01-01
Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that underlies the lowered intracellular free tryptophan levels in E6-expressing cells during starvation. PMID:27658027
Cysteine-dependent immune regulation by TRX and MIF/GIF family proteins.
Kondo, Norihiko; Ishii, Yasuyuki; Son, Aoi; Sakakura-Nishiyama, Junko; Kwon, Yong-Won; Tanito, Masaki; Nishinaka, Yumiko; Matsuo, Yoshiyuki; Nakayama, Toshinori; Taniguchi, Masaru; Yodoi, Junji
2004-03-29
Thioredoxin (TRX) superfamily proteins that contain a conserved redox-active site -Cys-Xa.a.-Xa.a.-Cys- includes proinflammatory cytokine, macrophage migration inhibiting factor (MIF) and the immune regulatory cytokine, glycosylation inhibiting factor (GIF) in which Cys-60 is cysteinylated. In this report, we have analyzed the functional interaction between TRX and MIF/GIF. The stable Jurkat T cell line transfected with human TRX gene (TRX-transfectant) was highly resistant to hydrogen peroxide-induced apoptosis, but not the cell line transfected with vector (mock-transfectant). The expression level of MIF/GIF protein of TRX-transfectant was lower than that of mock-transfectant. Conversely, the expression level of intracellular TRX protein in CD4(+)-T cells derived from MIF -/- mice were significantly higher than that from background BALB/c mice. These findings collectively suggest that oxidative stress-induced apoptosis on T lymphocytes might be protected by the reciprocal regulation of TRX and MIF/GIF expression.
Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard L. Liber; Jeffrey L. Schwartz
2005-10-31
There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cellsmore » has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.« less
Cell biology experiments conducted in space
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1977-01-01
A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.
Šemeláková, Martina; Mikeš, Jaromír; Jendželovský, Rastislav; Fedoročko, Peter
2012-12-05
Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Production of human monoclonal IgG antibodies against Rhesus (D) antigen.
Bron, D; Feinberg, M B; Teng, N N; Kaplan, H S
1984-01-01
An Epstein-Barr virus (EBV)-transformed human B-cell line ( LB4r ) producing anti-Rhesus [Rho(D) antigen] antibody was fused with a non-immunoglobulin-producing mouse-human heteromyeloma ( SHM - D33 ) and selected in hypoxanthine/aminopterin/thymidine medium containing 0.5 microM ouabain. Surviving hybrids found to secrete specific anti-Rho(D) antibody were cloned by limiting dilution. Two clones (D4-B2 and E10-C1) producing high levels (12 and 20 micrograms/ml per 10(6) cells per 24 hr, respectively) of monospecific antibody (IgG3, lambda chain) were selected for expansion and further characterization. Compared to the parental cell line ( LB4r ), these hybridoma cell lines presented several advantages: antibody production was increased 10-fold, cloning efficiency was improved, and the EBV genome was not retained. Antibody production has been stable for greater than 8 months. These human monoclonal anti-Rho(D) antibodies have demonstrated utility in routine blood-group typing. They may also prove useful in the biochemical and genetic characterization of the Rh antigen system. Most important, they offer a source of Rh-immune globulin for the prevention of Rh immunization and alloimmune hemolytic disease of the newborn. Images PMID:6427767
Bressan, Raul Bardini; Dewari, Pooran Singh; Kalantzaki, Maria; Gangoso, Ester; Matjusaitis, Mantas; Garcia-Diaz, Claudia; Blin, Carla; Grant, Vivien; Bulstrode, Harry; Gogolok, Sabine; Skarnes, William C.
2017-01-01
Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable – experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis. PMID:28096221
Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility
2014-01-01
Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274
2010-01-01
Background Due to the limited number of species specific antibodies against fish proteins, differential gene expression analyses are vital for the study of host immune responses. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most powerful tools for this purpose. Nevertheless, the accuracy of the method will depend on the careful selection of genes whose expression are stable and can be used as internal controls for a particular experimental setting. Findings The expression stability of five commonly used housekeeping genes [beta-actin (ACTB), elongation factor 1-alpha (EF1A), ubiquitin (UBQ), glyceraldehyd-3-phosphate dehydrogenase (GAPDH) and tubulin alpha (TUBA)] were monitored in salmonid cell lines CHSE-214 and RTS11 after infection with two of the most fastidious fish pathogens, the facultative bacterium Piscirickettsia salmonis and the aquabirnavirus IPNV (Infectious Pancreatic Necrosis Virus). After geNorm analysis, UBQ and EF1A appeared as the most stable, although EF1A was slightly upregulated at late stages of P. salmonis infection in RTS11. ACTB instead, showed a good performance in each case, being always considered within the three most stable genes of the panel. In contrast, infection-dependent differential regulation of GAPDH and TUBA was also demonstrated. Conclusion Based on the data presented here with the cell culture models CHSE-214 and RTS11, we suggest the initial choice of UBQ, ACTB and EF1A as reference genes in qRT-PCR assays for studying the effect of P. salmonis and IPNV on the host immune response. PMID:20398263
Sujima Anbu, Anbu; Velmurugan, Palanivel; Lee, Jeong-Ho; Oh, Byung-Taek; Venkatachalam, Perumal
2016-07-01
The present study reports on the synthesis of chitosan nanoparticles (CNPs) using methanol extracts of Gymnema sylvestre (GS) leaves and Cinnamomum zeylanicum (CZ) bark. Biomolecule-loaded nanoparticles induced apoptosis in a human cervical cancer (SiHa) cell line, and experiments were carried out to elucidate the underlying molecular mechanisms. FT-IR and XRD showed possible functional groups of the biomolecules and the crystalline nature of CNPs, respectively. Transmission electron microscopy images revealed that synthesized GSCNPs and CZCNPs had a smooth spherical shape with average sizes of about 58-80 and 60-120nm, respectively. Dynamic light scattering studies indicated that both GSCNPs and CZCNs were structurally stable with homogenous and heterogeneous natures, respectively. Furthermore, synthesized GSCNPs and CZCNPs exhibited dose-dependent cytotoxicity against the SiHa cancer cell line, with inhibitory concentration (IC50) values of 102.17μg/ml, 87.75μg/ml, 132.74μg/ml and 90.35μg/ml for GS leaf extract, GSCNPs, CZBE and CZCNPs, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality
Zhou, Yonghua; Wang, Mei; Jiang, Minggui; Peng, Liangyue; Wan, Cong; Liu, Jinhui; Liu, Wenbin; Zhao, Rurong; Zhao, Xiaoyang; Hu, Wei; Liu, Shaojun; Xiao, Yamei
2016-01-01
Polyploidy has many advantages over diploidy, such as rapid growth, sterility, and disease resistance, and has been extensively applied in agriculture and aquaculture. Though generation of new polyploids via polyploidization has been achieved in plants by different ways, it is comparatively rare in animals. In this article, by a chemical compound, SP600125, polyploidization is induced in fish cells in vitro, and a stable autotetraploid cell line has been generated from diploid fibroblast cells of crucian carp. As a c-Jun N-terminal kinase (Jnk) inhibitor, SP600125 does not function during the induction process of polyploidization. Instead, the p53 signal pathway might be involved. Using the SP600125-induced tetraploid cells and eggs of crucian carp as the donors and recipients, respectively, nuclear transplantation was conducted such that tetraploid embryos were obtained. It suggests that combining polyploidization and the somatic cell nuclear transfer technique (SCNT) is an efficient way to generate polyploidy, and the presented method in this research for generating the tetraploid fish from diploid fish can provide a useful platform for polyploid breeding. PMID:26898354
Characterization of immortalized dairy goat male germline stem cells (mGSCs).
Zhu, Haijing; Ma, Jing; Du, Rui; Zheng, Liming; Wu, Jiang; Song, Wencong; Niu, Zhiwei; He, Xin; Du, Enqi; Zhao, Shanting; Hua, Jinlian
2014-09-01
Male germline stem cells (mGSCs), in charge for the fertility in male testis, are the only kind of adult stem cells that transmit genetic information to next generation, with promising prospects in germplasm resources preservation and optimization, and production of transgenic animals. Mouse male germline stem cell lines have been established and are valuable for studying the mechanisms of spermatogenesis. However, there is a lack of stable mGSC cell lines in livestock, which restricts the progress of transgenic research and related biotechnology. Here, we firstly established an immortalized dairy goat mGSC cell line to study the biological properties and the signaling pathways associated with mGSCs self-renewal and differentiation. The ectopic factors SV40 large T antigen and Bmi1 genes were transduced into dairy goat mGSCs, and the results showed that the proliferation of these cells that were named mGSCs-I-SB was improved significantly. They maintained the typical characteristics including the expression of mGSC markers, and the potential to differentiate into all three germ layers, sperm-like cells in vitro. Additionally, mGSCs-I-SB survived and differentiated into three germ layer cell types when they were transplanted into chicken embryos. Importantly, the cells also survived in mouse spermatogenesis deficiency model testis which seemed to be the golden standard to examine mGSCs. Conclusively, our results demonstrate that mGSCs-I-SB present the characteristics of mGSCs and may promote the future study on goat mGSCs. © 2014 Wiley Periodicals, Inc.
Gómez, M C; Serrano, M A; Pope, C Earle; Jenkins, J A; Biancardi, M N; López, M; Dumas, C; Galiguis, J; Dresser, B L
2010-09-01
The domestic cat is a focal mammalian species that is used as a model for developing assisted reproductive technologies for preserving endangered cats and for studying human diseases. The generation of stable characterized cat embryonic stem cells (ESC) lines to use as donor nuclei may help to improve the efficiency of interspecies somatic cell nuclear transfer for preserving endangered cats and allow the creation of knockout cell lines to generate knockout cats for studying function of specific genes related to human diseases. It will also enable the possibility of producing gametes in vitro from ESC of endangered cats. In the present study, we report the generation of cat embryonic stem-like (cESL) cells from blastocysts derived entirely in vitro. We generated 32 cESL cell lines from 331 in vitro derived blastocysts from which inner cell masses were isolated by immunosurgery or by a mechanical method. Inhibition of cat dermal fibroblast (CDF) proliferation after exposure to mitomycin-C was both dose and time dependent, where doses of 30 to 40 microg/mL for 5 h were most efficient. These dosages were higher than that required to inhibit cell proliferation of mouse fetal fibroblasts (MFF; 10 microg/mL for 2.5 h). Mitomycin-C did not significantly increase necrosis of cells from either species, and had an anti-proliferative effect at concentrations below cytotoxicity. A clear species-specific relationship between feeder layers and derivation of cESL cell lines was observed, where higher numbers of cESL cell lines were generated on homologous cat feeder layers (n = 26) than from those derived on heterologous mouse feeder layers (n = 6). Three cESL cell lines generated from immunosurgery and cultured on CDF maintained self-renewal and were morphologically undifferentiated for nine and twelve passages (69-102 days). These lines showed a tightly packed dome shaped morphology, exhibited alkaline phosphatase activity and immuno-expression of the pluripotent marker OCT-4 and surface marker SSEA-1. Primary colonies at P0 to P3 and cat blastocysts expressed transcription factors OCT-4, NANOG and SOX-2 and the proto-oncogene C-MYC. However, expression was at levels significantly lower than in vitro produced blastocysts. During culture, cESL colonies spontaneously differentiated into fibroblasts, cardiomyocytes, and embryoid bodies. Development of techniques to prevent differentiation of cESL cells will be essential for maintaining defined cell lines. Copyright 2010 Elsevier Inc. All rights reserved.
Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.
1992-01-01
A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.
Ong, DCT; Ho, YM; Rudduck, C; Chin, K; Kuo, W-L; Lie, DKH; Chua, CLM; Tan, PH; Eu, KW; Seow-Choen, F; Wong, CY; Hong, GS; Gray, JW; Lee, ASG
2010-01-01
Deletion of 11q23–q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n=11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P=0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2′-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene. PMID:19734946
van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J
1999-03-01
A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.
Shi, Huaiping; Shi, Hengbo; Luo, Jun; Wang, Wei; Haile, Abiel B; Xu, Huifen; Li, Jun
2014-07-01
Although research on dairy goat mammary gland have referred extensively to molecular mechanisms, research on lines of dairy goat mammary epithelial cells (MECs) are still rare. This paper sought to establish an immortal MEC line by stable transfection of human telomerase. MECs from a lactating (45 days post-parturition) Xinong Saanen dairy goat were cultured purely and subsequently transfected with a plasmid carrying the sequence of human telomerase. Immortalized MECs by human telomerase (hT-MECs) exhibited a typical cobblestone morphology and activity and expression levels of telomerase resembled that of MCF-7 cells. hT-MECs on passage 42 grew vigorously and 'S' sigmoid curves of growth were observed. Moreover, hT-MECs maintained a normal chromosome modal number of 2n=60, keratin 8 and epithelial membrane antigen (EMA) were evidently expressed, and beta-casein protein was synthesized and secreted. Beta-casein expression was enhanced by prolactin (P<0.05). Lipid droplets were found in hT-MECs, and messenger RNA levels of PPARG, SREBP, FASN, ACC and SCD in hT-MECs (passage 40) were similar to MECs (passage 7). In conclusion, the obtained hT-MEC line retained a normal morphology, growth characteristics, cytogenetics and secretory characteristics as primary MECs. Hence, it can be a representative model cell line, for molecular and functional analysis, of dairy goat MECs for an extended period of time. © 2014 Japanese Society of Animal Science.
A novel cell model to study the function of the adrenoleukodystrophy-related protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueugnon, Fabien; Volodina, Natalia; Taouil, Jaoued Et
2006-03-03
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycyclinemore » dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.« less
Presence of infectious RD-114 virus in a proportion of canine parvovirus isolates.
Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki
2012-03-01
We recently found that certain canine live attenuated vaccines produced using `non-feline' cell lines were contaminated with an infectious feline endogenous retrovirus, termed RD-114 virus. We suspected that RD-114 virus may have contaminated the seed stock of canine parvovirus (CPV) during the production of the contaminated vaccines. In this study, we collected stock viruses of CPVs propagated in a feline cell line, and checked the presence of infectious RD-114 virus. Consequently, we found that RD-114 viral RNA was present in all stock viruses, and 7 out of 18 stock viruses were contaminated with infectious RD-114 virus. We also found that RD-114 virus was stable physically and is capable of retaining its infectivity for a long period at -80°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A
2018-04-01
The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.
Post-translational modification and stability of low molecular weight cyclin E.
Mull, B B; Cox, J; Bui, T; Keyomarsi, K
2009-09-03
Our laboratory has previously described the presence of five tumor-specific low molecular weight isoforms of cyclin E in both tumor cell lines and breast cancer patient biopsies. We have also shown that one of these low forms arises from an alternate start site, whereas the other four appear as two sets of doublets following cleavage through an elastase-like enzyme. However, the origin of both sets of doublets was unknown. Here, we demonstrate that the larger isoform of each doublet is the result of phosphorylation at a key degradation site. Through site-directed mutagenesis of different phosphorylation sites within the cyclin E protein, we discovered that phosphorylation of threonine 395 is responsible for generating the larger isoform of each doublet. Because phosphorylation of threonine 395 has been linked to the proteasome-mediated degradation of full length cyclin E, we examined the stability of T395A phospho-mutants in both non-tumorigenic mammary epithelial cells and tumor cells. The results revealed that the low molecular weight isoforms appear to be stable in both a tumor cell line and a non-tumor forming cell line regardless of the presence of this critical phosphorylation site. The stability of low molecular weight cyclin E may have implications for both tumorigenesis and treatment of tumors expressing them.
Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.
Scarcelli, John J; Shang, Tanya Q; Iskra, Tim; Allen, Martin J; Zhang, Lin
2017-11-01
Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463-1467, 2017. © 2017 American Institute of Chemical Engineers.
Marini, Irene; Siegemund, Martin; Hutt, Meike; Kontermann, Roland E.; Pfizenmaier, Klaus
2017-01-01
Mesenchymal stem cells (MSCs) are currently exploited as gene delivery systems for transient in situ expression of cancer therapeutics. As an alternative to the prevailing viral expression, we here describe a murine MSC line stably expressing a therapeutic protein for up to 42 passages, yet fully maintaining MSC features. Because of superior antitumoral activity of hexavalent TNF-related apoptosis-inducing ligand (TRAIL) formats and the advantage of a tumor-targeted action, we choose expression of a dimeric EGFR-specific diabody single-chain TRAIL (Db-scTRAIL) as a model. The bioactivity of Db-scTRAIL produced from an isolated clone (MSC.TRAIL) was revealed from cell death induction in Colo205 cells treated with either culture supernatants from or cocultured with MSC.TRAIL. In vivo, therapeutic activity of MSC.TRAIL was shown upon peritumoral injection in a Colo205 xenograft tumor model. Best antitumor activity in vitro and in vivo was observed upon combined treatment of MSC.TRAIL with bortezomib. Importantly, in vivo combination treatment did not cause apparent hepatotoxicity, weight loss, or behavioral changes. The development of well characterized stocks of stable drug-producing human MSC lines has the potential to establish standardized protocols of cell-based therapy broadly applicable in cancer treatment. PMID:28553285
Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J
2012-01-01
Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.
Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space.
Chen, Yulong; Guo, Houfu; Terajima, Masahiko; Banerjee, Priyam; Liu, Xin; Yu, Jiang; Momin, Amin A; Katayama, Hiroyuki; Hanash, Samir M; Burns, Alan R; Fields, Gregg B; Yamauchi, Mitsuo; Kurie, Jonathan M
2016-12-09
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147-1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space*
Chen, Yulong; Guo, Houfu; Terajima, Masahiko; Banerjee, Priyam; Liu, Xin; Yu, Jiang; Momin, Amin A.; Katayama, Hiroyuki; Hanash, Samir M.; Burns, Alan R.; Fields, Gregg B.; Yamauchi, Mitsuo; Kurie, Jonathan M.
2016-01-01
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147–1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology. PMID:27803159
Sayers, T J; Wiltrout, T A; Sowder, R; Munger, W L; Smyth, M J; Henderson, L E
1992-01-01
We have purified a protein from the granules of the rat NK leukemia cell line (RNK) that is cytostatic to a variety of tumor cells. This protein shows no species specificity because certain tumor cell lines of mouse, rat, and human origin were equally sensitive to its growth inhibitory effects. Treatment of sensitive cells resulted in a rounding of the cells followed by homotypic aggregation into large aggregates. The granule protein was distinct from cytolysin, Na-Cbz-Lys-thiobenzylester-esterase, or leukolexin. It had a molecular mass of 29 to 31 kDa, bound strongly to heparin, was inactivated by heating at 70 degrees C for 5 min or reduction, but was stable to trypsin treatment. By using molecular sieve chromatography, heparin agarose chromatography, and reverse phase HPLC, this protein was purified to homogeneity. The first 33 amino acids of the N-terminal amino acid sequence showed complete identity to the sequence predicted from a rat serine protease gene recently cloned and designated RNKP-1. Therefore we have purified a novel serine protease and demonstrated that it has effects on the growth and morphology of certain tumor cells. Other serine proteases that were structurally related and have substantial homology with RNKP-1 at the amino acid level showed neither growth inhibitory properties nor affected the morphology of the tumor target cells we used.
Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K
2015-02-01
Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.
Zuffa, T
1987-10-01
The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.
MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.
Akiva, Izzet; Birgül Iyison, Necla
2018-01-08
The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the stable overexpression of MGAT1 gene in Huh7 cell lines lead to a significant increase in tumor growth rate in Severe Combined Immunodeficient (SCID) mice. Taken together, we showed for the first time that MGAT is a novel Wnt/β-catenin pathway target that has important implications for tumorigenesis.
Fan, J-L; Zhang, J; Dong, L-W; Fu, W-J; Du, J; Shi, H-G; Jiang, H; Ye, F; Xi, H; Zhang, C-Y; Hou, J; Wang, H-Y
2014-03-13
Unconventional prefoldin RPB5 interactor (URI), which acts as an oncoprotein in solid tumors, is associated with RNA polymerase II subunit 5. However, its impact on multiple myeloma (MM) has not been determined. We demonstrate here that URI is overexpressed in MM compared with plasma cells derived from healthy volunteers. Side population (SP) cells sorted from MM cells showed a much higher level of URI than non-SP cells. Using lentivirus-delivered shRNA, we established stable URI knockdown MM cell lines. URI inhibition significantly attenuated the proliferation of MM cells and decreased colony formation compared with the control cells. Tumor growth assays in NOD/SCID mice further confirmed the promotion role of URI during MM development in vivo. Furthermore, URI knockdown markedly reduced the abundance of SP in MM cell lines and enhanced the chemotherapeutic sensitivity of MM towards bortezomib. Mechanically, URI appears to be critically involved in modulating STAT3 activity through regulating interleukin (IL)-6 transcription via interaction with NFκBp65. In conclusion, URI may have an important role in the development of MM and chemotherapeutic resistance through activating the IL-6/STAT3 pathway.
Fan, J-L; Zhang, J; Dong, L-W; Fu, W-J; Du, J; Shi, H-G; Jiang, H; Ye, F; Xi, H; Zhang, C-Y; Hou, J; Wang, H-Y
2014-01-01
Unconventional prefoldin RPB5 interactor (URI), which acts as an oncoprotein in solid tumors, is associated with RNA polymerase II subunit 5. However, its impact on multiple myeloma (MM) has not been determined. We demonstrate here that URI is overexpressed in MM compared with plasma cells derived from healthy volunteers. Side population (SP) cells sorted from MM cells showed a much higher level of URI than non-SP cells. Using lentivirus-delivered shRNA, we established stable URI knockdown MM cell lines. URI inhibition significantly attenuated the proliferation of MM cells and decreased colony formation compared with the control cells. Tumor growth assays in NOD/SCID mice further confirmed the promotion role of URI during MM development in vivo. Furthermore, URI knockdown markedly reduced the abundance of SP in MM cell lines and enhanced the chemotherapeutic sensitivity of MM towards bortezomib. Mechanically, URI appears to be critically involved in modulating STAT3 activity through regulating interleukin (IL)-6 transcription via interaction with NFκBp65. In conclusion, URI may have an important role in the development of MM and chemotherapeutic resistance through activating the IL-6/STAT3 pathway. PMID:24625985
Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila
2009-09-01
The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.
Epirubicin plus paclitaxel regimen as second-line treatment of patients with small-cell lung cancer.
Pasello, Giulia; Carli, Paolo; Canova, Fabio; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Urso, Loredana; Conte, Pierfranco; Favaretto, Adolfo
2015-04-01
Most patients with small cell lung cancer (SCLC) experience relapse within one year after first-line treatment. The aim of this study was to describe activity and safety of second-line with epirubicin at 70 mg/m(2) followed by paclitaxel at 135 mg/m(2) on day 1 every three weeks for a maximum of six cycles. This is a retrospective review of all patients with SCLC evaluated for second-line treatment between 2003 and 2013 at our Institution. Sixty-eight patients received the study regimen of epirubicin with paclitaxel. We observed partial response in 19 (30%), stable disease in 22 (34%) and total early failure rate in 23 (36%) patients. Median progression free and overall survival were 21.8 and 26.5 weeks, respectively. Haematological toxicities were as follows: grade 3-4 leukopenia and neutropenia in 18 (31%) and 30 (22%) of patients, respectively; grade 3 anaemia and grade 4 thrombocytopenia were reported in 2 (3%) and 5 (9%) of patients, respectively. Epirubicin with paclitaxel is an active and tolerable second-line regimen in patients with SCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Abdi, Khadar; Lai, Chun-Hsiang; Paez-Gonzalez, Patricia; Lay, Mark; Pyun, Joon; Kuo, Chay T
2018-04-25
Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC's neurogenic potential.
Wang, Xisi; Wang, Lijun; Su, Yan; Yue, Zhixia; Xing, Tianyu; Zhao, Wen; Zhao, Qian; Duan, Chao; Huang, Cheng; Zhang, Dawei; Jin, Mei; Cheng, Xianfeng; Chen, Shenglan; Liu, Yi; Ma, Xiaoli
2018-06-14
To evaluate plasma cell-free DNA (cfDNA) as a promising biomarker for neuroblastoma (NB) tumor burden. Seventy-nine eligible patients with newly diagnosed NB were recruited from Beijing Children's Hospital between April 2016 and April 2017. Additionally, from September 2011 to June 2017, 79 patients with stable NB were evaluated with a median follow-up time of 21 months. Approximately 2 mL of peripheral blood was drawn upon enrollment, and plasma cfDNA levels were measured via quantitative polymerase chain reaction (qPCR). Total cfDNA analysis was performed using the long interspersed nuclear element 1 (LINE-1) 79 bp fragment, and DNA integrity was calculated by the ratio of the LINE-1 300 bp fragment to the LINE-1 79 bp fragment. A total of 79 NB patients with a median age of 36 months comprised the group of newly diagnosed NB patients. The main primary tumor site was the retroperitoneal and adrenal region (81%). Three or more metastatic sites were found in 17.7% of patients. Stable NB patients older than 18 months comprised 98.7% of the stable NB patients. Neuron-specific enolase (NSE), lactate dehydrogenase (LDH), and cfDNA levels were dramatically increased in the newly diagnosed NB patients and significantly different from those in the stable NB patients. Moreover, the concentration of cfDNA was much higher in patients with larger tumors. By analyzing the area under the receiver operator characteristic (ROC) curve (AUC), the areas of total cfDNA, NSE, and LDH levels were 0.953, 0.929, and 0.906, respectively. The sensitivity and specificity data clarified that the level of circulating cfDNA in plasma can be considered as a reliable biomarker for describing tumor load in NB. The plasma cfDNA concentration was as good as the levels of LDH and NSE to discriminate the tumor burden in children with NB. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Punchaichira, Toyanji Joseph; Dey, Sanjay Kumar; Mukhopadhyay, Anirban; Kundu, Suman; Thelma, B K
2017-07-01
Dopamine-β-hydroxylase (DBH, EC 1.14.17.1), an oxido-reductase that catalyses the conversion of dopamine to norepinephrine, is largely expressed in sympathetic neurons and adrenal medulla. Several regulatory and structural variants in DBH associated with various neuropsychiatric, cardiovascular diseases and a few that may determine enzyme activity have also been identified. Due to paucity of studies on functional characterization of DBH variants, its structure-function relationship is poorly understood. The purpose of the study was to characterize five non-synonymous (ns) variants that were prioritized either based on previous association studies or Sorting Tolerant From Intolerant (SIFT) algorithm. The DBH ORF with wild type (WT) and site-directed mutagenized variants were transfected into HEK293 cells to generate transient and stable lines expressing these variant enzymes. Activity was determined by UPLC-PDA and corresponding quantity by MRM HR on a TripleTOF 5600 MS respectively of spent media from stable cell lines. Homospecific activity computed for the WT and variant proteins showed a marginal decrease in A318S, W544S and R549C variants. In transient cell lines, differential secretion was observed in the case of L317P, W544S and R549C. Secretory defect in L317P was confirmed by localization in ER. R549C exhibited both decreased homospecific activity and differential secretion. Of note, all the variants were seen to be destabilizing based on in silico folding analysis and molecular dynamics (MD) simulation, lending support to our experimental observations. These novel genotype-phenotype correlations in this gene of considerable pharmacological relevance have implications for dopamine-related disorders.
FGFR4 Role in Epithelial-Mesenchymal Transition and Its Therapeutic Value in Colorectal Cancer
Torres, Sofía; Hernández-Varas, Pablo; Teixidó, Joaquín; Bonilla, Félix; de Herreros, Antonio Garcia; Casal, J. Ignacio
2013-01-01
Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg388, in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy. PMID:23696849
IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo.
Bralten, Linda B C; Kloosterhof, Nanne K; Balvers, Rutger; Sacchetti, Andrea; Lapre, Lariesa; Lamfers, Martine; Leenstra, Sieger; de Jonge, Hugo; Kros, Johan M; Jansen, Erwin E W; Struys, Eduard A; Jakobs, Cornelis; Salomons, Gajja S; Diks, Sander H; Peppelenbosch, Maikel; Kremer, Andreas; Hoogenraad, Casper C; Smitt, Peter A E Sillevis; French, Pim J
2011-03-01
A high percentage of grade II and III gliomas have mutations in the gene encoding isocitrate dehydrogenase (IDH1). This mutation is always a heterozygous point mutation that affects the amino acid arginine at position 132 and results in loss of its native enzymatic activity and gain of alternative enzymatic activity (producing D-2-hydroxyglutarate). The objective of this study was to investigate the cellular effects of R132H mutations in IDH1. Functional consequences of IDH1(R132H) mutations were examined among others using fluorescence-activated cell sorting, kinome and expression arrays, biochemical assays, and intracranial injections on 3 different (glioma) cell lines with stable overexpression of IDH1(R132H) . IDH1(R132H) overexpression in established glioma cell lines in vitro resulted in a marked decrease in proliferation, decreased Akt phosphorylation, altered morphology, and a more contact-dependent cell migration. The reduced proliferation is related to accumulation of D-2-hydroxyglutarate that is produced by IDH1(R132H) . Mice injected with IDH1(R132H) U87 cells have prolonged survival compared to mice injected with IDH1(wt) or green fluorescent protein-expressing U87 cells. Our results demonstrate that IDH1(R132H) dominantly reduces aggressiveness of established glioma cell lines in vitro and in vivo. In addition, the IDH1(R132H) -IDH1(wt) heterodimer has higher enzymatic activity than the IDH1(R132H) -IDH1(R132H) homodimer. Our observations in model systems of glioma might lead to a better understanding of the biology of IDH1 mutant gliomas, which are typically low grade and often slow growing. Copyright © 2011 American Neurological Association.
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.
Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang
2016-01-01
Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.
Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells
Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang
2016-01-01
Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Genetic and Epigenetic Changes in Chromosomally Stable and Unstable Progeny of Irradiated Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baulch, Janet E.; Aypar, Umut; Waters, Katrina M.
2014-09-24
Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12, CS9) and decreased Alu element methylation was observedmore » for the other two unstable clones (115, Fe5.0-8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0-8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results of this study demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes almost equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature for and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic instability and permit unstable cells to persist and proliferate.« less
Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan
2014-01-01
Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.
Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging
NASA Astrophysics Data System (ADS)
Flusberg, Deborah A.; Sorger, Peter K.
2013-06-01
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.
Orozco-Morales, Mario; Sánchez-García, Francisco Javier; Golán-Cancela, Irene; Hernández-Pedro, Norma; Costoya, Jose A; de la Cruz, Verónica Pérez; Moreno-Jiménez, Sergio; Sotelo, Julio; Pineda, Benjamín
2015-01-01
Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb(-/-), Ras(V12), and Rb(-/-)/Ras(V12)) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras(V12) and Rb(-/-)/Ras(V12) transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines were derived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua
2014-01-01
This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; ...
2016-05-18
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less
NASA Astrophysics Data System (ADS)
Dai, Ximei; Huang, Qunce; Li, Guoping; Hu, Xiuming; Qin, Guangyong; Yu, Zengliang
2006-11-01
In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IR36-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IR36-4X plants. 2) The polyembryonic trait of IR36-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double set of embryo sacs in a single ovary, antipodal cells or endosperm cells. These results suggest that IR36-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.
Jacob, Francis; Guertler, Rea; Naim, Stephanie; Nixdorf, Sheri; Fedier, André; Hacker, Neville F.; Heinzelmann-Schwarz, Viola
2013-01-01
Reverse Transcription - quantitative Polymerase Chain Reaction (RT-qPCR) is a standard technique in most laboratories. The selection of reference genes is essential for data normalization and the selection of suitable reference genes remains critical. Our aim was to 1) review the literature since implementation of the MIQE guidelines in order to identify the degree of acceptance; 2) compare various algorithms in their expression stability; 3) identify a set of suitable and most reliable reference genes for a variety of human cancer cell lines. A PubMed database review was performed and publications since 2009 were selected. Twelve putative reference genes were profiled in normal and various cancer cell lines (n = 25) using 2-step RT-qPCR. Investigated reference genes were ranked according to their expression stability by five algorithms (geNorm, Normfinder, BestKeeper, comparative ΔCt, and RefFinder). Our review revealed 37 publications, with two thirds patient samples and one third cell lines. qPCR efficiency was given in 68.4% of all publications, but only 28.9% of all studies provided RNA/cDNA amount and standard curves. GeNorm and Normfinder algorithms were used in 60.5% in combination. In our selection of 25 cancer cell lines, we identified HSPCB, RRN18S, and RPS13 as the most stable expressed reference genes. In the subset of ovarian cancer cell lines, the reference genes were PPIA, RPS13 and SDHA, clearly demonstrating the necessity to select genes depending on the research focus. Moreover, a cohort of at least three suitable reference genes needs to be established in advance to the experiments, according to the guidelines. For establishing a set of reference genes for gene normalization we recommend the use of ideally three reference genes selected by at least three stability algorithms. The unfortunate lack of compliance to the MIQE guidelines reflects that these need to be further established in the research community. PMID:23554992
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings. PMID:25785453
Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo
2017-08-01
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo
Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximatelymore » 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.« less
Nonaqueous Electrical Storage Device
McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.
1999-10-26
An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.
2010-01-01
To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406
Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines.
Boldyreva, Lidiya V; Goncharov, Fyodor P; Demakova, Olga V; Zykova, Tatyana Yu; Levitsky, Victor G; Kolesnikov, Nikolay N; Pindyurin, Alexey V; Semeshin, Valeriy F; Zhimulev, Igor F
2017-04-01
Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Busch, Maike; Große-Kreul, Jan; Wirtz, Janina Jasmin; Beier, Manfred; Stephan, Harald; Royer-Pokora, Brigitte; Metz, Klaus; Dünker, Nicole
2017-08-01
Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST-1 assays, BrdU and DAPI cell counts. TFF1-induced apoptosis is executed via cleaved caspase-3 activation as revealed by caspase blockage experiments and caspase-3 immunocytochemistry. Results from pG13-luciferase reporter assays and Western blot analyses indicate that TFF1-induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR-18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase-3/7-independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR-18a downregulation. © 2017 UICC.
Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien
2011-10-01
Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.
Interleukin-8 Promotes Canine Hemangiosarcoma Growth by Regulating the Tumor Microenvironment
Kim, Jong-Hyuk; Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C.; Robinson, Sally; Sharkey, Leslie C.; O’Brien, Timothy D.; Dickerson, Erin B.; Modiano, Jaime F.
2014-01-01
Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. PMID:24582862
Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment.
Kim, Jong-Hyuk; Frantz, Aric M; Anderson, Katie L; Graef, Ashley J; Scott, Milcah C; Robinson, Sally; Sharkey, Leslie C; O'Brien, Timothy D; Dickerson, Erin B; Modiano, Jaime F
2014-04-15
Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into "IL-8 high" and "IL-8 low" groups. Genome-wide gene expression profiling showed that samples in the "IL-8 high" tumor group were enriched for genes associated with a "reactive microenvironment," including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. Copyright © 2014 Elsevier Inc. All rights reserved.
Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann
2016-01-01
Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343
Effect of light chain V region duplication on IgG oligomerization and in vivo efficacy.
Shuford, W; Raff, H V; Finley, J W; Esselstyn, J; Harris, L J
1991-05-03
A human immunoglobulin G1 (IgG1) antibody oligomer was isolated from a transfected myeloma cell line that produced a monoclonal antibody to group B streptococci. Compared to the IgG1 monomer, the oligomer was significantly more effective at protecting neonatal rats from infection in vivo. The oligomer was also shown to cross the placenta and to be stable in neonatal rats. Immunochemical analysis and complementary DNA sequencing showed that the transfected cell line produced two distinct kappa light chains: a normal light chain (Ln) with a molecular mass of 25 kilodaltons and a 37-kilodalton species (L37), the domain composition of which was variable-variable-constant (V-V-C). Cotransfection of vectors encoding the heavy chain and L37 resulted in production of oligomeric IgG.
Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K; Bian, Ang; Li, Yan; Giles-Davis, Wynetta; Xiang, Zhiquan; Zhou, Xiang Yang; Ertl, Hildegund C J
2016-10-01
Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.
Cloning of ES cells and mice by nuclear transfer.
Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko
2009-01-01
We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.
Takahashi, Toshiya; Kimura, Yutaka; Saito, Rumiko; Nakajima, Yoshihiro; Ohmiya, Yoshihiro; Yamasaki, Kenshi; Aiba, Setsuya
2011-12-01
Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.
Izdebska, Magdalena; Hałas-Wiśniewska, Marta; Adamczyk, Iwona; Lewandowska, Ismena; Kwiatkowska, Iga; Gagat, Maciej; Grzanka, Alina
2018-03-13
Niacinamide is a stable and water-soluble form of vitamin B3, a valuable and versatile cosmetic ingredient, which is well absorbed and tolerated by the skin. A large body of literature has reported on the antioxidant and cell repair properties of niacinamide. Therefore, it has been shown to be useful in the protection of the skin against ultraviolet B (UVB) radiation and free radicals. Despite numerous hypotheses on the mechanism of vitamin B3, its protective effects have not yet been fully elucidated. The aim of the study was to determine the protective effects of niacinamide on CHO AA8 cell line against UVB radiation. We assessed the following factors: cell death, cell cycle phase distributions, reorganization of main cytoskeletal proteins, such as F-actin, vimentin and β-tubulin, and also alterations at the ultrastructural level. The material used for our research was Chinese hamster ovary cell line (CHO AA8). We used 4 research groups: 1) control cells; 2) cells treated with niacinamide; 3) cells exposed to UV radiation; and 4) cells co-incubated with niacinamide and next exposed to ultraviolet. The cell death and cell cycle were evaluated by a Tali® based-image cytometer. A fluorescence microscope was used to assess the reorganization of cytoskeletal proteins, whereas a transmission electron microscope enabled the evaluation of the alterations at the ultrastructural level of cells. We showed that UV-induced apoptosis and cell cycle distributions during treatment with niacinamide resulted in a non-statistical significance in cell survival and no significant changes in the morphology and cytoskeleton in comparison to the control group. In turn, a combination of both factors led to an increase in the population of live cells and a decreased level of apoptotic cells in comparison to UV-exposed cells. Our results confirmed the harmful effects of UV radiation on CHO AA8 cell line. Furthermore, niacinamide can protect cells against these factors, and the mechanism of action may be related to the stabilization of the cell cytoskeleton.
Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina
2009-09-01
Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.
Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A
2008-08-01
Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.
Lung Reference Set A Application: Dawn Coverley- University of York (2011) — EDRN Public Portal
A variant of the nuclear matrix factor Ciz1 is prevalent in lung cancer cell lines and tumours, but not in adjacent lung tissue, giving rise to a protein that is stable enough to be detected in just one ul of plasma. This project evaluates the potential of variant Ciz1 as an early detection tool for lung cancer, using variant-selective antibodies.
Yan, Xiaofei; Wu, Litao; DU, Xiaojuan; Li, Jing; Zhang, Fujun; Han, Yan; Lyu, Shemin; Li, Dongmin
2016-12-01
Objective To prepare monoclonal antibodies against DR region (897DVEDSYGQQWTYEQR911) of Na + -K + -ATPase α1 subunit and identify their properties. Methods BALB/c mice were immunized with DR-keyholelimpet hemocyanin (KLH). Splenocytes from the immunized mice were collected and subsequently fused with SP2/0 mouse myeloma cells. Positive hybridoma clones were obtained after cell fusion and selection. ELISA was used to detect DR antibody titer in the cell supernatants. DR region-specific monoclonal antibodies were analyzed by dot blotting, Western blotting and immunofluorescence assay. Na + -K + -ATPase activity was detected by SensoLyte R FDP Protein Phosphatase Assay Kit and the protective effect of the monoclonal antibody against high glucose-induced cell injury was assessed in H9c2 cells. Results Three hybridoma cell lines which secreted stable DR monoclonal antibody were obtained. The strongest positive cell line, named DRm217, was selected to prepare ascites. Dot blotting, Western blotting and immunofluorescence assay showed that DRm217 recognized specially DR region of Na + -K + -ATPase and bound on H9c2 cell membranes. DRm217 stimulated Na + -K + -ATPase activity and alleviated high glucose-induced H9c2 cells injury. Conclusion The monoclonal antibodies against DR region of Na + -K + -ATPase α1 subunit is prepared.
Yuan, Hang; Krawczyk, Ewa; Blancato, Jan; Albanese, Christopher; Zhou, Dan; Wang, Naidong; Paul, Siddartha; Alkhilaiwi, Faris; Palechor-Ceron, Nancy; Dakic, Aleksandra; Fang, Shuang; Choudhary, Sujata; Hou, Tung-Wei; Zheng, Yun-Ling; Haddad, Bassem R; Usuda, Yukari; Hartmann, Dan; Symer, David; Gillison, Maura; Agarwal, Seema; Wangsa, Danny; Ried, Thomas; Liu, Xuefeng; Schlegel, Richard
2017-04-05
Using conditional cell reprogramming, we generated a stable cell culture of an extremely rare and aggressive neuroendocrine cervical cancer. The cultured cells contained HPV-16, formed colonies in soft agar and rapidly produced tumors in immunodeficient mice. The HPV-16 genome was integrated adjacent to the Myc gene, both of which were amplified 40-fold. Analysis of RNA transcripts detected fusion of the HPV/Myc genes, arising from apparent microhomologous recombination. Spectral karyotyping (SKY) and fluorescent-in-situ hybridization (FISH) demonstrated coordinate localization and translocation of the amplified Myc and HPV genes on chromosomes 8 and 21. Similar to the primary tumor, tumor cell cultures expressed very high levels of the Myc protein and, in contrast to all other HPV-positive cervical cancer cell lines, they harbored a gain-of-function mutation in p53 (R273C). Unexpectedly, viral oncogene knockdown had no effect on the growth of the cells, but it did inhibit the proliferation of a conventional HPV-16 positive cervical cancer cell line. Knockdown of Myc, but not the mutant p53, significantly inhibited tumor cell proliferation. On the basis of these data, we propose that the primary driver of transformation in this aggressive cervical cancer is not HPV oncogene expression but rather the overexpression of Myc.
SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone
Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab
2011-01-01
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575
Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson
2015-10-01
This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. Copyright © 2015 Elsevier B.V. All rights reserved.
Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A
2016-10-10
MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS.
A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.
Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles
2011-01-01
The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.
NASA Astrophysics Data System (ADS)
Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep
2018-04-01
The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan
1989-06-01
The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.
Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep
2018-01-01
The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated.
CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.
Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei
2016-08-01
Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1. Copyright © 2016 Elsevier Inc. All rights reserved.
RNA interference inhibits yellow fever virus replication in vitro and in vivo.
Pacca, Carolina C; Severino, Adriana A; Mondini, Adriano; Rahal, Paula; D'avila, Solange G P; Cordeiro, José Antonio; Nogueira, Mara Correa Lelles; Bronzoni, Roberta V M; Nogueira, Maurício L
2009-04-01
RNA interference (RNAi) is a process that is induced by double stranded RNA and involves the degradation of specific sequences of mRNA in the cytoplasm of the eukaryotic cells. It has been used as an antiviral tool against many viruses, including flaviviruses. The genus Flavivirus contains the most important arboviruses in the world, i.e., dengue (DENV) and yellow fever (YFV). In our study, we investigated the in vitro and in vivo effect of RNAi against YFV. Using stable cell lines that expressed RNAi against YFV, the cell lines were able to inhibit as much as 97% of the viral replication. Two constructions (one against NS1 and the other against E region of YFV genome) were able to protect the adult Balb/c mice against YFV challenge. The histopathologic analysis demonstrated an important protection of the central nervous system by RNAi after 10 days of viral challenge. Our data suggests that RNAi is a potential viable therapeutic weapon against yellow fever.
A computational study of open-chain epothilone analogue
NASA Astrophysics Data System (ADS)
Kamel, Karol; Rusinska-Roszak, Danuta
Molecular mechanics (MM/Ambers) calculations were applied to probe the conformational profile of open-chain epothilone analogue [Org Lett 2006, 8, 685], cytotoxic against some cell lines. Geometries of the most stable conformers were optimized at DFT level using the B3LYP functional and then compared to known both experimental and virtual conformers of epothilone. One of the most stable structures is III (1.47 kcal/mol above global minimum) which represents high similarity to the appropriate fragment of the Taylor's model of epothilone A, but two other conformers: XIV and XX, although they have almost the same conformation as the mother structure, are very unstable (6.7 and 12.4 kcal/mol above the global minimum).0
Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.
2015-01-01
Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827
Catalina, Puri; Montes, Rosa; Ligero, Gertru; Sanchez, Laura; de la Cueva, Teresa; Bueno, Clara; Leone, Paola E; Menendez, Pablo
2008-10-03
The use of human embryonic stem cells (hESCs) in research is increasing and hESCs hold the promise for many biological, clinical and toxicological studies. Human ESCs are expected to be chromosomally stable since karyotypic changes represent a pitfall for potential future applications. Recently, several studies have analysed the genomic stability of several hESC lines maintained after prolonged in vitro culture but controversial data has been reported. Here, we prompted to compare the chromosomal stability of three hESC lines maintained in the same laboratory using identical culture conditions and passaging methods. Molecular cytogenetic analyses performed in three different hESC lines maintained in parallel in identical culture conditions revealed significant differences among them in regard to their chromosomal integrity. In feeders, the HS181, SHEF-1 and SHEF-3 hESC lines were chromosomally stable up to 185 passages using either mechanical or enzymatic dissection methods. Despite the three hESC lines were maintained under identical conditions, each hESC line behaved differently upon being transferred to a feeder-free culture system. The two younger hESC lines, HS181 (71 passages) and SHEF-3 (51 passages) became chromosomally unstable shortly after being cultured in feeder-free conditions. The HS181 line gained a chromosome 12 by passage 17 and a marker by passage 21, characterized as a gain of chromosome 20 by SKY. Importantly, the mosaicism for trisomy 12 gradually increased up to 89% by passage 30, suggesting that this karyotypic abnormality provides a selective advantage. Similarly, the SHEF-3 line also acquired a trisomy of chromosome 14 as early as passage 10. However, this karyotypic aberration did not confer selective advantage to the genetically abnormal cells within the bulk culture and the level of mosaicism for the trisomy 14 remained overtime between 15%-36%. Strikingly, however, a much older hESC line, SHEF-1, which was maintained for 185 passages in feeders did not undergo any numerical or structural chromosomal change after 30 passages in feeder-free culture and over 215 passages in total. These results support the concept that feeder-free conditions may partially contribute to hESC chromosomal changes but also confirm the hypothesis that regardless of the culture conditions, culture duration or splitting methods, some hESC lines are inherently more prone than others to karyotypic instability.
Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity
Chittaranjan, Suganthi; Chan, Susanna; Yang, Cindy; Yang, Kevin C.; Chen, Vincent; Moradian, Annie; Firme, Marlo; Song, Jungeun; Go, Nancy E.; Blough, Michael D.; Chan, Jennifer A.; Cairncross, J. Gregory; Gorski, Sharon M.; Morin, Gregg B.; Yip, Stephen; Marra, Marco A.
2014-01-01
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples. PMID:25277207
Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu
2013-08-20
Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.
LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Danny C.T.; Rudduck, Christina; Chin, Koei
2008-05-06
Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30more » primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.« less
NK cell-based immunotherapy for malignant diseases
Cheng, Min; Chen, Yongyan; Xiao, Weihua; Sun, Rui; Tian, Zhigang
2013-01-01
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced. PMID:23604045
Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong-Hyuk, E-mail: jhkim@umn.edu; Masonic Cancer Center, University of Minnesota, Minneapolis, MN; Frantz, Aric M.
Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggestingmore » that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated with reactive tumor microenvironments. • IL-8 potentiates tumor cell survival and engraftment into host tissues. • Canine hemangiosarcoma provides a unique comparative model for IL-8 studies.« less
Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki
2011-01-01
Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062
Gupta, Akash; Mehta, Rajeshwari; Alimirah, Fatouma; Peng, Xinjian; Murillo, Genoveva; Wiehle, Ronald; Mehta, Rajendra G
2013-01-01
Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs alone. Proellex inhibited mRNA and protein levels of PR-B, reduced PRB/p300 complex formation in the nuclei and significantly reduced EGFR expression in T47Darom cells. Our results in the present study indicate that antiproliferative effect of Proellex is probably due to PR-B/EGFR modulation in ER+PR+, aromatase expressing cells. Overall these results suggest that antiprogestin, Proellex can be developed as a possible treatment strategy for aromatase overexpressing ER+/PR+ breast cancer patients as well as for aromatase inhibitor resistant breast cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stępnik, Maciej, E-mail: mstep@imp.lodz.pl; Arkusz, Joanna; Smok-Pieniążek, Anna
The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but notmore » to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows alterations in both cell lines with both silica NP tested. ► Buthionine sulfoximine enhances cytotoxicity of Ludox CL-X in 3T3-L1 cells.« less
Yamada, Takeshi; Abei, Masato; Danjoh, Inaho; Shirota, Ryoko; Yamashita, Taro; Hyodo, Ichinosuke; Nakamura, Yukio
2015-04-11
Cancer stem cell (CSC) research has highlighted the necessity of developing drugs targeting CSCs. We investigated a hepatocellular carcinoma (HCC) cell line that not only has CSC hierarchy but also shows phenotypic changes (population changes) upon differentiation of CSC during culture and can be used for screening drugs targeting CSC. Based on a hypothesis that the CSC proportion should decrease upon its differentiation into progenitors (population change), we tested HCC cell lines (HuH-7, Li-7, PLC/PRF/5, HLF, HLE) before and after 2 months culture for several markers (CD13, EpCAM, CD133, CD44, CD90, CD24, CD166). Tumorigenicity was tested using nude mice. To evaluate the CSC hierarchy, we investigated reconstructivity, proliferation, ALDH activity, spheroid formation, chemosensitivity and microarray analysis of the cell populations sorted by FACS. Only Li-7 cells showed a population change during culture: the proportion of CD13 positive cells decreased, while that of CD166 positive cells increased. The high tumorigenicity of the Li-7 was lost after the population change. CD13(+)/CD166(-) cells showed slow growth and reconstructed the bulk Li-7 populations composed of CD13(+)/CD166(-), CD13(-)/CD166(-) and CD13(-)/CD166(+) fractions, whereas CD13(-)/CD166(+) cells showed rapid growth but could not reproduce any other population. CD13(+)/CD166(-) cells showed high ALDH activity, spheroid forming ability and resistance to 5-fluorouracil. Microarray analysis demonstrated higher expression of stemness-related genes in CD166(-) than CD166(+) fraction. These results indicated a hierarchy in Li-7 cells, in which CD13(+)/CD166(-) and CD13(-)/CD166(+) cells serve as slow growing CSCs and rapid growing progenitors, respectively. Sorafenib selectively targeted the CD166(-) fraction, including CD13(+) CSCs, which exhibited higher mRNA expression for FGF3 and FGF4, candidate biomarkers for sorafenib. 5-fluorouracil followed by sorafenib inhibited the growth of bulk Li-7 cells more effectively than the reverse sequence or either alone. We identified a unique HCC line, Li-7, which not only shows heterogeneity for a CD13(+) CSC hierarchy, but also undergoes a "population change" upon CSC differentiation. Sorafenib targeted the CSC in vitro, supporting the use of this model for screening drugs targeting the CSC. This type of "heterogeneous, unstable" cell line may prove more useful in the CSC era than conventional "homogeneous, stable" cell lines.
Ginzinger, Werner; Egger, Alexander; Mühlgassner, Gerhard; Arion, Vladimir B; Jakupec, Michael A; Galanski, Markus; Berger, Walter; Keppler, Bernhard K
2012-10-01
To overcome the problem of poor aqueous solubility and bioavailability of indirubin-3-oximes, the compounds were modified by attaching a quaternary ammonium group at the oxime moiety. Exploring the prodrug concept, an oxime ester with acetyl-l-carnitine was prepared, and the rate of its hydrolysis was investigated to assess its suitability for clinical administration. In addition, the cytotoxic potency of new stable oxime ethers with a choline moiety and their influence on the cell cycle were tested in human cancer cell lines. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Biological and genetic properties of the p53 null preneoplastic mammary epithelium
NASA Technical Reports Server (NTRS)
Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.
2002-01-01
The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.
Rovère, C; Barbero, P; Kitabgi, P
1996-05-10
The neuropeptide precursor proneurotensin/neuromedin N (pro-NT/NN) is mainly expressed and differentially processed in the brain and in the small intestine. We showed previously that rMTC 6-23 cells process pro-NT/NN with a pattern similar to brain tissue and increase pro-NT/NN expression in response to dexamethasone, and that PC12 cells also produce pro-NT/NN but are virtually unable to process it. In addition, PC12 cells were reported to be devoid of the prohormone convertases PC1 and PC2. The present study was designed to identify the proprotein convertase(s) (PC) involved in pro-NT/NN processing in rMTC 6-23 cells and to compare PC1- and PC2-transfected PC12 cells for their ability to process pro-NT/NN. rMTC 6-23 cells were devoid of PC1, PC4, and PC5 but expressed furin and PC2. Stable expression of antisense PC2 RNA in rMTC 6-23 cells led to a 90% decrease in PC2 protein levels that correlated with a > 80% reduction of pro-NT/NN processing. PC2 expression was stimulated by dexamethasone in a time- and concentration-dependent manner. Stable PC12/PC2 transfectants processed pro-NT/NN with a pattern similar to that observed in the brain and in rMTC 6-23 cells. In contrast, stable PC12/PC1 transfectants reproduced the pro-NT/NN processing pattern seen in the gut. We conclude that (i) PC2 is the major pro-NT/NN convertase in rMTC 6-23 cells; (ii) its expression is coregulated with that of pro-NT/NN in this cell line; and (iii) PC2 and PC1 differentially process pro-NT/NN with brain and intestinal phenotype, respectively.
Establishment and evaluation of a stable steroidogenic goat Leydig cell line.
Zhou, Jinhua; Dai, Rui; Lei, Lanjie; Lin, Pengfei; Lu, Xiaolong; Wang, Xiangguo; Tang, Keqiong; Wang, Aihua; Jin, Yaping
2016-04-01
Leydig cells play a key role in synthesizing androgen and regulating spermatogenesis. The dysfunction of Leydig cells may lead to various male diseases. Although primary Leydig cell cultures have been used, their finite lifespan hinders the assessment of long-term effects. In the present study, primary goat Leydig cells (GLCs) were immortalized via the transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expressions of hTERT and telomerase activity were evaluated in transduced GLCs (hTERT-GLCs). These cells steadily expressed the hTERT gene and exhibited longer telomere lengths at passage 55 that were similar to those of HeLa cells. The hTERT-GLCs at passages 30 and 50 expressed genes that encoded key proteins, enzymes and receptors that are inherent to normal Leydig cells, for example, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH-receptor (LH-R). Additionally, the immortalized goat Leydig cells secreted detectable quantities of testosterone in response to hCG stimulation. Furthermore, this cell line appeared to proliferate more quickly than the control cells, although no neoplastic transformation occurred in vitro. We concluded that the GLCs immortalized with hTERT retained their original characteristics and might provide a useful model for the study of Leydig cell function. © 2015 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.
2012-04-01
The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.
Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal
2016-09-01
The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Klos, D; Stašek, M; Loveček, M; Skalický, P; Vrba, R; Aujeský, R; Havlík, R; Neoral, Č; Varanashi, L; Hajdúch, M; Vrbková, J; Džubák, P
The investigation of prognostic and predictive factors for early diagnosis of tumors, their surveillance and monitoring of the impact of therapeutic modalities using hybrid laboratory models in vitro/in vivo is an experimental approach with a significant potential. It is preconditioned by the preparation of in vivo tumor models, which may face a number of potential technical difficulties. The assessment of technical success of grafting and xenotransplantation based on the type of the tumor or cell line is important for the preparation of these models and their further use for proteomic and genomic analyses. Surgically harvested gastrointestinal tract tumor tissue was processed or stable cancer cell lines were cultivated; the viability was assessed, and subsequently the cells were inoculated subcutaneously to SCID mice with an individual duration of tumor growth, followed by its extraction. We analysed 140 specimens of tumor tissue including 17 specimens of esophageal cancer (viability 13/successful inoculations 0), 13 tumors of the cardia (11/0), 39 gastric tumors (24/4), 47 pancreatic tumors (34/1) and 24 specimens of colorectal cancer (22/9). 3 specimens were excluded due to histological absence of the tumor (complete remission after neoadjuvant therapy in 2 cases of esophageal carcinoma, 1 case of chronic pancreatitis). We observed successful inoculation in 17 of 28 tumor cell lines. The probability of successful grafting to the mice model in tumors of the esophagus, stomach and pancreas is significantly lower in comparison with colorectal carcinoma and cell lines generated tumors. The success rate is enhanced upon preservation of viability of the harvested tumor tissue, which depends on the sequence of clinical and laboratory algorithms with a high level of cooperation.Key words: proteomic analysis - xenotransplantation - prognostic and predictive factors - gastrointestinal tract tumors.
Peng, Yanxian; Bocker, Michael Thomas; Holm, Jennifer; Toh, Wei Seong; Hughes, Christopher Stephen; Kidwai, Fahad; Lajoie, Gilles Andre; Cao, Tong; Lyko, Frank; Raghunath, Michael
2012-11-01
Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however, inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study, we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization, the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance, only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel, contained no vitronectin but did contain collagen XII, ig-h3 and novel for hESC-supporting human matrices, substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however, distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus, human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings. Copyright © 2012 John Wiley & Sons, Ltd.
Ohtsuka, J; Fukumura, M; Tsurudome, M; Hara, K; Nishio, M; Kawano, M; Nosaka, T
2014-08-01
A stable packaging cell line (Vero/BC-F) constitutively expressing fusion (F) protein of the human parainfluenza virus type 2 (hPIV2) was established for production of the F-defective and single round-infectious hPIV2 vector in a strategy for recombinant vaccine development. The F gene expression has not evoked cytostatic or cytotoxic effects on the Vero/BC-F cells and the F protein was physiologically active to induce syncytial formation with giant polykaryocytes when transfected with a plasmid expressing hPIV2 hemagglutinin-neuraminidase (HN). Transduction of the F-defective replicon RNA into the Vero/BC-F cells led to the release of the infectious particles that packaged the replicon RNA (named as hPIV2ΔF) without detectable mutations, limiting the infectivity to a single round. The maximal titer of the hPIV2ΔF was 6.0 × 10(8) median tissue culture infections dose per ml. The influenza A virus M2 gene was inserted into hPIV2ΔF, and the M2 protein was found to be highly expressed in a human lung cancer cell line after transduction. Furthermore, in vivo airway infection experiments revealed that the hPIV2ΔF was capable of delivering transgenes to hamster tracheal cells. Thus, non-transmissible or single round-infectious hPIV2 vector will be potentially applicable to human gene therapy or recombinant vaccine development.
The Chinese Herbal Medicine Sophora flavescens Activates Pregnane X Receptor
Wang, Laiyou; Li, Feng; Lu, Jie; Li, Guodong; Li, Dan; Zhong, Xiao-bo; Guo, Grace L.
2010-01-01
Sophora flavescens (SF) is an herbal medicine widely used for the treatment of viral hepatitis, cancer, viral myocarditis, gastrointestinal hemorrhage, and skin diseases. It was recently reported that SF up-regulates CYP3A expression. The mechanism of SF-induced CYP3A expression is unknown. In the current study, we tested the hypothesis that SF-induced CYP3A expression is mediated by the activation of pregnane X receptor (PXR). We used two cell lines, DPX2 and HepaRG, to investigate the role of PXR in SF-induced CYP3A expression. The DPX2 cell line is derived from HepG2 cells with the stable transfection of human PXR and a luciferase reporter gene linked with a human PXR response element identified in the CYP3A4 gene promoter. In DPX2 cells, SF activated PXR in a concentration-dependent manner. We used a metabolomic approach to identify the chemical constituents in SF, which were further analyzed for their effect on PXR activation and CYP3A regulation. One chemical in SF, N-methylcytisine, was identified as an individual chemical that activated PXR. HepaRG is a highly differentiated hepatoma cell line that mimics human hepatocytes. In HepaRG cells, N-methylcytisine significantly induced CYP3A4 expression, and this induction was suppressed by the PXR antagonist sulforaphane. These results suggest that SF induces CYP3A expression via the activation of PXR. PMID:20736322
Human bone perivascular niche-on-a-chip for studying metastatic colonization.
Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith; Chramiec, Alan; Hao, Luke; Robinson, Samuel; Guo, Edward; Raimondi, Manuela Teresa; Vunjak-Novakovic, Gordana
2018-02-06
Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.
Lu, Chunwei; Cai, Dingfang; Ma, Jun
2018-05-08
We have previously shown that pachymic acid (PA) inhibited tumorigenesis of gastric cancer (GC) cells. However, the exact mechanism underlying the radiation response of GC was still elusive. To evaluate the effects of PA treatment on radiation response of GC cell lines both in vitro and in vivo, a colony formation assay and xenograft mouse model were employed. Changes in Bax and HIF1[Formula: see text] expressions were assessed in GC cells following PA treatment. Luciferase reporter and chromatin immune-precipitation assays were carried out to investigate the regulation of Bax through HIF1[Formula: see text]. Stable HIF1[Formula: see text] knockdown was introduced into GC cells to further study the mechanism underlying PA-enhanced response to radiation both in vitro and in vivo. PA greatly enhanced the sensitivity of GC cells to radiation in vitro and in vivo, upregulated Bax expression and inhibited hypoxia. Bax expression was under hypoxia inhibition, and PA increased Bax expression through repressing HIF1[Formula: see text]. Stable HIF1[Formula: see text] overexpression in GC cells abolished the sensitizing effect of PA on GC cells to radiation both in vitro and in vivo. PA functions as a radiation sensitizing compound in GC. PA treatment induces the expression of pro-apoptotic factor Bax by inhibiting hypoxia/HIF1[Formula: see text], supporting the therapeutic potential of PA in radiation therapy against GC.
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Role of mp 17O Seprase in Breast Cancer.
1998-07-01
identical subunits of MT 97 kDa. Recent evidence indicated that the Seprase subunit is identical to Fibroblast Activation Protein a ( FAPa ). To characterize...and define the role of this molecule in cancer, human Seprase/ FAPa cDNA was cloned and stable transfected in two human epithelial carcinoma cell lines...SW-13 and MCF-7. Unexpectedly, overexpression of Seprase/ FAPa has no apparent effect on the proliferation, matrix adhesion and matrigel invasion of
Detection of telomerase on upconversion nanoparticle modified cellulose paper.
Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang
2015-07-25
Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.
Realization of compact tractor beams using acoustic delay-lines
NASA Astrophysics Data System (ADS)
Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.
2017-01-01
A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.
Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line
Shipley, Mackenzie M.; Mangold, Colleen A.; Szpara, Moriah L.
2016-01-01
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. PMID:26967710
Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.
Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L
2016-02-17
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Seiler, Daniel; Zheng, Junying; Liu, Gentao; Wang, Shunyou; Yamashiro, Joyce; Reiter, Robert E; Huang, Jiaoti; Zeng, Gang
2013-09-01
Prostate cancer stem cells (PCSC) offer theoretical explanations to many clinical and biological behaviors of the disease in human. In contrast to approaches of using side populations and cell-surface markers to isolate and characterize the putative PCSC, we hypothesize that androgen deprivation leads to functional enrichment of putative PCSC. Human prostate cancer lines LNCaP, LAPC4 and LAPC9 were depleted of androgen in cell cultures and in castrated SCID mice. The resultant androgen deprivation-resistant or castration-resistant populations, in particular in LNCaP and its derivative cell lines, displayed increased expression of pluripotency transactivators and significantly higher tumorigenicity. Individual tumor cell clones were isolated from castration-resistant bulk cultures of LNCaP (CR-LNCaP) and tested for tumorigenicity in male SCID mice under limiting dilution conditions. As few as 200 cells were able to form spheres in vitro, and generate tumors with similar growth kinetics as 10(6) LNCaP or 10(4) CR-LNCaP cells in vivo. These putative PCSC were CD44(+) /CD24(-) and lack the expression of prostate lineage proteins. When transplanted into the prostate of an intact male SCID mouse, these putative PCSC seemed to show limited differentiation into Ck5(+) , Ck8(+) , Ck5(+) /Ck8(+) , and AR(+) cells. On the other hand, stable transduction of LNCaP with retrovirus encoding Sox2 led to androgen-deprivation resistant growth and down-regulation of major prostate lineage gene products in vitro. Concurrence of overexpression of pluripotency transactivators and resistance to androgen deprivation supported the role of putative PCSC in the emergence of prostate cancer resistant to androgen deprivation. © 2013 Wiley Periodicals, Inc.
Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin
2009-04-01
Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.
Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin
2009-01-01
Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.
Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D
2010-09-01
The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.
Molecular basis underlying resistance to Mps1/TTK inhibitors
Koch, A; Maia, A; Janssen, A; Medema, R H
2016-01-01
Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment. PMID:26364596
Molecular basis underlying resistance to Mps1/TTK inhibitors.
Koch, A; Maia, A; Janssen, A; Medema, R H
2016-05-12
Mps1/TTK is a dual-specificity kinase, with an essential role in mitotic checkpoint signaling, which has emerged as a potential target in cancer therapy. Several Mps1/TTK small-molecule inhibitors have been described that exhibit promising activity in cell culture and xenograft models. Here, we investigated whether cancer cells can develop resistance to these drugs. To this end, we treated various cancer cell lines with sublethal concentrations of a potent Mps1/TTK inhibitor in order to isolate inhibitor-resistant monoclonal cell lines. We identified four point mutations in the catalytic domain of Mps1/TTK that gave rise to inhibitor resistance but retained wild-type catalytic activity. Interestingly, cross-resistance of the identified mutations to other Mps1/TTK inhibitors is limited. Our studies predict that Mps1/TTK inhibitor-resistant tumor cells can arise through the acquisition of mutations in the adenosine triphosphate-binding pocket of the kinase that prevent stable binding of the inhibitors. In addition, our results suggest that combinations of inhibitors could be used to prevent acquisition of drug resistance. Interestingly, cross-resistance seems nonspecific for inhibitor scaffolds, a notion that can be exploited in future drug design to evict possible resistance mutations during clinical treatment.
2011-01-01
Background Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. Results In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P < 0.05). Patients with positive CTGF expression had significantly lower cumulative postoperative 5 year survival rate than those with negative CTGF expression (22.9% versus 48.1%, P < 0.001). We demonstrated that knockdown of CTGF expression significantly inhibited cell growth of gastric cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. Conclusions These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer. PMID:21955589
Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Liu, Fu-Nan; Li, Yan-Shu; Wang, Chun-Yu; Zhang, Hong-Yan; Sun, Zhe; Xu, Hui-Mian
2011-09-28
Connective tissue growth factor (CTGF) has been shown to be implicated in tumor development and progression. However, the role of CTGF in gastric cancer remains largely unknown. In this study, we showed that CTGF was highly expressed in gastric cancer tissues compared with matched normal gastric tissues. The CTGF expression in tumor tissue was associated with histologic grade, lymph node metastasis and peritoneal dissemination (P < 0.05). Patients with positive CTGF expression had significantly lower cumulative postoperative 5 year survival rate than those with negative CTGF expression (22.9% versus 48.1%, P < 0.001). We demonstrated that knockdown of CTGF expression significantly inhibited cell growth of gastric cancer cells and decreased cyclin D1 expression. Moreover, knockdown of CTGF expression also markedly reduced the migration and invasion of gastric cancer cells and decreased the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Animal studies revealed that nude mice injected with the CTGF knockdown stable cell lines featured a smaller number of peritoneal seeding nodules than the control cell lines. These data suggest that CTGF plays an important role in cell growth and invasion in human gastric cancer and it appears to be a potential prognostic marker for patients with gastric cancer.
Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells.
Stephenson, Emma; Ogilvie, Caroline Mackie; Patel, Heema; Cornwell, Glenda; Jacquet, Laureen; Kadeva, Neli; Braude, Peter; Ilic, Dusko
2010-12-06
The use of stem cells for regenerative medicine has captured the imagination of the public, with media attention contributing to rising expectations of clinical benefits. Human embryonic stem cells (hESCs) are the best model for capital investment in stem cell therapy and there is a clear need for their robust genetic characterization before scaling-up cell expansion for that purpose. We have to be certain that the genome of the starting material is stable and normal, but the limited resolution of conventional karyotyping is unable to give us such assurance. Advanced molecular cytogenetic technologies such as array comparative genomic hybridization for identifying chromosomal imbalances, and single nucleotide polymorphism analysis for identifying ethnic background and loss of heterozygosity should be introduced as obligatory diagnostic tests for each newly derived hESC line before it is deposited in national stem cell banks. If this new quality standard becomes a requirement, as we are proposing here, it would facilitate and accelerate the banking process, since end-users would be able to select the most appropriate line for their particular application, thus improving efficiency and streamlining the route to manufacturing therapeutics. The pharmaceutical industry, which may use hESC-derived cells for drug screening, should not ignore their genomic profile as this may risk misinterpretation of results and significant waste of resources.
MUC1-Targeted Cancer Cell Photothermal Ablation Using Bioinspired Gold Nanorods.
Zelasko-Leon, Daria C; Fuentes, Christina M; Messersmith, Phillip B
2015-01-01
Recent studies have highlighted the overexpression of mucin 1 (MUC1) in various epithelial carcinomas and its role in tumorigenesis. These mucins present a novel targeting opportunity for nanoparticle-mediated photothermal cancer treatments due to their unique antenna-like extracellular extension. In this study, MUC1 antibodies and albumin were immobilized onto the surface of gold nanorods using a "primer" of polydopamine (PD), a molecular mimic of catechol- and amine-rich mussel adhesive proteins. PD forms an adhesive platform for the deposition of albumin and MUC1 antibodies, achieving a surface that is stable, bioinert and biofunctional. Two-photon luminescence confocal and darkfield scattering imaging revealed targeting of MUC1-BSA-PD-NRs to MUC1+ MCF-7 breast cancer and SCC-15 squamous cell carcinoma cells lines. Treated cells were exposed to a laser encompassing the near-infrared AuNR longitudinal surface plasmon and assessed for photothermal ablation. MUC1-BSA-PD-NRs substantially decreased cell viability in photoirradiated MCF-7 cell lines vs. MUC1- MDA-MB-231 breast cancer cells (p < 0.005). Agents exhibited no cytotoxicity in the absence of photothermal treatment. The facile nature of the coating method, combined with targeting and photoablation efficacy, are attractive features of these candidate cancer nanotherapeutics.
Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F
1988-01-01
V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560
Role of claudin species-specific dynamics in reconstitution and remodeling of the zonula occludens.
Yamazaki, Yuji; Tokumasu, Reitaro; Kimura, Hiroshi; Tsukita, Sachiko
2011-05-01
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.
Davies, Timothy J.
2012-01-01
The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027
Zhong, Yali; Li, Xiaoli; Ji, Yasai; Li, Xiaoran; Li, Yaqing; Yu, Dandan; Yuan, Yuan; Liu, Jian; Li, Huixiang; Zhang, Mingzhi; Ji, Zhenyu; Fan, Dandan; Wen, Jianguo; Goscinski, Mariusz Adam; Yuan, Long; Hao, Bin; Nesland, Jahn M; Suo, Zhenhe
2017-01-01
Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers. PMID:28076853
2011-01-01
Background Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231). Methods Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion. Results Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis. Conclusions Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer. PMID:21849050
Le, Hai Van; Kim, Jae Young
2016-06-01
Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.
2011-01-01
Background Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. Methods Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. Results The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. Conclusions Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies. PMID:22040608
Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer
Tan, Bee-Jen; Liu, Yuanjie; Chang, Kai-Lun; Lim, Bennie KW; Chiu, Gigi NC
2012-01-01
Background Realizing the therapeutic benefits of quercetin is mostly hampered by its low water solubility and poor absorption. In light of the advantages of nanovehicles in the delivery of flavanoids, we aimed to deliver quercetin perorally with nanomicelles made from the diblock copolymer, polyethylene glycol (PEG)-derivatized phosphatidylethanolamine (PE). Methods Quercetin-loaded nanomicelles were prepared by using the film casting method, and were evaluated in terms of drug incorporation efficiency, micelle size, interaction with Caco-2 cells, and anticancer activity in the A549 lung cancer cell line and murine xenograft model. Results The incorporation efficiency into the nanomicelles was ≥88.9% when the content of quercetin was up to 4% w/w, with sizes of 15.4–18.5 nm and polydispersity indices of <0.250. Solubilization of quercetin by the nanomicelles increased its aqueous concentration by 110-fold. The quercetin nanomicelles were stable when tested in simulated gastric (pH 1.2) and intestinal (pH 7.4) fluids, and were non-toxic to the Caco-2 cells as reflected by reversible reduction in transepithelial electrical resistance and ≤25% lactose dehydrogenase release. The anticancer activity of quercetin could be significantly improved over the free drug through the nanomicellar formulation when tested using the A549 cancer cell line and murine xenograft model. The nanomicellar quercetin formulation was well tolerated by the tumor-bearing animals, with no significant weight loss observed at the end of the 10-week study period. Conclusion A stable PEG-PE nanomicellar formulation of quercetin was developed with enhanced peroral anticancer activity and no apparent toxicity to the intestinal epithelium. PMID:22334787
Robbens, Johan; Louahed, Jamila; De Pestel, Kathleen; Van Colen, Inge; Ampe, Christophe; Vandekerckhove, Joel; Renauld, Jean-Christophe
1998-01-01
We identified a number of upregulated genes by differential screening of interleukin-9-stimulated T-helper lymphocytes. Interestingly, two of these messengers encode proteins that are similar to proteins of the gelsolin family. The first displays a typical structure of six homologous domains and shows a high level of identity (90%) with bovine adseverin (or scinderin) and may therefore be considered the murine adseverin homolog. The second encodes a protein with only five segments. Sequence comparison shows that most of the fifth segment and a short amino-terminal part of the sixth segment (amino acids 528 to 628 of adseverin) are missing, and thus, this form may represent an alternatively spliced product derived from the same gene. The corresponding protein is called mouse adseverin (D5). We expressed both proteins in Escherichia coli and show that mouse adseverin displays the typical characteristics of all members of the gelsolin family with respect to actin binding (capping, severing, and nucleation) and its regulation by Ca2+. In contrast, mouse adseverin (D5) fails to nucleate actin polymerization, although like mouse adseverin and gelsolin, it severs and caps actin filaments in a Ca2+-dependent manner. Adseverin is present in all of the tissues and most of the cell lines tested, although at low concentrations. Mouse adseverin (D5) was found only in blood cells and in cell lines derived from T-helper lymphocytes and mast cells, where it is weakly expressed. In a gel filtration experiment, we demonstrated that mouse adseverin forms a 1:2 complex with G actin which is stable only in the presence of Ca2+, while no stable complex was observed for mouse adseverin (D5). PMID:9671468
Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F
2018-02-01
In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jaffar, Zeina; Ferrini, Maria E.; Shaw, Pamela K.; FitzGerald, Garret A.; Roberts, Kevan
2011-01-01
γδ T cells rapidly produce cytokines and represent a first line of defence against microbes and other environmental insults at mucosal tissues and are thus thought to play a local immunoregulatory role. We show that allergic airway inflammation was associated with an increase in innate IL-17-producing γδ T (γδ-17) cells that expressed the αEβ7 integrin and were closely associated with the airway epithelium. Importantly, prostaglandin (PG)I2 and its receptor IP, which downregulated airway eosinophilic inflammation, promoted the emergence of these intraepithelial γδ-17 cells into the airways by enhancing IL-6 production by lung eosinophils and dendritic cells. Accordingly, a pronounced reduction of γδ-17 cells was observed in the thymus of naïve mice lacking the PGI2 receptor IP, as well as in the lungs during allergic inflammation, implying a critical role for PGI2 in the programming of “natural” γδ-17 cells. Conversely, iloprost, a stable analog of PGI2, augmented IL-17 production by γδ T cells but significantly reduced the airway inflammation. Together, these findings suggest that PGI2 plays a key immunoregulatory role by promoting the development of innate intraepithelial γδ-17 cells through an IL-6-dependent mechanism. By enhancing γδ-17 cell responses, stable analogs of PGI2 may be exploited in the development of new immunotherapeutic approaches. PMID:21976777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinitt, C.A.M.; Wood, J.; Lee, S.S.
2010-08-01
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less
Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang
2016-01-01
Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells.
NASA Astrophysics Data System (ADS)
Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan
2016-02-01
This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7-9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5-1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.
Efficiency of introns from various origins in fish cells.
Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M
1993-06-01
Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.
Erzinger, Melanie M; Bovet, Cédric; Hecht, Katrin M; Senger, Sabine; Winiker, Pascale; Sobotzki, Nadine; Cristea, Simona; Beerenwinkel, Niko; Shay, Jerry W; Marra, Giancarlo; Wollscheid, Bernd; Sturla, Shana J
2016-01-01
The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 μM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues.
Okuma, Kazu; Yamagishi, Makoto; Yamochi, Tadanori; Firouzi, Sanaz; Momose, Haruka; Mizukami, Takuo; Takizawa, Kazuya; Araki, Kumiko; Sugamura, Kazuo; Yamaguchi, Kazunari; Watanabe, Toshiki
2014-01-01
Quantitative PCR (qPCR) for human T-lymphotropic virus 1 (HTLV-1) is useful for measuring the amount of integrated HTLV-1 proviral DNA in peripheral blood mononuclear cells. Many laboratories in Japan have developed different HTLV-1 qPCR methods. However, when six independent laboratories analyzed the proviral load of the same samples, there was a 5-fold difference in their results. To standardize HTLV-1 qPCR, preparation of a well-defined reference material is needed. We analyzed the integrated HTLV-1 genome and the internal control (IC) genes of TL-Om1, a cell line derived from adult T-cell leukemia, to confirm its suitability as a reference material for HTLV-1 qPCR. Fluorescent in situ hybridization (FISH) showed that HTLV-1 provirus was monoclonally integrated in chromosome 1 at the site of 1p13 in the TL-Om1 genome. HTLV-1 proviral genome was not transferred from TL-Om1 to an uninfected T-cell line, suggesting that the HTLV-1 proviral copy number in TL-Om1 cells is stable. To determine the copy number of HTLV-1 provirus and IC genes in TL-Om1 cells, we used FISH, digital PCR, and qPCR. HTLV-1 copy numbers obtained by these three methods were similar, suggesting that their results were accurate. Also, the ratio of the copy number of HTLV-1 provirus to one of the IC genes, RNase P, was consistent for all three methods. These findings indicate that TL-Om1 cells are an appropriate reference material for HTLV-1 qPCR. PMID:25502533
CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.
Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E
2004-04-01
The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.
Michlewski, Gracjan; Finnegan, David J.; Elfick, Alistair; Rosser, Susan J.
2017-01-01
Abstract Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing. PMID:28204586
Ross, D W; Bishop, C; Henderson, A; Kaplow, L
1990-01-01
We adapted previously published methods for nonspecific esterase and alkaline phosphatase staining of white blood cells in suspension for use on a Technicon H-1 hematology analyzer. The objective was to develop a semiautomated method using whole blood that could be employed on a large scale for hematology laboratory applications, including toxicology studies, measurement of neutrophil left shift, and cytochemical classification of myeloid leukemias. The nonspecific esterase method uses the pararosaniline stain, generating the unstable substrate from two stable precursors. Whole blood is added to the substrate plus dye mix. Next, acid lysis and fixation steps destroy red cells and stabilize the monocyte staining. The alkaline phosphatase stain employs a stable naphthyl phosphate substrate and fast blue B coupling dye. The red cells are lysed with a pH 10.3 propanediol buffer, and the white blood cells are then stabilized with formalin fixation. For both methods the staining is performed off-line, and the sample is then diluted with propanediol to match the refractive index of the sheath on the H-1 analyzer, before aspiration into the direct cytometry port. A cytogram of scattered versus absorbed light is obtained. The number of cells staining and the intensity of the stain can be quantified from the cytogram.
Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe
2013-08-30
Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less
Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man
2017-01-01
The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonzalez, C R; Muscarsel Isla, M L; Fraunhoffer, N A; Leopardo, N P; Vitullo, A D
2012-08-01
Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.
Musiyenko, Alla; Bitko, Vira; Barik, Sailen
2007-07-01
Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.
DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.
Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro
2014-11-30
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.
DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells
Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro
2014-01-01
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis. PMID:25526032
Saleh, Rosine; Wedeh, Ghaith; Herrmann, Harald; Bibi, Siham; Cerny-Reiterer, Sabine; Sadovnik, Irina; Blatt, Katharina; Hadzijusufovic, Emir; Jeanningros, Sylvie; Blanc, Catherine; Legarff-Tavernier, Magali; Chapiro, Elise; Nguyen-Khac, Florence; Subra, Frédéric; Bonnemye, Patrick; Dubreuil, Patrice; Desplat, Vanessa; Merle-Béral, Hélène; Willmann, Michael; Rülicke, Thomas; Valent, Peter; Arock, Michel
2014-07-03
In systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice. Although several signaling pathways were activated, ROSA(KIT D816V) did not exhibit an increased, but did exhibit a decreased responsiveness to IgE-dependent stimuli. Moreover, NSG mice bearing ROSA(KIT D816V)-derived tumors did not show mediator-related symptoms, and KIT D816V-positive MCs obtained from patients with SM did not show increased IgE-dependent histamine release or CD63 upregulation. Our data show that KIT D816V is a disease-propagating oncoprotein, but it does not activate MCs to release proinflammatory mediators, which may explain why mediator-related symptoms in SM occur preferentially in the context of a coexisting allergy. ROSA(KIT D816V) may provide a valuable tool for studying the pathogenesis of mastocytosis and should facilitate the development of novel drugs for treating SM patients. © 2014 by The American Society of Hematology.
Correard, Florian; Maximova, Ksenia; Estève, Marie-Anne; Villard, Claude; Roy, Myriam; Al-Kattan, Ahmed; Sentis, Marc; Gingras, Marc; Kabashin, Andrei V; Braguer, Diane
2014-01-01
Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs) are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. PMID:25473280
Neurotoxicity of a Fragment of the Amyloid Precursor Associated with Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Yankner, Bruce A.; Dawes, Linda R.; Fisher, Shannon; Villa-Komaroff, Lydia; Oster-Granite, Mary Lou; Neve, Rachael L.
1989-07-01
Amyloid deposition in senile plaques and the cerebral vasculature is a marker of Alzheimer's disease. Whether amyloid itself contributes to the neurodegenerative process or is simply a by-product of that process is unknown. Pheochromocytoma (PC12) and fibroblast (NIH 3T3) cell lines were transfected with portions of the gene for the human amyloid precursor protein. Stable PC12 cell transfectants expressing a specific amyloid-containing fragment of the precursor protein gradually degenerated when induced to differentiate into neuronal cells with nerve growth factor. Conditioned medium from these cells was toxic to neurons in primary hippocampal cultures, and the toxic agent could be removed by immunoabsorption with an antibody directed against the amyloid polypeptide. Thus, a peptide derived from the amyloid precursor may be neurotoxic.
Assembly Properties of Divergent Tubulin Isotypes and Altered Tubulin Polypeptides in Vivo
NASA Astrophysics Data System (ADS)
Gu, Wei
1990-01-01
Mbeta1 is one of the closely related (though distinct) gene products termed isotypes encoded by the mouse beta-tubulin multigene family. These isotypes typically share 95%-98% homology at the amino acid level. However, Mbeta 1 is unusual in its relatively high degree of divergence compared to other beta-tubulin isotypes; furthermore, its tissue-restricted pattern of expression (Mbeta1 is only expressed in hematopoietic tissue) led to speculation that this isotype might be specialized for assembly into unique microtubule structures (such as the marginal band in some erythropoietic cell types). To test if this isotype is capable of coassembly into microtubules in cell types other than those in which it is normally expressed, a method was developed for the generation of an anti-Mbeta1 specific antibody. The Mbeta1 tubulin isotype was introduced into tissue culture cells by transfection and its expression and assembly properties were studied in both transiently transfected cells and stable cell lines using the anti -Mbeta1 specific antibody. The successful expression and coassembly of a 'foreign' tubulin isotype into microtubules in tissue culture cells and the generation of an antibody that can specifically recognize this isotype provided an approach to study the properties of altered beta-tubulin polypeptides in vivo. beta-tubulin synthesis in eukaryotic cells is autoregulated by a posttranscriptional mechanism in which the first four amino acids are responsible for determining the stability of beta -tubulin mRNA. To test if the beta -tubulin amino-terminal regulatory domain also contributes to the capacity of the tubulin monomer to polymerize into microtubules, altered sequences encoding Mbeta 1 but containing deletions encompassing amino acids 2-5 were expressed in HeLa cells. Stable cell lines expressing the altered Mbeta1 isotype were also generated. The assembly properties and stability of these altered Mbeta1 tubulin polypeptides were tested using the anti-Mbeta1 specific antibody. The data suggest that the first four amino acids of beta-tubulin play a regulatory rather than a structural role.
Lübberstedt, Marc; Müller-Vieira, Ursula; Mayer, Manuela; Biemel, Klaus M; Knöspel, Fanny; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Zeilinger, Katrin
2011-01-01
Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research. In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH). Hepatocyte-specific parameters (albumin and urea synthesis, galactose and sorbitol elimination) and the activity of human-relevant cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were assayed in both groups over a period of 14 days subsequently to a two week culture period in differentiated state in case of the HepaRG cells, and compared with those of cryopreserved hepatocytes in suspension. In addition, the inducibility of CYP enzymes and the intrinsic clearances of eleven reference drugs were determined. The results show overall stable metabolic activity of HepaRG cells over the monitored time period. Higher albumin production and galactose/sorbitol elimination rates were observed compared with pHH, while urea production was not detected. CYP enzyme-dependent drug metabolic capacities were shown to be stable over the cultivation time in HepaRG cells and were comparable or even higher (CYP2C9, CYP2D6, CYP3A4) than in pHH, whereas commercially available hepatocytes showed a different pattern The intrinsic clearance rates of reference drugs and enzyme induction of most CYP enzymes were similar in HepaRG cells and pHH. CYP1A2 activity was highly inducible in HepaRG by β-naphthoflavone. In conclusion, the results from this study indicate that HepaRG cells could provide a suitable alternative to pHH in pharmaceutical research and development for metabolism studies such as CYP induction or sub-chronic to chronic hepatotoxicity studies. Copyright © 2010 Elsevier Inc. All rights reserved.
Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan
2018-05-01
The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6 dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria
2012-12-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B.; Fuxe, Jonas; Shoshan, Maria
2012-01-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations. PMID:22954696
Transient transfection of mammalian cells using a violet diode laser
NASA Astrophysics Data System (ADS)
Torres-Mapa, Maria Leilani; Angus, Liselotte; Ploschner, Martin; Dholakia, Kishan; Gunn-Moore, Frank J.
2010-07-01
We demonstrate the first use of the violet diode laser for transient mammalian cell transfection. In contrast to previous studies, which showed the generation of stable cell lines over a few weeks, we develop a methodology to transiently transfect cells with an efficiency of up to ~40%. Chinese hamster ovary (CHO-K1) and human embryonic kidney (HEK293) cells are exposed to a tightly focused 405-nm laser in the presence of plasmid DNA encoding for a mitochondrial targeted red fluorescent protein. We report transfection efficiencies as a function of laser power and exposure time for our system. We also show, for the first time, that a continuous wave laser source can be successfully applied to selective gene silencing experiments using small interfering RNA. This work is a major step towards an inexpensive and portable phototransfection system.
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Therapeutic implication of HER2 in advanced biliary tract cancer
Cha, Yongjun; Ha, Hyerim; Park, Ji Eun; Bang, Ju-Hee; Jin, Mei Hua; Lee, Kyung-Hun; Kim, Tae-Yong; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue
2016-01-01
Currently, there is no validated therapeutic target for biliary tract cancer (BTC). This study aimed to investigate the pre-clinical and clinical implication of HER2 as a therapeutic target in BTC. We established two novel HER2-amplified BTC cell lines, SNU-2670 and SNU-2773, from gallbladder cancer patients. SNU-2670 and SNU-2773 cells were sensitive to trastuzumab, dacomitinib, and afatinib compared with nine HER2-negative BTC cell lines. Dacomitinib and afatinib led to G1 cell cycle arrest in SNU-2773 cells and apoptosis in SNU-2670 cells. Furthermore, dacomitinib, afatinib, and trastuzumab showed synergistic cytotoxicity when combined with some cytotoxic drugs including gemcitabine, cisplatin, paclitaxel, and 5-fluorouracil. In a SNU-2670 mouse xenograft model, trastuzumab demonstrated a good anti-tumor effect as a monotherapy and in combination with gemcitabine increasing apoptosis. In our clinical data, 13.0% of patients with advanced BTC were defined as HER2-positive. Of these, three patients completed HER2-targeted chemotherapy. Two of them demonstrated a partial response, and the other one showed stable disease for 18 weeks. In summary, these pre-clinical and clinical data suggest that HER2 could be a therapeutic target, and that a HER2-targeting strategy should be developed further in patients with HER2-positive advanced BTC. PMID:27517322
NASA Astrophysics Data System (ADS)
Choi, J.; Eom, I. S.; Kim, S. J.; Kwon, Y. W.; Joh, H. M.; Jeong, B. S.; Chung, T. H.
2017-09-01
This paper presents a method to produce a microwave-excited atmospheric-pressure plasma jet (ME-APPJ) with argon. The plasma was generated by a microwave-driven micro-plasma source that uses a two-parallel-wire transmission line resonator (TPWR) operating at around 900 MHz. The TPWR has a simple structure and is easier to fabricate than coaxial transmission line resonator (CTLR) devices. In particular, the TPWR can sustain more stable ME-APPJ than the CTLR can because the gap between the electrodes is narrower than that in the CTLR. In experiments performed with an Ar flow rate from 0.5 to 8.0 L.min-1 and an input power from 1 to 6 W, the rotational temperature was determined by comparing the measured and simulated spectra of rotational lines of the OH band and the electron excitation temperature determined by the Boltzmann plot method. The rotational temperature obtained from OH(A-X) spectra was 700 K to 800 K, whereas the apparent gas temperature of the plasma jet remains lower than ˜325 K, which is compatible with biomedical applications. The electron number density was determined using the method based on the Stark broadening of the hydrogen Hβ line, and the measured electron density ranged from 6.5 × 1014 to 7.6 × 1014 cm-3. TPWR ME-APPJ can be operated at low flows of the working gas and at low power and is very stable and effective for interactions of the plasma with cells.
Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer.
Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong
2017-10-01
The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer.
Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer
Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong
2017-01-01
The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer. PMID:28943918
Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo; ...
2011-01-01
Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximatelymore » 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.« less
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
Veciana, Jaume; Ardizzone, Antonio; Blasi, Davide; Grimaldi, Natascia; Sala, Santi; Ratera, Imma; Vona, Danilo; Rosspeintner, Arnulf; Punzi, Angela; Altamura, Emiliano; Vauthey, Eric; Farinola, Gianluca M; Ventosa, Nora
2018-06-05
Diketopyrrolopyrroles (DPPs) have recently attracted large interest as highly bright and photostable red-emitting molecules. However, their tendency to form non-fluorescent aggregates in water via the so-called Aggregation Caused Quenching (ACQ) effect is a major issue that limits their application under the microscope. In this work, two DPP molecules have been incorporated in the membrane of highly stable and water-soluble Quatsomes (QS, nanovesicles made by surfactants and sterols), allowing their nanostructuration in water limiting at the same time the ACQ effect. The obtained fluorescent organic nanoparticles (FONs) showed superior structural homogeneity along with long-time colloidal and optical stability. A thorough one- (1P) and two-photon (2P) fluorescence characterization revealed the promising photophysical features of these fluorescent nanovesicles, which showed a high 1P and 2P brightness. Finally, the fluorescent QSs were used for the in vitro bioimaging of Saos-2 osteosarcoma cell lines, demonstrating their potential as nanomaterials for bioimaging applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process performance and product quality in an integrated continuous antibody production process.
Karst, Daniel J; Steinebach, Fabian; Soos, Miroslav; Morbidelli, Massimo
2017-02-01
Continuous manufacturing is currently being seriously considered in the biopharmaceutical industry as the possible new paradigm for producing therapeutic proteins, due to production cost and product quality related benefits. In this study, a monoclonal antibody producing CHO cell line was cultured in perfusion mode and connected to a continuous affinity capture step. The reliable and stable integration of the two systems was enabled by suitable control loops, regulating the continuous volumetric flow and adapting the operating conditions of the capture process. For the latter, an at-line HPLC measurement of the harvest concentration subsequent to the bioreactor was combined with a mechanistic model of the capture chromatographic unit. Thereby, optimal buffer consumption and productivity throughout the process was realized while always maintaining a yield above the target value of 99%. Stable operation was achieved at three consecutive viable cell density set points (20, 60, and 40 × 10 6 cells/mL), together with consistent product quality in terms of aggregates, fragments, charge isoforms, and N-linked glycosylation. In addition, different values for these product quality attributes such as N-linked glycosylation, charge variants, and aggregate content were measured at the different steady states. As expected, the amount of released DNA and HCP was significantly reduced by the capture step for all considered upstream operating conditions. This study is exemplary for the potential of enhancing product quality control and modulation by integrated continuous manufacturing. Biotechnol. Bioeng. 2017;114: 298-307. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA Damaging Agents
Vasilevskaya, Irina A.; Selvakumaran, Muthu; Hierro, Lucia Cabal; Goldstein, Sara R.; Winkler, Jeffrey D.; O'Dwyer, Peter J.
2015-01-01
Purpose We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. Experimental design In a panel of cell lines we investigated effects of pharmacological and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38 and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. Results Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, though synergy is not always hypoxia-specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (non-responsive) lines. In HT29 and SW620 cells CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, where tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. Conclusions These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic. PMID:26023085
Panet, François; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Day, Robert
2017-08-01
Breast cancer is the most frequent and deadly malignancy in women worldwide. Despite national screening programs combined with new treatments relapse rate remain high and new therapies are needed. From previous work, we identified PACE4, a member of the proprotein convertase (PCs) family of endoproteases, as a novel therapeutic target in prostate cancer. In the present study we asked the question if PACE4 could also be a potential target in breast cancer. In clinical samples of breast adenocarcinoma, we observed a specific overexpression of PACE4 in the estrogen-receptor (ER) positive subtype. We therefore looked for a breast cancer cell line model which would be representative and thus focused on the ZR-75-1 since it both expresses PACE4 and is estrogen-receptor positive. We compared stable knockdowns of furin, PACE4 and PC7 in the estrogen-receptor-positive cell line ZR-75-1 to evaluate their respective contribution to cell growth and tumor progression. PACE4 was the only PC displaying an impact on cell growth. A PACE4 peptide-based inhibitor (C23) was tested and shown to decrease proliferation of ZR-75-1 cells in cell based assays. C23 also had potent effects of tumor progression in vivo on xenografts of the ZR-75-1 cell line in athymic nude mice. Thus, PACE4-silencing and systemic administration of a PACE4 inhibitor resulted in hindered tumor progression with reduction in proliferative indices and increased cell quiescence assessed with biomarkers. Our results suggest that PACE4 is a promising target for estrogen-receptor-positive breast cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.
Majumder, Mousumi; Rodriguez-Torres, Mauricio; Torres-Garcia, Jose; Wiebe, Ryan; Timoshenko, Alexander V.; Bhattacharjee, Rabindra N.; Chambers, Ann F.; Lala, Peeyush K.
2012-01-01
Introduction and Objectives Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. Results A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells. Conclusion Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype. PMID:22545097
Quinolone-based HDAC inhibitors.
Balasubramanian, Gopalan; Kilambi, Narasimhan; Rathinasamy, Suresh; Rajendran, Praveen; Narayanan, Shridhar; Rajagopal, Sridharan
2014-08-01
HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a-4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM.
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Leung, Thomas Ho-Yin; Tang, Hermit Wai-Man; Siu, Michelle Kwan-Yee; Chan, David Wai; Chan, Karen Kar-Loen; Cheung, Annie Nga-Yin; Ngan, Hextan Yuen-Sheung
2018-02-01
Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chishti, Arif A.; Hellweg, Christine E.; Berger, Thomas; Baumstark-Khan, Christa; Feles, Sebastian; Kätzel, Thorben; Reitz, Günther
2015-01-01
The radiation risk assessment for long-term space missions requires knowledge on the biological effectiveness of different space radiation components, e.g. heavy ions, on the interaction of radiation and other space environmental factors such as microgravity, and on the physical and biological dose distribution in the human body. Space experiments and ground-based experiments at heavy ion accelerators require fast and reliable test systems with an easy readout for different endpoints. In order to determine the effect of different radiation qualities on cellular proliferation and the biological depth dose distribution after heavy ion exposure, a stable human cell line expressing a novel fluorescent protein was established and characterized. tdTomato, a red fluorescent protein of the new generation with fast maturation and high fluorescence intensity, was selected as reporter of cell proliferation. Human embryonic kidney (HEK/293) cells were stably transfected with a plasmid encoding tdTomato under the control of the constitutively active cytomegalovirus (CMV) promoter (ptdTomato-N1). The stably transfected cell line was named HEK-ptdTomato-N1 8. This cytotoxicity biosensor was tested by ionizing radiation (X-rays and accelerated heavy ions) exposure. As biological endpoints, the proliferation kinetics and the cell density reached 100 h after irradiation reflected by constitutive expression of the tdTomato were investigated. Both were reduced dose-dependently after radiation exposure. Finally, the cell line was used for biological weighting of heavy ions of different linear energy transfer (LET) as space-relevant radiation quality. The relative biological effectiveness of accelerated heavy ions in reducing cellular proliferation peaked at an LET of 91 keV/μm. The results of this study demonstrate that the HEK-ptdTomato-N1 reporter cell line can be used as a fast and reliable biosensor system for detection of cytotoxic damage caused by ionizing radiation.
Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia.
Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel
2013-04-01
Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4-h hypoxic incubation reduced NHE-flux reversibly with a time-constant of 1-2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48-h hypoxia, inhibition of NHE-flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid-extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Bin; Qin, Hao; Wang, Yuejian; Chen, Weixiong; Luo, Jie; Zhu, Xiaolin; Wen, Weiping; Lei, Wenbin
2014-09-01
The aim of the present study was to explore the effect of DJ-1-mediated PI3K/AKT/mTOR pathway on the proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous cell SNU-46, through stable transfection and overexpression of the DJ-1 gene. Retrovirus carrying DJ-1 gene was used to stabilize transfected human laryngeal squamous carcinoma SNU-46 cell line, and monoclonal cell line of stably overexpressed DJ-1 protein was screened out by G418. DJ-1 protein expression was determined by western blotting, and changes of p-AKT, p-mTOR and PTEN protein content were detected, followed by the detection of changes in proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous carcinoma cell line with stably transfected DJ-1 protein overexpression by flow cytometry, CCK-8 method and Transwell. We successfully constructed a laryngeal squamous carcinoma cell line of stably overexpressed DJ-1 protein and termed it SNU-46-DJ-1. After overexpression of DJ-1 protein, the levels of PTEN expression in laryngeal squamous cell SNU-46 decreased and p-AKT and p-mTOR protein expression levels increased. Compared to the untreated SNU-46 cells, the proliferation rate of SNU-46-DJ-1 cells increased (0.834±0.336 vs. 0.676±0.112; p<0.001); invasiveness was enhanced (165.7±13.6 vs. 100.0±17.4; p=0.001), the migration ability was enhanced (207.3±13.1 vs. 175.3±13.3; p=0.036), and the apoptosis rate decreased (3.533±5.167 vs. 16.397±5.447%; p=0.019). The overexpression of DJ-1 protein in laryngeal squamous carcinoma SNU-46 cells can accelerate proliferation rate, increase the invasion and migration capacity, and reduce apoptosis, by activating the PI3K/AKT/mTOR pathway.
Li, Yaping; Xu, Tao; Chen, Xiaomei; Lin, Shin; Cho, Michael; Sun, Dong; Yang, Mengsu
2017-03-01
Tumor metastasis is the primary cause of cancer death. Numerous studies have demonstrated the electrotactic responses of various cancer cell types, and suggested its potential implications in metastasis. In this study, we used a microfluidic device to emulate endogenous direct current electric field (dcEF) environment, and studied the electrotactic migration of non-small cell lung cancer cell lines (H460, HCC827, H1299, and H1975) and the underlying mechanisms. These cell lines exhibited greatly different response in applied dcEFs (2-6 V/cm). While H460 cells (large cell carcinoma) showed slight migration toward cathode, H1299 cells (large cell carcinoma) showed increased motility and dcEF-dependent anodal migration with cell reorientation. H1975 cells (adenocarcinoma) showed dcEF-dependent cathodal migration with increased motility, and HCC827 cells (adenocarcinoma) responded positively in migration speed and reorientation but minimally in migrating directions to dcEF. Activation of MAPK and PI3K signaling pathways was found to be associated with the realignment and directed migration of lung cancer cells. In addition, both Ca 2+ influx through activated stretch-activated calcium channels (SACCs) (but not voltage-gated calcium channels, VGCCs) and Ca 2+ release from intracellular storage were involved in lung cancer cell electrotactic responses. The results demonstrated that the microfluidic device provided a stable and controllable microenvironment for cell electrotaxis study, and revealed that the electrotactic responses of lung cancer cells were heterogeneous and cell-type dependent, and multiple signals contributed to lung cancer cells electrotaxis.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.
2017-01-01
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793
NASA Astrophysics Data System (ADS)
Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.
2014-07-01
A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.
Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka
2017-01-01
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.
Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef
2017-01-01
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines. PMID:29272308
NASA Astrophysics Data System (ADS)
Zhao, Y.; Shao, G.; Piao, C.; Hei, T.
Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate
Armour, Kathryn L; Smith, Cheryl S; Clark, Michael R
2010-03-31
The efficacy of a therapeutic IgG molecule may be as dependent on the optimisation of the constant region to suit its intended indication as on the selection of its variable regions. A crucial effector function to be maximised or minimised is antibody-dependent cell-mediated cytotoxicity by natural killer cells. Traditional assays of ADCC activity suffer from considerable inter-donor and intra-donor variability, which makes the measurement of antibody binding to human FcgammaRIIIa, the key receptor for ADCC, an attractive alternative method of assessment. Here, we describe the development of cell lines and assays for this purpose. The transmembrane receptor, FcgammaRIIIa, requires co-expression with signal transducing subunits to prevent its degradation, unlike the homologous receptor FcgammaRIIIb that is expressed as a GPI-anchored molecule. Therefore, to simplify the production of cell lines as reliable assay components, we expressed FcgammaRIIIa as a GPI-anchored molecule. Separate, stable CHO cell lines that express either the 158F or the higher-affinity 158V allotype of FcgammaRIIIa were isolated using fluorescence-activated cell sorting. The identities of the expressed receptors were confirmed using a panel of monoclonal antibodies that distinguish between subclasses and allotypes of FcgammaRIII and the cell lines were shown to have slightly higher levels of receptor than FcgammaRIII-positive peripheral blood mononuclear cells. Because the affinity of FcgammaRIIIa for IgG is intermediate amongst the receptors that bind IgG, we were able to use these cell lines to develop flow cytometric assays to measure the binding of both complexed and monomeric immunoglobulin. Thus, by choosing the appropriate method, weakly- or strongly-binding IgG can be efficiently compared. We have quantified the difference in the binding of wildtype IgG1 and IgG3 molecules to the two functional allotypes of the receptor and report that the FcgammaRIIIa-158V-antibody interaction is 3- to 4-fold stronger that the interaction with FcgammaRIIIa-158F. Overall, these robust assays should be valuable for batch-testing clinical material as well as providing tools for improving the design of therapeutic IgG. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.
2017-09-01
It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast cancer overexpressing Her-2/neu compared to the control group. Conclusion: The preclinical studies demonstrated a high in vitro stability of the study compound, as well as its accumulation in the cell group overexpressing Her-2/neu.
Su, Jing; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Fang, Wei-gang; Zheng, Jie
2007-10-01
To investigate the effects of tumor metastasis suppressor gene 1 (TMSG-1) overexpression on the proliferation, invasion and apoptosis of breast cancer cells and to determine possible correlations of TMSG-1 and metastasis of breast cancer. Full-length human TMSG-1 coding sequences were cloned into plasmid pcDNA3.0-FLAG. The recombinant plasmids constructs were transfeced into MDA-MB-231, a highly malignant breast cancer cell line. Parental, vector-only stable transfectant and TMSG-1 stable transfectant clones were tested by MTT, soft agar colony formation and Boyden chamber assays. At twenty-four hours and forty-eight hours post transient transfection, double staining with Annexin-V-FITC and PI were employed to distinguish apoptotic cells from living cells by flow cytometry analysis. Three TMSG-1 overexpression clones were selected. Compared with the control cells, TMSG-1 overexpression MDA-MB-231 cells showed strong inhibition of proliferation and decreased clonogenicity in soft agar (P<0.05). Transfection of TMSG-1 into MDA-MB-231 cells significantly suppressed the cell invasion ability in vitro (decreased numbers of cells trespassing the matrigel in three experiments: 72.3+/-8.1, 85.0+/-4.2, and 73.5+/-7.8) in comparison with nave cells without transfection (187.5+/-2.1) and cells transfected with the control vector (162.3+/-6.8) (P<0.01). Transient transfection of TMSG-1 into MDA-MB-231 cells could promote cell apoptosis at 24 and 48 hours after transfection (P<0.05). TMSG-1 protein may have multiple functions in the regulation of proliferation, invasion and apoptosis of metastatic breast cancer cells, likely as a metastasis suppressor gene.
Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151.
Shiomi, Takayuki; Inoki, Isao; Kataoka, Fumio; Ohtsuka, Takashi; Hashimoto, Gakuji; Nemori, Ryoichi; Okada, Yasunori
2005-12-01
Matrix metalloproteinase-7 (MMP-7) (also known as matrilysin-1) is secreted as a proenzyme (proMMP-7) and plays a key role in the degradation of various extracellular matrix (ECM) and non-ECM molecules after activation. To identify the binding proteins related to proMMP-7 activation, a human lung cDNA library was screened by yeast two-hybrid system using proMMP-7 as bait. We identified a candidate molecule CD151, which is a member of the transmembrane 4 superfamily. Complex formation of proMMP-7 with CD151 was demonstrated by immunoprecipitation of the molecules from CaR-1 cells, a human rectal carcinoma cell line, expressing both proMMP-7 and CD151, and CD151 stable transfectants incubated with proMMP-7. Yeast two-hybrid assays using deletion mutants of proMMP-7 and CD151 suggested an interaction between the propeptide of proMMP-7 and the COOH-terminal extracellular loop of CD151. The binding activity of (125)I-labeled proMMP-7 to CD151 on the cell membranes was shown with CD151 stable transfectants. Laser-scanning confocal microscopy demonstrated that proMMP-7 colocalizes with CD151 on the cell membranes of CD151 stable transfectants and CaR-1 cells. In situ zymography using crosslinked carboxymethylated transferrin, a substrate of MMP-7, demonstrated proteinase activity on and around CD151 stable transfectants and CaR-1 cells, while the activity was abolished by their treatment with MMP inhibitors, anti-MMP-7 antibody or anti-CD151 antibody. In human lung adenocarcinoma tissues, colocalization of MMP-7 and CD151 was demonstrated on the carcinoma cells. Metalloproteinase activity was present in these tissues and could be inhibited by antibodies to MMP-7 or CD151. These data demonstrate for the first time that proMMP-7 is captured and activated on the cell membranes through interaction with CD151, and suggest the possibility that similar to the MT1-MMP/MMP-2 system, MMP-7 is involved in the pericellular activation mechanism mediated by CD151, a crucial step in proteolysis on the cell membranes under various pathophysiological conditions including cancer invasion and metastasis.
Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes
Sun, Ning; Lee, Andrew; Wu, Joseph C.
2013-01-01
Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890
Torres, Sofía; Garcia-Palmero, Irene; Bartolomé, Rubén A; Fernandez-Aceñero, María Jesús; Molina, Elena; Calviño, Eva; Segura, Miguel F; Casal, J Ignacio
2017-05-01
The process of liver colonization in colorectal cancer remains poorly characterized. Here, we addressed the role of microRNA (miRNA) dysregulation in metastasis. We first compared miRNA expression profiles between colorectal cancer cell lines with different metastatic properties and then identified target proteins of the dysregulated miRNAs to establish their functions and prognostic value. We found that 38 miRNAs were differentially expressed between highly metastatic (KM12SM/SW620) and poorly metastatic (KM12C/SW480) cancer cell lines. After initial validation, we determined that three miRNAs (miR-424-3p, -503, and -1292) were overexpressed in metastatic colorectal cancer cell lines and human samples. Stable transduction of non-metastatic cells with each of the three miRNAs promoted metastatic properties in culture and increased liver colonization in vivo. Moreover, miR-424-3p and miR-1292 were associated with poor prognosis in human patients. A quantitative proteomic analysis of colorectal cancer cells transfected with miR-424-3p, miR-503, or miR-1292 identified alterations in 149, 129, or 121 proteins, respectively, with an extensive overlap of the target proteins of the three miRNAs. Importantly, down-regulation of two of these shared target proteins, CKB and UBA2, increased cell adhesion and proliferation in colorectal cancer cells. The capacity of distinct miRNAs to regulate the same mRNAs boosts the capacity of miRNAs to regulate cancer metastasis and underscores the necessity of targeting multiple miRNAs for effective cancer therapy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-14
Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-01
Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816
Hu, Shijie; Li, Bing; Shen, Xuefeng; Zhang, Rui; Gao, Dakuan; Guo, Qingdong; Jin, Yan; Fei, Zhou
2016-04-01
The present study aimed to investigate the feasibility of using ecto-mesenchymal stem cell (EMSC)-derived dendritic cells (DCs) for glioma immunotherapy following infection by a recombinant adenovirus containing the melanoma-associated antigen D4a (MAGE-D4a) gene. The ex vivo cultured EMSCs were infected by the adenoviral plasmid containing MAGE-D4a (pAd/MAGE-D4a). Efficiency of transfection was evaluated through the detection of green fluorescent protein-marked MAGE-D4a. The MAGE-EMSCs were induced to differentiate into DCs, termed as MAGE-EMSCs-DCs. The morphology was subsequently analyzed under a microscope, and methyl thiazolyl tetrazolium (MTT) and interferon-γ (IFN-γ) assays were performed to analyze the cytotoxicity of the MAGE-EMSC-DCs on the human glioma U251 cell line. Following purification by magnetic-activated cell sorting, the EMSCs grew into swirls, with a long spindle shape and were fibroblast-like. The gene transfected with recombinant adenovirus vectors maintained high and stable expression levels of MAGE-D4a, and its efficiency was increased in a multiplicity of infection-dependent manner. The results of the MTT assay indicated that the T cells, primed by the recombinant MAGE-D4a-infected EMSC-DCs in vitro , recognized MAGE-D4a-expressing tumor cell lines in a human leukocyte antigen class I-restricted manner, and evoked a higher cytotoxic T cell (CTL) response. The CTL response induced by the MAGE-EMSC-DCs, co-cultured with the U251 cells for 24 h, produced 765.0 pg/ml IFN-γ, which was significantly greater when compared to the control wells. T lymphocytes stimulated by MAGE-EMSC-DCs evoke a higher CTL response to human glioma cell lines, and may serve as a promising therapeutic modality for the treatment of MAGE-D4a-expressing glioma.
1994-01-01
The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death
2015-12-20
We modulated the final concentrations of 6- APA and IPTG in droplets by varying their concentrations in the injection phase. At 25µg/ml 6- APA , the...in comparison, when the population was induced by 1mM IPTG, the cells grew to a higher density; this is due to the degradation of 6- APA by BlaM (red...line in Figure 4A). Similarly, when the concentration of 6- APA was increased to Surfactant)molecules) Stable)droplets) +) +) Droplet)injec6on
Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag
2002-10-04
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.
Establishment and evaluation of a stable steroidogenic caprine luteal cell line.
Li, Wei; Xu, Xingang; Huang, Yong; Li, Zhaocai; Yu, Gaoshui; Wang, Zhisheng; Ding, Li; Tong, Dewen
2012-07-15
Many physiological, biological, pharmacologic, and toxicologic events and compounds affect the function of Saanen dairy goat luteal cells, resulting in implantation failure or early embryonic loss. Although primary luteal cell cultures have been used, their finite lifespan precludes assessment of long-term effects. In the present study, primary caprine luteal cells (CLCs) were immortalized through transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expression of hTERT and telomerase activity were evaluated in transduced CLCs (hTERT-CLCs). In this study, these cells steadily expressed hTERT gene and exhibited higher telomerase activity at Passages 30 and 50. The hTERT-CLCs at Passages 30 and 50 expressed genes encoding key proteins, enzymes and receptors inherent to normal luteal cells, e.g., steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and LH-receptor (LH-R). In addition, immortalized caprine luteal cells produced detectable quantities of progesterone in response to 8-bromo-cAMP (8-Br-cAMP) or 22(R)-hydroxycholesterol (22R-HC) stimulation. Furthermore, this cell line appeared to proliferate more quickly than control cells, although no neoplastic transformation occurred either in vivo or in vitro. We concluded the immortalized CLCs by hTERT retained their original characteristics and may provide a useful model to study luteal cell functions. Copyright © 2012 Elsevier Inc. All rights reserved.
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete
2018-06-11
CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.
Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration
NASA Astrophysics Data System (ADS)
Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid
2016-09-01
Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.
Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo
2014-12-01
The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.
Xie, Kunling; Zhi, Xiaofei; Tang, Jie; Zhu, Yi; Zhang, Jingjing; Li, Zheng; Tao, Jinqiu; Xu, Zekuan
2014-05-01
MUC4/Y, the transcript variant 4 of MUC4, lacks exon 2 as compared with the transcript variant 1 of MUC4. To date, direct evidence for the function of MU4/Y remains to be reported. Previous studies based their hypotheses regarding the function of MUC4/Y on the characteristic structure domains of this variant. The aim of the present study was to investigate the specific function of MUC4/Y. The pancreatic cancer cell line MIA PaCa-2 with low MUC4/Y expression was used to establish a stable cell model of MUC4/Y upregulation using a lentivirus vector system. Results showed that MUC4/Y anchored on the cytomembrane and affected cell morphology and cell cycle. Functional analyses indicated that MUC4/Y upregulation slightly potentiated cell proliferation and significantly suppressed apoptosis both in vivo and in vitro. Further studies revealed that the JNK and AKT signalling pathways were activated. Meanwhile, MUC4/Y upregulation elicited minimal effect on the phosphorylation level of HER2, a membrane partner of MUC4. These results suggest that MUC4/Y promotes tumour progression through its anti-apoptotic and weak mitogenic effect on MIA PaCa-2 cells.
Actin stress in cell reprogramming
Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie
2014-01-01
Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450
Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger
2004-12-15
A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.
Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.
2014-01-01
Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the μ2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/μ2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of μ2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755
Joehanes, Roby; Johnson, Andrew D.; Barb, Jennifer J.; Raghavachari, Nalini; Liu, Poching; Woodhouse, Kimberly A.; O'Donnell, Christopher J.; Munson, Peter J.
2012-01-01
Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL. PMID:22045913
Masters, Gregory A.; Temin, Sarah; Azzoli, Christopher G.; Giaccone, Giuseppe; Baker, Sherman; Brahmer, Julie R.; Ellis, Peter M.; Gajra, Ajeet; Rackear, Nancy; Schiller, Joan H.; Smith, Thomas J.; Strawn, John R.; Trent, David; Johnson, David H.
2015-01-01
Purpose To provide evidence-based recommendations to update the American Society of Clinical Oncology guideline on systemic therapy for stage IV non–small-cell lung cancer (NSCLC). Methods An Update Committee of the American Society of Clinical Oncology NSCLC Expert Panel based recommendations on a systematic review of randomized controlled trials from January 2007 to February 2014. Results This guideline update reflects changes in evidence since the previous guideline. Recommendations There is no cure for patients with stage IV NSCLC. For patients with performance status (PS) 0 to 1 (and appropriate patient cases with PS 2) and without an EGFR-sensitizing mutation or ALK gene rearrangement, combination cytotoxic chemotherapy is recommended, guided by histology, with early concurrent palliative care. Recommendations for patients in the first-line setting include platinum-doublet therapy for those with PS 0 to 1 (bevacizumab may be added to carboplatin plus paclitaxel if no contraindications); combination or single-agent chemotherapy or palliative care alone for those with PS 2; afatinib, erlotinib, or gefitinib for those with sensitizing EGFR mutations; crizotinib for those with ALK or ROS1 gene rearrangement; and following first-line recommendations or using platinum plus etoposide for those with large-cell neuroendocrine carcinoma. Maintenance therapy includes pemetrexed continuation for patients with stable disease or response to first-line pemetrexed-containing regimens, alternative chemotherapy, or a chemotherapy break. In the second-line setting, recommendations include docetaxel, erlotinib, gefitinib, or pemetrexed for patients with nonsquamous cell carcinoma; docetaxel, erlotinib, or gefitinib for those with squamous cell carcinoma; and chemotherapy or ceritinib for those with ALK rearrangement who experience progression after crizotinib. In the third-line setting, for patients who have not received erlotinib or gefitinib, treatment with erlotinib is recommended. There are insufficient data to recommend routine third-line cytotoxic therapy. Decisions regarding systemic therapy should not be made based on age alone. Additional information can be found at http://www.asco.org/guidelines/nsclc and http://www.asco.org/guidelineswiki. PMID:26324367
[Preliminary study on the effect of climate factors on pollen fertility in Platycodon grandiflorum].
Shi, Feng-hua; Zhang, Lei; Wei, Jian-he
2011-06-01
To have a better utilization of male sterile lines in heterozygotic breeding of Platycodon grandiflorum and provide theoretical basis for Platycodon grandiflorum hyboridization. The pollen viability was detected by the means of aceto carmine dyeing, and the correlation analysis between climate factors of each anther development stage and pollen viability was estimated by Pearson coefficients. Pollen viability variation range of male-sterile line GP1BC1-12 was 0% - 27%. That of male-sterile line GP12BC4-10 and chifeng germplasm was respectively 1.3% - 17.9% and 75.9% - 98.5%. Further linear regression analysis between climate factors of each anther development stage and pollen viability indicated that the degree of sensitivity varied with different germplasm of Platycodon grandiflorum. Among three germplasm, male sterile line GP12BC4-10 was the most stable one to the climate factors, and the male-sterile line GP1BC1-12 was the most sensitive one. Temperature and solar irradiation are the most important climate factors to affect pollen viability in Platycodon grandflorum, and microspore mother cells stage (MMC) is its sensetive stage.
miR-425 inhibits melanoma metastasis through repression of PI3K-Akt pathway by targeting IGF-1.
Liu, Pei; Hu, Yaotian; Ma, Ling; Du, Min; Xia, Lin; Hu, Zhensheng
2015-10-01
miR-425 is a potential tumor suppressor in cancer, but its role in melanoma is still unknown. We aim to investigate miR-425 expression in melanoma tissues and cell lines. Next, cell proliferation, cell cycle, apoptosis and metastasis will be studied using lentivirus-mediated gain-of-function studies. The predicted results are stable miR-425 inhibits cell proliferation and metastasis and induced cell apoptosis. It is predicted that IGF-1 is a potential target gene of miR-495 by bioinformatics analysis. Then luciferase assay analysis identifies IGF-1 as a new direct target gene of miR-425 and miR-425 inhibits melanoma cancer progression via IGF-1. Collectively, our findings suggested that miR-425 may function as a tumor suppressor in melanoma by targeting IGF-1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ylinen, Laura M. J.; Schaller, Torsten; Price, Amanda; Fletcher, Adam J.; Noursadeghi, Mahdad; James, Leo C.; Towers, Greg J.
2009-01-01
Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration. PMID:19073742