GPC-Based Stable Reconfigurable Control
NASA Technical Reports Server (NTRS)
Soloway, Don; Shi, Jian-Jun; Kelkar, Atul
2004-01-01
This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.
Passive band-gap reconfiguration born from bifurcation asymmetry.
Bernard, Brian P; Mann, Brian P
2013-11-01
Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.
Reconfiguration control system for an aircraft wing
NASA Technical Reports Server (NTRS)
Wakayama, Sean R. (Inventor)
2008-01-01
Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Reconfiguration of a smart surface using heteroclinic connections
McInnes, Colin R.; Xu, Ming
2017-01-01
A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191
[Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology
NASA Technical Reports Server (NTRS)
Tesar, Delbert
1997-01-01
This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical.
Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.
He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian
2018-04-01
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.
A reconfigurable cryogenic platform for the classical control of quantum processors
NASA Astrophysics Data System (ADS)
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
A reconfigurable cryogenic platform for the classical control of quantum processors.
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo
2017-04-01
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Using instability to reconfigure smart structures in a spring-mass model
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; McInnes, Colin R.
2017-07-01
Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.
Deterministic Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.
1998-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Reconfigurable Control Design for the Full X-33 Flight Envelope
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.
2001-01-01
A reconfigurable control law for the full X-33 flight envelope has been designed to accommodate a failed control surface and redistribute the control effort among the remaining working surfaces to retain satisfactory stability and performance. An offline nonlinear constrained optimization approach has been used for the X-33 reconfigurable control design method. Using a nonlinear, six-degree-of-freedom simulation, three example failures are evaluated: ascent with a left body flap jammed at maximum deflection; entry with a right inboard elevon jammed at maximum deflection; and landing with a left rudder jammed at maximum deflection. Failure detection and identification are accomplished in the actuator controller. Failure response comparisons between the nominal control mixer and the reconfigurable control subsystem (mixer) show the benefits of reconfiguration. Single aerosurface jamming failures are considered. The cases evaluated are representative of the study conducted to prove the adequate and safe performance of the reconfigurable control mixer throughout the full flight envelope. The X-33 flight control system incorporates reconfigurable flight control in the existing baseline system.
Full Envelope Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.; Lee, Seung-Hee (Technical Monitor)
2001-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. An Off-line Nonlinear General Constrained Optimization (ONCO) approach was used for the reconfigurable X-33 control design method. Three example failures are shown using a high fidelity 6 DOF simulation (case I ascent with a left body flap jammed at 25 deg.; case 2 entry with a right inboard elevon jam at 25 deg.; and case 3, landing (TAEM) with a left rudder jam at -30 deg.) Failure comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Evolutionary Technique for Automated Synthesis of Electronic Circuits
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)
2003-01-01
A method for evolving a circuit comprising configuring a plurality of transistors using a plurality of reconfigurable switches so that each of the plurality of transistors has a terminal coupled to a terminal of another of the plurality of transistors that is controllable by a single reconfigurable switch. The plurality of reconfigurable switches being controlled in response to a chromosome pattern. The plurality of reconfigurable switches may be controlled using an annealing function. As such, the plurality of reconfigurable switches may be controlled by selecting qualitative values for the plurality of reconfigurable switches in response to the chromosomal pattern, selecting initial quantitative values for the selected qualitative values, and morphing the initial quantitative values. Typically, subsequent quantitative values will be selected more divergent than the initial quantitative values. The morphing process may continue to partially or to completely polarize the quantitative values.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot more time to make longer range decisions. This paper presents a baseline design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Non-reconfigured and reconfigured control laws are then evaluated, both analytically and by means of a digital airplane simulation, for three individual control element failures (stabilizer, elevator, spoilers). The simulation results are used to evaluate the effectiveness of the control reconfiguration on tracking ability during the approach and landing phase of flight with severe windshear and turbulence disturbing the airplane dynamics.
Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.
2009-01-01
The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.
Reconfigurable Control Design with Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.
2007-01-01
The viewgraphs present background information about reconfiguration control design, design methods used for paper, control failure survivability results, and results and time histories of tests. Topics examined include control reconfiguration, general information about adaptive controllers, model reference adaptive control (MRAC), the utility of neural networks, radial basis functions (RBF) neural network outputs, neurons, and results of investigations of failures.
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
Control of nonlinear flexible space structures
NASA Astrophysics Data System (ADS)
Shi, Jianjun
With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of parametric uncertainties and input disturbances. Finally, the conclusions are made with regard to the efficacy of these controllers and potential directions for future research.
Reconfigurable water-substrate based antennas with temperature control
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Abbosh, Amin
2017-06-01
We report an unexplored reconfigurable antenna development technique utilizing the concept of temperature variable electromagnetic properties of water. By applying this physical phenomena, we present highly efficient water-substrate based antennas whose operating frequencies can be continuously tuned. While taking the advantage of cost-effectiveness of liquid water, this dynamic tuning technique also alleviates the roadblocks to widespread use of reconfigurable liquid-based antennas for VHF and UHF bands. The dynamic reconfigurability is controlled merely via external thermal stimulus and does not require any physical change of the resonating structure. We demonstrate dynamic control of omnidirectional and directional antennas covering more than 14 and 12% fractional bandwidths accordingly, with more than 85% radiation efficiency. Our temperature control approach paves the intriguing way of exploring dynamic reconfigurability of water-based compact electromagnetic devices for non-static, in-motion and low-cost real-world applications.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
Application of precomputed control laws in a reconfigurable aircraft flight control system
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.
1989-01-01
A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Reconfiguration and Base Perimeter Fence Relocation in area A Wright-Patterson AF Base, Ohio, Final Environmental..., 2012, the United States Air Force signed the ROD for the Entry Control Reconfiguration and Base Perimeter Fence Relocation in Area A Wright-Patterson Air Force Base (WPAFB), Ohio Final Environmental...
Reconfiguration of broad leaves into cones
NASA Astrophysics Data System (ADS)
Miller, Laura
2013-11-01
Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.
Optimal Redundancy Management in Reconfigurable Control Systems Based on Normalized Nonspecificity
NASA Technical Reports Server (NTRS)
Wu, N.Eva; Klir, George J.
1998-01-01
In this paper the notion of normalized nonspecificity is introduced. The nonspecifity measures the uncertainty of the estimated parameters that reflect impairment in a controlled system. Based on this notion, a quantity called a reconfiguration coverage is calculated. It represents the likelihood of success of a control reconfiguration action. This coverage links the overall system reliability to the achievable and required control, as well as diagnostic performance. The coverage, when calculated on-line, is used for managing the redundancy in the system.
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
Reconfigurable Pointing Control for High Resolution Space Spectroscopy
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey
1997-01-01
In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.
Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric
2017-06-01
This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.
Customization of user interfaces to reduce errors and enhance user acceptance.
Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram
2014-03-01
Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Reliability Assessment of Reconfigurable Flight Control Systems Using Sure and Assist
NASA Technical Reports Server (NTRS)
Wu, N. Eva
1992-01-01
This paper presents a reliability assessment of Reconfigurable Flight Control Systems using Semi-Markov Unreliability Range Evaluator (SURE) and Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST).
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Facilitating preemptive hardware system design using partial reconfiguration techniques.
Dondo Gazzano, Julio; Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration.
Facilitating Preemptive Hardware System Design Using Partial Reconfiguration Techniques
Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration. PMID:24672292
Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy
2001-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jostmeier, Thorben; Betz, Markus; Zimmer, Johannes
We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.
Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.
Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel
2017-05-23
Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.
Reconfigurable Flight Control Designs With Application to the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zhenglu
1999-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang
2017-02-28
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures
2016-01-05
reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff
Reconfigurability of behavioural specifications for manufacturing systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus Werner
2017-12-01
Reconfigurable manufacturing systems (RMS) support flexibility in the product variety and the configuration of the manufacturing system itself in order to enable quick adjustments to new products and production requirements. As a consequence, an essential feature of RMS is their ability to rapidly modify the control strategy during run-time. In this paper, the particular problem of changing the specified operation of a RMS, whose logical behaviour is modelled as a finite state automaton, is addressed. The notion of reconfigurability of specifications (RoS) is introduced and it is shown that the stated reconfiguration problem can be formulated as a controlled language convergence problem. In addition, algorithms for the verification of RoS and the construction of a reconfiguration supervisor are proposed. The supervisor is realised in a modular way which facilitates the extension by new configurations. Finally, it is shown that a supremal nonblocking and controllable strict subautomaton of the plant automaton that fulfils RoS exists in case RoS is violated for the plant automaton itself and an algorithm for the computation of this strict subautomaton is presented. The developed concepts and results are illustrated by a manufacturing cell example.
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2014-12-01
The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.
Lunar Applications in Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Somervill, Kevin
2008-01-01
NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.
Distributed reconfigurable control strategies for switching topology networked multi-agent systems.
Gallehdari, Z; Meskin, N; Khorasani, K
2017-11-01
In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
Composing as an "Essentialist"?: New Directions for Feminist Composition Theories.
ERIC Educational Resources Information Center
Looser, Devoney
1993-01-01
Discusses feminist composition theories' tenets concerning process and product. Suggests that much feminist theory assumes a stable, homogenized "woman" and that such "identity politics" present costs that feminist compositionists may not be ready to pay. Reviews the essentialist dilemma and suggests ways of reconfiguring it.…
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
A fully reconfigurable photonic integrated signal processor
NASA Astrophysics Data System (ADS)
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2016-03-01
Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.
Hardware support for software controlled fast reconfiguration of performance counters
Salapura, Valentina; Wisniewski, Robert W.
2013-06-18
Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.
Hardware support for software controlled fast reconfiguration of performance counters
Salapura, Valentina; Wisniewski, Robert W
2013-09-24
Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.
NASA Astrophysics Data System (ADS)
Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.
2008-10-01
We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...
2017-02-10
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
Simultaneous control of magnetic topologies for reconfigurable vortex arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Mi-Young; Fischer, Peter; Han, Hee-Sung
The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less
A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads
NASA Astrophysics Data System (ADS)
Kumar, R. Hari; Ushakumari, S.
2018-05-01
Maintenance of power balance between generation and demand is one of the most critical requirements for the stable operation of a power system network. To mitigate the power imbalance during the occurrence of any disturbance in the system, fast acting algorithms are inevitable. This paper proposes a novel algorithm for load shedding and network reconfiguration in an isolated microgrid with prioritized loads and multiple islands, which will help to quickly restore the system in the event of a fault. The performance of the proposed algorithm is enhanced using genetic algorithm and its effectiveness is illustrated with simulation results on modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid.
NASA Astrophysics Data System (ADS)
Cervero, T.; Gómez, A.; López, S.; Sarmiento, R.; Dondo, J.; Rincón, F.; López, J. C.
2013-05-01
One of the limiting factors that have prevented a widely dissemination of the reconfigurable technology is the absence of an appropriate model for certain target applications capable of offering a reliable control. Moreover, the lack of flexible and easy-to-use scheduling and management systems are also relevant drawbacks to be considered. Under static scenarios, it is relatively easy to schedule and manage the reconfiguration process since all the variations corresponding to predetermined and well-known tasks. However, the difficulty increases when the adaptation needs of the overall system change semi-randomly according to the environmental fluctuations. In this context, this work proposes a change in the paradigm of dynamically reconfigurable systems, by attending to the dynamically reconfigurable control problematic as a whole, in which the scheduling and the placement issues are packed together as a hierarchical management structure, interacting together as one entity from the system point of view, but performing their tasks with certain degree of independence each other. In this sense, the top hierarchical level corresponds with a dynamic scheduler in charge of planning and adjusting all the reconfigurable modules according to the variations of the external stimulus. The lower level interacts with the physical layer of the device by means of instantiating, relocating, removing a reconfigurable module following the scheduler's instructions. In regards to how fast is the proposed solution, the total partial reconfiguration time achieved with this proposal has been measured and compared with other two approaches: 1) using traditional Xilinx's tools; 2) using an optimized version of the Xilinx's drivers. The collected numbers demonstrate that our solution reaches a gain up to 10 times faster than the other approaches.
All optical reconfiguration of optomechanical filters.
Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko
2012-05-22
Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.
Reconfigurable origami-inspired acoustic waveguides
Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia
2016-01-01
We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B
2017-08-30
Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand. Copyright © 2017 the authors 0270-6474/17/378399-13$15.00/0.
NASA Technical Reports Server (NTRS)
Burken, John J.
2005-01-01
This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
Failure detection and identification for a reconfigurable flight control system
NASA Technical Reports Server (NTRS)
Dallery, Francois
1987-01-01
Failure detection and identification logic for a fault-tolerant longitudinal control system were investigated. Aircraft dynamics were based upon the cruise condition for a hypothetical transonic business jet transport configuration. The fault-tolerant control system consists of conventional control and estimation plus a new outer loop containing failure detection, identification, and reconfiguration (FDIR) logic. It is assumed that the additional logic has access to all measurements, as well as to the outputs of the control and estimation logic. The pilot may also command the FDIR logic to perform special tests.
Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting
2014-08-25
We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.
2014-12-01
reconfigurable volumetric metamaterial, since the control circuits cannot be simply hidden behind a ground plane, as for a reconfigurable metasurface or...dielectric metasurfaces ," IEEE Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 1910-1920, Apr. 2012. [11] D.-H. Kwon and D. H. Werner...M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Physical Review Letters, vol. 93, no. 19, pp. 197401/1-4
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
Multinode reconfigurable pipeline computer
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M. (Inventor); Littman, Michael G. (Inventor)
1989-01-01
A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly.
Nouman, M Tayyab; Hwang, Ji Hyun; Faiyaz, Mohd; Lee, Kye-Jeong; Noh, Do-Young; Jang, Jae-Hyung
2018-05-14
Metasurfaces are two dimensional arrays of artificial subwavelength resonators, which can manipulate the amplitude and phase profile of incident electromagnetic fields. To date, limited progress has been achieved in realizing reconfigurable phase control of incident waves using metasurfaces. Here, an active metasurface is presented, whose resonance frequency can be tuned by employing insulator to metal transition in vanadium dioxide. By virtue of the phase jump accompanied by the resonance frequency tuning, the proposed metasurface acts as a phase shifter at THz frequency. It is further demonstrated that by appropriately tailoring the anisotropy of the metasurface, the observed phase shift can be used to switch the transmitted polarization from circular to approximately linear. This work thus shows potential for reconfigurable phase and polarization control at THz frequencies using vanadium dioxide based frequency tunable metasurfaces.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Controlling Disorder by Electric Field Directed Reconfiguration of Nanowires to Tune Random Lasing.
Donahue, Philip P; Zhang, Chenji; Nye, Nicholas; Miller, Jennifer; Wang, Cheng-Yu; Tang, Rong; Christodoulides, Demetrios; Keating, Christine D; Liu, Zhiwen
2018-06-27
Top-down fabrication is commonly used to provide positioning control of optical structures; yet, it places stringent limitations on component materials and oftentimes, dynamic reconfigurability is challenging to realize. Here we present a reconfigurable nanoparticle platform that can integrate heterogeneous particle assembly of different shapes, sizes, and material compositions. We demonstrate dynamic manipulation of disorder in this platform and use it to controllably enhance or frustrate random laser emission for a suspension of titanium dioxide nanowires in a dye solution. Using an alternating current electric field, we control the nanowire orientation to dynamically control the collective scattering of the sample and thus light confinement. Our theoretical model indicates that an increase of 22% in scattering coefficient can be achieved for the experimentally determined nanowire length distribution upon alignment. As a result, a nearly 20-fold enhancement in lasing intensity was achieved. We illustrate the generality of the approach by demonstrating enhanced lasing for aligned nanowires of other materials including gold, mixed gold/dielectric and vanadium oxide (VxOy).
Dynamic partial reconfiguration of logic controllers implemented in FPGAs
NASA Astrophysics Data System (ADS)
Bazydło, Grzegorz; Wiśniewski, Remigiusz
2016-09-01
Technological progress in recent years benefits in digital circuits containing millions of logic gates with the capability for reprogramming and reconfiguring. On the one hand it provides the unprecedented computational power, but on the other hand the modelled systems are becoming increasingly complex, hierarchical and concurrent. Therefore, abstract modelling supported by the Computer Aided Design tools becomes a very important task. Even the higher consumption of the basic electronic components seems to be acceptable because chip manufacturing costs tend to fall over the time. The paper presents a modelling approach for logic controllers with the use of Unified Modelling Language (UML). Thanks to the Model Driven Development approach, starting with a UML state machine model, through the construction of an intermediate Hierarchical Concurrent Finite State Machine model, a collection of Verilog files is created. The system description generated in hardware description language can be synthesized and implemented in reconfigurable devices, such as FPGAs. Modular specification of the prototyped controller permits for further dynamic partial reconfiguration of the prototyped system. The idea bases on the exchanging of the functionality of the already implemented controller without stopping of the FPGA device. It means, that a part (for example a single module) of the logic controller is replaced by other version (called context), while the rest of the system is still running. The method is illustrated by a practical example by an exemplary Home Area Network system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald
2013-03-01
The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
Definition and trade-off study of reconfigurable airborne digital computer system organizations
NASA Technical Reports Server (NTRS)
Conn, R. B.
1974-01-01
A highly-reliable, fault-tolerant reconfigurable computer system for aircraft applications was developed. The development and application reliability and fault-tolerance assessment techniques are described. Particular emphasis is placed on the needs of an all-digital, fly-by-wire control system appropriate for a passenger-carrying airplane.
Antenna reconfiguration verification and validation
NASA Technical Reports Server (NTRS)
Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)
2009-01-01
A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.
A CCD experimental platform for large telescope in Antarctica based on FPGA
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Qi, Yongjun
2014-07-01
The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
Active vibration control of a full scale aircraft wing using a reconfigurable controller
NASA Astrophysics Data System (ADS)
Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.
2016-01-01
This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.
Reconfigurable Robust Routing for Mobile Outreach Network
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang
2010-01-01
The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin
2017-08-29
For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.
A variable-gain output feedback control design methodology
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.
1989-01-01
A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
García, Gabriel J.; Jara, Carlos A.; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M.; Torres, Fernando
2014-01-01
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field. PMID:24691100
García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando
2014-03-31
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Reconfigurable optical assembly of nanostructures
Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun
2016-01-01
Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216
A Polarization Reconfigurable Slot Antenna with a Novel Switchable Feeding Network
NASA Astrophysics Data System (ADS)
Xie, Peng; Wang, Guang Ming
2017-12-01
A polarization reconfigurable slot antenna is proposed in this paper. The antenna consists of a microstrip line-to-slotline transition structure, two radiation slots and a switchable feeding network. The feeding network is a gradually changed ring slot with six switching diodes on it. By controlling the diodes states, the antenna can generate y-direction polarization, z-direction polarization, left-hand circular polarization and right-hand circular polarization. Detailed design considerations of the proposed antenna, simulated and measured results are presented and discussed. Measured results agree well with simulated. The results proved that the antenna can realize polarization reconfiguration effectively at 5 GHz.
Reconfigurable Mobile System - Ground, sea and air applications
NASA Astrophysics Data System (ADS)
Lamonica, Gary L.; Sturges, James W.
1990-11-01
The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.
A benchmark for fault tolerant flight control evaluation
NASA Astrophysics Data System (ADS)
Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.
2013-12-01
A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.
Reconfigurable engineered motile semiconductor microparticles.
Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan
2018-05-03
Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
2016-06-01
The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.
Nanopatterned reconfigurable spin-textures for magnonics
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.
Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R
2016-06-01
The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.
Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices
NASA Astrophysics Data System (ADS)
Rana, Bivas; Otani, YoshiChika
2018-01-01
Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Hueschen, R. M.
1984-01-01
The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.
Holonic Rationale and Bio-inspiration on Design of Complex Emergent and Evolvable Systems
NASA Astrophysics Data System (ADS)
Leitao, Paulo
Traditional centralized and rigid control structures are becoming inflexible to face the requirements of reconfigurability, responsiveness and robustness, imposed by customer demands in the current global economy. The Holonic Manufacturing Systems (HMS) paradigm, which was pointed out as a suitable solution to face these requirements, translates the concepts inherited from social organizations and biology to the manufacturing world. It offers an alternative way of designing adaptive systems where the traditional centralized control is replaced by decentralization over distributed and autonomous entities organized in hierarchical structures formed by intermediate stable forms. In spite of its enormous potential, methods regarding the self-adaptation and self-organization of complex systems are still missing. This paper discusses how the insights from biology in connection with new fields of computer science can be useful to enhance the holonic design aiming to achieve more self-adaptive and evolvable systems. Special attention is devoted to the discussion of emergent behavior and self-organization concepts, and the way they can be combined with the holonic rationale.
Miao, Zhidong; Liu, Dake
2017-01-01
For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011
Miao, Zhidong; Liu, Dake; Gong, Chen
2017-08-01
For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.
A Modular, Reconfigurable Surveillance UAV Architecture
2003-09-02
Una Società Galileo Avionica A Modular, Reconfigurable Surveillance UAV Architecture METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via...ES) METEOR, Finmeccanica Group Zona Industriale di Soleschiano Via Mario Stoppani 21 34077 Ronchi dei Legionari (GO) ITALY 8. PERFORMING...PMSFMS RS1Backup FMS NSU Payload Control Actuators Router Router RS2 Recovery Devices Una Società Galileo Avionica • Daylight TV Camera • IR Sensor • HR
Intelligent Control for Future Autonomous Distributed Sensor Systems
2007-03-26
recognized, the use of a pre-computed reconfiguration solution that fits the recognized scenario could allow reconfiguration to take place without...This data was loaded into the program developed to visualize the seabed and then the simulation was performed using frames to denote the target...to generate separate images for each eye. Users wear lightweight, inexpensive polarized eyeglasses and see a stereoscopic image. 35 Fig. 10
Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments
NASA Technical Reports Server (NTRS)
Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus
2013-01-01
Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.
NASA Astrophysics Data System (ADS)
Teodor, F.; Marinescu, V.; Epureanu, A.
2016-11-01
Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2013-07-01
In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
Hardware Evolution of Control Electronics
NASA Technical Reports Server (NTRS)
Gwaltney, David; Steincamp, Jim; Corder, Eric; King, Ken; Ferguson, M. I.; Dutton, Ken
2003-01-01
The evolution of closed-loop motor speed controllers implemented on the JPL FPTA2 is presented. The response of evolved controller to sinusoidal commands, controller reconfiguration for fault tolerance,and hardware evolution are described.
Electrically switchable metadevices via graphene
Balci, Osman; Kakenov, Nurbek; Karademir, Ertugrul; Balci, Sinan; Cakmakyapan, Semih; Polat, Emre O.; Caglayan, Humeyra; Özbay, Ekmel; Kocabas, Coskun
2018-01-01
Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. PMID:29322094
Adaptive and mobile ground sensor array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer
The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Wideband Monolithic Tile for Reconfigurable Phased Arrays
2017-03-01
has been developed for Reconfigurable Phased Array applications. Low loss and high isolation interconnection of switches within the radiating...there is no ground to connect shunt elements to. An integral part of the design was bias control. Mesa resistors are used for biasing. MIM...highest in resistance had the best performance over bandwidth because of reduced capacitive loading of the “off” arms of the Quad Switch on the central
Dynamics and Control of a Quadrotor with Active Geometric Morphing
NASA Astrophysics Data System (ADS)
Wallace, Dustin A.
Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.
V-band electronically reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Radisic, Vesna; Hester, Jimmy G.; Nguyen, Vinh N.; Caira, Nicholas W.; DiMarzio, Donald; Hilgeman, Theodore; Larouche, Stéphane; Kaneshiro, Eric; Gutierrez-Aitken, Augusto
2017-04-01
In this work, we report on a reconfigurable V-band metamaterial fabricated using an InP heterojunction bipolar transistor production process. As designed and fabricated, the implementation uses complementary split ring resonators (cSRRs) and Schottky diodes in both single unit cell and three unit cell monolithic microwave integrated circuits. Each unit cell has two diodes embedded within the gaps of the cSRRs. Reconfigurability is achieved by applying an external bias that turns the diodes on and off, which effectively controls the resonant property of the structure. In order to measure the metamaterial properties, the unit cells are fed and followed by transmission lines. Measured data show good agreement with simulations and demonstrate that the metamaterial structure exhibits resonance at around 65 GHz that can be switched on and off. The three-unit cell transmission line metamaterial shows a deeper resonance and a larger phase change than a single cell, as expected. These are the first reported reconfigurable metamaterials operating at the V-band using the InP high speed device fabrication process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.
2002-10-01
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less
Printed Antennas Made Reconfigurable by Use of MEMS Switches
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2005-01-01
A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.
Statechart-based design controllers for FPGA partial reconfiguration
NASA Astrophysics Data System (ADS)
Łabiak, Grzegorz; Wegrzyn, Marek; Rosado Muñoz, Alfredo
2015-09-01
Statechart diagram and UML technique can be a vital part of early conceptual modeling. At the present time there is no much support in hardware design methodologies for reconfiguration features of reprogrammable devices. Authors try to bridge the gap between imprecise UML model and formal HDL description. The key concept in author's proposal is to describe the behavior of the digital controller by statechart diagrams and to map some parts of the behavior into reprogrammable logic by means of group of states which forms sequential automaton. The whole process is illustrated by the example with experimental results.
Guidance and control of swarms of spacecraft
NASA Astrophysics Data System (ADS)
Morgan, Daniel James
There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms using computer simulations. The swarm-keeping problem can be solved by placing the spacecraft on J2-invariant relative orbits, which prevent collisions and minimize the drift of the swarm over hundreds of orbits using a single burn. These orbits are achieved by energy matching the spacecraft to the reference orbit. Additionally, these conditions can be repeatedly applied to minimize the drift of the swarm when atmospheric drag has a large effect (orbits with an altitude under 500 km). The swarm reconfiguration is achieved using two steps: trajectory optimization and assignment. The trajectory optimization problem can be written as a nonlinear, optimal control problem. This optimal control problem is discretized, decoupled, and convexified so that the individual femtosats can efficiently solve the optimization. Sequential convex programming is used to generate the control sequences and trajectories required to safely and efficiently transfer a spacecraft from one position to another. The sequence of trajectories is shown to converge to a Karush-Kuhn-Tucker point of the nonconvex problem. In the case where many of the spacecraft are interchangeable, a variable-swarm, distributed auction algorithm is used to determine the assignment of spacecraft to target positions. This auction algorithm requires only local communication and all of the bidding parameters are stored locally. The assignment generated using this auction algorithm is shown to be near optimal and to converge in a finite number of bids. Additionally, the bidding process is used to modify the number of targets used in the assignment so that the reconfiguration can be achieved even when there is a disconnected communication network or a significant loss of agents. Once the assignment is achieved, the trajectory optimization can be run using the terminal positions determined by the auction algorithm. To implement these algorithms in real time a model predictive control formulation is used. Model predictive control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.
Airborne Advanced Reconfigurable Computer System (ARCS)
NASA Technical Reports Server (NTRS)
Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.
1976-01-01
A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.
NASA Astrophysics Data System (ADS)
Turpin, Jeremiah Paul
Metamaterials and Transformation Optics (TO) have been used to design and implement many novel electromagnetic devices that can achieve effects not possible using conventional materials. Compact high-gain antennas are one of the more popular and successful emerging applications for the new TO and metamaterial design approaches. This dissertation details an extension of uniaxial near-zero-index metamaterial lenses through the incorporation of a tunable or reconfigurable metamaterial as a replacement for the static metamaterial of the original antenna. A design is presented for a beam-scanning TO lens that allows an arbitrary number of beams at controlled magnitudes to be dynamically synthesized from a single omnidirectional source, unlike the equivalent antenna constructed using an array. A cylindrical slab of zero-index magnetic metamaterial controls the radiation pattern by altering the effective shape of the lens through switching of selected regions 'off' to emulate free-space conditions. A design for a switchable metamaterial is presented that allows for digital control over its bulk properties, from near-zero-index to near-free-space at the targeted operational frequency. Extensive modeling and simulations were performed for the design of the lens and metamaterial and during the analysis of measurement results. Initial prototypes of the tunable metamaterial were fabricated and characterized to confirm the original measurements, and the design updated to incorporate the measured data. These measurements were performed using custom test fixtures manufactured specifically for this project. Finally, a simplified prototype lens was manufactured and characterized in an anechoic as a proof-of-concept for the design. This dissertation presents the lens and metamaterial specifications, as well as the design process and considerations that were determined for practical tunable and reconfigurable metamaterials. Although the focus is on the particular example of the beam-scanning reconfigurable antenna, the analysis and modeling methods presented here are applicable to any reconfigurable metamaterial application.
A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications
NASA Astrophysics Data System (ADS)
Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad
2017-03-01
A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Ferguson, Michael I.
2003-01-01
Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.
NASA Technical Reports Server (NTRS)
Montoya, R. J. (Compiler); Howell, W. E. (Compiler); Bundick, W. T. (Compiler); Ostroff, A. J. (Compiler); Hueschen, R. M. (Compiler); Belcastro, C. M. (Compiler)
1983-01-01
Restructurable control system theory, robust reconfiguration for high reliability and survivability for advanced aircraft, restructurable controls problem definition and research, experimentation, system identification methods applied to aircraft, a self-repairing digital flight control system, and state-of-the-art theory application are addressed.
Predicting future learning from baseline network architecture.
Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S
2018-05-15
Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Local transformations of the hippocampal cognitive map.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2018-03-09
Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal's position might still be intact. Similar field shifts were also observed in place and boundary cells-albeit of greater magnitude and more pronounced closer to the reconfigured boundary-which suggests that there is no simple one-to-one relationship between these three different cell types. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-01-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669
Dynamically reconfigurable complex emulsions via tunable interfacial tensions.
Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M
2015-02-26
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
NASA Astrophysics Data System (ADS)
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-02-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Reconfigurable work station for a video display unit and keyboard
NASA Technical Reports Server (NTRS)
Shields, Nicholas L. (Inventor); Roe, Fred D., Jr. (Inventor); Fagg, Mary F. (Inventor); Henderson, David E. (Inventor)
1988-01-01
A reconfigurable workstation is described having video, keyboard, and hand operated motion controller capabilities. The workstation includes main side panels between which a primary work panel is pivotally carried in a manner in which the primary work panel may be adjusted and set in a negatively declined or positively inclined position for proper forearm support when operating hand controllers. A keyboard table supports a keyboard in such a manner that the keyboard is set in a positively inclined position with respect to the negatively declined work panel. Various adjustable devices are provided for adjusting the relative declinations and inclinations of the work panels, tables, and visual display panels.
NASA Astrophysics Data System (ADS)
Chen, Xuedong; Sun, Yi; Huang, Qingjiu; Jia, Wenchuan; Pu, Huayan
This paper focuses on the design of a modular multi-legged walking robot MiniQuad-I, which can be reconfigured into variety configurations, including quadruped and hexapod configurations for different tasks by changing the layout of modules. Critical design considerations when taking the adaptability, maintainability and extensibility in count simultaneously are discussed and then detailed designs of each module are presented. The biomimetic control architecture of MiniQuad-I is proposed, which can improve the capability of agility and independence of the robot. Simulations and experiments on crawling, object picking and obstacle avoiding are performed to verify functions of the MiniQuad-I.
Electromagnetic reprogrammable coding-metasurface holograms.
Li, Lianlin; Jun Cui, Tie; Ji, Wei; Liu, Shuo; Ding, Jun; Wan, Xiang; Bo Li, Yun; Jiang, Menghua; Qiu, Cheng-Wei; Zhang, Shuang
2017-08-04
Metasurfaces have enabled a plethora of emerging functions within an ultrathin dimension, paving way towards flat and highly integrated photonic devices. Despite the rapid progress in this area, simultaneous realization of reconfigurability, high efficiency, and full control over the phase and amplitude of scattered light is posing a great challenge. Here, we try to tackle this challenge by introducing the concept of a reprogrammable hologram based on 1-bit coding metasurfaces. The state of each unit cell of the coding metasurface can be switched between '1' and '0' by electrically controlling the loaded diodes. Our proof-of-concept experiments show that multiple desired holographic images can be realized in real time with only a single coding metasurface. The proposed reprogrammable hologram may be a key in enabling future intelligent devices with reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as microscopy, display, security, data storage, and information processing.Realizing metasurfaces with reconfigurability, high efficiency, and control over phase and amplitude is a challenge. Here, Li et al. introduce a reprogrammable hologram based on a 1-bit coding metasurface, where the state of each unit cell of the coding metasurface can be switched electrically.
NASA Technical Reports Server (NTRS)
Kim, Sungwan
1994-01-01
System parameters should be tracked on-line to build a reconfigurable control system even though there exists an abrupt change. For this purpose, a new performance index that we are studying is the speed of adaptation- how quickly does the system determine that a change has occurred? In this paper, a new, robust algorithm that is optimized to minimize the time delay in detecting a change for fixed false alarm probability is proposed. Simulation results for the aircraft lateral motion with a known or unknown change in control gain matrices, in the presence of doublet input, indicate that the algorithm works fairly well. One of its distinguishing properties is that detection delay of this algorithm is superior to that of Whiteness Test.
Methods and apparatus for controlling dispersions of nanoparticles
Lavrentovich, Oleg D; Golovin, Andrii B
2014-10-21
Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles with respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.
Operator procedure verification with a rapidly reconfigurable simulator
NASA Technical Reports Server (NTRS)
Iwasaki, Yumi; Engelmore, Robert; Fehr, Gary; Fikes, Richard
1994-01-01
Generating and testing procedures for controlling spacecraft subsystems composed of electro-mechanical and computationally realized elements has become a very difficult task. Before a spacecraft can be flown, mission controllers must envision a great variety of situations the flight crew may encounter during a mission and carefully construct procedures for operating the spacecraft in each possible situation. If, despite extensive pre-compilation of control procedures, an unforeseen situation arises during a mission, the mission controller must generate a new procedure for the flight crew in a limited amount of time. In such situations, the mission controller cannot systematically consider and test alternative procedures against models of the system being controlled, because the available simulator is too large and complex to reconfigure, run, and analyze quickly. A rapidly reconfigurable simulation environment that can execute a control procedure and show its effects on system behavior would greatly facilitate generation and testing of control procedures both before and during a mission. The How Things Work project at Stanford University has developed a system called DME (Device Modeling Environment) for modeling and simulating the behavior of electromechanical devices. DME was designed to facilitate model formulation and behavior simulation of device behavior including both continuous and discrete phenomena. We are currently extending DME for use in testing operator procedures, and we have built a knowledge base for modeling the Reaction Control System (RCS) of the space shuttle as a testbed. We believe that DME can facilitate design of operator procedures by providing mission controllers with a simulation environment that meets all these requirements.
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems
NASA Technical Reports Server (NTRS)
Wells, Scott R.
2002-01-01
Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.
Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules
NASA Astrophysics Data System (ADS)
Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.
2014-01-01
Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.
Configurable Cellular Automata for Pseudorandom Number Generation
NASA Astrophysics Data System (ADS)
Quieta, Marie Therese; Guan, Sheng-Uei
This paper proposes a generalized structure of cellular automata (CA) — the configurable cellular automata (CoCA). With selected properties from programmable CA (PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In CoCA, the cells are dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply means varying the properties of that cell with time. Some examples of properties to be reconfigured are rule selection, boundary condition, and radius. While the objective of this paper is to propose CoCA as a new CA method, the main focus is to design a CoCA that can function as a good pseudorandom number generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of 18 Diehard tests with 31 cells. CoCA PRNG's performance based on Diehard test is considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for research not only in the field of random number generation, but in modeling complex systems as well.
Reconfigurable terahertz grating with enhanced transmission of TE polarized light
NASA Astrophysics Data System (ADS)
He, J. W.; Wang, X. K.; Xie, Z. W.; Xue, Y. Z.; Wang, S.; Zhang, Y.
2017-07-01
We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz) waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD). The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.
Spectrally reconfigurable integrated multi-spot particle trap.
Leake, Kaelyn D; Olson, Michael A B; Ozcelik, Damla; Hawkins, Aaron R; Schmidt, Holger
2015-12-01
Optical manipulation of small particles in the form of trapping, pushing, or sorting has developed into a vast field with applications in the life sciences, biophysics, and atomic physics. Recently, there has been increasing effort toward integration of particle manipulation techniques with integrated photonic structures on self-contained optofluidic chips. Here, we use the wavelength dependence of multi-spot pattern formation in multimode interference (MMI) waveguides to create a new type of reconfigurable, integrated optical particle trap. Interfering lateral MMI modes create multiple trapping spots in an intersecting fluidic channel. The number of trapping spots can be dynamically controlled by altering the trapping wavelength. This novel, spectral reconfigurability is utilized to deterministically move single and multiple particles between different trapping locations along the channel. This fully integrated multi-particle trap can form the basis of high throughput biophotonic assays on a chip.
NASA Astrophysics Data System (ADS)
Gou, Kaiyu; Gan, Chaoqin; Zhang, Xiaoyu; Zhang, Yuchao
2018-03-01
An optical time-and-wavelength-division-multiplexing metro-access network (TWDM-MAN) is proposed and demonstrated in this paper. By the reuse of tangent-ring optical distribution network and the design of distributed control mechanism, ONUs needing to communicate with each other can be flexibly accessed to successfully make up three kinds of reconfigurable networks. By the nature advantage of ring topology in protection, three-level comprehensive protections covering both feeder and distribution fibers are also achieved. Besides, a distributed wavelength allocation (DWA) is designed to support efficient parallel upstream transmission. The analyses including capacity, congestion and transmission simulation show that this network has a great performance.
Reconfigurable fault tolerant avionics system
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.; Asami, K.; Cho, Mengu
This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.
Temperature Tolerant Evolvable Systems Utilizing FPGA Boards and Bias-Controlled Amplifiers
NASA Technical Reports Server (NTRS)
Kumar, Nikhil R.
2005-01-01
Space missions often require radiation and extreme-temperature hardened electronics to survive the harsh environments beyond Earth's atmosphere. Traditional approaches to preserve electronics incorporate shielding, insulation and redundancy at the expense of power and weight. However, a novel way of bypassing these problems is the concept of evolutionary hardware. A reconfigurable device, consisting of several switches interconnected with analog/digital parts, is controlled by an evolutionary processor (EP). When the EP detects degradation in the circuit it sends signals to reconfigure the switches, thus forming a new circuit with the desired output. This concept has been developed since the mid-l990s, but one problem remains-the EP cannot degrade substantially. For this reason, extensive testing at extreme temperatures (-180 to 120 C) has been done on devices found on FPGA boards (taking the role of the EP), such as the Analog to Digital and the Digital to Analog Converter. The EP is used in conjunction with a bias-controlled amplifier and a new prototype relay board, which is interconnected with 6 G4-FETs, a tri-input transistor-like element developed at JPL. The greatest improvements to be made lie in the reconfigurable device, so future design and testing of the G4-FET chip is required.
Karayanidis, Frini; Nicholson, Rebecca; Schall, Ulrich; Meem, Lydia; Fulham, Ross; Michie, Patricia T
2006-10-01
The present study used behavioral and event-related potential (ERP) indices of task-switching to examine whether schizophrenia patients have a specific deficit in anticipatory task-set reconfiguration. Participants switched between univalent tasks in an alternating runs paradigms with blocked response-stimulus interval (RSI) manipulation (150, 300, 600, and 1200ms). Nineteen high functioning people with schizophrenia were compared to controls that were matched for age, gender, education and premorbid IQ estimate. Schizophrenia patients had overall increased RT, but no increase in corrected RT switch cost. In the schizophrenia group, ERPs showed reduced activation of the differential positivity in anticipation of switch trial at the optimal 600ms RSI and reduced activation of the frontal post-stimulus switch negativity at both 600 and 1200ms RSI compared to the control group. Despite no behavioral differences in task switching performance, anticipatory and stimulus-triggered ERP indices of task-switching suggest group differences in processing of switch and repeat trials, especially at longer RSI conditions that for control participants provide opportunity for anticipatory activation of task-set reconfiguration processes. These results are compatible with impaired implementation of endogenously driven processes in schizophrenia and greater reliance on external task cues, especially at long preparation intervals.
Using partial reconfiguration for SoC design and implementation
NASA Astrophysics Data System (ADS)
Krasteva, Yana E.; Portilla, Jorge; Tobajas Guerrero, Félix; de la Torre, Eduardo
2009-05-01
Most reconfigurable systems rely on FPGA technology. Among these ones, those which permit dynamic and partial reconfiguration, offer added benefits in flexibility, in-field device upgrade, improved design and manufacturing time, and even, in some cases, power consumption reductions. However, dynamic reconfiguration is a complex task, and the real benefits of its use in real applications have been often questioned. This paper presents an overview of the partial reconfiguration technique application, along with four original applications. The main goal of these applications is to test several architectures with different flexibility and, to search for the partial reconfiguration "killing application", that is, the application that better demonstrates the benefits of today reconfigurable systems based on commercial FPGAs. Therefore, the presented applications are rather a proof of concept, than fully operative and closed systems. First, a brief introduction to the partial reconfigurable systems application topic has been included. After that, the descriptions of the created reconfigurable systems are presented: first, an on-chip communications emulation framework, second, an on chip debugging system, third, a wireless sensor network reconfigurable node and finally, a remote reconfigurable client-server device. Each application is described in a separate section of the paper along with some test and results. General conclusions are included at the end of the paper.
Go reconfigure: how fish change shape as they swim and evolve.
Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai
2010-12-01
The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine yaw turns. When structural stiffness and undulatory frequency are modeled as determining the tail's undulatory wave speed, both factors evolve under selection for enhanced foraging behavior in the digital fish-like robots. The methods used in making these distinctions between kinds of reconfiguration have broad applicability in fish biology, especially for quantifying complex motor behaviors in the wild and for simulating selection on behavior that leads to directional evolution of functional phenotypes.
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Control Reconfiguration of Command and Control Systems
2007-01-01
decision errors and control action delays upon entering a state. These two undesirable effects can be intertwined. To quantify their individual impact...19 6) Effect of...Study of the Effect of Supervisory Control on a Redundant Database Unit . . . . . . . . . . . . . . 32 (Metzler and Wu, Report to AFRL 2005) 9.1) Problem
Software-defined reconfigurable microwave photonics processor.
Pérez, Daniel; Gasulla, Ivana; Capmany, José
2015-06-01
We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.
Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)
2014-01-01
A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.
Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.
Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A
2010-08-16
The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
Integrated feeds for electronically reconfigurable apertures
NASA Astrophysics Data System (ADS)
Nicholls, Jeffrey Grant
With the increasing ubiquity of wireless technology, the need for lower-profile, electronically reconfigurable, highly-directive beam-steering antennas is increasing. This thesis proposes a new electronic beam-steering antenna architecture which combines the full-space beam-steering properties of reflectarrays and transmitarrays with the low-profile feeding characteristics of leaky-wave antennas. Two designs are developed: an integrated feed reflectarray and an integrated feed transmitarray, both of which integrate a leaky-wave feed directly next to the reconfigurable aperture itself. The integrated feed transmitarray proved to be the better architecture due to its simpler design and better performance. A 6-by-6 element array was fabricated and experimentally verified, and full-space (both azimuth and elevation) beam-steering was demonstrated at angles up to 45 degrees off broadside. In addition to the reduction in profile, the integrated feed design enables robust fixed control of the amplitude distribution across the aperture, a characteristic not as easily attained in typical reflectarrays/transmitarrays.
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; de Jong, Twan A.; Shevchenko, Yanina; Becerra, Sergio A.; Whitesides, George M.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2016-03-01
Reconfigurable devices, whose shape can be drastically altered, are central to expandable shelters, deployable space structures, reversible encapsulation systems and medical tools and robots. All these applications require structures whose shape can be actively controlled, both for deployment and to conform to the surrounding environment. While most current reconfigurable designs are application specific, here we present a mechanical metamaterial with tunable shape, volume and stiffness. Our approach exploits a simple modular origami-like design consisting of rigid faces and hinges, which are connected to form a periodic structure consisting of extruded cubes. We show both analytically and experimentally that the transformable metamaterial has three degrees of freedom, which can be actively deformed into numerous specific shapes through embedded actuation. The proposed metamaterial can be used to realize transformable structures with arbitrary architectures, highlighting a robust strategy for the design of reconfigurable devices over a wide range of length scales.
Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J
2017-07-01
This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
Core networks and their reconfiguration patterns across cognitive loads.
Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi
2018-04-20
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.
Optimal reconfiguration strategy for a degradable multimodule computing system
NASA Technical Reports Server (NTRS)
Lee, Yann-Hang; Shin, Kang G.
1987-01-01
The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.
Control and Communication for a Secure and Reconfigurable Power Distribution System
NASA Astrophysics Data System (ADS)
Giacomoni, Anthony Michael
A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the advantages of an IDSC architecture are highlighted when an intermittent DER is present on the system.
Management of redundancy in flight control systems using optimal decision theory
NASA Technical Reports Server (NTRS)
1981-01-01
The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.
Reconfigurable pipelined processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccardi, R.J.
1989-09-19
This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
Design and development progress of a LLRF control system for a 500 MHz superconducting cavity
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.
2012-07-01
The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.
Formation Control of the MAXIM L2 Libration Orbit Mission
NASA Technical Reports Server (NTRS)
Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda
2004-01-01
The Micro-Arcsecond X-ray Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imager mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 micro-arcsecond imaging. Currently the mission architecture comprises 25 spacecraft, 24 as optics modules and one as the detector, which will form sparse sub-apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. To achieve these mission goals, the formation is required to cooperatively point at desired targets. Once pointed, the individual elements of the MAXIM formation must remain stable, maintaining their relative positions and attitudes below a critical threshold. These pointing and formation stability requirements impact the control and design of the formation. In this paper, we provide analysis of control efforts that are dependent upon the stability and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions to minimize the control efforts and we address continuous control via input feedback linearization (IFL). Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.
Identification and Reconfigurable Control of Impaired Multi-Rotor Drones
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Bencomo, Alfredo
2016-01-01
The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.
Improving School Access Control
ERIC Educational Resources Information Center
National Clearinghouse for Educational Facilities, 2008
2008-01-01
Few things are more important for school safety and security than controlling access to buildings and grounds. It is relatively easy to incorporate effective access control measures in new school designs but more difficult in existing schools, where most building and site features cannot be readily altered or reconfigured. The National…
Generation and Coherent Control of Pulsed Quantum Frequency Combs.
MacLellan, Benjamin; Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Zhang, Yanbing; Sciara, Stefania; Wetzel, Benjamin; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-06-08
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.
2017-12-01
Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)
2001-01-01
The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada
NASA Astrophysics Data System (ADS)
Carey, S. K.
2015-12-01
Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.
Evaluation of Advanced Computing Techniques and Technologies: Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Wells, B. Earl
2003-01-01
The focus of this project was to survey the technology of reconfigurable computing determine its level of maturity and suitability for NASA applications. To better understand and assess the effectiveness of the reconfigurable design paradigm that is utilized within the HAL-15 reconfigurable computer system. This system was made available to NASA MSFC for this purpose, from Star Bridge Systems, Inc. To implement on at least one application that would benefit from the performance levels that are possible with reconfigurable hardware. It was originally proposed that experiments in fault tolerance and dynamically reconfigurability would be perform but time constraints mandated that these be pursued as future research.
Acute hospital reconfiguration and self-harm presentations: a before-and-after study.
Griffin, Eve; Murphy, Catherine; Perry, Ivan J; Lynch, Brenda; Arensman, Ella; Corcoran, Paul
2018-03-27
The evidence for improved patient outcomes following acute hospital reconfiguration is limited. We assessed the impact of the reconfiguration of acute services within a hospital group in terms of the number and clinical management of self-harm presentations. The study was conducted across the three Mid-Western regional hospitals in Ireland during 2004-2014. Reconfiguration in April 2009 involved two hospitals reducing the operation of their emergency departments (EDs) from 24 to 12 h. We used Poisson regression analysis of data from the National Self-Harm Registry Ireland to assess change in the hospital burden and clinical management of self-harm associated with the reconfiguration. We observed that the cumulative decrease in self-harm presentations at the two reconfigured hospitals was of a similar magnitude to the increase observed at the larger hospital. Despite this large increase in presentations, there was only a small increase in admissions. Reconfiguration of hospital services was also associated with changes in the provision of assessments for self-harm patients. There is evidence to suggest that acute hospital reconfiguration of hospital services impacts on patterns of patient flow. Findings have implications for those implementing reconfiguration of acute services.
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Reconfigurable assembly work station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yhu-Tin; Abell, Jeffrey A.; Spicer, John Patrick
A reconfigurable autonomous workstation includes a multi-faced superstructure including a horizontally-arranged frame section supported on a plurality of posts. The posts form a plurality of vertical faces arranged between adjacent pairs of the posts, the faces including first and second faces and a power distribution and position reference face. A controllable robotic arm suspends from the rectangular frame section, and a work table fixedly couples to the power distribution and position reference face. A plurality of conveyor tables are fixedly coupled to the work table including a first conveyor table through the first face and a second conveyor table throughmore » the second face. A vision system monitors the work table and each of the conveyor tables. A programmable controller monitors signal inputs from the vision system to identify and determine orientation of the component on the first conveyor table and control the robotic arm to execute an assembly task.« less
Emergency strategy optimization for the environmental control system in manned spacecraft
NASA Astrophysics Data System (ADS)
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-01-01
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-10-20
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.
Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton
2007-01-01
Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.
Contingent attentional capture across multiple feature dimensions in a temporal search task.
Ito, Motohiro; Kawahara, Jun I
2016-01-01
The present study examined whether attention can be flexibly controlled to monitor two different feature dimensions (shape and color) in a temporal search task. Specifically, we investigated the occurrence of contingent attentional capture (i.e., interference from task-relevant distractors) and resulting set reconfiguration (i.e., enhancement of single task-relevant set). If observers can restrict searches to a specific value for each relevant feature dimension independently, the capture and reconfiguration effect should only occur when the single relevant distractor in each dimension appears. Participants identified a target letter surrounded by a non-green square or a non-square green frame. The results revealed contingent attentional capture, as target identification accuracy was lower when the distractor contained a target-defining feature than when it contained a nontarget feature. Resulting set reconfiguration was also obtained in that accuracy was superior when the current target's feature (e.g., shape) corresponded to the defining feature of the present distractor (shape) than when the current target's feature did not match the distractor's feature (color). This enhancement was not due to perceptual priming. The present study demonstrated that the principles of contingent attentional capture and resulting set reconfiguration held even when multiple target feature dimensions were monitored. Copyright © 2015 Elsevier B.V. All rights reserved.
Operational Dynamic Configuration Analysis
NASA Technical Reports Server (NTRS)
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified schedule containing k configurations based on stability score of the sector combinations among the raw operational configurations. In addition, the number of the selected configurations is determined based on balance between accuracy and assessment complexity.
Reconfigurable OR and XOR logic gates based on dual responsive on-off-on micromotors.
Dong, Yonggang; Liu, Mei; Zhang, Hui; Dong, Bin
2016-04-21
In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
Microcontroller-based locking in optics experiments.
Huang, K; Le Jeannic, H; Ruaudel, J; Morin, O; Laurat, J
2014-12-01
Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.
Model-based reconfiguration: Diagnosis and recovery
NASA Technical Reports Server (NTRS)
Crow, Judy; Rushby, John
1994-01-01
We extend Reiter's general theory of model-based diagnosis to a theory of fault detection, identification, and reconfiguration (FDIR). The generality of Reiter's theory readily supports an extension in which the problem of reconfiguration is viewed as a close analog of the problem of diagnosis. Using a reconfiguration predicate 'rcfg' analogous to the abnormality predicate 'ab,' we derive a strategy for reconfiguration by transforming the corresponding strategy for diagnosis. There are two obvious benefits of this approach: algorithms for diagnosis can be exploited as algorithms for reconfiguration and we have a theoretical framework for an integrated approach to FDIR. As a first step toward realizing these benefits we show that a class of diagnosis engines can be used for reconfiguration and we discuss algorithms for integrated FDIR. We argue that integrating recovery and diagnosis is an essential next step if this technology is to be useful for practical applications.
NASA Astrophysics Data System (ADS)
Liu, Chun; Jiang, Bin; Zhang, Ke
2018-03-01
This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-27
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Transformational electronics are now reconfiguring
NASA Astrophysics Data System (ADS)
Rojas, Jhonathan P.; Hussain, Aftab M.; Arevalo, A.; Foulds, I. G.; Torres Sevilla, Galo A.; Nassar, Joanna M.; Hussain, Muhammad M.
2015-05-01
Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration.
Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes.
Liu, Pi; Zhao, Yan; Liu, Xiaoguo; Sun, Jixue; Xu, Dede; Li, Yang; Li, Qian; Wang, Lihua; Yang, Sichun; Fan, Chunhai; Lin, Jianping
2018-05-04
Reconfiguration of membrane protein channels for gated transport is highly regulated under physiological conditions. However, a mechanistic understanding of such channels remains challenging owing to the difficulty in probing subtle gating-associated structural changes. Herein, we show that charge neutralization can drive the shape reconfiguration of a biomimetic 6-helix bundle DNA nanotube (6HB). Specifically, 6HB adopts a compact state when its charge is neutralized by Mg 2+ ; whereas Na + switches it to the expanded state, as revealed by MD simulations, small-angle X-ray scattering (SAXS), and FRET characterization. Furthermore, partial neutralization of the DNA backbone charges by chemical modification renders 6HB compact and insensitive to ions, suggesting an interplay between electrostatic and hydrophobic forces in the channels. This system provides a platform for understanding the structure-function relationship of biological channels and designing rules for the shape control of DNA nanostructures in biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acoustically trapped colloidal crystals that are reconfigurable in real time
Caleap, Mihai; Drinkwater, Bruce W.
2014-01-01
Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time. PMID:24706925
A Plug and Play GNC Architecture Using FPGA Components
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.; Kaneshige, J.; Waterman, R.; Pires, C.; Ippoloito, C.
2005-01-01
The goal of Plug and Play, or PnP, is to allow hardware and software components to work together automatically, without requiring manual setup procedures. As a result, new or replacement hardware can be plugged into a system and automatically configured with the appropriate resource assignments. However, in many cases it may not be practical or even feasible to physically replace hardware components. One method for handling these types of situations is through the incorporation of reconfigurable hardware such as Field Programmable Gate Arrays, or FPGAs. This paper describes a phased approach to developing a Guidance, Navigation, and Control (GNC) architecture that expands on the traditional concepts of PnP, in order to accommodate hardware reconfiguration without requiring detailed knowledge of the hardware. This is achieved by establishing a functional based interface that defines how the hardware will operate, and allow the hardware to reconfigure itself. The resulting system combines the flexibility of manipulating software components with the speed and efficiency of hardware.
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao
2015-01-12
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations
NASA Astrophysics Data System (ADS)
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-01
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Colt: an experiment in wormhole run-time reconfiguration
NASA Astrophysics Data System (ADS)
Bittner, Ray; Athanas, Peter M.; Musgrove, Mark
1996-10-01
Wormhole run-time reconfiguration (RTR) is an attempt to create a refined computing paradigm for high performance computational tasks. By combining concepts from field programmable gate array (FPGA) technologies with data flow computing, the Colt/Stallion architecture achieves high utilization of hardware resources, and facilitates rapid run-time reconfiguration. Targeted mainly at DSP-type operations, the Colt integrated circuit -- a prototype wormhole RTR device -- compares favorably to contemporary DSP alternatives in terms of silicon area consumed per unit computation and in computing performance. Although emphasis has been placed on signal processing applications, general purpose computation has not been overlooked. Colt is a prototype that defines an architecture not only at the chip level but also in terms of an overall system design. As this system is realized, the concept of wormhole RTR will be applied to numerical computation and DSP applications including those common to image processing, communications systems, digital filters, acoustic processing, real-time control systems and simulation acceleration.
Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip
Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao
2015-01-01
Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847
NASA Astrophysics Data System (ADS)
Capo-Lugo, Pedro A.
Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.
Two-craft Coulomb formation study about circular orbits and libration points
NASA Astrophysics Data System (ADS)
Inampudi, Ravi Kishore
This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.
Reconfigurable antenna pattern verification
NASA Technical Reports Server (NTRS)
Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)
2013-01-01
A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.
The SMS4 cryptographic system design based on dynamic partial self-reconfiguration technology
NASA Astrophysics Data System (ADS)
Wang, Jianxin; Gao, Xianwei; Li, Xiuying; Sui, Meili
2013-03-01
This paper describes SMS4 algorithm by using dynamic partial self-reconfiguration. The design is implemented on Xilinx VirtexII-Pro XC2VP30 FPGA devices. The partial self-reconfiguration encryption/decryption module data throughput is up to 50Mb/s, key expansion and encryption/decryption modules use 1606 and 1570 slices respectively, and the resource utilization ratio of the key expansion by using partial self-reconfiguration technology is less 32.03% and slices are less 757 than the non-reconfiguration technology. SMS4 implementation gets a good balance between high performance and low complexity in area. The theoretical and practical research of dynamic partial self-reconfiguration has a broad space for development and application prospect.
Size Effects in Nanoscale Structural Phenomena
NASA Astrophysics Data System (ADS)
McElhinny, Kyle Matthew
The creation of nanostructures offers the opportunity to modify and tune properties in ways inaccessible in bulk materials. A key component in this development is the introduction of size effects which reduce the physical size, dimensionality, and increase the contribution of surface effects. The size effects strongly modify the structural dynamics in nanoscale systems and leads to changes in the vibrational, electrical, and optical properties. An increased level of understanding and control of nanoscale structural dynamics will enable more precise control over nanomaterial transport properties. My work has shown that 1D spatial confinement through the creation of semiconducting nanomembranes modifies the phonon population and dispersion. X ray thermal diffuse scattering distributions show an excess in intensity for nanomembranes less than 100 nm in thickness, for phonon modes with wavevectors spanning the entire Brillouin zone. This excess intensity indicates the development of new low energy phonon modes or the softening of elastic constants. Furthermore, an additional anisotropy in the phonon dispersion is observed with a symmetry matching the direction of spatial confinement. This work has also extended x ray thermal diffuse scattering for use in studying nanomaterials. In electro- and photoactive monolayers a structural reconfiguration can be produced by external optical stimuli. I have developed an electro and photoactive molecular monolayers on oxide surfaces. Using x ray reflectivity, I have evaluated the organization and reconfiguration of molecular monolayers deposited by Langmuir Blodgett technique. I have designed and probed the reconfiguration of optically reconfigurable monolayers of azobenzene donor molecules on semiconducting surfaces. These monolayers reconfigure through a cooperative switching process leading to the development of large isomeric domains. This work represents an advancement in the interpretation of x ray reflectivity from molecular monolayers and inhomogeneous surfaces. The growth 2D materials depends on the interactions between the substrate and the 2D material. I have studied the competition between kinetics and surface energetics which lead to a faceted Ge surface during the growth of Graphene nanoribbons. As part of this work, I have developed new methodologies for interpreting x ray reflectivity patterns from surfaces with multiple reflections. A systematic analysis of the temperature dependence of the faceting process indicates that the process is thermodynamically dominated at high temperatures.
A Functional Cartography of Cognitive Systems
Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.
2015-01-01
One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847
Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform
Kim, Jongpal; Ko, Hyoungho
2016-01-01
A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004
FPGA platform for prototyping and evaluation of neural network automotive applications
NASA Technical Reports Server (NTRS)
Aranki, N.; Tawel, R.
2002-01-01
In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.
Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2011-02-28
We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Reconfigurable and writable magnetic charge crystals
Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong
2017-07-18
Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.
Reconfigurable radio-over-fiber system based on optical switch and tunable filter
NASA Astrophysics Data System (ADS)
Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng
2017-09-01
As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yu; Fan, Shanhui, E-mail: shanhui@stanford.edu
2016-01-11
We introduce a distinct class of dynamic non-reciprocal meta-surfaces with arbitrary phase-reconfigurability. This meta-surface consists of an array of meta-atoms, each of which is subject to temporal refractive index modulation, which induces photonic transitions between the states of the meta-atom. We show that arbitrary phase profile for the outgoing wave can be achieved by controlling the phase of the modulation at each meta-atom. Moreover, such dynamic meta-surfaces exhibit non-reciprocal response without the need for magneto-optical effects. The use of photonic transition significantly enhances the tunability and the possible functionalities of meta-surfaces.
Magnetic-field-controlled reconfigurable semiconductor logic.
Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark
2013-02-07
Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.
Eigenstructure Assignment for Fault Tolerant Flight Control Design
NASA Technical Reports Server (NTRS)
Sobel, Kenneth; Joshi, Suresh (Technical Monitor)
2002-01-01
In recent years, fault tolerant flight control systems have gained an increased interest for high performance military aircraft as well as civil aircraft. Fault tolerant control systems can be described as either active or passive. An active fault tolerant control system has to either reconfigure or adapt the controller in response to a failure. One approach is to reconfigure the controller based upon detection and identification of the failure. Another approach is to use direct adaptive control to adjust the controller without explicitly identifying the failure. In contrast, a passive fault tolerant control system uses a fixed controller which achieves acceptable performance for a presumed set of failures. We have obtained a passive fault tolerant flight control law for the F/A-18 aircraft which achieves acceptable handling qualities for a class of control surface failures. The class of failures includes the symmetric failure of any one control surface being stuck at its trim value. A comparison was made of an eigenstructure assignment gain designed for the unfailed aircraft with a fault tolerant multiobjective optimization gain. We have shown that time responses for the unfailed aircraft using the eigenstructure assignment gain and the fault tolerant gain are identical. Furthermore, the fault tolerant gain achieves MIL-F-8785C specifications for all failure conditions.
75 FR 31677 - Amendment of Class E Airspace; Corpus Christi, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
...-0089; Airspace Docket No. 10-ASW-1] Amendment of Class E Airspace; Corpus Christi, TX AGENCY: Federal... the Corpus Christi, TX area. Additional controlled airspace is necessary to accommodate new Standard... E airspace for the Corpus Christi, TX area, reconfiguring controlled airspace at Aransas County...
Design of a modular digital computer system
NASA Technical Reports Server (NTRS)
1980-01-01
A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.
Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.
Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras
2018-05-01
New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Srinivasan, J.; Farrington, A.; Gray, A.
2001-01-01
They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
NASA Astrophysics Data System (ADS)
Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei
2008-12-01
Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.
Attitude dynamics and control of a spacecraft using shifting mass distribution
NASA Astrophysics Data System (ADS)
Ahn, Young Tae
Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability conditions are satisfied. In order to increase the accuracy, generally, more than two control systems are installed in a satellite. Combination with another actuator will be examined to fulfill the full attitude control maneuver. Future work can also include more realistic spacecraft design and operational considerations on the behavior of this type of control system.
NASA Technical Reports Server (NTRS)
Shen, Wei-Min (Inventor); Kovac, Robert M. (Inventor)
2012-01-01
Designs of single-end-operative reconfigurable genderless connectors that include a base, a plurality of movable jaws that are formed on the base and can engage to the jaws of another connector, and an actuator that is mounted on the base and can engage and move the jaws of the reconfigurable connector to connect the reconfigurable connector with another connector.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
Integration and segregation of large-scale brain networks during short-term task automatization
Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes
2016-01-01
The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less
Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids
Chanda, Sayonsom; Srivastava, Anurag K.
2016-05-02
This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less
Voluntary control of intracortical oscillations for reconfiguration of network activity
Corlier, Juliana; Valderrama, Mario; Navarrete, Miguel; Lehongre, Katia; Hasboun, Dominique; Adam, Claude; Belaid, Hayat; Clémenceau, Stéphane; Baulac, Michel; Charpier, Stéphane; Navarro, Vincent; Le Van Quyen, Michel
2016-01-01
Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, confirmed by increased oscillatory event density. We have found that the session-to-session variability in performance was explained by the functional long-range decoupling of the target area suggesting a training-induced network reorganization. Downstream effects on more local activities included progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can be exploited to specifically target plasticity processes to reconfigure network activity, with a particular relevance for memory function or skill acquisition. PMID:27808225
Implementing Audio Digital Feedback Loop Using the National Instruments RIO System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, G.; Byrd, J. M.
2006-11-20
Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.
Microcontroller-based locking in optics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, K.; State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062; Le Jeannic, H.
2014-12-15
Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of opticalmore » experiments.« less
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Reconfigurable environmentally adaptive computing
NASA Technical Reports Server (NTRS)
Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)
2008-01-01
Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.
Design Tools for Reconfigurable Hardware in Orbit (RHinO)
NASA Technical Reports Server (NTRS)
French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian
2004-01-01
The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.
Constrained simultaneous multi-state reconfigurable wing structure configuration optimization
NASA Astrophysics Data System (ADS)
Snyder, Matthew
A reconfigurable aircraft is capable of in-flight shape change to increase mission performance or provide multi-mission capability. Reconfigurability has always been a consideration in aircraft design, from the Wright Flyer, to the F-14, and most recently the Lockheed-Martin folding wing concept. The Wright Flyer used wing-warping for roll control, the F-14 had a variable-sweep wing to improve supersonic flight capabilities, and the Lockheed-Martin folding wing demonstrated radical in-flight shape change. This dissertation will examine two questions that aircraft reconfigurability raises, especially as reconfiguration increases in complexity. First, is there an efficient method to develop a light weight structure which supports all the loads generated by each configuration? Second, can this method include the capability to propose a sub-structure topology that weighs less than other considered designs? The first question requires a method that will design and optimize multiple configurations of a reconfigurable aerostructure. Three options exist, this dissertation will show one is better than the others. Simultaneous optimization considers all configurations and their respective load cases and constraints at the same time. Another method is sequential optimization which considers each configuration of the vehicle one after the other - with the optimum design variable values from the first configuration becoming the lower bounds for subsequent configurations. This process repeats for each considered configuration and the lower bounds update as necessary. The third approach is aggregate combination — this method keeps the thickness or area of each member for the most critical configuration, the configuration that requires the largest cross-section. This research will show that simultaneous optimization produces a lower weight and different topology for the considered structures when compared to the sequential and aggregate techniques. To answer the second question, the developed optimization algorithm combines simultaneous optimization with a new method for determining the optimum location of the structural members of the sub-structure. The method proposed here considers an over-populated structural model, one in which there are initially more members than necessary. Using a unique iterative process, the optimization algorithm removes members from the design if they do not carry enough load to justify their presence. The initial set of members includes ribs, spars and a series of cross-members that diagonally connect the ribs and spars. The final result is a different structure, which is lower weight than one developed from sequential optimization or aggregate combination, and suggests the primary load paths. Chapter 1 contains background information on reconfigurable aircraft and a description of the new reconfigurable air vehicle being considered by the Air Vehicles Directorate of the Air Force Research Laboratory. This vehicle serves as a platform to test the proposed optimization process. Chapters 2 and 3 overview the optimization method and Chapter 4 provides some background analysis which is unique to this particular reconfigurable air vehicle. Chapter 5 contains the results of the optimizations and demonstrates how changing constraints or initial configuration impacts the final weight and topology of the wing structure. The final chapter contains conclusions and comments on some future work which would further enhance the effectiveness of the simultaneous reconfigurable structural topology optimization process developed and used in this dissertation.
Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs)
2008-02-29
forces and moments are expressed as functions of angle of attack, sideslip angle, angular rates, and control surface deflection. L, M, and N are...invertible. As for matrix B, the control surfaces of the reusable launch vehicle are designed to control each axes angular rate of aircraft...literature as being invertible. As for matrix B, the control surfaces of the UAV are designed to control angular rate along each axis of the aircraft
Reconfigurable OR and XOR logic gates based on dual responsive on-off-on micromotors
NASA Astrophysics Data System (ADS)
Dong, Yonggang; Liu, Mei; Zhang, Hui; Dong, Bin
2016-04-01
In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized.In this study, we report a hemisphere-like micromotor. Intriguingly, the micromotor exhibits controllable on-off-on motion, which can be actuated by two different external stimuli (UV and NH3). Moreover, the moving direction of the micromotor can be manipulated by the direction in which UV and NH3 are applied. As a result, the motion accelerates when both stimuli are applied in the same direction and decelerates when the application directions are opposite to each other. More interestingly, the dual stimuli responsive micromotor can be utilized as a reconfigurable logic gate with UV and NH3 as the inputs and the motion of the micromotor as the output. By controlling the direction of the external stimuli, OR and XOR dual logic functions can be realized. Electronic supplementary information (ESI) available: Fig. S1-S6 and Videos S1-S5. See DOI: 10.1039/c6nr00752j
Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing
2012-11-22
In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.
NASA Astrophysics Data System (ADS)
Bohra, Murtaza
Legged rovers are often considered as viable solutions for traversing unknown terrain. This work addresses the optimal locomotion reconfigurability of quadruped rovers, which consists of obtaining optimal locomotion modes, and transitioning between them. A 2D sagittal plane rover model is considered based on a domestic cat. Using a Genetic Algorithm, the gait, pose and control variables that minimize torque or maximize speed are found separately. The optimization approach takes into account the elimination of leg impact, while considering the entire variable spectrum. The optimal solutions are consistent with other works on gait optimization, and are similar to gaits found in quadruped animals as well. An online model-free gait planning framework is also implemented, that is based on Central Pattern Generators is implemented. It is used to generate joint and control trajectories for any arbitrarily varying speed profile, and shown to regulate locomotion transition and speed modulation, both endogenously and continuously.
Placing and shaping liposomes with reconfigurable DNA nanocages
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang
2017-07-01
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Origami-Based Reconfigurable Metamaterials for Tunable Chirality.
Wang, Zuojia; Jing, Liqiao; Yao, Kan; Yang, Yihao; Zheng, Bin; Soukoulis, Costas M; Chen, Hongsheng; Liu, Yongmin
2017-07-01
Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
Research on Self-Reconfigurable Modular Robot System
NASA Astrophysics Data System (ADS)
Kamimura, Akiya; Murata, Satoshi; Yoshida, Eiichi; Kurokawa, Haruhisa; Tomita, Kohji; Kokaji, Shigeru
Growing complexity of artificial systems arises reliability and flexibility issues of large system design. Robots are not exception of this, and many attempts have been made to realize reliable and flexible robot systems. Distributed modular composition of robot is one of the most effective approaches to attain such abilities and has a potential to adapt to its surroundings by changing its configuration autonomously according to information of surroundings. In this paper, we propose a novel three-dimensional self-reconfigurable robotic module. Each module has a very simple structure that consists of two semi-cylindrical parts connected by a link. The modular system is capable of not only building static structure but also generating dynamic robotic motion. We present details of the mechanical/electrical design of the developed module and its control system architecture. Experiments using ten modules with centralized control demonstrate robotic configuration change, crawling locomotion and three types of quadruped locomotion.
Placing and shaping liposomes with reconfigurable DNA nanocages.
Zhang, Zhao; Yang, Yang; Pincet, Frederic; Llaguno, Marc C; Lin, Chenxiang
2017-06-23
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
In-flight detection and identification and accommodation of aircraft icing
NASA Astrophysics Data System (ADS)
Caliskan, Fikret; Hajiyev, Chingiz
2012-11-01
The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.
Direction of Arrival Estimation Using a Reconfigurable Array
2005-05-06
civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm
Reconfigurable multiport EPON repeater
NASA Astrophysics Data System (ADS)
Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio
2009-11-01
An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.
Transistor Level Circuit Experiments using Evolvable Hardware
NASA Technical Reports Server (NTRS)
Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.
2005-01-01
The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.
NASA Astrophysics Data System (ADS)
Ogiwara, Akifumi; Maekawa, Hikaru; Watanabe, Minoru; Moriwaki, Retsu
2014-02-01
A holographic polymer-dispersed liquid crystal (HPDLC) memory to record multi-context information for an optically reconfigurable gate array is formed by the angle-multiplexing recording using a successive laser exposure in liquid crystal (LC) composites. The laser illumination system is constructed using the half mirror and photomask written by the different configuration contexts placed on the motorized stages under the control of a personal computer. The fabricated holographic memory implements a precise reconstruction of configuration contexts corresponding to the various logical circuits such as OR circuit and NOR circuit by the laser illumination at different incident angle in the HPDLC memory.
Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications
NASA Astrophysics Data System (ADS)
Yang, Lingsheng; Cheng, Biyu; Jia, Hongting
2018-04-01
In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.
A polymorphic reconfigurable emulator for parallel simulation
NASA Technical Reports Server (NTRS)
Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.
1980-01-01
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in
2014-02-24
We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.
NASA Technical Reports Server (NTRS)
Allen, Gregory
2011-01-01
The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).
FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2016-01-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830
FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.
Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing
2012-07-01
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.
Analysis and Selection of a Remote Docking Simulation Visual Display System
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Fagg, M. F.
1984-01-01
The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.
Zhang, Dan; Wei, Bin
2017-01-01
Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360
Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft
NASA Astrophysics Data System (ADS)
Abdulrahim, Mujahid
Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.
A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON
NASA Astrophysics Data System (ADS)
Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai
2010-12-01
We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.
A Course on Reconfigurable Processors
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Huss, Sorin A.
2010-01-01
Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
NASA Technical Reports Server (NTRS)
Rajagopalan, Harish; Rahmat-Samii, Yahya; Imbriale, William A.
2007-01-01
The purpose of this paper is to investigate potential reflectarray elements by taking into consideration the eventual implementation of MEMS technology for this particular application and detailed characterization of one of the potential element designs.
ERIC Educational Resources Information Center
Whitney, Tim
2000-01-01
Examines how tight urban sites can yield sports spaces that favorably compare to their more rural campus counterparts. Potential areas of concern when recreation centers are reconfigured into high-rise structures are highlighted, including building codes, building access, noise control, building costs, and lighting. (GR)
Inertial effects during irreversible meniscus reconfiguration in angular pores
NASA Astrophysics Data System (ADS)
Ferrari, Andrea; Lunati, Ivan
2014-12-01
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
... DEPARTMENT OF STATE [Public Notice 7290] Culturally Significant Objects Imported for Exhibition Determinations: ``Reconfiguring an African Icon: Odes to the Mask by Modern and Contemporary Artists From Three... ``Reconfiguring an African Icon: Odes to the Mask by Modern and Contemporary Artists from Three Continents...
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
Rapid evolution of analog circuits configured on a field programmable transistor array
NASA Technical Reports Server (NTRS)
Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.
2002-01-01
The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.
Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Stoica, Adrian
1998-01-01
Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.
Methods for freeform fabrication of structures
Kaufman, Stephen G.; Spletzer, Barry L.
2000-01-01
Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.
NASA Astrophysics Data System (ADS)
Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.
2013-12-01
Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
Robust Feedback Control of Reconfigurable Multi-Agent Systems in Uncertain Adversarial Environments
2015-07-09
R. G., Optimal Lunar Landing and Retargeting using a Hybrid Control Strategy. Proceedings of the 2013 AAS/AIAA Space Flight Mechanics Meeting (AAS...Furfaro, R. & Sanfelice, R. G., Switching System Model for Pinpoint Lunar Landing Guidance Using a Hybrid Control Strategy. Proceedings of the AIAA...methods in distributed settings and the design of numerical methods to properly compute their trajectories . We have generate results showing that
Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.
Comparing Methods for Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Lai, Chok Fung
2011-01-01
This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Jang, Jaeeun; Lee, Yongsu; Cho, Hyunwoo; Yoo, Hoi-Jun
2016-08-01
An ultra-low-power duty controlled received signal strength indicator (RSSI) is implemented for human body communication (HBC) in 180 nm CMOS technology under 1.5 V supply. The proposed RSSI adopted 3 following key features for low-power consumption; 1) current reusing technique (CR-RSSI) with replica bias circuit and calibration unit, 2) duty controller, and 3) reconfigurable gm-boosting LNA. The CR-RSSI utilizes stacked amplifier-rectifier-cell (AR-cell) to reuse the supply current of each blocks. As a result, the power consumption becomes 540 [Formula: see text] with +/-2 dB accuracy and 75 dB dynamic range. The replica bias circuit and calibration unit are adopted to increase the reliability of CR-RSSI. In addition, the duty controller turns off the RSSI when it is not required, and this function leads 70% power reduction. At last, the gm-boosting reconfigurable LNA can adaptively vary its noise and linearity performance with respect to input signal strength. Fro current reusing technique m this feature, we achieve 62% power reduction in the LNA. Thanks to these schemes, compared to the previous works, we can save 70% of power in RSSI and LNA.
Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai
2017-01-01
This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859
Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics
NASA Astrophysics Data System (ADS)
Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles
2018-05-01
Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Jiang, Huaiguang; Tan, Jin
This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less
ISS-12A.1 Orbit 1 Flight Control Team in FCR-1 with Flight Director Derek Hassmann
2006-12-15
JSC2006-E-54411 (15 Dec. 2006) --- The members of the STS-116/12A.1 ISS Orbit 1 flight control team pose for a group portrait in the station flight control room of Houston's Mission Control Center (MCC). Flight director Derek Hassman (center right) holds the STS-116 mission logo. Astronaut Terry W. Virts Jr., spacecraft communicator (CAPCOM), is at center. PHALCON flight controller Scott Stover (center left) holds the P5 truss power reconfiguration logo.
Reconfigurable routing protocol for free space optical sensor networks.
Xie, Rong; Yang, Won-Hyuk; Kim, Young-Chon
2012-01-01
Recently, free space optical sensor networks (FSOSNs), which are based on free space optics (FSO) instead of radio frequency (RF), have gained increasing visibility over traditional wireless sensor networks (WSNs) due to their advantages such as larger capacity, higher security, and lower cost. However, the performance of FSOSNs is restricted to the requirement of a direct line-of-sight (LOS) path between a sender and a receiver pair. Once a node dies of energy depletion, the network would probably suffer from a dramatic decrease of connectivity, resulting in a huge loss of data packets. Thus, this paper proposes a reconfigurable routing protocol (RRP) to overcome this problem by dynamically reconfiguring the network virtual topology. The RRP works in three phases: (1) virtual topology construction, (2) routing establishment, and (3) reconfigurable routing. When data transmission begins, the data packets are first routed through the shortest hop paths. Then a reconfiguration is initiated by the node whose residual energy falls below a threshold. Nodes affected by this dying node are classified into two types, namely maintenance nodes and adjustment nodes, and they are reconfigured according to the types. An energy model is designed to evaluate the performance of RRP through OPNET simulation. Our simulation results indicate that the RRP achieves better performance compared with the simple-link protocol and a direct reconfiguration scheme in terms of connectivity, network lifetime, packet delivery ratio and the number of living nodes.
NASA Technical Reports Server (NTRS)
Kaufman, Howard
1998-01-01
Many papers relevant to reconfigurable flight control have appeared over the past fifteen years. In general these have consisted of theoretical issues, simulation experiments, and in some cases, actual flight tests. Results indicate that reconfiguration of flight controls is certainly feasible for a wide class of failures. However many of the proposed procedures although quite attractive, need further analytical and experimental studies for meaningful validation. Many procedures assume the availability of failure detection and identification logic that will supply adequately fast, the dynamics corresponding to the failed aircraft. This in general implies that the failure detection and fault identification logic must have access to all possible anticipated faults and the corresponding dynamical equations of motion. Unless some sort of explicit on line parameter identification is included, the computational demands could possibly be too excessive. This suggests the need for some form of adaptive control, either by itself as the prime procedure for control reconfiguration or in conjunction with the failure detection logic. If explicit or indirect adaptive control is used, then it is important that the identified models be such that the corresponding computed controls deliver adequate performance to the actual aircraft. Unknown changes in trim should be modelled, and parameter identification needs to be adequately insensitive to noise and at the same time capable of tracking abrupt changes. If however, both failure detection and system parameter identification turn out to be too time consuming in an emergency situation, then the concepts of direct adaptive control should be considered. If direct model reference adaptive control is to be used (on a linear model) with stability assurances, then a positive real or passivity condition needs to be satisfied for all possible configurations. This condition is often satisfied with a feedforward compensator around the plant. This compensator must be robustly designed such that the compensated plant satisfies the required positive real conditions over all expected parameter values. Furthermore, with the feedforward only around the plant, a nonzero (but bounded error) will exist in steady state between the plant and model outputs. This error can be removed by placing the compensator also in the reference model. Design of such a compensator should not be too difficult a problem since for flight control it is generally possible to feedback all the system states.
Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.
77 FR 4459 - Amendment of Class E Airspace; Greenfield, IA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
...-0846; Airspace Docket No. 11-ACE-18] Amendment of Class E Airspace; Greenfield, IA AGENCY: Federal... Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield Municipal... rulemaking to amend Class E airspace for Greenfield, IA, reconfiguring controlled airspace at Greenfield...
Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure
Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.
2016-01-01
An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036
Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation
Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.
2014-01-01
Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123
Comb-based radiofrequency photonic filters with rapid tunability and high selectivity
NASA Astrophysics Data System (ADS)
Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.
2012-03-01
Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.
Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides
NASA Astrophysics Data System (ADS)
Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen
2018-05-01
Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.
Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)
NASA Technical Reports Server (NTRS)
Latino, Carl D.
2001-01-01
The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.
Automated digital magnetofluidics
NASA Astrophysics Data System (ADS)
Schneider, J.; Garcia, A. A.; Marquez, M.
2008-08-01
Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.
A multi-functional bubble-based microfluidic system
Khoshmanesh, Khashayar; Almansouri, Abdullah; Albloushi, Hamad; Yi, Pyshar; Soffe, Rebecca; Kalantar-zadeh, Kourosh
2015-01-01
Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics. PMID:25906043
A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu; Trlica, C.
2015-05-21
We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltagesmore » to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.« less
Methods and systems for providing reconfigurable and recoverable computing resources
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A method for optimizing the use of digital computing resources to achieve reliability and availability of the computing resources is disclosed. The method comprises providing one or more processors with a recovery mechanism, the one or more processors executing one or more applications. A determination is made whether the one or more processors needs to be reconfigured. A rapid recovery is employed to reconfigure the one or more processors when needed. A computing system that provides reconfigurable and recoverable computing resources is also disclosed. The system comprises one or more processors with a recovery mechanism, with the one or more processors configured to execute a first application, and an additional processor configured to execute a second application different than the first application. The additional processor is reconfigurable with rapid recovery such that the additional processor can execute the first application when one of the one more processors fails.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
Circularly split-ring-resonator-based frequency-reconfigurable antenna
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.
Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems
2009-12-31
written. The new implementation supports the XML dialect called dashML. The plug-in is written in Java script using a flexible extension of the...human in the loop control was improved and documented, and the script for integration was developed; further study on theoretical framework for...reference damage controller was developed and tested; the model of human in the loop control was improved and documented, and the script for integrating
2014-06-25
Metasurfaces with Reconfigurable Reflection Phase for High-Power Microwave Applications Kenneth L. Morgan, Clinton P. Scarborough, Micah D...TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power Microwave Applications 5a. CONTRACT NUMBER 5b...Examples that demonstrate theoretical methods for extending the operating power levels of metasurface reflectarrays have been given •The proposed
A Novel Design of Frequency Reconfigurable Antenna for UWB Application
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao
2016-09-01
In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
West, Adam D; Weatherill, Kevin J; Hayward, Thomas J; Fry, Paul W; Schrefl, Thomas; Gibbs, Mike R J; Adams, Charles S; Allwood, Dan A; Hughes, Ifan G
2012-08-08
Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 μK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.
Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver
NASA Astrophysics Data System (ADS)
Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra
2018-05-01
We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.
Reconfigurable and responsive droplet-based compound micro-lenses.
Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias
2017-03-07
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.
Reconfigurable and responsive droplet-based compound micro-lenses
Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias
2017-01-01
Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505
On-chip switch for reconfigurable mode-multiplexing optical network.
Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang
2016-09-19
The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.
77 FR 55688 - Amendment of Class E Airspace; Boise, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... needed as a reference. The Donnelly Tactical Air Navigation System (TACAN) has been decommissioned and controlled airspace reconfigured. This action also makes a minor change to the legal description in reference.... No comments were received. The FAA's Aeronautical Products Office requested the legal description for...
NASA Astrophysics Data System (ADS)
Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.
2014-12-01
Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.
Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars
NASA Astrophysics Data System (ADS)
Huang, Lei; Yu, Cong; Tong, Hao
2016-08-01
We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line regions around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of the region with twisted closed lines. Typically, it is increased by a factor of ˜2, which is consistent with the intermittent pulsars’ spin-down behavior during the “off” and “on” states. We find that there is a threshold of maximal twist angle {{Δ }}{φ }{{thres}}˜ 1. The magnetosphere is stable only if the closed line twist angle is less than {{Δ }}{φ }{{thres}}. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be explained by long-term activities in the star’s crust and the untwisting induced by MHD instability. The estimated duration of on-state is about 1 week, consistent with observations. Due to the MHD instability, there exists an upper limit for the spin-down ratio (f˜ 3) between the on-state and the off-state, if the Y-point remains at the light cylinder.
Reconfigurable Optical Directed-Logic Circuits
2015-11-20
AFRL-AFOSR-VA-TR-2016-0053 Reconfigurable Optical Directed-Logic Circuits Jacob Robinson WILLIAM MARSH RICE UNIV HOUSTON TX Final Report 11/20/2015...2015 Reconfigurable Optical Directed-Logic Circuits FA9550-12-1-0261 FA9550-12-1-0261 Robinson, Jacob Rice University 6100 Main Street Houston...Optical Directed-Logic Circuits Jacob T. Robinson and Qianfan Xu Rice University 1. Motivation for Directed-Logic Circuits Directed-logic is
NASA Astrophysics Data System (ADS)
Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok
2013-12-01
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.
2018-03-01
of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science
75 FR 37291 - Amendment of Class E Airspace; Osceola, AR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
...-1183; Airspace Docket No. 09-ASW-38] Amendment of Class E Airspace; Osceola, AR AGENCY: Federal... Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport has... rulemaking to amend Class E airspace for Osceola, AR, reconfiguring controlled airspace at Osceola Municipal...
75 FR 68415 - Amendment of Class E Airspace; Kennett, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
...; Airspace Docket No. 10-ACE-8] Amendment of Class E Airspace; Kennett, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace for Kennett, MO... rulemaking to amend Class E airspace for Kennett, MO, reconfiguring controlled airspace at Kennett Memorial...
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.
1992-01-01
Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.
NASA Technical Reports Server (NTRS)
Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.
1992-01-01
The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
2015-09-24
AFRL-AFOSR-VA-TR-2015-0304 Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and Neutralization Hae Chang...Contract/Grant Title: Reconfigurable Structure using Multifunctional Mechanized Materials for Threats Precognition and...using multifunctional mechanized materials for threats precognition and neutralization. The main design
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Reconfiguration parameters for drag of flexible cylindrical elements
NASA Astrophysics Data System (ADS)
John, Chapman; Wilson, Bruce; Gulliver, John
2015-11-01
This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method
NASA Astrophysics Data System (ADS)
Li, Jing
2016-07-01
This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.
URV Flight Test of an ADA Implemented Self-Repairing Flight Control System
1992-08-01
USE ONLY(Leave blank) I2. REPORT DATE j3.REOTYPANDTSCVRD JAUG 1992 j FINAL 01/01/85--08/31/92 4. TITLE AND SUBTITLE URV FL GHT TEST OF AN ADA IMPLEMESNT...History of the XBQM-106 2 2.0 Self-Repairing Flight Control System 4 Introduction 2.1 Control System Reconfiguration 5 Strategy 2.2 Failure Detection...ji * Ill ’ha A GJ s.d I I I C S U L 3 2.0 Self-Repairing Flight Control System Introduction Self-Repairing Flight Control Systems (SRFCS) are an
Economic evaluation of distribution system smart grid investments
Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; ...
2014-12-31
This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, R.; Kartz, M.; Behrendt, W.
1996-10-01
The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new,more » higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.« less
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Banisadr, Seyedali; Chen, Jian
2017-12-13
Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices.
Fraser, Alec; Baeza, Juan I; Boaz, Annette
2017-06-09
Health service reconfigurations are of international interest but remain poorly understood. This article focuses on the use of evidence by senior managerial decision-makers involved in the reconfiguration of stroke services in London 2008-2012. Recent work comparing stroke service reconfiguration in London and Manchester emphasises the ability of senior managerial decision-makers in London to 'hold the line' in the crucial early phases of the stroke reconfiguration programme. In this article, we explore in detail how these decision-makers 'held the line' and ask what the broader power implications of doing so are for the interaction between evidence, health policy and system redesign. The research combined semi-structured interviews (n = 20) and documentary analysis of historically relevant policy papers and contemporary stroke reconfiguration documentation published by NHS London and other interested parties (n = 125). We applied a critical interpretive and reflexive approach to the analysis of the data. We identified two forms of power which senior managerial decision-makers drew upon in order to 'hold the line'. Firstly, discursive power, which through an emphasis on evidence, better patient outcomes, professional support and clinical credibility alongside a tightly managed consultation process, helped to set an agenda that was broadly receptive to the overall decision to change stroke services in the capital in a radical way. Secondly, once the essential parameters of the decision to change services had been agreed, senior managerial decision-makers 'held the line' through hierarchical New Public Management style power to minimise the traditional pressures to de-radicalise the reconfiguration through 'top down' decision-making. We problematise the concept of 'holding the line' and explore the power implications of such managerial approaches in the early phases of health service reconfiguration. We highlight the importance of evidence for senior managerial decision-makers in agenda setting and the limitations of clinical research findings in guiding politically sensitive policy decisions which impact upon regional healthcare systems.
Development of Measures to Assess Product Modularity and Reconfigurability
2010-03-01
mission needs. For example, a thermal blanket is the only “module” currently being used to control spacecraft temperature (i.e. no active cooling). If...infrastructure, and thermal control. The spacecraft components include the autonomous flight software; the quantity of high- performance computing; power... thermal requirements are satisfied using this thermal blanket , then there may not be a need for active cooling to improve the thermal range of the
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
Control of soft machines using actuators operated by a Braille display.
Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M
2014-01-07
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.
Control of Soft Machines using Actuators Operated by a Braille Display
Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.
2013-01-01
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
2009-08-07
ISS020-E-028611 (7 Aug. 2009) --- European Space Agency astronaut Frank De Winne (foreground) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers, work the controls of the Space Station Remote Manipulator System (SSRMS) and the Centerline Berthing Camera System (CBCS) in the International Space Station’s Destiny laboratory to relocate the Pressurized Mating Adapter 3 (PMA-3) from the Unity node nadir port to Unity’s port side. This relocation is required to allow reconfigurations on the side of the Unity node port bulkhead by the crew in a pressurized environment where PMA-3 is now located. Once these reconfigurations are completed, PMA-3 will be relocated back to Unity’s nadir port, after which the Tranquility node will be brought up and berthed to Unity’s port side on mission STS-130/20A.
Software-defined microwave photonic filter with high reconfigurable resolution
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-01-01
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062
A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.
Jha, Pankaj; Patra, Pravanjan; Naik, Jairaj; Acharya, Amit; Rajalakshmi, P; Singh, Shiv Govind; Dutta, Ashudeb
2015-08-01
This paper presents a generic programmable analog front-end (AFE) for acquisition and digitization of various biopotential signals. This includes a lead-off detection circuit, an ultra-low current capacitively coupled signal conditioning stage with programmable gain and bandwidth, a new mixed signal automatic gain control (AGC) mechanism and a medically cohesive reconfigurable ΣΔ ADC. The full system is designed in UMC 0.18μm CMOS. The AFE achieves an overall linearity of more 10 bits with 0.47μW power consumption. The ADC provides 2(nd) order noise-shaping while using single integrator and an ENOB of ~11 bits with 5μW power consumption. The system was successfully verified for various ECG signals from PTB database. This system is intended for portable batteryless u-Healthcare devices.
Passive colloids work together to become Active
NASA Astrophysics Data System (ADS)
Kandula, Hima Nagamanasa; Wang, Wei; Zhang, Jie; Wu, Huanxin; Han, Ming; Luijten, Erik; Granick, Steve
In recent years there is growing body of research to design self-propelled colloids to gain insights into non-equilibrium systems including living matter. While most active colloids developed hitherto entail prefabrication of Janus colloids and possess single fixed active site, we present one simple system where active colloids are formed in-situ naturally with multiple active sites and are reversible as well as reconfigurable. A binary mixture of Brownian colloids which have opposite polarizations when subjected to an AC electric field spontaneously assemble into clusters which are propelled by asymmetric induced charge electro osmosis. We find that tuning the relative sizes of the two species allows for the control over the number of active sites. More interestingly, the patches are dynamic enabling reconfiguration of the active cluster. Consequently, the clusters are active not only in motion but also in their structure.
Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Joshua T.; Biallas, George H.; Brown, G.
2015-06-01
JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete themore » system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.« less
Software-defined microwave photonic filter with high reconfigurable resolution.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-10-19
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.
Programmable multi-zone furnace for microgravity research
NASA Technical Reports Server (NTRS)
Rosenthal, Bruce N.; Krolikowski, Cathryn R.
1991-01-01
In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.
Metasurface with Reconfigurable Reflection Phase for High-Power Microwave Applications
2014-01-07
Paper 3. DATES COVERED (From - To) 15-08-2012 to 07-01-2014 4. TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We propose a metasurface with reconfigurable reflection phase that can be utilized in high...the metasurface has a reflection phase tuning range of approximately 300 degrees with an associated change in capacitance of 2.7 pF. 15. SUBJECT
An FPGA-based reconfigurable DDC algorithm
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Kasprowicz, G.
2016-09-01
This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Active Structural Control for Aircraft Efficiency with the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey
2015-01-01
The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.
76 FR 43821 - Amendment of Class E Airspace; Ava, MO
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
.... Decommissioning of the Bilmart non-directional beacon (NDB) at Ava Bill Martin Memorial Airport, Ava, MO, has made... Register approves this incorporation by reference action under 1 CFR part 51, subject to the annual... to amend Class E airspace for Ava, MO, reconfiguring controlled airspace at Ava Bill Martin Memorial...
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid
Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.
Model-centric distribution automation: Capacity, reliability, and efficiency
Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...
2016-02-26
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Model-centric distribution automation: Capacity, reliability, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onen, Ahmet; Jung, Jaesung; Dilek, Murat
A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less
Proteus: a reconfigurable computational network for computer vision
NASA Astrophysics Data System (ADS)
Haralick, Robert M.; Somani, Arun K.; Wittenbrink, Craig M.; Johnson, Robert; Cooper, Kenneth; Shapiro, Linda G.; Phillips, Ihsin T.; Hwang, Jenq N.; Cheung, William; Yao, Yung H.; Chen, Chung-Ho; Yang, Larry; Daugherty, Brian; Lorbeski, Bob; Loving, Kent; Miller, Tom; Parkins, Larye; Soos, Steven L.
1992-04-01
The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for large granularity tasks such as machine vision and image processing The system can achieve 20 Giga-flops (80 Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/second. The system employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multiprocessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facilitate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debugger, low and high level simulators, and a message passing system for all control needs. Image processing application software includes a variety of point operators neighborhood, operators, convolution, and the mathematical morphology operations of binary and gray scale dilation, erosion, opening, and closing.
Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun
2016-05-24
DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.
Reconfigurable Model Execution in the OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Hwang, John T.
2017-01-01
NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the time discretization are adaptively refined, resulting in computational savings of roughly 10% and the elimination of oscillations in the optimized altitude profile.
Reconfigurable Polymer Networks for Improved Treatment of Intracranial Aneurysms
NASA Astrophysics Data System (ADS)
Ninh, Chi Suze Q.
Endovascular embolization of intracranial aneurysms is a minimally invasive treatment in which an implanted material forms a clot to isolate the weakened vessel. Current strategy suffers from long-term potential failure modes. These potential failure modes include (1) enzymatic degradation of the fibrin clot that leads to compaction of the embolic agent, (2) incomplete filling of the aneurysm sac by embolic agent, and (3) challenging geometry of wide neck aneurysms. In the case of wide neck aneurysms, usually an assisting metal stent is used to help open the artery. However, metal stents with much higher modulus in comparison to the soft blood vessel can cause biocompatibilities issues in the long term such as infection and scarring. Motivated to solve these challenges associated with endovascular embolization, strategies to synthesize and engineer reconfigurable and biodegradable polymers as alternative therapies are evaluated in this thesis. (1) Reconfiguration of fibrin gel's modulus was achieved through crosslinking with genipin released from a biodegradable polymer matrix. (2) Reconfigurability can also be achieved by transforming triblock co-polymer hydrogel into photoresponsive material through incorporation of melanin nanoparticles as efficient photosensitizers. (3) Finally, reconfigurability can be conferred on biodegradable polyester networks via Diels-Alder coupling of furan pendant groups and dimaleimide crosslinking agent. Taken all together, this thesis describes strategies to transform a broad class of polymer networks into reconfigurable materials for improved treatment of intracranial aneurysms as well as for other biomedical applications.
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
NASA Astrophysics Data System (ADS)
Tellers, M. C.; Pulskamp, J. S.; Bedair, S. S.; Rudy, R. Q.; Kierzewski, I. M.; Polcawich, R. G.; Bergbreiter, S. E.
2018-03-01
As an alternative to highly constrained hard-wired reconfigurable RF circuits, a motion-enabled reconfigurable circuit (MERC) offers freedom from transmission line losses and homogeneous materials selection. The creation of a successful MERC requires a precise mechanical mechanism for relocating components. In this work, a piezoelectric MEMS actuator array is modeled and experimentally characterized to assess its viability as a solution to the MERC concept. Actuation and design parameters are evaluated, and the repeatability of high quality on-axis motion at greater than 1 mm s-1 is demonstrated with little positional error. Finally, an initial proof-of-concept circuit reconfiguration has been demonstrated using off-the-shelf RF filter components. Although initial feasibility tests show filter performance degradation with an additional insertion loss of 0.3 dB per contact, out-of-band rejection degradation as high as 10 dB, and ripple performance reduction from 0.25 dB to 1.5 dB, MERC is proven here as an alternative to traditional approaches used in reconfigurable RF circuit applications.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Computer image generation: Reconfigurability as a strategy in high fidelity space applications
NASA Technical Reports Server (NTRS)
Bartholomew, Michael J.
1989-01-01
The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.
Combination field chopper and battery charger
Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.
1979-08-13
A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.
Combination field chopper and battery charger
Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.
1981-01-01
A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.
A MAG for the Twenty First Century: Lethal, Lighter, Energy Efficient, and Cheaper
2010-04-14
well as an advanced trainer. 40 25. Zero altitude-zero airspeed ejection seats . 26. Common multi-function display (MFD) cockpit configuration for...front cockpit, with seat belts/shoulder harnesses fastened. b. Aft cockpit capable of being reconfigured for flight control including conducting...Capability to carry two wounded Marines via internal litters. 24. Dual seat with dual controls to facilitate dual use as light attack/armed reconnaissance as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics
NASA Astrophysics Data System (ADS)
Seto, Daisaku; Watanabe, Minoru
2015-09-01
In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.
Yang, Chunrong; Zou, Dan; Chen, Jianchi; Zhang, Linyan; Miao, Jiarong; Huang, Dan; Du, Yuanyuan; Yang, Shu; Yang, Qianfan; Tang, Yalin
2018-03-15
Plenty of molecular circuits with specific functions have been developed; however, logic units with reconfigurability, which could simplify the circuits and speed up the information process, are rarely reported. In this work, we designed a novel reconfigurable logic unit based on a DNA-templated, potassium-concentration-dependent, supramolecular assembly, which could respond to the input stimuli of H + and K + . By inputting different concentrations of K + , the logic unit could implement three significant functions, including a half adder, a half subtractor, and a 2-to-4 decoder. Considering its reconfigurable ability and good performance, the novel prototypes developed here may serve as a promising proof of principle in molecular computers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
Longo, Alessia; Meulenbroek, Ruud; Haid, Thomas; Federolf, Peter
2018-05-01
Movement variability in sustained repetitive tasks is an important factor in the context of work-related musculoskeletal disorders. While a popular hypothesis suggests that movement variability can prevent overuse injuries, pain evolving during task execution may also cause variability. The aim of the current study was to investigate, first, differences in movement behavior between volunteers with and without work-related pain and, second, the influence of emerging pain on movement variability. Upper-body 3D kinematics were collected as 22 subjects with musculoskeletal disorders and 19 healthy volunteers performed a bimanual repetitive tapping task with a self-chosen and a given rhythm. Three subgroups were formed within the patient group according to the level of pain the participants experienced during the task. Principal component analysis was applied to 30 joint angle coordinates to characterize in a combined analysis the movement variability associated with reconfigurations of the volunteers' postures and the cycle-to-cycle variability that occurred during the execution of the task. Patients with no task-related pain showed lower cycle-to-cycle variability compared to healthy controls. Findings also indicated an increase in movement variability as pain emerged, manifesting both as frequent postural changes and large cycle-to-cycle variability. The findings suggested a relationship between work-related musculoskeletal disorders and movement variability but further investigation is needed on this issue. Additionally, the findings provided clear evidence that pain increased motor variability. Postural reconfigurations and cycle-to-cycle variability should be considered jointly when investigating movement variability and musculoskeletal disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
From physiology to feminism. Reconfiguring body, gender and expertise in natural fertility control.
Denora, T
1996-09-01
This paper uses the phenomenon of natural fertility control (NFC) to explore the ways in which concepts and artifacts influence and circumscribe everyday beliefs. Specifically, the paper examines how NFC configures the physiological "reality" of the female body and, thus, gender relations, physiological expertise, and knowledge claims. The research for this study was based on a literature review which included approximately 200 articles published since 1966 on ovulation detection and prediction. Additional information was gained from interviews. After describing the research in the introductory section, the first part of the paper introduces NFC and describes its marginalization and how that marginalization contributes to the marginalization of the female reproductive system. In the second section, language and imagery used to describe the "activity" of sperm are contrasted with that which portrays the egg as "passive." Such terminology would have to be rethought if the active nature of female mucus (which is crucial for guiding the sperm to the egg) were acknowledged. By examining accounts of reproduction as cultural constructions and as constructions articulated with reference to gender relations, this section allows consideration of the ways in which a marginalized "fact" (the action of the mucus) provides a "natural resource" which can be used to reconfigure gender/physiology (and is, therefore, culturally subversive). The third section shows how current NFC innovations (such as the urinary dipstick) reconfigure the instruments of knowledge production (with detection transferred from the woman's "untrustworthy" manual assessment to a "superior" technology). This section illustrates how modes of knowledge discipline both "natural" phenomenon and "social" relations by redistributing expertise along clinically hierarchial lines. Thus, the new ovulation prediction technologies serve to strengthen traditional gender imageries and roles.
A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves
NASA Astrophysics Data System (ADS)
Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan
2018-05-01
Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.
SCaN Testbed Software Development and Lessons Learned
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Varga, Denise M.
2012-01-01
National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
NASA Technical Reports Server (NTRS)
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
Evolvable circuit with transistor-level reconfigurability
NASA Technical Reports Server (NTRS)
Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)
2004-01-01
An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.
Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System
NASA Technical Reports Server (NTRS)
Braman, Julia M. B.; Murray, Richard M; Wagner, David A.
2007-01-01
Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.
1989-03-01
IAutomatic Control, AC-22, p 883-885, 1977 /Syntax check EIGA=EIG(A); EIGB=EIG(B); [M,N)=SIZE(EIGA); [PR] SIZE(EIGB); FOR 11I:M,FOR JlI:P,.... EIGAB=EIGA...AIM = implicit model A matrix I/ QI = weighting matrix, ouputs mimic model I/ RI = weighting matrix, controls mimic model // QIHAT = implicit cost II...the dimension is less than 1. // NINPUTS (the number of controls and outputs) is the flag for the dimensio // of the connections. /- // The name of
NASA Astrophysics Data System (ADS)
Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola
2016-05-01
Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.
The trigger system for the external target experiment in the HIRFL cooling storage ring
NASA Astrophysics Data System (ADS)
Li, Min; Zhao, Lei; Liu, Jin-Xin; Lu, Yi-Ming; Liu, Shu-Bin; An, Qi
2016-08-01
A trigger system was designed for the external target experiment in the Cooling Storage Ring (CSR) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Considering that different detectors are scattered over a large area, the trigger system is designed based on a master-slave structure and fiber-based serial data transmission technique. The trigger logic is organized in hierarchies, and flexible reconfiguration of the trigger function is achieved based on command register access or overall field-programmable gate array (FPGA) logic on-line reconfiguration controlled by remote computers. We also conducted tests to confirm the function of the trigger electronics, and the results indicate that this trigger system works well. Supported by the National Natural Science Foundation of China (11079003), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the CAS Center for Excellence in Particle Physics (CCEPP).
Optical circulation in a multimode optomechanical resonator.
Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold
2018-05-04
Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.
NASA Astrophysics Data System (ADS)
Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.
2017-08-01
Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.
Controlled Electrochemical Deformation of Liquid-Phase Gallium.
Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh
2016-02-17
Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W
2013-10-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Hardware support for software controlled fast multiplexing of performance counters
Salapura, Valentina; Wisniewski, Robert W.
2013-01-01
Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.
Self-Adaptive System based on Field Programmable Gate Array for Extreme Temperature Electronics
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Zebulum, Ricardo; Rajeshuni, Ramesham; Stoica, Adrian; Katkoori, Srinivas; Graves, Sharon; Novak, Frank; Antill, Charles
2006-01-01
In this work, we report the implementation of a self-adaptive system using a field programmable gate array (FPGA) and data converters. The self-adaptive system can autonomously recover the lost functionality of a reconfigurable analog array (RAA) integrated circuit (IC) [3]. Both the RAA IC and the self-adaptive system are operating in extreme temperatures (from 120 C down to -180 C). The RAA IC consists of reconfigurable analog blocks interconnected by several switches and programmable by bias voltages. It implements filters/amplifiers with bandwidth up to 20 MHz. The self-adaptive system controls the RAA IC and is realized on Commercial-Off-The-Shelf (COTS) parts. It implements a basic compensation algorithm that corrects a RAA IC in less than a few milliseconds. Experimental results for the cold temperature environment (down to -180 C) demonstrate the feasibility of this approach.
Kotze, Ben; Jordaan, Gerrit
2014-08-25
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.
Qubit entanglement between ring-resonator photon-pair sources on a silicon chip
Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.
2015-01-01
Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267
Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.
Bharti, Bhuvnesh; Velev, Orlin D
2015-07-28
Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.
Kotze, Ben; Jordaan, Gerrit
2014-01-01
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548
. Effective April 3, 2012, the National Hurricane Center will reconfigure its marine zones for the offshore reconfiguration. Click HERE for further information. Effective Jan 01, 2005 U.S. Coast Guard long range
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
Reconfigurable Sensor Monitoring System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
Montana Highway Reconfiguration Study
DOT National Transportation Integrated Search
2005-02-01
"The 2001 Montana State legislature and Governors Office directed the Department (MDT) to conduct a study : examining the economic impact of reconfiguring the States major two-lane highways. To achieve this overall goal, : the Governor created ...
Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.
Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan
2014-12-15
Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3 GB/s.
NASA Technical Reports Server (NTRS)
1972-01-01
The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.
ERIC Educational Resources Information Center
Schneider, Darryl W.; Logan, Gordon D.
2005-01-01
Switch costs in task switching are commonly attributed to an executive control process of task-set reconfiguration, particularly in studies involving the explicit task-cuing procedure. The authors propose an alternative account of explicitly cued performance that is based on 2 mechanisms: priming of cue encoding from residual activation of cues in…
An approximation formula for a class of fault-tolerant computers
NASA Technical Reports Server (NTRS)
White, A. L.
1986-01-01
An approximation formula is derived for the probability of failure for fault-tolerant process-control computers. These computers use redundancy and reconfiguration to achieve high reliability. Finite-state Markov models capture the dynamic behavior of component failure and system recovery, and the approximation formula permits an estimation of system reliability by an easy examination of the model.
NASA Astrophysics Data System (ADS)
Iannacci, J.; Tschoban, C.
2017-04-01
RF-MEMS technology is proposed as a key enabling solution for realising the high-performance and highly reconfigurable passive components that future communication standards will demand. In this work, we present, test and discuss a novel design concept for an 8-bit reconfigurable power attenuator, manufactured using the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches in order to select/deselect the resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises eight cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. The fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated with Ansys HFSS. The device exhibits attenuation levels (S21) in the range from -10 dB to -60 dB, up to 110 GHz. In particular, S21 shows flatness from 15 dB down to 3-5 dB and from 10 MHz to 50 GHz, as well as fewer linear traces up to 110 GHz. A comprehensive discussion is developed regarding the voltage standing wave ratio, which is employed as a quality indicator for the attenuation levels. The margins of improvement at design level which are needed to overcome the limitations of the presented RF-MEMS device are also discussed.
Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun
2014-05-14
DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
NASA Astrophysics Data System (ADS)
Echavarria, E.; Tomiyama, T.; van Bussel, G. J. W.
2007-07-01
The objective of this on-going research is to develop a design methodology to increase the availability for offshore wind farms, by means of an intelligent maintenance system capable of responding to faults by reconfiguring the system or subsystems, without increasing service visits, complexity, or costs. The idea is to make use of the existing functional redundancies within the system and sub-systems to keep the wind turbine operational, even at a reduced capacity if necessary. Re-configuration is intended to be a built-in capability to be used as a repair strategy, based on these existing functionalities provided by the components. The possible solutions can range from using information from adjacent wind turbines, such as wind speed and direction, to setting up different operational modes, for instance re-wiring, re-connecting, changing parameters or control strategy. The methodology described in this paper is based on qualitative physics and consists of a fault diagnosis system based on a model-based reasoner (MBR), and on a functional redundancy designer (FRD). Both design tools make use of a function-behaviour-state (FBS) model. A design methodology based on the re-configuration concept to achieve self-maintained wind turbines is an interesting and promising approach to reduce stoppage rate, failure events, maintenance visits, and to maintain energy output possibly at reduced rate until the next scheduled maintenance.
Stackable Form-Factor Peripheral Component Interconnect Device and Assembly
NASA Technical Reports Server (NTRS)
Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)
2013-01-01
A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.
Reconfigurable Antenna Aperture with Optically Controlled GeTe-Based RF Switches
2015-03-31
duration (~100ns) but high amplitude raises the material’s temperature above the melting point . As a liquid, the atoms are randomly distributed...100ns, there is sufficient optical energy to heat and melt a 100nm thick GeTe PCM area of approximately 3µm 2 . Figure 3. Optimum PCM area...which tracks well with previously published thin film heater model [9]. Figure 4. Validation of Melt /Quench Thermal Model Optical Control: The
SDN control of optical nodes in metro networks for high capacity inter-datacentre links
NASA Astrophysics Data System (ADS)
Magalhães, Eduardo; Perry, Philip; Barry, Liam
2017-11-01
Worldwide demand for bandwidth has been growing fast for some years and continues to do so. To cover this, mega datacentres need scalable connectivity to provide rich connectivity to handle the heavy traffic across them. Therefore, hardware infrastructures must be able to play different roles according to service and traffic requirements. In this context, software defined networking (SDN) decouples the network control and forwarding functions enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. In addition, elastic optical networking (EON) technologies enable efficient spectrum utilization by allocating variable bandwidth to each user according to their actual needs. In particular, flexible transponders and reconfigurable optical add/drop multiplexers (ROADMs) are key elements since they can offer degrees of freedom to self adapt accordingly. Thus, it is crucial to design control methods in order to optimize the hardware utilization and offer high reconfigurability, flexibility and adaptability. In this paper, we propose and analyze, using a simulation framework, a method of capacity maximization through optical power profile manipulation for inter datacentre links that use existing metropolitan optical networks by exploiting the global network view afforded by SDN. Results show that manipulating the loss profiles of the ROADMs in the metro-network can yield optical signal-to-noise ratio (OSNR) improvements up to 10 dB leading to an increase in 112% in total capacity.
Immobile Robots: AI in the New Millennium
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Nayak, P. Pandurang
1996-01-01
A new generation of sensor rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biosphere-like life support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. To accomplish this, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves in order to survive decades of autonomous operations. Achieving these large scale modeling and configuration tasks will require a tight coupling between the higher level coordination function provided by symbolic reasoning, and the lower level autonomic processes of adaptive estimation and control. To be economically viable they will need to be programmable purely through high level compositional models. Self modeling and self configuration, coordinating autonomic functions through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous systems architecture that is taking us into the New Millennium.
Cognitive caching promotes flexibility in task switching: evidence from event-related potentials.
Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno
2015-12-08
Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty.
Framework for architecture-independent run-time reconfigurable applications
NASA Astrophysics Data System (ADS)
Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.
2000-10-01
Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.
Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
Khor, Kang Xiang; Chin, Patrick Jun Hua; Yeong, Che Fai; Su, Eileen Lee Ming; Narayanan, Aqilah Leela T; Abdul Rahman, Hisyam; Khan, Qamer Iqbal
2017-10-01
Rehabilitation robots have become increasingly popular for stroke rehabilitation. However, the high cost of robots hampers their implementation on a large scale. This paper implements the concept of a modular and reconfigurable robot, reducing its cost and size by adopting different therapeutic end effectors for different training movements using a single robot. The challenge is to increase the robot's portability and identify appropriate kinds of modular tools and configurations. Because literature on the effectiveness of this kind of rehabilitation robot is still scarce, this paper presents the design of a portable and reconfigurable rehabilitation robot and describes its use with a group of post-stroke patients for wrist and forearm training. Seven stroke subjects received training using a reconfigurable robot for 30 sessions, lasting 30 min per session. Post-training, statistical analysis showed significant improvement of 3.29 points (16.20%, p = 0.027) on the Fugl-Meyer assessment scale for forearm and wrist components. Significant improvement of active range of motion was detected in both pronation-supination (75.59%, p = 0.018) and wrist flexion-extension (56.12%, p = 0.018) after the training. These preliminary results demonstrate that the developed reconfigurable robot could improve subjects' wrist and forearm movement.
Architectural evaluation of dynamic and partial reconfigurable systems designed with DREAMS tool
NASA Astrophysics Data System (ADS)
Otero, Andrés.; Gallego, Ángel; de la Torre, Eduardo; Riesgo, Teresa
2013-05-01
Benefits of dynamic and partial reconfigurable systems are increasingly being more accepted by the industry. For this reason, SRAM-based FPGA manufacturers have improved, or even included for the first time, the support they offer for the design of this kind of systems. However, commercial tools still offer a poor flexibility, which leads to a limited efficiency. This is witnessed by the overhead introduced by the communication primitives, as well as by the inability to relocate reconfigurable modules, among others. For this reason, authors have proposed an academic design tool called DREAMS, which targets the design of dynamically reconfigurable systems. In this paper, main features offered by DREAMS are described, comparing them with existing commercial and academic tools. Moreover, a graphic user interface (GUI) is originally described in this work, with the aim of simplifying the design process, as well as to hide the low level device dependent details to the system designer. The overall goal is to increase the designer productivity. Using the graphic interface, different reconfigurable architectures are provided as design examples. Among them, both conventional slot-based architectures and mesh type designs have been included.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
Cognitive caching promotes flexibility in task switching: evidence from event-related potentials
Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno
2015-01-01
Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty. PMID:26643146
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik
2007-01-01
Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly built Controls and Automation Laboratory (CAL) at the ATC. The CAL lab features a 12' x 24' granite air-bearing table and an overhead simulated starfield. Among the technologies needed for the concept demo were mating interfaces allowing the spacecraft to dock and deployable structures allowing for adjustable separation between spacecraft after a rigid connection had been established. The decision to use a nonmetallic deployable boom for this purpose was driven by the MRHE concept demo requirements reproduced in Table 1.
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.
Kahnt, Thorsten; Tobler, Philippe N
2017-02-08
Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D 2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks. SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D 2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents. Copyright © 2017 the authors 0270-6474/17/371493-12$15.00/0.
Embeddable Reconfigurable Neuroprocessors
NASA Technical Reports Server (NTRS)
Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil
1993-01-01
Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.
Neurobiology: motor control of flexible octopus arms.
Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin
2005-02-10
Animals with rigid skeletons can rely on several mechanisms to simplify motor control--for example, they have skeletal joints that reduce the number of variables and degrees of freedom that need to be controlled. Here we show that when the octopus uses one of its long and highly flexible arms to transfer an object from one place to another, it employs a vertebrate-like strategy, temporarily reconfiguring its arm into a stiffened, articulated, quasi-jointed structure. This indicates that an articulated limb may provide an optimal solution for achieving precise, point-to-point movements.
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
A Reconfigurable Communications System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Kifle, Muli
2004-01-01
Two trends of NASA missions are the use of multiple small spacecraft and the development of an integrated space network. To achieve these goals, a robust and agile communications system is needed. Advancements in field programmable gate array (FPGA) technology have made it possible to incorporate major communication and network functionalities in FPGA chips; thus this technology has great potential as the basis for a reconfigurable communications system. This report discusses the requirements of future space communications, reviews relevant issues, and proposes a methodology to design and construct a reconfigurable communications system for small scientific spacecraft.
Upper and lower bounds for semi-Markov reliability models of reconfigurable systems
NASA Technical Reports Server (NTRS)
White, A. L.
1984-01-01
This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.
System comprising interchangeable electronic controllers and corresponding methods
NASA Technical Reports Server (NTRS)
Steele, Glen F. (Inventor); Salazar, George A. (Inventor)
2009-01-01
A system comprising an interchangeable electronic controller is provided with programming that allows the controller to adapt a behavior that is dependent upon the particular type of function performed by a system or subsystem component. The system reconfigures the controller when the controller is moved from one group of subsystem components to another. A plurality of application programs are provided by a server from which the application program for a particular electronic controller is selected. The selection is based on criteria such as a subsystem component group identifier that identifies the particular type of function associated with the system or subsystem group of components.
Algarra, Nicolas; Karagiannopoulos, Panagiotis G; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne
2018-02-01
We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L/L_{c}, which is the ratio of the length of the flexible beam L to L_{c}, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L/L_{c}.
NASA Astrophysics Data System (ADS)
Algarra, Nicolas; Karagiannopoulos, Panagiotis G.; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne
2018-02-01
We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L /Lc , which is the ratio of the length of the flexible beam L to Lc, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L /Lc .
An application of artificial intelligence theory to reconfigurable flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.
1987-01-01
Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Survey of reconfigurable architectures for multimedia applications
NASA Astrophysics Data System (ADS)
Cervero, T.; López, S.; Callicó, G. M.; Tobajas, F.; de Armas, V.; López, J.; Sarmiento, R.
2009-05-01
In a short period of time, the multimedia sector has quickly progressed trying to overcome the exigencies of the customers in terms of transfer speeds, storage memory, image quality, and functionalities. In order to cope with this stringent situation, different hardware devices have been developed as possible choices. Despite of the fact that not every device is apt for implementing the high computational demands associated to multimedia applications; reconfigurable architectures appear as ideal candidates to achieve these necessities. As a direct consequence, worldwide universities and industries have incremented their research activity into this area, generating an important know-how base. In order to sort all the information generated about this issue, this paper reviews the most recent reconfigurable architectures for multimedia applications. As a result, this paper establishes the benefits and drawbacks of the different dynamically reconfigurable architectures for multimedia applications according to their system-level design.
Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry
NASA Technical Reports Server (NTRS)
Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul
2003-01-01
Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-04-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55-4.60 GHz and 4.54-4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications.
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
NASA Astrophysics Data System (ADS)
Whittaker, Peter; Wilson, Catherine A. M. E.; Aberle, Jochen
2015-09-01
An improved model to describe the drag and reconfiguration of flexible riparian vegetation is proposed. The key improvement over previous models is the use of a refined 'vegetative' Cauchy number to explicitly determine the magnitude and rate of the vegetation's reconfiguration. After being derived from dimensional consideration, the model is applied to two experimental data sets. The first contains high-resolution drag force and physical property measurements for twenty-one foliated and defoliated full-scale trees, including specimens of Alnus glutinosa, Populus nigra and Salix alba. The second data set is independent and of a different scale, consisting of drag force and physical property measurements for natural and artificial branches of willow and poplar, under partially and fully submerged flow conditions. Good agreement between the measured and predicted drag forces is observed for both data sets, especially when compared to a more typical 'rigid' approximation, where the effects of reconfiguration are neglected.
Reconfigurable Embedded System for Electrocardiogram Acquisition.
Kay, Marcel Seiji; Iaione, Fábio
2015-01-01
Smartphones include features that offers the chance to develop mobile systems in medical field, resulting in an area called mobile-health. One of the most common medical examinations is the electrocardiogram (ECG), which allows the diagnosis of various heart diseases, leading to preventative measures and preventing more serious problems. The objective of this study was to develop a wireless reconfigurable embedded system using a FPAA (Field Programmable Analog Array), for the acquisition of ECG signals, and an application showing and storing these signals on Android smartphones. The application also performs the partial FPAA reconfiguration in real time (adjustable gain). Previous studies using FPAA usually use the development boards provided by the manufacturer (high cost), do not allow the reconfiguration in real time, use no smartphone and communicate via cables. The parameters tested in the acquisition circuit and the quality of ECGs registered in an individual were satisfactory.
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.
Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D
2004-01-01
Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.
Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin
2016-04-01
A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-01-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098
Service user engagement in health service reconfiguration: a rapid evidence synthesis.
Dalton, Jane; Chambers, Duncan; Harden, Melissa; Street, Andrew; Parker, Gillian; Eastwood, Alison
2016-07-01
To assess what is known about effective patient and public engagement in health service reconfiguration processes and identify implications for further research and health care practice. Rapid systematic review of published and grey literature to identify methods or approaches to engagement in decisions about health service reconfiguration; and to examine how engagement has worked or not worked in specific examples of system change. Following a search for literature published in English from 2000 to March 2014, eight systematic reviews, seven primary studies and 24 case studies (of which 6 were exemplars) were included. We undertook a narrative synthesis to consider five aspects of engagement with health service reconfiguration. Engagement varied in nature and intensity, and efforts generally involved multiple methods. There was no evidence on the isolated impact of any particular engagement method or collection of methods. In general, engagement was most likely to be successful when started early, when led and supported by clinicians, and when it offered opportunities for genuine interaction. The impact of engagement was variably measured and demonstrated, and frequently defined as process measures rather than the outcomes of proposals for service reconfiguration. Little was reported on the potential negative impact of service user engagement. Patients and the public can be engaged through various methods. Problems often arise because decision-makers paid insufficient attention to issues considered important by patients and the public. Guidance setting out the stages of reconfiguration and opportunities for service user input could be a helpful practical framework for future engagement activity. Future evaluation and explicit reporting of engagement and impact is needed. © The Author(s) 2015.
A High-Performance Reconfigurable Fabric for Cognitive Information Processing
2010-12-01
receives a data token from its control input (shown as a horizontal arrow above). The value of this data token is used to select an input port. The...dual of a merge. It receives a data token from its control input (shown as a horizontal arrow above). The value of this data token is used to select...Computer-Aided Design of Intergrated Circuits and Systems, Vol. 26, No. 2, February 2007. [12] Cadence Design Systems. Clock Domain Crossing: Closing the
Advanced Manufacturing Systems in Food Processing and Packaging Industry
NASA Astrophysics Data System (ADS)
Shafie Sani, Mohd; Aziz, Faieza Abdul
2013-06-01
In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.
2010-12-01
computers in 1953. HIL motion simulators were also built for the dynamic testing of vehicle com- ponents (e.g. suspensions, bodies ) with hydraulic or...complex, comprehensive mechanical systems can be simulated in real-time by parallel computers; examples include multi- body sys- tems, brake systems...hard constraints in a multivariable control framework. And the third aspect is the ability to perform online optimization. These aspects results in
Optical vault: a reconfigurable bottle beam based on conical refraction of light.
Turpin, A; Shvedov, V; Hnatovsky, C; Loiko, Yu V; Mompart, J; Krolikowski, W
2013-11-04
We employ conical refraction of light in a biaxial crystal to create an optical bottle for photophoretic trapping and manipulation of particles in gaseous media. We show that by only varying the polarization state of the input light beam the optical bottle can be opened and closed in order to load and unload particles in a highly controllable manner.
Self-Assembly of Reconfigurable By-Design Optical Materials with Molecular-Level Control
2014-09-21
International Conference on Metamaterials, Photonic Crystals and Plasmonics, Singapore, May 20 - 23, 2014. Zhang, W. “Design, Synthesis, and Applications of...metal nanoparticles positioned in 3D crystal lattices...materials such as photonic crystal and metamaterial hold high promise of providing a path to by-design optical materials with engineered optical
Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.
2004-01-01
In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.
Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh
2017-06-14
We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.
Specifying structural constraints of architectural patterns in the ARCHERY language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Alejandro; HASLab INESC TEC and Universidade do Minho, Campus de Gualtar, 4710-057 Braga; Barbosa, Luis S.
ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.
A distributed fault-tolerant signal processor /FTSP/
NASA Astrophysics Data System (ADS)
Bonneau, R. J.; Evett, R. C.; Young, M. J.
1980-01-01
A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.
Thermooptic two-mode interference device for reconfigurable quantum optic circuits
NASA Astrophysics Data System (ADS)
Sahu, Partha Pratim
2018-06-01
Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.
Reconfigurable microfluidic pump enabled by opto-electrical-thermal transduction
NASA Astrophysics Data System (ADS)
Takeuchi, Masaru; Hagiwara, Masaya; Haulot, Gauvain; Ho, Chih-Ming
2013-10-01
Flexible integration of a microfluidic system comprising pumps, valves, and microchannels was realized by an optoelectronic reconfigurable microchannels (OERM) technique. Projecting a low light fluidic device pattern—e.g., pumps, valves, and channels—onto an OERM platform generates Joule heating and melts the substrate in the bright area on the platform; thus, the fluidic system can be reconfigured by changing the projected light pattern. Hexadecane was used as the substrate of the microfluidic system. The volume change of hexadecane during the liquid-solid phase transition was utilized to generate pumping pressure. The system can pump nanoliters of water within several seconds.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-03-01
Addressable Reconfigurable Technology (ART), conceived for future ANTS (Autonomous Nanotechnology Swarm) Architectures, is now implemented as Autonomous Lunar Investigator (ALI) rovers, a mission concept allowing autonomous exploration of the lunar farside and poles within 10 years.
Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices
NASA Astrophysics Data System (ADS)
Gough, Ryan C.
Liquid metals are an attractive material choice for designers wishing to combine the advantages of metals, such as high electrical conductivity, thermal conductivity, and reflectivity, with the inherently dynamic nature of fluids. Liquid metals have been utilized for a wide variety of applications, but their high electrical conductivity, surface smoothness, and linear response makes them especially attractive as tuning elements within reconfigurable radio frequency (RF) devices. The recent introduction of non-toxic liquid metal alloys onto the commercial market has further fueled interest in this versatile material. Early experiments with liquid metal as an RF tuning element have yielded promising results, but have largely depended on externally applied pressure to actuate the liquid metal. For commercial implementation this would necessitate the use of clunky and inefficient micro-pumps, which can require both high voltages and high power consumption. This reliance on hydraulic pumping has been a significant barrier to the incorporation of liquid metal as an RF tuning element in applications outside of a laboratory setting. Here, several electrical actuation techniques are demonstrated that allow for the rapid and repeatable actuation of non-toxic gallium alloys as tuning elements within reconfigurable RF devices. These techniques leverage the naturally high surface tension of liquid metals, as well as the unique electrochemistry of gallium-based alloys, to exercise wide-ranging and high fidelity control over both the metal's shape and position. Furthermore, this control is exercised with voltage and power levels that are each better than an order of magnitude below that achievable with conventional micro-pumps. This control does not require the constant application of actuation signals in order to maintain an actuated state, and can even be 'self-actuated', with the liquid metal supplying its own kinetic energy via the electrochemical conversion of its native oxide layer. Several proof-of-concept devices are designed and tested to demonstrate the effectiveness of these electrical actuation techniques. A pair of tunable slot antennas are presented that achieve frequency reconfigurability through different implementations of liquid metal tuning elements - the first uses liquid metal as a dynamic short-circuit boundary condition for the magnetic current within the resonant aperture, and the second as a variable-length transmission stub that adds and removes reactance from the antenna. The two antennas are tunable across effective bandwidths of 19% and 15%, respectively. In addition, a tunable bandpass filter is demonstrated in which a central liquid-metal resonant element is 'stretched' to lower the passband of the filter by 10% without impacting the insertion loss. Finally, it is demonstrated how liquid metal can be formed into arbitrary shapes at high speeds (approximately 2.5 cm/s) without the need for an external power supply.
Flexible Airspace Management (FAM) Research 2010 Human-in-the-Loop Simulation
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Brasil, Connie; Homola, Jeffrey; Kessell, Angela; Prevot, Thomas; Smith, Nancy
2011-01-01
A human-in-the-Ioop (HITL) simulation was conducted to assess potential user and system benefits of Flexible Airspace Management (FAM) concept, as well as designing role definitions, procedures, and tools to support the FAM operations in the mid-term High Altitude Airspace (HAA) environment. The study evaluated the benefits and feasibility of flexible airspace reconfiguration in response to traffic overload caused by weather deviations, and compared them to those in a baseline condition without the airspace reconfiguration. The test airspace consisted of either four sectors in one Area of Specialization or seven sectors across two Areas. The test airspace was assumed to be at or above FL340 and fully equipped Vvith data communications (Data Comm). Other assumptions were consistent with those of the HAA concept. Overall, results showed that FAM operations with multiple Traffic Management Coordinators, Area Supervisors, and controllers worked remarkably well. The results showed both user and system benefits, some of which include the increased throughput, decreased flight distance, more manageable sector loads, and better utilized airspace. Also, the roles, procedures, airspace designs, and tools were all very well received. Airspace configuration options that resulted from a combination of algorithm-generated airspace configurations with manual modifications were well acceptec and posed little difficuIty and/or workload during airspace reconfiguration process. The results suggest a positive impact of FAM operations in HAA. Further investigation would be needed to evaluate if the benefits and feasibility would extend in either non-HAA or mixed equipage environment.
Reconfigurable Processing Module
NASA Technical Reports Server (NTRS)
Somervill, Kevin; Hodson, Robert; Jones, Robert; Williams, John
2005-01-01
To accommodate a wide spectrum of applications and technologies, NASA s Exploration System's Missions Directorate has called for reconfigurable and modular technologies to support future missions to the moon and Mars. In response, Langley Research Center is leading a program entitled Reconfigurable Scaleable Computing (RSC) that is centered on the development of FPGA-based computing resources in a stackable form factor. This paper details the architecture and implementation of the Reconfigurable Processing Module (RPM), which is the key element of the RSC system. The RPM is an FPGA-based, space-qualified printed circuit assembly leveraging terrestrial/commercial design standards into the space applications domain. The form factor is similar to, and backwards compatible with, the PCI-104 standard utilizing only the PCI interface. The size is expanded to accommodate the required functionality while still better than 30% smaller than a 3U CompactPCI(TradeMark)card and without the overhead of the backplane. The architecture is built around two FPGA devices, one hosting PCI and memory interfaces, and another hosting mission application resources; both of which are connected with a high-speed data bus. The PCI interface FPGA provides access via the PCI bus to onboard SDRAM, flash PROM, and the application resources; both configuration management as well as runtime interaction. The reconfigurable FPGA, referred to as the Application FPGA - or simply "the application" - is a radiation-tolerant Xilinx Virtex-4 FX60 hosting custom application specific logic or soft microprocessor IP. The RPM implements various SEE mitigation techniques including TMR, EDAC, and configuration scrubbing of the reconfigurable FPGA. Prototype hardware and formal modeling techniques are used to explore the performability trade space. These models provide a novel way to calculate quality-of-service performance measures while simultaneously considering fault-related behavior due to SEE soft errors.
Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions
NASA Astrophysics Data System (ADS)
Nguyen, Dung Duc
Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
NASA Astrophysics Data System (ADS)
Bahr, André; Hoffmann, Julia; Schönfeld, Joachim; Schmidt, Matthew W.; Nürnberg, Dirk; Batenburg, Sietske J.; Voigt, Silke
2018-01-01
Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.
Development of an unmanned maritime system reference architecture
NASA Astrophysics Data System (ADS)
Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.
2014-06-01
The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.
A variable-gain output feedback control design approach
NASA Technical Reports Server (NTRS)
Haylo, Nesim
1989-01-01
A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.
Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production
USDA-ARS?s Scientific Manuscript database
To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....
Wireless Sensors Network (Sensornet)
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.
YADCLAN: yet another digitally-controlled linear artificial neuron.
Frenger, Paul
2003-01-01
This paper updates the author's 1999 RMBS presentation on digitally controlled linear artificial neuron design. Each neuron is based on a standard operational amplifier having excitatory and inhibitory inputs, variable gain, an amplified linear analog output and an adjustable threshold comparator for digital output. This design employs a 1-wire serial network of digitally controlled potentiometers and resistors whose resistance values are set and read back under microprocessor supervision. This system embodies several unique and useful features, including: enhanced neuronal stability, dynamic reconfigurability and network extensibility. This artificial neuronal is being employed for feature extraction and pattern recognition in an advanced robotic application.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.
2003-01-01
Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.
I(CES)-cubes: a modular self-reconfigurable bipartite robotic system
NASA Astrophysics Data System (ADS)
Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.
1999-08-01
In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.
Rational design of reconfigurable prismatic architected materials.
Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia
2017-01-18
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2017-01-01
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
Reconfigurable Hardware Adapts to Changing Mission Demands
NASA Technical Reports Server (NTRS)
2003-01-01
A new class of computing architectures and processing systems, which use reconfigurable hardware, is creating a revolutionary approach to implementing future spacecraft systems. With the increasing complexity of electronic components, engineers must design next-generation spacecraft systems with new technologies in both hardware and software. Derivation Systems, Inc., of Carlsbad, California, has been working through NASA s Small Business Innovation Research (SBIR) program to develop key technologies in reconfigurable computing and Intellectual Property (IP) soft cores. Founded in 1993, Derivation Systems has received several SBIR contracts from NASA s Langley Research Center and the U.S. Department of Defense Air Force Research Laboratories in support of its mission to develop hardware and software for high-assurance systems. Through these contracts, Derivation Systems began developing leading-edge technology in formal verification, embedded Java, and reconfigurable computing for its PF3100, Derivational Reasoning System (DRS ), FormalCORE IP, FormalCORE PCI/32, FormalCORE DES, and LavaCORE Configurable Java Processor, which are designed for greater flexibility and security on all space missions.
NASA Astrophysics Data System (ADS)
Chen, Huajin; Ye, Qian; Zhang, Yiwen; Shi, Lei; Liu, Shiyang; Jian, Zi; Lin, Zhifang
2017-08-01
We demonstrate a reconfigurable lateral optical force (OF) on a plasmonic nanoparticle immersed in a simple optical field invariant along the lateral direction and formed by two interfering plane waves. This lateral OF is shown, from the multipolar expansion technique, attributed to several coupling channels established between multiple multipoles excited on a plasmonic nanoparticle, in particular, the adjacent electric multipole modes that bring about the Fano interferences, which can substantially enhance the lateral scattering asymmetry, leading to an augmented lateral OF comparable to the longitudinal OF. More importantly, by engineering Fano interference either intrinsically through particle size or extrinsically through selectively exciting narrow plasmonic dark modes the direction of the lateral OF is reversibly switchable. The lateral OF can even be modulated continuously from positive to negative by controlling the incident angle of the interfering plane waves due to the variation of relative phase of the excited plasmonic dark modes near Fano resonance, facilitating the plasmonic nanoparticle as a controllable conveyor as well as the optical selection and separation. Besides, a fundamental and counterintuitive physical consequence emerges in that the simple proportional relation between the lateral OF and the Belinfante spin momentum derived in the small particle limit breaks down when the Fano interference comes into play, in particular, a negative lateral OF opposite the Belinfante spin momentum can be induced by properly controlling the selective excitation.
Sheikhi, A; van de Ven, T G M
2017-08-11
A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.
Optical Processing of Microwave Signals - Part B
2003-04-01
Gay Lussac ,78851 Elancourt Cedex Daniel Dolfi, Sylvie Tonda-Goldstein, Jean-Pierre Huignard, Thales Research & Technology 91401 Orsay Cedex, France...each microwave frequency component fk (phase and amplitude) by the control of the transmission law of the SLMs’. When attributing one frequency to a...a high speed photodiode. Considering the capability offered by 2D SLMs to provide reconfigurable complex phase law , sophisticated programmable
An approximation formula for a class of Markov reliability models
NASA Technical Reports Server (NTRS)
White, A. L.
1984-01-01
A way of considering a small but often used class of reliability model and approximating algebraically the systems reliability is shown. The models considered are appropriate for redundant reconfigurable digital control systems that operate for a short period of time without maintenance, and for such systems the method gives a formula in terms of component fault rates, system recovery rates, and system operating time.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
Reconfiguring redundancy management
NASA Technical Reports Server (NTRS)
Gelderloos, H. J. C. (Inventor)
1982-01-01
A redundancy management system is described wherein input signals from a sensor are provided redundantly in parallel so that a primary control signal may be selected. Median value signals for groups of three sensors are detected in median value selectors of selection filter. The detected median value signals are then also compared in a subtractor/comparator to determine whether any of them exceed the others by an amount greater than the signal level for a failed sensor. If so, the exceeding detected medium value signal is sent to a control computer as the primary control signal. If not, the lowest level detected medium value signal is sent as the primary control signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology
Biró, István; Giugliano, Michele
2015-01-01
Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385
Complete denture tooth arrangement technology driven by a reconfigurable rule.
Dai, Ning; Yu, Xiaoling; Fan, Qilei; Yuan, Fulai; Liu, Lele; Sun, Yuchun
2018-01-01
The conventional technique for the fabrication of complete dentures is complex, with a long fabrication process and difficult-to-control restoration quality. In recent years, digital complete denture design has become a research focus. Digital complete denture tooth arrangement is a challenging issue that is difficult to efficiently implement under the constraints of complex tooth arrangement rules and the patient's individualized functional aesthetics. The present study proposes a complete denture automatic tooth arrangement method driven by a reconfigurable rule; it uses four typical operators, including a position operator, a scaling operator, a posture operator, and a contact operator, to establish the constraint mapping association between the teeth and the constraint set of the individual patient. By using the process reorganization of different constraint operators, this method can flexibly implement different clinical tooth arrangement rules. When combined with a virtual occlusion algorithm based on progressive iterative Laplacian deformation, the proposed method can achieve automatic and individual tooth arrangement. Finally, the experimental results verify that the proposed method is flexible and efficient.
Fang, Joyce; Savransky, Dmitry
2016-08-01
Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.
Wang, Ren; Wang, Bing-Zhong; Huang, Wei-Ying; Ding, Xiao
2016-04-16
A compact reconfigurable antenna with an omnidirectional mode and four directional modes is proposed. The antenna has a main radiator and four parasitic elements printed on a dielectric substrate. By changing the status of diodes soldered on the parasitic elements, the proposed antenna can generate four directional radiation patterns and one omnidirectional radiation pattern. The main beam directions of the four directional modes are almost orthogonal and the four directional beams can jointly cover a 360° range in the horizontal plane, i.e., the main radiation plane of omnidirectional mode. The whole volume of the antenna and the control network is approximately 0.70 λ × 0.53 λ × 0.02 λ, where λ is the wavelength corresponding to the center frequency. The proposed antenna has a simple structure and small dimensions under the requirement that the directional radiation patterns can jointly cover the main radiation plane of the omnidirectional mode, therefore, it can be used in smart wireless sensor systems for different application scenarios.
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas
2014-06-30
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao
2018-01-01
We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.
Fault tolerant, radiation hard, high performance digital signal processor
NASA Technical Reports Server (NTRS)
Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke
1990-01-01
An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.
ROADMs for reconfigurable metro networks
NASA Astrophysics Data System (ADS)
Homa, Jonathan; Bala, Krishna
2009-01-01
Reconfigurable Optical Add-Drop Multiplexers (ROADMs) are the key nodal sub-systems that are used to implement modern DWDM networks. They provide network flexibility by switching wavelengths among fibers under software control without expensive conversion to the electronic domain. They speed up provisioning time, reduce operational costs and eliminate human errors. Two general types of ROADMs are used in Metro optical networks, two-degree and multi-degree, where the degree refers to the numbers of DWDM fibers entering and exiting the ROADM node. A twodegree ROADM is like a location on a highway with off and on ramps to drop off and accept local traffic while a multidegree ROADM is like an interchange where highways meet and is used for interconnecting DWDM rings or for mesh networking. The paper describes two-degree and multi-degree ROADM architectures and how these relate to the technology alternatives used to implement the ROADMs themselves. Focus is provided on the role and expected evolution of the wavelength selective switch (WSS) which is the primary engine used to power ROADMs.
Parallelized reliability estimation of reconfigurable computer networks
NASA Technical Reports Server (NTRS)
Nicol, David M.; Das, Subhendu; Palumbo, Dan
1990-01-01
A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.
Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS{sub 2} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutar, Surajit; Agnihotri, Pratik; Comfort, Everett
2014-03-24
Realizing basic semiconductor devices such as p-n junctions are necessary for developing thin-film and optoelectronic technologies in emerging planar materials such as MoS{sub 2}. In this work, electrostatic doping by buried gates is used to study the electronic and optoelectronic properties of p-n junctions in exfoliated MoS{sub 2} flakes. Creating a controllable doping gradient across the device leads to the observation of the photovoltaic effect in monolayer and bilayer MoS{sub 2} flakes. For thicker flakes, strong ambipolar conduction enables realization of fully reconfigurable p-n junction diodes with rectifying current-voltage characteristics, and diode ideality factors as low as 1.6. The spectralmore » response of the photovoltaic effect shows signatures of the predicted band gap transitions. For the first excitonic transition, a shift of >4{sub kB}T is observed between monolayer and bulk devices, indicating a thickness-dependence of the excitonic coulomb interaction.« less
A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns
NASA Astrophysics Data System (ADS)
Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-07-01
In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.
Memristor-CMOS hybrid integrated circuits for reconfigurable logic.
Xia, Qiangfei; Robinett, Warren; Cumbie, Michael W; Banerjee, Neel; Cardinali, Thomas J; Yang, J Joshua; Wu, Wei; Li, Xuema; Tong, William M; Strukov, Dmitri B; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley
2009-10-01
Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in a data routing network and were connected to gate-level CMOS components that acted as logic elements, in a manner similar to a field programmable gate array. We analyzed the chips using a purpose-built testing system, and demonstrated the ability to configure individual devices, use them to wire up various logic gates and a flip-flop, and then reconfigure devices.
Robot Would Reconfigure Modular Equipment
NASA Technical Reports Server (NTRS)
Purves, Lloyd R.
1993-01-01
Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.
Martín, Ferran; Bonache, Jordi
2014-01-01
In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378
Software-Defined Radio for Space-to-Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.
2011-01-01
A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.
More About Reconfigurable Exploratory Robotic Vehicles
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Nesnas, Issa; Werger, Barry; Helmick, Daniel; Clark, Murray; Christian, Raymond; Cipra, Raymond
2009-01-01
Modular exploratory robotic vehicles that will be able to reconfigure themselves in the field are undergoing development. Proposed for use in exploration of the surfaces of Mars and other remote planets, these vehicles and others of similar design could also be useful for exploring hostile terrain on Earth.
Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics
NASA Astrophysics Data System (ADS)
Cumby, Brad Lee
Present day electronics are now taking on small form factors, unexpected uses, adaptability, and other features that only a decade ago were unimaginable even for most engineers. These electronic devices, such as tablets, smart phones, wearable sensors, and others, have further had a profound impact on how society interacts, works, maintains health, etc. To optimize electronics a growing trend has been to both minimize the physical space taken up by the individual electronic components as well as to maximize the number of functionalities in a single electronic device, forming a compact and efficient package. To accomplish this challenge in one step, many groups have used a design that has reconfigurable electromagnetic properties, maximizing the functionality density of the device. This would allow the replacement of multiple individual components into an integrated system that would achieve a similar result as the separate individual devices while taking up less space. For example, could a device have a reconfigurable antenna, allowing it optimal communication in various settings and across multiple communication bands, thus increasing functionality, range, and even reducing total device size. Thus far a majority of such reconfigurable devices involve connecting/disconnecting various physically static layouts to achieve a summation of individual components that give rise to multiple effects. However, this is not an ideal situation due to the fact that the individual components whether connected or not are taking up real-estate as well as electrical interference with adjacent connected components. This dissertation focuses on the reconfigurability of the metallic component of the electronic device, specifically microwave devices. This component used throughout this dissertation is that of an eutectic liquid metal alloy. The liquid metal allows the utilization of both the inherent compact form (spherical shape) of a liquid in the lowest energy state and the fact that it is resilient and shapeable to allow for reconfigurability. In this dissertation, first background information is given on the existing technology for reconfigurable microwave devices and the basic principles that these mechanisms are based upon. Then a new reconfigurable method is introduced that utilizes Laplace pressure. Materials that are associated with using liquid metals are discussed and an overall systematic view is given to provide a set of proof of concepts that are more applied and understandable by electronic designers and engineers. Finally a novel approach to making essential measurements of liquid metal microwave devices is devised and discussed. This dissertation encompasses a complete device design from materials used for fabrication, fabrication methods and measurement processes to provide a knowledge base for designing liquid metal microwave devices.
NASA Astrophysics Data System (ADS)
Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.
2017-04-01
With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio
Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less
NASA Technical Reports Server (NTRS)
Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.
2014-01-01
The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.
F-15 HiDEC taxi on ramp at sunrise
1991-09-23
NASA's highly modified F-15A (Serial #71-0287) used for digital electronic flight and engine control systems research, at sunrise on the ramp at the Dryden Flight Research Facility, Edwards, California. The F-15 was called the HIDEC (Highly Integrated Digital Electronic Control) flight facility. Research programs flown on the testbed vehicle have demonstrated improved rates of climb, fuel savings, and engine thrust by optimizing systems performance. The aircraft also tested and evaluated a computerized self-repairing flight control system for the Air Force that detects damaged or failed flight control surfaces. The system then reconfigures undamaged control surfaces so the mission can continue or the aircraft is landed safely.
Kinematically redundant arm formulations for coordinated multiple arm implementations
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.
1990-01-01
Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.
ERIC Educational Resources Information Center
Hignite, Karla
2003-01-01
Describes the first phase of a master plan to expand the University of Alaska-Anchorage by purchasing a shopping mall and reconfiguring campus services to take advantage of the additional space. The master plan calls for eventually moving administration to the periphery of the campus and migrating academic programs to the campus center. (SLD)