Halcomb, Danny L.; Mohler, Jonathan H.
1990-10-16
A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.
Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2016-01-01
Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
Temperature transducer has high output, is time stable
NASA Technical Reports Server (NTRS)
Follett, W. H.
1965-01-01
Compact, lightweight temperature transducer requires no amplification of its output signal and is time stable. It uses the temperature-dependent characteristics of a silicon transistor to provide a zero-to-five-volt signal proportional to temperature.
A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging
Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng
2013-01-01
To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat's temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated. PMID:23637936
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
Use of activated carbon to remove undesirable residual amylase from refinery streams
USDA-ARS?s Scientific Manuscript database
In recent years, there has been increased world-wide concern over residual (carry-over)activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed ...
Systems and Methods for Implementing High-Temperature Tolerant Supercapacitors
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Brandon, Erik J. (Inventor); West, William C. (Inventor)
2016-01-01
Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80C and approximately 300C; a second electrode that is thermally stable between at least approximately 80C and approximately 300C; an ionically conductive separator that is thermally stable between at least approximately 80C and 300C; an electrolyte that is thermally stable between approximately at least 80C and approximately 300C; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.
USDA-ARS?s Scientific Manuscript database
In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food manufacturing industries and other end-users. HT and VHT stable amylases were developed...
High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies
NASA Technical Reports Server (NTRS)
Eberts, Kenneth; Ou, Runqing
2013-01-01
Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarki, R.; Baccam, N.; Dayal, Kaushik
Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.
Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats
NASA Technical Reports Server (NTRS)
Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew
2016-01-01
The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.
NASA Astrophysics Data System (ADS)
Hasnine, M.; Tolla, B.; Vahora, N.
2018-04-01
This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.
Stability studies of oxytetracycline in methanol solution
NASA Astrophysics Data System (ADS)
Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting
2018-02-01
As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.
In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature
NASA Astrophysics Data System (ADS)
Liu, Chuan-Jiang; Zheng, Hai-Fei
2012-04-01
An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320°C in the pressure range of 1.0-1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T-0.7126 (250°C<=T<=320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.
Amber light-emitting diode comprising a group III-nitride nanowire active region
Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel
2014-07-22
A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Sinton, W. M.
1982-01-01
The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.
Novel AlInN/GaN integrated circuits operating up to 500 °C
NASA Astrophysics Data System (ADS)
Gaska, R.; Gaevski, M.; Jain, R.; Deng, J.; Islam, M.; Simin, G.; Shur, M.
2015-11-01
High electron concentration in 2DEG channel of AlInN/GaN devices is remarkably stable over a broad temperature range, enabling device operation above 500 °C. The developed IC technology is based on three key elements: (1) exceptional quality AlInN/GaN heterostructure with very high carrier concentration and mobility enables IC fast operation in a broad temperature range; (2) heterostructure field effect transistor approach t provides fully planar IC structure which is easy to scale and to combine with the other high temperature electronic components; (3) fabrication advancements including novel metallization scheme and high-K passivation/gate dielectrics enable high temperature operation. The feasibility of the developed technology was confirmed by fabrication and testing of the high temperature inverter and differential amplifier ICs using AlInN/GaN heterostructures. The developed ICs showed stable performance with unit-gain bandwidth above 1 MHz and internal response time 45 ns at temperatures as high as 500 °C.
DEVELOPMENT OF A HIGH-TEMPERATURE/HIGH-PRESSURE ELECTROSTATIC PRECIPITATOR
The report gives results of a laboratory test demonstrating the feasibility of electrostatic precipitation at high temperatures (to 1366 K) and pressures (to 3550 kPa): corona currents were stable at all temperatures. Detailed current/voltage characteristics under negative and po...
Demonstration of Thermodynamics and Kinetics Using FriXion Erasable Pens
ERIC Educational Resources Information Center
Campbell, Dean J.; Bosma, Wayne B.; Bannon, Stephen J.; Gunter, Molly M.; Hammar, Margaret K.
2012-01-01
FriXion erasable pens contain thermochromic inks that have colored low-temperature forms and colorless high-temperature forms. Liquid nitrogen can be used to kinetically trap the high-temperature forms of the ink at temperatures at which ordinarily the low-temperature forms are more thermodynamically stable. (Contains 2 figures.)
Strain monitoring of bismaleimide composites using embedded microcavity sensor
NASA Astrophysics Data System (ADS)
Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam
2016-03-01
A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.
`Reverse Chemical Evolution': A New Method to Search for Thermally Stable Biopolymers
NASA Astrophysics Data System (ADS)
Mitsuzawa, Shigenobu; Yukawa, Tetsuyuki
2003-04-01
The primitive sea on Earth may have had high-temperature and high-pressure conditions similar to those in present-day hydrothermal environments. If life originated in the hot sea, thermal stability of the constituent molecules would have been necessary. Thus far, however, it has been reported that biopolymers hydrolyze too rapidly to support life at temperatures of more than 200 °C. We herein propose a novel approach, called reverse chemical evolution, to search for biopolymers notably more stable against thermal decomposition than previously reported. The essence of the approach is that hydrolysis of a protein or functional RNA (m-, t-, r-RNA) at high temperature and high pressure simulating the ancient sea environment may yield thermally stable peptides or RNAs at higher concentrations than other peptides or RNAs. An experimental test hydrolyzing bovine ribonuclease A in aqueous solution at 205 °C and 25 MPa yielded three prominently stable molecules weighing 859, 1030 and 695 Da. They are thermally some tens or hundreds times more stable than a polyglycine of comparable mass. Sequence analyses of the 859- and 1030-Da molecules revealed that they are a heptapeptide and its homologue, respectively, elongated by two amino acids at the N-terminal region, originally embedded as residues 112-120 in the protein. They consist mainly of hydrophobic amino acids.
Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics
NASA Astrophysics Data System (ADS)
Lingner, Julian; Jakob, Gerhard; Letz, Martin
2012-06-01
Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.
Nonaqueous Electrical Storage Device
McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.
1999-10-26
An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.
NASA Astrophysics Data System (ADS)
McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee
In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.
The denaturation and degradation of stable enzymes at high temperatures.
Daniel, R M; Dines, M; Petach, H H
1996-01-01
Now that enzymes are available that are stable above 100 degrees C it is possible to investigate conformational stability at this temperature, and also the effect of high-temperature degradative reactions in functioning enzymes and the inter-relationship between degradation and denaturation. The conformational stability of proteins depends upon stabilizing forces arising from a large number of weak interactions, which are opposed by an almost equally large destabilizing force due mostly to conformational entropy. The difference between these, the net free energy of stabilization, is relatively small, equivalent to a few interactions. The enhanced stability of very stable proteins can be achieved by an additional stabilizing force which is again equivalent to only a few stabilizing interactions. There is currently no strong evidence that any particular interaction (e.g. hydrogen bonds, hydrophobic interactions) plays a more important role in proteins that are stable at 100 degrees C than in those stable at 50 degrees C, or that the structures of very stable proteins are systematically different from those of less stable proteins. The major degradative mechanisms are deamidation of asparagine and glutamine, and succinamide formation at aspartate and glutamate leading to peptide bond hydrolysis. In addition to being temperature-dependent, these reactions are strongly dependent upon the conformational freedom of the susceptible amino acid residues. Evidence is accumulating which suggests that even at 100 degrees C deamidation and succinamide formation proceed slowly or not at all in conformationally intact (native) enzymes. Whether this is the case at higher temperatures is not yet clear, so it is not known whether denaturation of degradation will set the upper limit of stability for enzymes. PMID:8694749
Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing
NASA Astrophysics Data System (ADS)
Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi
2017-12-01
A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.
Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing.
Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi
2017-10-16
A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml -1 ) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.
Pico-Kelvin thermometry and temperature stabilization using a resonant optical cavity.
Tan, Si; Wang, Suwen; Saraf, Shailendhar; Lipa, John A
2017-02-20
Ultra-high sensitivity temperature sensing and stable thermal control are crucial for many science experiments testing fundamental theories to high precision. Here we report the first pico-kevin scale thermometer operating at room temperature with an exceptionally low theoretical noise figure of ~70pK/Hz at 1 Hz and a high dynamic range of ~500 K. We have experimentally demonstrated a temperature sensitivity of <3.8nK/Hz at 1 Hz near room temperature, which is an order of magnitude improvement over the state of the art. We have also demonstrated an ultra-high stability thermal control system using this thermometer, achieving 3.7 nK stability at 1 s and ∼ 120 pK at 104 s, which is 10-100 times more stable than the state of the art. With some upgrades to this proof-of-principle device, we can expect it to be used for very high resolution tests of special relativity and in critical point phenomena.
Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B
2016-01-30
The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
High-Temperature Optical Sensor
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.
2010-01-01
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.
Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Mohapatra, Pravat K.; Peng, Shaobing
2017-01-01
Cytokinins (CTKs) regulate panicle size and mediate heat tolerance in crops. To investigate the effect of high temperature on panicle CTK expression and the role of such expression in panicle differentiation in rice, four rice varieties (Nagina22, N22; Huanghuazhan, HHZ; Liangyoupeijiu, LYPJ; and Shanyou63, SY63) were grown under normal conditions and subjected to three high temperature treatments and one control treatment in temperature-controlled greenhouses for 15 days during the early reproductive stage. The high temperature treatments significantly reduced panicle CTK abundance in heat-susceptible LYPJ, HHZ, and N22 varieties, which showed fewer spikelets per panicle in comparison with control plants. Exogenous 6-benzylaminopurine application mitigated the effect of heat injury on the number of spikelets per panicle. The high temperature treatments significantly decreased the xylem sap flow rate and CTK transportation rate, but enhanced cytokinin oxidase/dehydrogenase (CKX) activity in heat-susceptible varieties. In comparison with the heat-susceptible varieties, heat-tolerant variety SY63 showed less reduction in panicle CTK abundance, an enhanced xylem sap flow rate, an improved CTK transport rate, and stable CKX activity under the high temperature treatments. Enzymes involved in CTK synthesis (isopentenyltransferase, LONELY GUY, and cytochrome P450 monooxygenase) were inhibited by the high temperature treatments. Heat-induced changes in CTK transportation from root to shoot through xylem sap flow and panicle CTK degradation via CKX were closely associated with the effects of heat on panicle CTK abundance and panicle size. Heat-tolerant variety SY63 showed stable panicle size under the high temperature treatments because of enhanced transport of root-derived CTKs and stable panicle CKX activity. Our results provide insight into rice heat tolerance that will facilitate the development of rice varieties with tolerance to high temperature. PMID:28367158
Synthesis, characterization, and thermal stability of SiO2/TiO2/CR-Ag multilayered nanostructures
NASA Astrophysics Data System (ADS)
Díaz, Gabriela; Chang, Yao-Jen; Philipossian, Ara
2018-06-01
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.
High temperature glass coatings for superalloys and refractory metals
NASA Technical Reports Server (NTRS)
Chapman, J. W.; Grekila, R. B.; Hirayama, C.; Mattox, D. M.
1970-01-01
New glasses are used as protective coatings on metals and alloys susceptible to oxidation at high temperatures in oxidizing atmospheres. Glasses are stable and solid at temperatures up to 1000 deg C, adhere well to metal surfaces, and are usable for metals with broad range of expansion coefficients.
High-temperature measurement by using a PCF-based Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng
2012-10-01
A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.
Microhotplate Temperature Sensor Calibration and BIST.
Afridi, M; Montgomery, C; Cooper-Balis, E; Semancik, S; Kreider, K G; Geist, J
2011-01-01
In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the silicon substrate temperature if never exposed to temperatures above about 220 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
The influence of room temperature on Mg isotope measurements by MC-ICP-MS.
Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min
2018-03-24
We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.
Activated carbon derived from waste coffee grounds for stable methane storage.
Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S
2015-09-25
An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.
Activated carbon derived from waste coffee grounds for stable methane storage
NASA Astrophysics Data System (ADS)
Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.
2015-09-01
An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.
A new intermediate for the production of flexible stable polymers
NASA Technical Reports Server (NTRS)
Webster, J. A.
1973-01-01
Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.
Intermediate coating layer for high temperature rubbing seals for rotary regenerators
Schienle, James L.; Strangman, Thomas E.
1995-01-01
A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.
High strength porous support tubes for high temperature solid electrolyte electrochemical cells
Rossing, Barry R.; Zymboly, Gregory E.
1986-01-01
A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.
Preparation of highly oxidized RBa.sub.2 Cu.sub.4 O.sub.8 superconductors
Morris, Donald E.
1991-01-01
Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. The compounds and structures thus formed are substantially nonsusceptible to variations in their oxygen content when subjected to changing temperatures, thereby forming a temperature-stable substantially single phase crystal.
Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon
2016-08-10
We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.
Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.
Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing
2017-08-09
High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.
Calculation of Half-Metal, Debye and Curie Temperatures of Co2VAl Compound: First Principles Study
NASA Astrophysics Data System (ADS)
Arash, Boochani; Heidar, Khosravi; Jabbar, Khodadadi; Shahram, Solaymani; Masoud Majidiyan, Sarmazdeh; Rohollah Taghavi, Mendi; Sayed, Mohammad Elahi
2015-05-01
By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than Anti-Ferromagnetic (AFM) and Non-magnetic (NM) ones. In addition, C11-C12 > 0, C44 > 0, and B > 0 so Co2VAl is an elastically stable material with high Debye temperature. Also, the B/G ratio exhibits a ductility behavior. The relatively high Curie temperature provides it as a favorable material for spintronic application. It's electronic and magnetic properties are studied by GGA+U approach leading to a 100% spin polarization at Fermi level. Supported by the simulation of Nano Physics Lab center of Kermanshah Branch, Islamic Azad University
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav
2017-07-01
We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.
Selective Screening of High Temperature Superconductors by Resonant Eddy Current Analysis
1990-11-01
observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant Eddy Current...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.
1987-01-01
1,4,5,8-Tetrahydro-1,4;5,8-diepoxyanthracene reacts with various anthracene endcapped polyimide oligomers to form Diels-Alder cycloaddition copolymers. The polymers are soluble in common organic solvents, and have molecular weights of approximately 21,000 to 32,000. Interestingly, these resins appear to be more stable in air then in nitrogen. This is shown to be due to a unique dehydration (loss of water ranges from 2 to 5 percent) at temperatures of 390 to 400 C to give thermo-oxidatively stable pentiptycene units along the polymer backbone. Because of their high softening points and good thermo-oxidative stability, the polymers have potential as processible, matrix resins for high temperature composite applications.
Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James
2015-07-28
Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.
High-Temperature Storage Testing of ACF Attached Sensor Structures
Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura
2015-01-01
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
NASA Astrophysics Data System (ADS)
Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung
2018-04-01
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
Microhotplate Temperature Sensor Calibration and BIST
Afridi, M.; Montgomery, C.; Cooper-Balis, E.; Semancik, S.; Kreider, K. G.; Geist, J.
2011-01-01
In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the silicon substrate temperature if never exposed to temperatures above about 220 °C. PMID:26989603
Novel NI-Based Ohmic Contacts To a-SiC for High Temperature and High Power Device Applications
2002-01-01
Temperature and High Power Device Applications DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...retained omnicity after 100 h of aging and was found to be chemically and microstructurally stable. These findings indicate that the 1000,’C annealed
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald; Ashcroft, N. W.; Hemley, Russell J.
2017-01-01
A systematic structure search in the La–H and Y–H systems under pressure reveals some hydrogen-rich structures with intriguing electronic properties. For example, LaH10 is found to adopt a sodalite-like face-centered cubic (fcc) structure, stable above 200 GPa, and LaH8 a C2/m space group structure. Phonon calculations indicate both are dynamically stable; electron phonon calculations coupled to Bardeen–Cooper–Schrieffer (BCS) arguments indicate they might be high-Tc superconductors. In particular, the superconducting transition temperature Tc calculated for LaH10 is 274–286 K at 210 GPa. Similar calculations for the Y–H system predict stability of the sodalite-like fcc YH10 and a Tc above room temperature, reaching 305–326 K at 250 GPa. The study suggests that dense hydrides consisting of these and related hydrogen polyhedral networks may represent new classes of potential very high-temperature superconductors. PMID:28630301
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)
1983-01-01
A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.
Supercapacitor Operating At 200 Degrees Celsius
Borges, Raquel S.; Reddy, Arava Leela Mohana; Rodrigues, Marco-Tulio F.; Gullapalli, Hemtej; Balakrishnan, Kaushik; Silva, Glaura G.; Ajayan, Pulickel M.
2013-01-01
The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications. PMID:23999206
Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Upadhyay, Lata Sheo Bachan
2016-11-01
A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.
2000-01-01
A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.
NASA Astrophysics Data System (ADS)
Beasley, M. S.; Tylinski, M.; Chua, Y. Z.; Schick, C.; Ediger, M. D.
2018-05-01
In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of three phosphates with increasing lengths of alkyl side chains: trimethyl phosphate, triethyl phosphate, and tributyl phosphate. The as-deposited glasses were assessed in terms of their reversing heat capacity, onset temperature, and isothermal transformation time. Glasses with a range of kinetic stabilities were prepared, including kinetically stable glasses, as indicated by high onset temperatures and long transformation times. Trimethyl phosphate forms kinetically stable glasses, similar to many other organic molecules, while triethyl phosphate and tributyl phosphate do not. Triethyl phosphate and tributyl phosphate present the first examples of non-hydrogen bonding systems that are unable to form stable glasses via vapor deposition at 0.2 nm/s. Based on experiments utilizing different deposition rates, we conclude that triethyl phosphate and tributyl phosphate lack the surface mobility required for stable glass formation. This may be related to their high enthalpies of vaporization and the internal structure of the liquid state.
Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K
NASA Astrophysics Data System (ADS)
Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru
2016-05-01
Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.
High-temperature-measuring device
Not Available
1981-01-27
A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
High temperature measuring device
Tokarz, Richard D.
1983-01-01
A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
Thermal design and test results for SUNLITE ultra-stable reference cavity
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1991-01-01
SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
NASA Astrophysics Data System (ADS)
Schilperoort, B.; Coenders, M.; Savenije, H. H. G.
2017-12-01
In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.
High Temperature Stable Nanocrystalline SiGe Thermoelectric Material
NASA Technical Reports Server (NTRS)
Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)
2013-01-01
A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.
NASA Astrophysics Data System (ADS)
Nemade, Kailash; Waghuley, Sandeep
2017-05-01
The synthesis of stable superoxide is still great challenge for the researchers working in the field of materials science. Through this letter, we report the novel and simple synthesis approach for the preparation of stable sodium superoxide (NaO2) nanoparticles. NaO2 nanoparticles were prepared by a spray pyrolysis technique, under oxygen rich environment for gas sensing application. The texture characterizations show that as-obtained NaO2 nanoparticles have high structural purity. Most importantly, NaO2 nanoparticles exhibits higher sensing response, shorter response time and recovery time, low operating temperature and good stability during sensing of liquefied petroleum gas (LPG). The main accomplishment of present work is that as-fabricated sensor has low operating temperature (423 K), which is below auto-ignition temperature of LPG. The gas sensing mechanism of NaO2 nanoparticles was discussed without the conventional oxygen bridging mechanism. Through this short communication, LPG sensing application of stable sodium superoxide nanoparticle is explored.
New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability
NASA Technical Reports Server (NTRS)
Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.
1969-01-01
Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.
Heat Stable Polymers: Polyphenylene and Other Aromatic Polymers
1977-01-01
crystalline transition temperature . Model reactions on 4- and 6-phienyl-2-pyrones show that this monomer type is unsuitable for the syntheses of... temperature to a rod-like molecule with a high glass transition temperature . The polymerization reaction is acid catalyzed, but is carried out most...Polymerization Reactions...................24 Solution Properties......................27 Phase Transition Temperatures , Thermal Stability and Thermomechanical
Destruction of acid gas emissions
Mathur, Mahendra P.; Fu, Yuan C.; Ekmann, James M.; Boyle, John M.
1991-01-01
A method of destroying NO.sub.x and SO.sub.2 in a combustion gas in disclosed. The method includes generating active species by treating stable moleucles in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combination of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH.sub.2, OH.sup.-, CH and/or CH.sub.2. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO.sub.x and SO.sub.2. Typically the injection is made into the immediate post-combustion gases at temperatures of 475.degree.-950.degree. C.
Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, John; Xiong, Haifeng; DelaRiva, Andrew
2016-07-08
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoringmore » the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.« less
Ladder polymers for use as high temperature stable resins or coatings
NASA Technical Reports Server (NTRS)
Meador, Mary Ann (Inventor)
1990-01-01
An object of the invention is to synthesize a new class of ladder and partial ladder polymers. In accordance with the invention, the new class of ladder and partial ladder polymers are synthesized by polymerizing a bis-dienophile with a bis-diene. Another object of the invention is to provide a fabricated, electrically conducting, void free composite comprising the new class of the ladder and partial ladder polymers described above. The novelty of the invention relates to a new class of ladder and partial ladder polymers and a process for synthesizing these polymers. These polymers are soluble in common organic solvents and are characterized with a unique dehydration property at temperatures of 300 to 400 C to provide thermo-oxidatively stable pentiptycene units along the polymeric backbone. These polymers are further characterized with high softening points and good thermo-oxidative stability properties. Thus these polymers have potential as processable, matrix resins for high temperature composite applications.
Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni
2013-06-20
Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.
NASA Astrophysics Data System (ADS)
Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter
2011-03-01
The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.
Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder
2016-01-01
Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...
NASA Technical Reports Server (NTRS)
Gilligan, J. E.; Harada, Y.
1974-01-01
The development of a large scale manufacturing method for the production of a stable zinc orthotitanate pigment is discussed. Major emphasis was placed on the evaluation of ultraviolet radiation stability tests of pigments derived from coprecipitated and individually precipitated oxalates. Emphasis was also placed on an investigation of the conditions (time and temperature) leading to high reflectance and high optical stability. Paints were formulated in OI-650 and in OI-650G vehicles from pigments which were prepared at various temperatures. Analyses of ultraviolet irradiation test data were conducted regarding optimum pigment preparation parameters and treatment conditions.
Walters, Diane M.; Lyubimov, Ivan; de Pablo, Juan J.; Ediger, M. D.
2015-01-01
Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics. PMID:25831545
NASA Astrophysics Data System (ADS)
Adler, Stuart B.; Michaels, James N.; Reimer, Jeffrey A.
1990-11-01
The design of a nuclear magnetic resonance (NMR) probe is reported, that can be used in narrow-bore superconducting solenoids for the observation of nuclear induction at high temperatures. The probe is compact, highly sensitive, and stable in continuous operation at temperatures up to 1050 C. The essential feature of the probe is a water-cooled NMR coil that contains the sample-furnace; this design maximizes sensitivity and circuit stability by maintaining the probe electronics at ambient temperature. The design is demonstrated by showing high temperature O-17 NMR spectra and relaxation measurements in solid barium bismuth oxide and yttria-stabilized zirconia.
Shen, Nan; Chen, Yun; Zhou, Yan
2017-05-01
Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred
2016-04-01
Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.
Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S
2010-01-01
Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.
Kinetic Fractionation of Stable Isotopes in Carbonates on Mars: Terrestrial Analogs
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Gibson, Everett K., Jr.; Golden, D. C.; Ming, Douglas W.; McKay, Gordon A.
2003-01-01
An ancient Martian hydrosphere consisting of an alkali-rich ocean would likely produce solid carbonate minerals through the processes of evaporation and/or freezing. We postulate that both (or either) of these kinetically-driven processes would produce carbonate minerals whose stable isotopic compositions are highly fractionated (enriched) with respect to the source carbon. Various scenarios have been proposed for carbonate formation on Mars, including high temperature formation, hydrothermal alteration, precipitation from evaporating brines, and cryogenic formation. 13C and 18O -fractionated carbonates have previously been shown to form kinetically under some of these conditions, ie.: 1) alteration by hydrothermal processes, 2) low temperature precipitation (sedimentary) from evaporating bicarbonate (brine) solutions, and 3) precipitation during the process of cryogenic freezing of bicarbonate-rich fluids. Here we examine several terrestrial field settings within the context of kinetically controlled carbonate precipitation where stable isotope enrichments have been observed.
Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.
Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong
2017-07-19
We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Sreenivas, K.; Gupta, Vinay
2008-01-01
Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.
Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo
Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...
2016-11-24
Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less
Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability
NASA Astrophysics Data System (ADS)
Kalaga, Kaushik
Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage lithium batteries, which may be dubbed as the next generation devices. Architectural engineering of battery components to amplify the device performance is also discussed. 3D electrode structures developed using CVD and electrodeposition techniques demonstrated significant enhancement in performance when compared to their 2D analogues. The study has established the prospects of LIBs at high temperatures through material tuning and engineering approaches and envisage a scope for viable devices.
Thermal and high pressure inactivation kinetics of blueberry peroxidase.
Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis
2017-10-01
This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S
2016-02-01
Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.
USDA-ARS?s Scientific Manuscript database
With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawarada, H., E-mail: kawarada@waseda.jp; Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555; Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051
2014-07-07
By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-Hmore » surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.« less
NASA Astrophysics Data System (ADS)
Hartmann, G. A.; Gallet, Y.; Trindade, R. I.; Genevey, A.; Berquo, T. S.; Neumann, R.; Le Goff, M.
2013-05-01
The thermoremanent magnetization in baked clay archeological materials provide very useful information on the time evolution of the Earth's magnetic field over the past few millennia. In these materials, a thermally stable magnetic phase characterized by high coercivities (>400 mT) and low unblocking temperatures (~200 degrees Celsius) has recently been recognized in European bricks, tiles, kilns and hearth samples. Both the identification and the origin of this phase remain, however, poorly constrained. The very same high-coercivity, thermally stable, low unblocking temperature (HCSLT) magnetic phase has been identified in Brazilian bricks fragments dated of the past five centuries. We report here a large set of measurements on a selected collection of samples showing variable contributions of the HCSLT phase. These measurements include low-field magnetic susceptibility vs. temperature curves, hysteresis loops, isothermal remanent magnetization (IRM) acquisition, thermal demagnetization of the three-axis IRM, first order reversal curves (FORC), low-temperature magnetization experiments (remanent magnetization curves and alternating current susceptibility), Mössbauer spectroscopy and X-ray diffraction. Results show the coexistence of low-coercivity magnetic minerals (magnetite and titanomagnetite) and high-coercivity minerals (hematite, HCSLT phase and, in some cases, goethite). We note that the HCSLT magnetic phase is always found in association with hematite. We further observe that the Mössbauer spectroscopy, X-ray diffraction spectra, and the FORC diagrams are also very similar to results previously obtained from annealed clays in which nontronite or iron-rich montmorillonite was transformed into Al-substituted hematite by heating. The HCSLT magnetic phase is thus confidently identified as being hematite with Al substitution. Moreover, considering the abundance of montmorillonite in clay mining settings, we suggest that the widespread occurrence of HCSLT in archeological materials predominantly originates from the transformation of iron-rich montmorillonite during the manufacturing (heating) process.
Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen
2016-01-01
Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated. PMID:28787898
Reconstructive structural phase transitions in dense Mg
NASA Astrophysics Data System (ADS)
Yao, Yansun; Klug, Dennis D.
2012-07-01
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
Reconstructive structural phase transitions in dense Mg.
Yao, Yansun; Klug, Dennis D
2012-07-04
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum
Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano
2015-01-01
A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701
Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A
2015-07-01
For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.
SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .
Mohamed, Hussein Mh; Emara, Mohamed Mt; Nouman, Taha M
2016-07-01
The camel is an excellent source of high quality meat and camel meat might be a potential alternative for beef. This study aimed to manipulate the raw camel meat for the production of stable and acceptable emulsion sausage, as well as to study the effect of cooking at different core temperatures on the tenderness, sensory quality and microstructure of produced sausage. Increasing the cooking temperature of sausages resulted in reduction of the shear force values from 2.67 kgf after cooking at 85 °C to 1.57 kgf after cooking at 105 °C. The sensory scores of sausages have been improved by increasing the cooking core temperature of meat batter. The light and scanning electron microscope micrographs revealed solubilisation of the high quantity of connective tissue of camel meat. High emulsion stability values for the camel meat batter associated with high values of water-holding capacity for raw camel meat and meat batter have been recorded. Stable and acceptable camel meat emulsion can be developed from camel meat. Increasing the cooking core temperature of meat batter improved the quality of produced sausages. Therefore, camel meat emulsion sausages might be a potential alternative for beef particularly in Asian and African countries. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite
Kubo, Tomoaki; Kato, Takumi; Higo, Yuji; Funakoshi, Ken-ichi
2015-01-01
The presence of seifertite, one of the high-pressure polymorphs of silica, in achondritic shocked meteorites has been problematic because this phase is thermodynamically stable at more than ~100 GPa, unrealistically high-pressure conditions for the shock events in the early solar system. We conducted in situ x-ray diffraction measurements at high pressure and temperatures, and found that it metastably appears down to ~11 GPa owing to the clear difference in kinetics between the metastable seifertite and stable stishovite formations. The temperature-insensitive but time-sensitive kinetics for the formation of seifertite uniquely constrains that the critical shock duration and size of the impactor on differentiated parental bodies are at least ~0.01 s and ~50 to 100 m, respectively, from the presence of seifertite. PMID:26601182
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
REPORT DATE 2. REPORT TYPE 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ADDRESS(ES) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a...Number: 17717 3 Motivation •SLIPS at high temperatures •ILs: stable at high temperatures but high surface tension •Alkyl chains to reduce surface tension
Eshayu, A.M.
1963-02-12
This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)
Stable nonlinear Mach-Zehnder fiber switch
Digonnet, Michel J. F.; Shaw, H. John; Pantell, Richard H.; Sadowski, Robert W.
1999-01-01
An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.
MBE growth technology for high quality strained III-V layers
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)
1990-01-01
The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).
Dalal, Shakeel S.; Walters, Diane M.; Lyubimov, Ivan; ...
2015-03-23
Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. In this paper, we apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (T substrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by T substrate/T g, where T g is themore » glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. Finally, by showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.« less
High temperature ceramic composition for hydrogen retention
Webb, R.W.
1974-01-01
A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)
Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma
Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid
2011-01-01
Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614
Lead free dielectric ceramic with stable relative permittivity of 0.90(Na0.50Bi0.50Ti)O3-0.10AgNbO3
NASA Astrophysics Data System (ADS)
Verma, Anita; Yadav, Arun Kumar; Kumar, Sunil; Sen, Somaditya
2018-04-01
Structural, dielectric and ferroelectric properties in perovskite 0.90(Na0.50Bi0.50Ti)03-0.10AgNb03 polycrystalline powders prepared by sol-gel method are discussed. Diffuse phase transition and new type of dielectric anomaly was observed with highly steady capacitive properties in the 135-450 °C temperature range. This compound shows remarkable dielectric with dielectric constant ɛr 1000 with a variation of ± 7% and tan δ = 0.004 0.25 in 135- 450 °C temperature. In addition, it also showed excellent ferroelectric properties with saturation polarization Ps = 13.5 μC/cm2, remnant polarization of Pr = 7.6 μC/cm2 and a low coercive field Ec = 36 kV/cm at room temperature. Stable dielectric constant (ɛr) and low dielectric loss (tan δ) in a wide temperature range observed for the titled composition makes it an interesting candidate for potential use in fast growing "high-temperature electronics" industry applications.
NASA Astrophysics Data System (ADS)
Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard
2017-05-01
The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
Design and experimental investigation of a cryogenic system for environmental test applications
NASA Astrophysics Data System (ADS)
Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei
2015-04-01
This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.
Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures
Niu, Haiyang; Oganov, Artem R.; Chen, Xing-Qiu; Li, Dianzhong
2015-01-01
The Mg-Si-O system is the major Earth and rocky planet-forming system. Here, through quantum variable-composition evolutionary structure explorations, we have discovered several unexpected stable binary and ternary compounds in the Mg-Si-O system. Besides the well-known SiO2 phases, we have found two extraordinary silicon oxides, SiO3 and SiO, which become stable at pressures above 0.51 TPa and 1.89 TPa, respectively. In the Mg-O system, we have found one new compound, MgO3, which becomes stable at 0.89 TPa. We find that not only the (MgO)x·(SiO2)y compounds, but also two (MgO3)x·(SiO3)y compounds, MgSi3O12 and MgSiO6, have stability fields above 2.41 TPa and 2.95 TPa, respectively. The highly oxidized MgSi3O12 can form in deep mantles of mega-Earths with masses above 20 M⊕ (M⊕:Earth’s mass). Furthermore, the dissociation pathways of pPv-MgSiO3 are also clarified, and found to be different at low and high temperatures. The low-temperature pathway is MgSiO3 ⇒ Mg2SiO4 + MgSi2O5 ⇒ SiO2 + Mg2SiO4 ⇒ MgO + SiO2, while the high-temperature pathway is MgSiO3 ⇒ Mg2SiO4 + MgSi2O5 ⇒ MgO + MgSi2O5 ⇒ MgO + SiO2. Present results are relevant for models of the internal structure of giant exoplanets, and for understanding the high-pressure behavior of materials. PMID:26691903
Energy Storage of Polyarylene Ether Nitriles at High Temperature
NASA Astrophysics Data System (ADS)
Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo
2018-03-01
Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.
Suppression of Buoyancy in Gaseous Media at High Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.
2003-01-01
Consider a rectangular box filled with a fluid having a heated bottom and a cold top surface, and insulated side-walls (Benard problem). As the temperature difference between the horizontal top and bottom surfaces increases, a critical condition, defined quantitatively by the Rayleigh number, is reached beyond which density stratification can no longer be sustained by conduction and the fluid disrupts from its stable, quiescent state into an unstable, convective mode in which lighter and heavier gas mix. This paper suggests that such a statement is not necessarily true for gaseous media under normalized temperature differences that are much larger than justifiable for the Boussinesq approximation! In fact, there may be situations where a system cannot ever be made unstable with respect to the onset on buoyant convection no matter how large the temperature (density) difference becomes at a given pressure even under normal gravity! This unexpected behavior is primarily attributed to highly temperature-sensitive kinematic viscosity which counteracts the tendency toward instability and dampens convection by making the gas more viscous at higher temperatures. This compensation of the buoyant force by the viscous force exhibits itself by the formation of a peak hot-surface temperature beyond which a system will tend to be more stable as the hot-surface temperature increases.
Chen, Yun; Gerdes, Kirk; Song, Xueyan
2016-01-01
Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1−xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C. PMID:27605121
Nonequilibrium Phase Chemistry in High Temperature Structure Alloys
NASA Technical Reports Server (NTRS)
Wang, R.
1991-01-01
Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.
Low temperature reactive bonding
Makowiecki, D.M.; Bionta, R.M.
1995-01-17
The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.
Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys
NASA Astrophysics Data System (ADS)
Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui
2015-07-01
Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.
NASA Astrophysics Data System (ADS)
Tseng, Po-Hao; Hsu, Kai-Chieh; Lin, Yu-Yu; Lee, Feng-Min; Lee, Ming-Hsiu; Lung, Hsiang-Lan; Hsieh, Kuang-Yeu; Chung Wang, Keh; Lu, Chih-Yuan
2018-04-01
A high performance physically unclonable function (PUF) implemented with WO3 resistive random access memory (ReRAM) is presented in this paper. This robust ReRAM-PUF can eliminated bit flipping problem at very high temperature (up to 250 °C) due to plentiful read margin by using initial resistance state and set resistance state. It is also promised 10 years retention at the temperature range of 210 °C. These two stable resistance states enable stable operation at automotive environments from -40 to 125 °C without need of temperature compensation circuit. The high uniqueness of PUF can be achieved by implementing a proposed identification (ID)-generation method. Optimized forming condition can move 50% of the cells to low resistance state and the remaining 50% remain at initial high resistance state. The inter- and intra-PUF evaluations with unlimited separation of hamming distance (HD) are successfully demonstrated even under the corner condition. The number of reproduction was measured to exceed 107 times with 0% bit error rate (BER) at read voltage from 0.4 to 0.7 V.
Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals
NASA Astrophysics Data System (ADS)
Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu
2015-05-01
High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.
Containerless processing at high temperatures using acoustic levitation
NASA Technical Reports Server (NTRS)
Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.
1991-01-01
Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.
Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.
Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet
2011-02-01
We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.
An annotated bibliography of Pyrrone and BBB publications
NASA Technical Reports Server (NTRS)
Burks, H. D.
1972-01-01
This annotated bibliography covers the research and development of two closely related classes of high-temperature polymers, polyimidazopyrrolones (Pyrrone) and bisbenzimidazo-benzophenanthrolines (BBB), from their inception in 1965 through 1971. This compilation of available reference information is not inclusive, but it is sufficiently complete to aid the polymer chemist and materials engineer in the research and development of these two high temperature stable polymeric systems.
Hagstrum, J.T.; Johnson, C.M.
1986-01-01
Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580??C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (> 350??C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. ?? 1986.
Wang, Wei; Wang, Zongyuan; Wang, Jiajun; Zhong, Chuan‐Jian
2017-01-01
Carbon‐supported platinum (Pt) and palladium (Pd) alloy catalyst has become a promising alternative electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this work, the synthesis of highly active and stable carbon‐supported Pt–Pd alloy catalysts is reported with a room‐temperature electron reduction method. The alloy nanoparticles thus prepared show a particle size around 2.6 nm and a core–shell structure with Pt as the shell. With this structure, the breaking of O–O bands and desorption of OH are both promoted in electrocatalysis of ORR. In comparison with the commercial Pt/C catalyst prepared by conventional method, the mass activity of the Pt–Pd/C catalyst for ORR is shown to increase by a factor of ≈4. After 10 000‐cycle durability test, the Pt–Pd/C catalyst is shown to retain 96.5% of the mass activity, which is much more stable than that of the commercial Pt/C catalyst. PMID:28435780
Producing air-stable monolayers of phosphorene and their defect engineering
Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui
2016-01-01
It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature. PMID:26794866
Oxidation resistant high creep strength austenitic stainless steel
Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.
2010-06-29
An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
Strengthening of stable Cr-Ni austenitic stainless steel under thermomechanical treatments
NASA Astrophysics Data System (ADS)
Akkuzin, S. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.
2017-12-01
The features of microstructure and mechanical properties of stable austenitic steel after thermomechanical treatment consisted of low-temperature deformation, deformation in the temperature range T = 273-873 K, and subsequent annealing were investigated. It is shown that under such treatment direct (γ → α')- and reverse (α'→γ)-martensitic transformations occur in the steel. As a result of the thermomechanical treatment submicrocrystalline structural states with high density of micro- and nanotwins and localized deformation bands are formed. The strength of the steel in these structural states is several times higher than that in the initial state.
Laboratory Studies of High Temperature Deformation and Fracture of Lava Domes
NASA Astrophysics Data System (ADS)
Smith, R.; Sammonds, P.; Tuffen, H.; Meredith, P.
2007-12-01
The high temperature fracture mechanics of magma at high temperatures exerts a fundamental control on the stability of lava domes and the timing and style of eruptions at andesitic to dacitic volcanoes. This is evidenced in the pervasive fracturing seen in both ancient and active magma conduits and lava domes; in addition to the volcanic earthquakes that occur before and during episodes of dome growth and dome collapse. Uniaxial and triaxial deformation experiments have been performed on crystal rich and crystal free magmas (andesite from Ancestral Mount Shasta, California, USA and a rhyolitic obsidian from Krafla, Iceland) at a range of temperatures (up to 900°C), confining pressures (up to 50 MPa) and strain rates (10-5s-1) to 10-3s-1) whilst recording acoustic emissions (AE). Results from these experiments provide useful inputs into models of lava dome stability, extrusion mechanisms, and source mechanisms for volcanic earthquakes. However, the large sample sizes used to ensure valid results (25mm diameter and 75mm length) made it difficult to maintain stable high temperatures under confined conditions. Also, only rudimentary AE data could be obtained, due to the distance of the transducers from the samples to keep them away from the high temperatures. Here, we present modifications to this apparatus, which include a new furnace, improved loading system, additional pore pressure and permeability measurement capability, and vastly improved acoustic monitoring. This allows (1)stable higher temperatures (up to 1000°C) to be achieved under confined conditions, (2) high temperature and moderate pressure (up to 70 MPa) hydrostatic measurements of permeability and acoustic velocities, (3) high temperature triaxial deformation under different pore fluid and pressure conditions, and (4) full waveform AE monitoring for all deformation experiments. This system can thus be used to measure the physical properties and strength of rocks under volcanic conditions and to simulate volcanic earthquakes.
NASA Astrophysics Data System (ADS)
Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.
2017-08-01
Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.
Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin
2017-06-28
Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.
Thermoelectric Generation Using Counter-Flows of Ideal Fluids
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.
2017-08-01
Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.
Stabilization of biothreat diagnostic samples through vitrification matrices.
Minogue, Timothy Devin; Kalina, Warren Vincent; Coyne, Susan Rajnik
2014-06-01
Diagnostics for biothreat agents require sample shipment to reference labs for diagnosis of disease; however high/fluctuating temperatures during sample transport negatively affect sample quality and results. Vitrification additives preserve sample integrity for molecular-based assay diagnostics in the absence of refrigeration by imparting whole molecule stability to a plethora of environmental insults. Therefore, we have evaluated commercially available vitrification matrices' (Biomatrica's CloneStable® and RNAStable®) ability to stabilize samples of Yersinia pestis and Venezuelan Equine Encephalitis Virus. When heated to 95°C in RNAStable®, Y. pestis had a 13-fold improvement in detection via real-time PCR compared to heated samples in buffer. VEEV, in RNAStable® at 55°C, had a ~10-fold improved detection versus heated samples in buffer. CloneStable® also preserved Y. pestis antigens for 7days after exposure to cycling temperatures. Overall, RNAStable® and CloneStable® respectively offered superior stabilization to nucleic acids and proteins in response to temperature fluctuations. Copyright © 2014. Published by Elsevier B.V.
Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C.
Lee, Jin Goo; Park, Jeong Ho; Shul, Yong Gun
2014-06-04
Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibre-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Gd0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2 W cm(-2) at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1 A cm(-2). Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.
NASA Technical Reports Server (NTRS)
Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana
1993-01-01
EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.
Stability of allopurinol and of five antineoplastics in suspension.
Dressman, J B; Poust, R I
1983-04-01
The stability of allopurinol, azathioprine, chlorambucil, melphalan, mercaptopurine, and thioguanine each in an extemporaneously prepared suspension was studied. Tablets of each drug were crushed, mixed with a suspending agent, and brought to a final volume of 10, 15, or 20 ml with a 2:1 mixture of simple syrup and wild cherry syrup. Suspensions were prepared in the following concentrations: allopurinol (20 mg/ml), azathioprine (50 mg/ml), chlorambucil (2 mg/ml), melphalan (2 mg/ml), mercaptopurine (50 mg/ml), and thioguanine (40 mg/ml). Using high-performance liquid chromatography or ultraviolet scans, duplicate assays were performed on each suspension periodically during storage for up to 84 days at ambient room temperature or 5 degrees C. The time required for the suspensions to drop below 90% of labeled strength was used as an indicator of drug stability. Allopurinol and azathioprine were stable for at least 56 days at room temperature and at 5 degrees C. Chlorambucil decomposed rapidly at room temperature but was stable for seven days when stored at 5 degrees C. Melphalan suspensions did not meet the stated criteria for stability even at the time of initial assay. Mercaptopurine and thioguanine were stable for 14 and 84 days, respectively, at room temperature; at 5 degrees C, assay values dropped below those obtained at room temperature. In the suspension formulation tested, allopurinol, azathioprine, mercaptopurine, and thioguanine are stable for at least 14 days at room temperature; chlorambucil suspensions should be refrigerated and discarded after seven days. Melphalan decomposes too rapidly to make this suspension formulation feasible for extemporaneous compounding.
Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Beheim, Glenn
1997-01-01
A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin
Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less
Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; ...
2016-04-01
Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less
Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com
2014-04-24
Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.
Behavior of hydrogen in alpha-iron at lower temperatures
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1973-01-01
Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.
Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie
2008-04-01
The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.
High-temperature geothermal cableheads
NASA Astrophysics Data System (ADS)
Coquat, J. A.; Eifert, R. W.
1981-11-01
Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.
Ahn, Yong Nam; Lee, Sung Hoon; Lee, Goo Soo; Kim, Hyunbin
2017-08-02
Quaternary ammoniums are cations having widespread use in organic electrolytes for high performance electrochemical double layer capacitors (EDLCs) due to their various advantages such as high electrochemical stability and inexpensive production cost. However, the decomposition of quaternary ammoniums via Hofmann elimination hinders their applications for EDLCs operating at elevated temperatures. This study systematically investigates the reactivity of four different quaternary ammoniums (tetraethyl-, triethylmethyl-, diethyldimethyl-, and trimethylethyl-ammonium) in EDLC by utilizing density functional theory calculations and Brownian dynamics simulations complemented with molecular dynamics simulations. It is found that ammonium stability reduces upon increasing the number of ethyl branches that have a stronger positive charge than the methyl groups. However, the contribution of the entropy change to the reaction free energy makes trimethylethylammonium less stable than diethyldimethylammonium at room temperature although the former has less ethyl branches than the latter. Trimethylethylammonium becomes the most stable at a high temperature of 488 K above which the activation free energy becomes effectively negligible and thus the number of reactive sites determines the overall stability. The fundamental understanding of the ammonium decompositions through Hofmann elimination demonstrated in this study is expected to contribute to developing new long-life organic electrolyte systems for high-temperature applications.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1999-08-24
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1997-07-08
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Stable catalyst layers for hydrogen permeable composite membranes
Way, J. Douglas; Wolden, Colin A
2014-01-07
The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.
Ho, Dang P.; Jensen, Paul D.
2013-01-01
This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388
Lithium/water battery with lithium ion conducting glass-ceramics electrolyte
NASA Astrophysics Data System (ADS)
Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru
Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.
Creep Response and Deformation Processes in Nanocluster Strengthened Ferritic Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Taisuke; Sarosi, P. M.; Schneibel, Joachim H
2008-01-01
There is increasing demand for oxide-dispersion-strengthened ferritic alloys that possess both high-temperature strength and irradiation resistance. Improvement of the high-temperature properties requires an understanding of the operative deformation mechanisms. In this study, the microstructures and creep properties of the oxide-dispersion-strengthened alloy 14YWT have been evaluated as a function of annealing at 1000 C for 1 hour up to 32 days. The ultra-fine initial grain size (approx. 100nm) is stable after the shortest annealing time, and even after subsequent creep at 800 C. Longer annealing periods lead to anomalous grain growth that is further enhanced following creep. Remarkably, the minimum creepmore » rate is relatively insensitive to this dramatic grain-coarsening. The creep strength is attributed to highly stable, Ti-rich nanoclusters that appear to pin the initial primary grains, and present strong obstacles to dislocation motion in the large, anomalously grown grains.« less
Remote multi-function fire alarm system based on internet of things
NASA Astrophysics Data System (ADS)
Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu
2018-05-01
This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.
Lithium storage in structurally tunable carbon anode derived from sustainable source
Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...
2017-09-01
Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less
Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows
NASA Technical Reports Server (NTRS)
Wernet, Judith H.; Wernet, Mark P.
1994-01-01
Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.
Catalytic wet-oxidation of human wastes produced in space: the effects of temperature elevation.
Takeda, N; Takahashi, Y
1992-01-01
The filtrate of non-catalytical wet-oxidation sewage sludge was wet-oxidized again at 290 degrees C and 300 degrees C with a Ru-Rh catalyst. At each temperature, repeated batch tests were carried out. Both oxidation and denitrification efficiency of organic matter in the raw material were studied. In the 16 times batch tests at 300 degrees C, high and stable oxidation occurred. 98.0% of organic carbon in the raw material was oxidized and 98.3% of organic nitrogen was denitrified. At 290 degrees C, though high and stable denitrification occurred, oxidation did not occur highly and stably. A catalytic wet-oxidation system studied at 300 degrees C will be useful as a waste management system for a human life support system, where almost all food is resupplied from the earth. This system can prevent organic waste accumulation in the life support system.
Vertical Mixing in the Dead Sea
NASA Astrophysics Data System (ADS)
Gertman, Isaac; Ozer, Tal; Katsenelson, Boris; Lensky, Nadav
2015-04-01
For hundreds of years, the Dead Sea was characterized by a stable haline stratification, supported by runoff. The penetration of the winter convection was limited to an upper mixed layer (UML) of about 30-50 m. Below the UML, a stable halocline prevented the mixing. As a result of the runoff reduction, the UML salinity increased and the gravitational stability diminished. During the winter of 1978-1979, the sea water overturned, ending the long-term stable hydrological regime. Since 1979, the haline stratification structure reoccurred twice after extremely rainy winters, in 1980-82 and 1992-1995. In other years, the sea was entirely mixed by winter thermal convection ( which occurs from November to March ) and had a seasonal pycnocline beneath the UML during summer. Profiles of temperature and quasi-salinity (density anomaly from 1000 kg/m3 for the chosen reference temperature of 32° C) during the last 19 years, show the formation of summer ``overturning halocline'' beneath the UML, and the thermocline that supports the stable stratification. Another warm and saline layer is formed also during the summer period near the bottom. This layer spreads from the southern part of the sea, where end-brine is discharged to the sea from the Israeli and Jordanian salt plants' evaporation ponds. The end-brine has extremely high salinity (˜ 350 g/kg) and, in spite of the high temperatures ( ˜ 45° C), high density (1350 kg/m^3), it therefore spreads as a gravitational current in the Dead Sea deep basin. Estimation of the density ratio (Rρ) for the Dead Sea water (where measurements of water salinity is quite difficult) was done using quasi-salinity (σ32) and potential temperature (θ): Rρ= [α(partialθ/partial z)]/[β(partial σ32/partial z)], where α and β are temperature expansion and quasi-salinity contraction coefficients respectively. The values of α and β for the Dead Sea water were defined from water samples collected during 2008. The Rρ values confirm that the summer Dead Sea thermohaline structure is appropriate for double diffusion mixing. A salt fingers regime beneath the UML (1.3< Rρ
Optical high temperature sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Bowei
The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.
Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.
1997-11-11
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.
Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.
1997-01-01
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette
1987-01-01
Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.
Lindner, Eric; Chojetztki, Christoph; Brueckner, Sven; Becker, Martin; Rothhardt, Manfred; Vlekken, Johan; Bartelt, Hartmut
2009-01-01
We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. PMID:22408510
A review of high-temperature adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1981-01-01
The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.
Copper-Exchanged Zeolite L Traps Oxygen
NASA Technical Reports Server (NTRS)
Sharma, Pramod K.; Seshan, Panchalam K.
1991-01-01
Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.
Evolution of the Structure of Cu-1% Sn Bronze under High Pressure Torsion and Subsequent Annealing
NASA Astrophysics Data System (ADS)
Popov, V. V.; Popova, E. N.; Stolbovsky, A. V.; Falahutdinov, R. M.
2018-04-01
The evolution of the structure of tin bronze under the room-temperature high-pressure torsion with different degrees of deformation and the subsequent annealing has been investigated. The thermal stability of the structure formed, namely, its behavior upon annealing in the temperature range of 150-400°C has been studied. The possibility of alloying copper with tin has been analyzed with the purpose of obtaining a thermally stable nanostructure with high strength characteristics.
Silicon Carbide Nanotube Synthesized
NASA Technical Reports Server (NTRS)
Lienhard, Michael A.; Larkin, David J.
2003-01-01
Carbon nanotubes (CNTs) have generated a great deal of scientific and commercial interest because of the countless envisioned applications that stem from their extraordinary materials properties. Included among these properties are high mechanical strength (tensile and modulus), high thermal conductivity, and electrical properties that make different forms of single-walled CNTs either conducting or semiconducting, and therefore, suitable for making ultraminiature, high-performance CNT-based electronics, sensors, and actuators. Among the limitations for CNTs is their inability to survive in high-temperature, harsh-environment applications. Silicon carbon nanotubes (SiCNTs) are being developed for their superior material properties under such conditions. For example, SiC is stable in regards to oxidation in air to temperatures exceeding 1000 C, whereas carbon-based materials are limited to 600 C. The high-temperature stability of SiCNTs is envisioned to enable high-temperature, harsh-environment nanofiber- and nanotube-reinforced ceramics. In addition, single-crystal SiC-based semiconductors are being developed for hightemperature, high-power electronics, and by analogy to CNTs with silicon semiconductors, SiCNTs with single-crystal SiC-based semiconductors may allow high-temperature harsh-environment nanoelectronics, nanosensors, and nanoactuators to be realized. Another challenge in CNT development is the difficulty of chemically modifying the tube walls, which are composed of chemically stable graphene sheets. The chemical substitution of the CNTs walls will be necessary for nanotube self-assembly and biological- and chemical-sensing applications. SiCNTs are expected to have a different multiple-bilayer wall structure, allowing the surface Si atoms to be functionalized readily with molecules that will allow SiCNTs to undergo self-assembly and be compatible with a variety of materials (for biotechnology applications and high-performance fiber-reinforced ceramics).
GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.
2005-01-01
GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.
Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H
2014-01-28
Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.
Pastenes, Luis; Valdivieso, Camilo; Di Genova, Alex; Travisany, Dante; Hart, Andrew; Montecino, Martín; Orellana, Ariel; Gonzalez, Mauricio; Gutiérrez, Rodrigo A; Allende, Miguel L; Maass, Alejandro; Méndez, Marco A
2017-05-16
The anuran Rhinella spinulosa is distributed along the Andes Range at altitudes that undergo wide daily and seasonal variation in temperature. One of the populations inhabits geothermal streams, a stable environment that influences life history traits such as the timing of metamorphosis. To investigate whether this population has undergone local adaptation to this unique habitat, we carried out transcriptome analyses in animals from two localities in two developmental stages (prometamorphic and metamorphic) and exposed them to two temperatures (20 and 25 °C). RNA-Seq, de novo assembly and annotation defined a transcriptome revealing 194,469 high quality SNPs, with 1,507 genes under positive selection. Comparisons among the experimental conditions yielded 1,593 differentially expressed genes. A bioinformatics search for candidates revealed a total of 70 genes that are highly likely to be implicated in the adaptive response of the population living in a stable environment, compared to those living in an environment with variable temperatures. Most importantly, the population inhabiting the geothermal environment showed decreased transcriptional plasticity and reduced genetic variation compared to its counterpart from the non-stable environment. This analysis will help to advance the understanding of the molecular mechanisms that account for the local adaptation to geothermal streams in anurans.
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-01-01
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-05-16
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.
Phase relations of Fe Ni alloys at high pressure and temperature
NASA Astrophysics Data System (ADS)
Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin
2006-04-01
Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.
Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji
2016-10-01
Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.
Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie
2014-01-01
Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.
In-situ, Gate Bias Dependent Study of Neutron Irradiation Effects on AlGaN/GaN HFETs
2010-03-01
band gap and high breakdown field, AlGaN devices can operate at very high temperature and operating frequency. AlGaN/GaN based structures, have been...stable under ambient conditions [3]. GaN has a wide, direct band gap of 3.4 eV. It is therefore suitable for high temperature devices. Its high...also be grown with a wurtzite crystal structure and has a band - gap of 6.1 eV. Aluminum, due to having smaller atoms than gallium, forms a smaller
High pressure–low temperature phase diagram of barium: Simplicity versus complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun
2015-11-30
Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-08-31
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.
Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin
2015-01-01
Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279
Possibility of high temperature superconducting phases in PdH
NASA Astrophysics Data System (ADS)
Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja
2003-05-01
Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.
Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
NASA Astrophysics Data System (ADS)
Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong
2017-02-01
Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.
NASA Astrophysics Data System (ADS)
Fajarin, Rindang; Rahel, Amelthia; Widyastuti
2018-04-01
Thermoelectric is a device to convert residual heat energy into electricity. Electrical and thermal properties of constituent material determine thermoelectric efficiency. One of metal oxides, namely zinc oxide (ZnO), is highly stable in a large temperature range, non-toxic, low cost and eco-friendly, has potential application as thermoelectric at high temperature. The aims of this study are to synthesize Zn0.98Al0.02O by coprecipitation method using ZnO and Al2O3 powders as raw materials, and to investigate the effect of sintering temperatures (at 700, 800, 900, and 950°C) on the electrical and thermal properties of the material. The sample products were analyzed by x-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive x-ray (EDX) measurements to identify phase content, to observe particle morphology and to analyze distribution of elements in the sample, respectively. LCR meter was conducted to study electrical measurements of the samples. Further, thermal properties of the samples were analyzed by TGA measurements. The data show that Al3+ ions have been successfully doped into ZnO crystal lattice and they tend to increase the electrical conductivity of the samples. The sintered Zn0.98Al0.02O sample at 900°C has the highest conductivity value (4.53 × 10-4 S/m) compared to the others. It is relatively stable at high temperature, and thus, it can be used as one promising candidate for thermoelectric material at high temperature.
Design and realization of high voltage disconnector condition monitoring system
NASA Astrophysics Data System (ADS)
Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang
2017-08-01
The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
NASA Astrophysics Data System (ADS)
Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank
2012-03-01
In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.
NASA Astrophysics Data System (ADS)
Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen
2014-09-01
As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.
NASA Technical Reports Server (NTRS)
Barmatz, M.
1985-01-01
There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.
NASA Astrophysics Data System (ADS)
Veluri, P. S.; Shaligram, A.; Mitra, S.
2015-10-01
A two step approach for synthesis of porous α-Fe2O3 nanostructures has been realized via polyol method by complexing iron oxalate with ethylene glycol. Crystalline Fe2O3 samples with different porosities are obtained by calcination of Fe-Ethylene glycol complex at various temperatures. The as-prepared porous Fe2O3 structures exhibit promising lithium storage performance at high current rates. It is observed that the calcination temperature and the resultant porosity have a significant effect on capacity and cycling stability. Samples calcined at high temperature (600 °C) demonstrates stable cycle life with capacity retention of 1077 mAh g-1 at 500 mA g-1 current rate after 50 charge-discharge cycles. Samples calcined at temperatures of 500 and 600 °C display stable cycle life and high rate capability with reversible capacity of 930 mAh g-1 and 688 mAh g-1 at 5 A g-1, respectively. Impregnation of electrodes with electrolyte before cell fabrication shows enhanced electrochemical performance. The viability of Fe2O3 porous nanostructures as prospective anode material examined against commercial LiFePO4 cathode shows promising electrochemical performance.
Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys
NASA Astrophysics Data System (ADS)
Vinod, E. M.; Ramesh, K.; Sangunni, K. S.
2015-01-01
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
Processing effects on physicochemical properties of creams formulated with modified milk fat.
Bolling, J C; Duncan, S E; Eigel, W N; Waterman, K M
2005-04-01
Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.
Towards Stable CuZnAl Slurry Catalysts for the Synthesis of Ethanol from Syngas
NASA Astrophysics Data System (ADS)
Dong, Weibing; Gao, Zhihua; Zhang, Qian; Huang, Wei
2018-07-01
A stable CuZnAl slurry catalyst for the synthesis of ethanol from syngas has been developed by adjusting the heat treatment conditions of the complete liquid-phase method. The activity evaluation results showed that the CuZnAl catalyst, when heat-treated under a high pressure and temperature, was a stable catalyst for the synthesis of ethanol. The selectivity of ethanol using the CuZnAl slurry catalyst, which was heat-treated at 553 K under 4.0 MPa, increased continuously with time and was stable at approximately 26.00% after 144 h. The characterization results indicated that the CuZnAl slurry catalyst heat-treated under high pressure conditions could facilitate the formation of a more perfect structure with a larger specific surface area. The prepared catalyst contained a balance of strong and weak acid sites, an appropriate form of Cu2O and a high Cu/Zn atomic ratio at the catalyst surface, providing its stability in ethanol synthesis from syngas.
Study on the intrinsic defects in tin oxide with first-principles method
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin
2018-04-01
First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.
Sapphire Fabry-Perot high-temperature sensor study
NASA Astrophysics Data System (ADS)
Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian
2017-04-01
A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.
NASA Astrophysics Data System (ADS)
Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.
2011-04-01
Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu
Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, wemore » demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO{sub x} system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO{sub x} cermet absorbers via interfacial engineering.« less
NASA Astrophysics Data System (ADS)
Araki, Takuto; Ohba, Takahiro; Takezawa, Shinya; Onda, Kazuo; Sakaki, Yoshinori
Solid oxide fuel cells (SOFCs) can be composed of solid components for stable operation, and high power generation efficiency is obtained by using high temperature exhaust heat for fuel reforming and bottoming power generation by a gas turbine. Recently, low-temperature SOFCs, which run in the temperature range of around 600 °C or above and give high power generation efficiency, have been developed. On the other hand, a power generation system with multi-staged fuel cells has been proposed by the United States DOE to obtain high efficiency. In our present study, a power generation system consisting of two-staged SOFCs with serial connection of low and high temperature SOFCs was investigated. Overpotential data for the low-temperature SOFC used in this study are based on recently published data, while data for high-temperature SOFC are based on our previous study. The numerical results show that the power generation efficiency of the two-staged SOFCs is 50.3% and the total efficiency of power generation with gas turbine is 56.1% under standard operating conditions. These efficiencies are a little higher than those by high-temperature SOFC only.
Oh, Ju Hyun; Hong, Soo Yeong; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Oh, Seung Yun; Yun, Junyeong; Lee, Hanchan; Kim, Jung Wook; Ha, Jeong Sook
2018-02-28
In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C -1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.
NASA Astrophysics Data System (ADS)
Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.
2018-04-01
Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).
Smith, Tracey J; Barrett, Ann; Anderson, Danielle; Wilson, Marques A; Young, Andrew J; Montain, Scott J
2015-05-01
Development of n-3 fortified, shelf-stable foods is facilitated by encapsulated docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), since natural n-3 food sources cannot withstand high temperature and prolonged shelf life. Organoleptic stability of n-3 fortified, shelf-stable foods has been demonstrated, but chemical changes in the food matrix throughout storage could conceivably impact digestibility of the protein-based encapsulant thereby compromising n-3 bioavailability. We assessed the effect of prolonged high-temperature storage and variations in food matrix (proteinaceous or carbohydrate) on the time course and magnitude of blood fatty acids changes associated with ingestion of n-3 fortified foods. Low-protein (i.e., cake) and high-protein (i.e., meat sticks) items were supplemented with 600 mg encapsulated DHA+EPA, and frozen either immediately after production (FRESH) or after 6 months storage at 100°F (STORED). Fourteen volunteers consumed one item per week (randomized) for 4 weeks. Blood samples obtained at baseline, 2, 4, and 6 h post-consumption were analyzed for circulating long-chain omega 3 fatty acids (LCn3). There was no difference in LCn3 area under the curve between items. LCn3 in response to cakes peaked at 2-h (FRESH: 54.0 ± 16.8 μg/mL, +18%; STORED: 53.0 ± 13.2 μg/mL, +20%), while meats peaked at 4-h (FRESH: 51.9 ± 12.5 μg/mL, +22%; STORED: 53.2 ± 16.9 μg/mL, +18%). There were no appreciable differences in time course or magnitude of n-3 appearance in response to storage conditions for either food types. Thus, bioavailability of encapsulated DHA/EPA, within low- and high-protein food items, was not affected by high-temperature shelf-storage. A shelf-stable, low- or high-protein food item with encapsulated DHA/EPA is suitable for use in shelf-stable foods.
NASA Astrophysics Data System (ADS)
Brookman, T. H.; Whittaker, T. E.; King, P. L.; Horton, T. W.
2011-12-01
Stable isotope dendroclimatology is a burgeoning field in palaeoclimate science due to its unique potential to contribute (sub)annually resolved climate records, over millennial timescales, to the terrestrial palaeoclimate record. Until recently the time intensive methods precluded long-term climate reconstructions. Advances in continuous-flow mass spectrometry and isolation methods for α-cellulose (ideal for palaeoclimate studies as, unlike other wood components, it retains its initial isotopic composition) have made long-term, calendar dated palaeoclimate reconstructions a viable proposition. The Modified Brendel (mBrendel) α-cellulose extraction method is a fast, cost-effective way of preparing whole-wood samples for stable oxygen and carbon isotope analysis. However, resinous woods often yield incompletely processed α-cellulose using the standard mBrendel approach. As climate signals may be recorded by small (<1%) isotopic shifts it is important to investigate if incomplete processing affects the accuracy and precision of tree-ring isotopic records. In an effort to address this methodological issue, we investigated three highly resinous woods: kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii). Samples of each species were treated with 16 iterations of the mBrendel, varying reaction temperature, time and reagent volumes. Products were investigated using microscopic and bulk transmission Fourier Transform infrared spectroscopy (FITR) to reveal variations in the level of processing; poorly-digested fibres display a peak at 1520cm-1 suggesting residual lignin and a peak at ~1600cm-1 in some samples suggests retained resin. Despite the different levels of purity, replicate analyses of samples processed by high temperature digestion yielded consistent δ18O within and between experiments. All α-cellulose samples were 5-7% enriched compared to the whole-wood, suggesting that even incomplete processing at high temperature can provide acceptable δ18O analytical external precision. For kauri, short, lower temperature extractions produced α-cellulose with δ18O consistently ~1% lower than longer, higher temperature kauri experiments. These findings suggest that temperature and time are significant variables that influence the analytical precision of α-cellulose stable isotope analysis and that resinous hardwoods (e.g. kauri) may require longer and/or hotter digestions than softwoods. The effects of mBrendel variants on the carbon isotope ratio precision of α-cellulose extracts will also be presented. Our findings indicate that the standard mBrendel α-cellulose extraction method may not fully remove lignins and resins depending on the type of wood being analysed. Residual impurities can decrease analytical precision and accuracy. Fortunately, FTIR analysis prior to isotopic analysis is a relatively fast and cost effective way to determine α-cellulose extract purity, ultimately improving the data quality, accuracy and utility of tree-ring based stable isotopic climate records.
Honey bee nest thermoregulation: diversity promotes stability.
Jones, Julia C; Myerscough, Mary R; Graham, Sonia; Oldroyd, Benjamin P
2004-07-16
A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform ones (i.e., those sired by one male). One reason this increased stability arises is because genetically determined diversity in workers' temperature response thresholds modulates the hive-ventilating behavior of individual workers, preventing excessive colony-level responses to temperature fluctuations.
Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow
NASA Astrophysics Data System (ADS)
Nunn, J. A.
2008-12-01
Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.
NASA Technical Reports Server (NTRS)
Berdahl, C. M.
1980-01-01
Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.
Hydrogen storage in Earth's mantle and core
NASA Technical Reports Server (NTRS)
Prewitt, Charles T.
1994-01-01
Two different approaches to explaining how hydrogen might be stored in the mantle are illustrated by a number of papers published over the past 25-30 years, but there has been little attempt to provide objective comparisons of the two. One approach invokes the presence in the mantle of dense hydrous magnesium silicates (DHMS) stable at elevated pressures and temperatures. The other involves nominally anhydrous minerals (NAM) that contain hydrogen as a minor constituent on the ppm level. Experimental studies on DHMS indicate these phases may be stable to pressures and temperatures as high at 16 GPa and 1200 C. This temperature is lower than that indicated by a mantle geotherm at 16 GPa, but may be reasonable for a subducting slab. It is possible that other DHMS could be stable to even higher pressures, but little is known about maximum temperature limits. For NAM, small amounts of hydrogen (up to several hundred ppm) have been detected in olivine, orthopyroxene, clinopyroxene, and garnet recovered from xenoliths in kimberlites, eclogites, and alkali basalts; it has been demonstrated that synthetic wadsleyite and perovskite can accommodate significant amounts of hydrogen. A number of problems are associated with each possibility. For NAM originating in the mantle, one would like to assume that the hydrogen measured in samples recovered on Earth's surface was incorporated when the phase-crystallized at high temperatures and pressures, but it could have been introduced during transport to the surface. Major problems for the DHMS proponents are that none of these phases have been found as minerals and little is yet known about their stabilities in systems containing other cations such as Fe, Al, and Ca.
Properties of radiation stable, low viscosity impregnating resin for cryogenic insulation system
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Zhang, Hao; Yang, Huihui; Chu, Xinxin; Song, Yuntao; Wu, Weiyue; Liu, Huajun; Li, Laifeng
2011-06-01
Impregnating resins in fusion magnet technology are required to be radiation stable, low viscosity, long usable life and high toughness. To meet these objectives, we developed a new epoxy based composite which consists of triglycidyl-p-aminophenol (TGPAP) epoxy resin and isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE). The ratio of TGPAP to IPBE can be varied to achieve desired viscosity and working time. The boron-free glass fiber reinforced composites were prepared by vacuum pressure impregnation. The radiation resistance was evaluated by 60Co γ-ray irradiation of 1 MGy at ambient temperature. The mechanical properties of the composites have been measured at room temperature and at 77 K.
Polyimide resin composites via in situ polymerization of monomeric reactants
NASA Technical Reports Server (NTRS)
Cavano, P. J.
1974-01-01
Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.
Plastic Foam Withstands Greater Temperatures And Pressures
NASA Technical Reports Server (NTRS)
Cranston, John A.; Macarthur, Doug
1993-01-01
Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.
NASA Astrophysics Data System (ADS)
Zeichner, S. S.; Kim, S.; Colman, A. S.
2015-12-01
Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
Rod/Coil Block Copolyimides for Ion-Conducting Membranes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.
2003-01-01
Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.
Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature
NASA Astrophysics Data System (ADS)
Gump, Jared
2007-06-01
Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, and ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Theoretical calculations have been performed for a variety of explosive ingredients including CL-20, but it was noted that no experimental measurements existed for comparison with the theoretical bulk modulus calculated for CL-20. Therefore, the phase stabilities of epsilon and gamma CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5GPa and 175^oC, respectively. No phase change (from the starting epsilon phase) was observed under hydrostatic compression up to 6.3 GPa at ambient temperature. Under ambient pressure the epsilon phase was determined to be stable to a temperature of 120^oC. When heating above 125^oC the gamma phase appeared and it remained stable until thermal decomposition occurred above 150^oC. The gamma phase exhibits a phase change upon compression at both ambient temperature and 140^oC. Pressure -- volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75^oC were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.
A compact, rugged, high repetition rate CO2 laser incorporating catalyst
NASA Technical Reports Server (NTRS)
Schwarzenberger, P. M.; Matzangou, X.
1990-01-01
The principal design features and operating characteristics of a high repetition rate CO2 laser are outlined. The laser is a compact, rugged unit, completely sealed and incorporating an unheated solid catalyst. Stable operation has been successfully demonstrated over a temperature range of -35 C to 65 C.
Diphenylmethane-containing dianhydride and polyimides prepared therefrom
NASA Technical Reports Server (NTRS)
St.clair, Anne K. (Inventor); Boston, Harold G. (Inventor); Pratt, J. Richard (Inventor)
1993-01-01
A high temperature stable, highly optically transparent-to-colorless, low dielectic linear aromatic polyimide is prepared by reacting an aromatic diamine with 3,3'bis (3,4-dicarboxyphenoxy) diphenylmethane dianhydride in an amide solvent to form a linear aromatic polyamic acid. This polyamic acid is then cyclized to form the corresponding polyimide.
Note: Low phase noise programmable phase-locked loop with high temperature stability.
Michálek, Vojtěch; Procházka, Ivan
2017-03-01
The design and construction of low jitter programmable phase-locked loop with low temperature coefficient of phase are presented. It has been designed for demanding high precision timing applications, especially as a clock source for event timer with subpicosecond precision. The phase-locked loop itself has a jitter of few hundreds of femtoseconds. It produces square wave with programmable output frequency from 100 MHz to 500 MHz and programmable amplitude of 0.25 V to 1.2 V peak-to-peak, which is locked to 5 MHz or 10 MHz reference frequency common for disciplined oscillators and highly stable clocks such as hydrogen maser. Moreover, it comprises an on-board temperature compensated crystal oscillator for stand-alone usage. The device provides temperature coefficient of the phase lock of 0.9 ps/K near room temperature.
Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes
Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie
1996-01-01
Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.
CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Klaehn; C.J. Orme; E.S. Peterson
2008-03-01
This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation membranes. This report is separated into several sections due to the complexity of the research and the variation with the development of better high-temperature, gas separation membranes. Several fiscal years are combined because the research and development efforts within those areas crossed fiscal year boundaries.« less
CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2008-03-04
This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation membranes. This report is separated into several sections due to the complexity of the research and the variation with the development of better high-temperature, gas separation membranes. Several fiscal years are combined because the research and development efforts within those areas crossed fiscal year boundaries.« less
Fernandez Santos, S; Bertemes-Filho, P
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
NASA Astrophysics Data System (ADS)
Fernandez Santos, S.; Bertemes-Filho, P.
2017-07-01
The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.
Compact high reliability fiber coupled laser diodes for avionics and related applications
NASA Astrophysics Data System (ADS)
Daniel, David R.; Richards, Gordon S.; Janssen, Adrian P.; Turley, Stephen E. H.; Stockton, Thomas E.
1993-04-01
This paper describes a newly developed compact high reliability fiber coupled laser diode which is capable of providing enhanced performance under extreme environmental conditions including a very wide operating temperature range. Careful choice of package materials to minimize thermal and mechanical stress, used with proven manufacturing methods, has resulted in highly stable coupling of the optical fiber pigtail to a high performance MOCVD-grown Multi-Quantum Well laser chip. Electro-optical characteristics over temperature are described together with a demonstration of device stability over a range of environmental conditions. Real time device lifetime data is also presented.
Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi
2016-02-15
To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10(-) nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm(2) for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10(-) nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations.
NASA Astrophysics Data System (ADS)
Tota, J.; Santos, R.; Fisch, G.; Querino, C.; Silva Dias, M.; Artaxo, P.; Guenther, A.; Martin, S.; Manzi, A.
2008-12-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23°C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
NASA Astrophysics Data System (ADS)
Tota, J.; Fisch, G.; Santos, R.; Silva Dias, M.
2009-05-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
Carli, Alberto V; Sethuraman, Arvinth S; Bhimani, Samrath J; Ross, Frederick P; Bostrom, Mathias P G
2018-06-01
Antibiotic use in polymethylmethacrylate (PMMA) spacers has historically been limited to those which are "heat-stable" and thus retain their antimicrobial properties after exposure to the high temperatures which occur during PMMA curing. This study examines the requirement of "heat stability" by measuring temperatures of Palacos and Simplex PMMA as they cure inside commercial silicone molds of the distal femur and proximal tibia. Temperature probes attached to thermocouples were placed at various depths inside the molds and temperatures were recorded for 20 minutes after PMMA introduced and a temperature curve for each PMMA product was determined. A "heat-stable" antibiotic, vancomycin, and a "heat-sensitive" antibiotic, ceftazidime, were placed in a programmable thermocycler and exposed to the same profile of PMMA curing temperatures. Antimicrobial activity against Staphylococcus aureus was compared for heat-treated antibiotics vs room temperature controls. Peak PMMA temperatures were significantly higher in tibial (115.2°C) vs femoral (85.1°C; P < .001) spacers. In the hottest spacers, temperatures exceeded 100°C for 3 minutes. Simplex PMMA produced significantly higher temperatures (P < .05) compared with Palacos. Vancomycin bioactivity did not change against S aureus with heat exposure. Ceftazidime bioactivity did not change when exposed to femoral temperature profiles and was reduced only 2-fold with tibial profiles. The curing temperatures of PMMA in knee spacers are not high enough or maintained long enough to significantly affect the antimicrobial efficacy of ceftazidime, a known "heat-sensitive" antibiotic. Future studies should investigate if more "heat-sensitive" antibiotics could be used clinically in PMMA spacers. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.
2012-10-01
An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.
Kijewska, Monika; Radziszewska, Karolina; Kielmas, Martyna; Stefanowicz, Piotr; Szewczuk, Zbigniew
2015-01-21
The effect of high-pressure and/or high-temperature on the glycation of a model protein (ubiquitin) was investigated by mass spectrometry. This paper reports the impact of high pressure (up to 1200 MPa) on the modification of a ubiquitin using ESI-MS measurements. The application of glucose labeled with stable isotope allows a quantitative assessment of modification under the conditions of high-pressure (HPG) and high-temperature (HTG) glycation. A higher degree of modification was observed for the sample heated at 80 °C for 25 min under atmospheric pressure than for sample treated under high pressure. In samples treated at pressure below 400 MPa an insignificant increase of glycation level was observed, whereas high pressure (>600 MPa) has only a minor effect on the number of hexose moieties (Fru) attached to the lysine residue side chain.
Copper drift in high-dielectric-constant tantalum oxide thin films under bias temperature stress
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Mallikarjunan, A.; Rymaszewski, E. J.; Lu, T.-M.
2006-04-01
The use of high-dielectric-constant (high-κ) materials for embedded capacitors is becoming increasingly important. Tantalum oxide (Ta2O5) is a prominent candidate as a high-κ material for embedded capacitor use. Metal drift in Ta2O5 (κ˜25) was investigated by bias temperature stress and triangular voltage sweep testing techniques on metal/Ta2O5/SiO2/Si structures. At a temperature of 300°C and 0.75MV/cm bias conditions, Al, Ta, and Ti do not diffuse in Ta2O5, but Cu clearly showed a drift. The Cu drift is attributed to the lack of a stable Cu oxide which can limit Cu ion generation and penetration.
TiAlN/TiAlON/Si{sub 3}N{sub 4} tandem absorber for high temperature solar selective applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barshilia, Harish C.; Selvakumar, N.; Rajam, K. S.
2006-11-06
A tandem absorber of TiAlN/TiAlON/Si{sub 3}N{sub 4} is prepared using a magnetron sputtering process. The graded composition of the individual component layers of the tandem absorber produces a film with a refractive index increasing from the surface to the substrate, which exhibits a high absorptance (0.95) and a low emittance (0.07). The tandem absorber is stable in air up to 600 deg. C for 2 h, indicating its importance for high temperature solar selective applications. The thermal stability of the tandem absorber is attributed to high oxidation resistance and microstructural stability of the component materials at higher temperatures.
Azhar, Muhammad Rizwan; Vijay, Periasamy; Tadé, Moses O; Sun, Hongqi; Wang, Shaobin
2018-04-01
Water-stable and active metal organic frameworks (MOFs) are important materials for mitigation of water contaminants via adsorption and catalytic reactions. In this study, a highly water-stable Co-based MOF, namely bio-MOF-11-Co, was synthesized by a simplified benign method. Moreover, it was used as a catalyst in successful activation of peroxymonsulfate for catalytic degradation of sulfachloropyradazine (SCP) and para-hydroxybenzoic acid (p-HBA) as representatives of pharmaceuticals and personal care products, respectively. The bio-MOF-11-Co showed rapid degradation of both p-HBA and SCP and could be reused multiple times without losing the activity by simply water washing. The effects of catalyst and PMS loadings as well as temperature were further studied, showing that high catalyst and PMS loadings as well as temperature produced faster kinetic degradation of p-HBA and SCP. The generation of highly reactive and HO radicals during the degradation was investigated by quenching tests and electron paramagnetic resonance. A plausible degradation mechanism was proposed based on the functionalities in the bio-MOF-11-Co. The availability of electron rich nucleobase adenine reinforced the reaction kinetics by electron donation along with cobalt atoms in the bio-MOF-11-Co structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Yong; Peng, Jiajun; Chen, Yani; Yao, Yingshan; Liang, Ziqi
2017-01-01
Organo-metal halide perovskites have suffered undesirably from structural and thermal instabilities. Moreover, thermal annealing is often indispensable to the crystallization of perovskites and removal of residual solvents, which is unsuitable for scalable fabrication of flexible solar modules. Herein, we demonstrate the non-thermal annealing fabrication of a novel type of air-stable triple-cation mixed-halide perovskites, FA0.7MA0.2Cs0.1Pb(I5/6Br1/6)3 (FMC) by incorporation of Pb(SCN)2 additive. It is found that adding Pb(SCN)2 functions the same as thermal annealing process by not only improving the crystallinity and optical absorption of perovskites, but also hindering the formation of morphological defects and non-radiative recombination. Furthermore, such Pb(SCN)2-treated FMC unannealed films present micrometer-sized crystal grains and remarkably high moisture stability. Planar solar cells built upon these unannealed films exhibit a high PCE of 14.09% with significantly suppressed hysteresis phenomenon compared to those of thermal annealing. The corresponding room-temperature fabricated flexible solar cell shows an impressive PCE of 10.55%. This work offers a new avenue to low-temperature fabrication of air-stable, flexible and high-efficiency perovskite solar cells. PMID:28383061
Kohler, Amanda C; Simmons, Blake A; Sale, Kenneth L
2018-04-28
In an age of ever-increasing biotechnological and industrial demand for new and specialized biocatalysts, rational protein engineering offers a direct approach to enzyme design and innovation. Heme peroxidases, as indispensable oxidative biocatalysts, provide a relatively mild alternative to the traditional harsh, and often toxic, chemical catalysts, and subsequently, have found widespread application throughout industry. However, the potential for these enzymes is far greater than their present use, as processes are currently restricted to the more stable, but less catalytically powerful, subset of peroxidases. Here we describe the structure-guided, rational engineering of a plant-fungal hybrid peroxidase built to overcome the application barrier of these high-reduction potential peroxidases. This engineered enzyme has the catalytic versatility and oxidative ability of a high-reduction potential versatile peroxidase, with enhanced temperature and pH tolerance similar to that of a highly stable plant peroxidase. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.
1995-01-01
Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.
Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen
2015-01-28
As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.
Structure and phase composition of ultrafine-grained TiNb alloy after high-temperature annealings
NASA Astrophysics Data System (ADS)
Eroshenko, Anna Yu.; Glukhov, Ivan A.; Mairambekova, Aikol; Tolmachev, Alexey I.; Sharkeev, Yurii P.
2017-12-01
The paper presents the experimental data observed in the microstructure and phase composition of ultrafine-grained Ti-40 mass % Nb (Ti40Nb) alloy after high-temperature annealings. The ultrafine-grained Ti40Nb alloy is produced by severe plastic deformation (SPD). This method includes multiple abc-pressing and multi-pass rolling followed by further pre-recrystallizing annealing which, in its turn, enhances the formation of ultrafine-grained structures with mean size of 0.28 µm involving stable β- and α-phase and metastable nanosized ω-phase in the alloy. It is shown that annealing at 500°C preserves the ultrafine-grained structure and phase composition. In cases of annealing at 800°C the ultrafine-grained state transforms into the coarse-grained state. The stable β-phase and the nanosized metastable ω-phase have been identified in the coarse-grained structure.
Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.; ...
2016-10-07
Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less
Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.
van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard
2017-08-01
A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.
We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.
Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P
2018-07-15
The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Hus, J.; Geeraerts, R.; Plumier, J.
2003-04-01
Field directional archaeomagnetic data from several kilns, unearthed in a brass melting and working site in Bouvignes-sur-Meuse (Dinant, Namur province) in Belgium during a rescue excavation, confirm the archaeological dating as 15th century A.D. for the main site activities.The archaeomagnetic dates, obtained using reference secular variation curves for France and Great Britain, lead to better time constraints for the cessation of kiln operations. Refractory bricks (firebricks), which are used for their chemical and thermal properties, and in particular for their resistance to high temperatures and temperature changes, are not unusual in metal melting &working sites. In the examined site, circular-, square- and oval-shaped kilns, lined with firebricks, were present. The firebricks, which are very porous and coarse-grained, possess a very stable remanent magnetisation and revealed to be suitable geomagnetic field recorders. In the square-shaped kiln two stable magnetisation components could be isolated in the firebricks: a low-temperature component acquired below 420 C, yielding an age near the middle of the 15th century A.D. and a high-temperature component with non-coherent directions. Although the firebricks from the oval-shaped kiln have a very stable, single-component remanent magnetisation, very large non-random deviations in remanence direction in function of the relative azimuth from the centre of the kiln, or with the position of the bricks in the kiln wall, were found. Several hypothesis for the origin of the deviations were tested: anisotropy, refraction and the presence of a local disturbing magnetic source.
High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions.
Hermann, Andreas; Mookherjee, Mainak
2016-12-06
We investigate the high-pressure phase diagram of the hydrous mineral brucite, Mg(OH) 2 , using structure search algorithms and ab initio simulations. We predict a high-pressure phase stable at pressure and temperature conditions found in cold subducting slabs in Earth's mantle transition zone and lower mantle. This prediction implies that brucite can play a much more important role in water transport and storage in Earth's interior than hitherto thought. The predicted high-pressure phase, stable in calculations between 20 and 35 GPa and up to 800 K, features MgO 6 octahedral units arranged in the anatase-TiO 2 structure. Our findings suggest that brucite will transform from a layered to a compact 3D network structure before eventual decomposition into periclase and ice. We show that the high-pressure phase has unique spectroscopic fingerprints that should allow for straightforward detection in experiments. The phase also has distinct elastic properties that might make its direct detection in the deep Earth possible with geophysical methods.
High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Yokota, R.; Criss, J. M.
2002-01-01
As part of an ongoing effort to develop materials for resin transfer molding (RTM) processes to fabricate high performance/high temperature composite structures, phenylethynyl containing imides have been under investigation. New phenylethynyl containing imide compositions were prepared using 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) and evaluated for cured glass transition temperature (Tg), melt flow behavior, and for processability into flat composite panels via RTM. The a-BPDA imparts a unique combination of properties that are desirable for high temperature transfer molding resins. In comparison to its symmetrical counterpart (i.e. 3,3',4,4'-biphenyltetracarboxylic dianhydride), a-BPDA affords oligomers with lower melt viscosities and when cured, higher Tgs. Several candidates exhibited the appropriate combination of properties such as a low and stable melt viscosity required for RTM processes, high cured Tg, and moderate toughness. The chemistry, physical, and composite properties of select resins will be discussed.
High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375
NASA Technical Reports Server (NTRS)
Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.
2004-01-01
As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.
Development status of a high cooling capacity single stage pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Hirayama, T.; Li, R.; Y Xu, M.; Zhu, S. W.
2017-12-01
High temperature superconducting (HTS) applications require high-capacity and high-reliability cooling solutions to keep HTS materials at temperatures of approximately 80 K. In order to meet such requirements, Sumitomo Heavy Industries, Ltd.(SHI) has been developing high cooling capacity GM-type active-buffer pulse tube cryocooler. An experimental unit was designed, built and tested. A cooling capacity of 390.5 W at 80 K, COP 0.042 was achieved with an input power of approximately 9 kW. The cold stage usually reaches a stable temperature of about 25 K within one hour starting at room temperature. Also, a simplified analysis was carried out to better understand the experimental unit. In the analysis, the regenerator, thermal conduction, heat exchanger and radiation losses were calculated. The net cooling capacity was about 80% of the PV work. The experimental results, the analysis method and results are reported in this paper.
Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.
Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky
2014-02-12
Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance
NASA Technical Reports Server (NTRS)
Morris, J. F. (Inventor)
1977-01-01
Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.
Studies on the stability of preservatives under subcritical water conditions.
Kapalavavi, B; Marple, R; Gamsky, C; Yang, Y
2015-06-01
The goal of this work was to further validate the subcritical water chromatography (SBWC) methods for separation and analysis of preservatives through the evaluation of analyte stability in subcritical water. In this study, the degradation of preservatives was investigated at temperatures of 100-200°C using two different approaches. First, the peak areas obtained by SBWC at high temperatures were compared with those achieved using the traditional high-performance liquid chromatography (HPLC) at 25°C. In the second approach, several preservatives and water were loaded into a vessel and heated at high temperatures for 30 or 60 min. The heated mixtures were then analysed by GC/MS to determine the stability of preservatives. The t- and F-test on the results of the first approach reveal that the peak areas achieved by HPLC and SBWC are not significantly different at the 95% confidence level, meaning that the preservatives studied are stable during the high-temperature SBWC runs. Although the results of the second approach show approximately 10% degradation of preservatives into mainly p-hydroxybenzoic acid and phenol at 200°C, the preservatives studied are stable at 100 and 150°C. This is in good agreement with the validation results obtained by the first approach. The findings of this work confirm that SBWC methods at temperatures up to 150°C are reliable for separation and analysis of preservatives in cosmetic and other samples. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Polymorphism in a high-entropy alloy
Zhang, Fei; Wu, Yuan; Lou, Hongbo; ...
2017-06-01
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less
Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids
NASA Astrophysics Data System (ADS)
Kaur, Navjot; Chudasama, Bhupendra
2018-04-01
Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.
Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods
NASA Astrophysics Data System (ADS)
Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton
2018-03-01
The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.
[Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].
Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang
2003-03-01
Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth
2015-06-10
Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.
NASA Astrophysics Data System (ADS)
Kim, Yong-Deog
The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate the thermal stability during an extensive matrix of long-term thermal annealing. In particular, the size, number density and composition of nano-clusters were assessed. While improvements in strength were obtained in the advanced NiAl ODS alloys, and the higher strength persisted through thermal annealing for 100 hrs at 1723K, characterization revealed the presence of Al in the oxide precipitate phases. The Al incorporation is believed detrimental to the formation of a high density of thermally stable Y-Ti-O nanoscale precipitates.
Liu, Xingpeng; Peng, Bin; Zhang, Wanli; Zhu, Jun; Liu, Xingzhao; Wei, Meng
2017-12-01
In order to develop film electrodes for the surface acoustic wave (SAW) devices operating in harsh high-temperature environments, novel Al₂O₃/Pt/ZnO/Al₂O₃ multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE) at 150 °C. The first Al₂O₃ layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La₃Ga₅SiO 14 (LGS) substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al₂O₃/Pt/ZnO/Al₂O₃ film electrode has great potential for application in high-temperature SAW devices.
Izquierdo, Natalia G; Martínez-Force, Enrique; Garcés, Rafael; Aguirrezábal, Luis An; Zambelli, Andrés; Reid, Roberto
2016-10-01
This study characterized the influence of temperature during grain filling on the saturated fatty acid distribution in triacylglycerol molecules from high stearic sunflower lines with different genetic backgrounds. Two growth chamber experiments were conducted with day/night temperatures of 16/16, 26/16, 26/26 and 32/26 °C. In all genotypes, independently of the genetic background, higher temperatures increased palmitic and oleic acid and reduced linoleic acid concentrations. Increasing night temperature produced an increase in saturated-unsaturated-saturated species, indicating a more symmetrical distribution of saturated fatty acids. The solid fat index was more affected by temperature during grain filling in lines with high linoleic than high oleic background. Higher variations in symmetry among night temperatures were observed in lines with high oleic background, which are more stable in fatty acid composition. The effect of temperature on triacylglycerol composition is not completely explained by its effect on fatty acid composition. Thus night temperature affects oil properties via its effects on fatty acid synthesis and on the distribution of fatty acids in the triacylglycerol molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano
2016-01-01
Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. PMID:27432883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya
Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for themore » present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)« less
Anderson, J.W.; Miley, F.; Pritchard, W.C.
1962-02-27
A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)
Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu
2013-10-01
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kukolich, S.; Kendall, C.; Dettman, D. L.
2017-12-01
The geochemical record stored in growth increments of freshwater mussel shells reveals annual to sub-annual changes in environmental conditions during the lifetime of the organism. The carbon, nitrogen, and oxygen stable isotope composition of aragonite shells responds to changes in water chemistry, temperature, streamflow, turbidity, growth rate, size, age, and reproduction. The goals of this study are to determine how stable isotopes can be used to reconstruct the conditions in which the mussels lived and to illuminate any vital effects that might obscure the isotopic record of those conditions. Previous research has suggested that annual δ13C values decrease in older freshwater mussel shells due to lower growth rates and greater incorporation of dietary carbon into the shell with increasing age. However, a high-resolution, seasonal investigation of δ13C, δ15N, and δ18O as they relate to organism age has not yet been attempted in freshwater mussels. A total of 28 Unionid mussels of three different species were collected live in 2011 in the Tennessee River near Paducah, Kentucky, USA. In this study, we analyzed the shell nacre and external organic layers for stable carbon, nitrogen, and oxygen isotope ratios, focusing on growth bands formed between 2006 and 2011. We present a time series of shell δ13C, δ18O, and δ15N values with monthly resolution. We also compare the shell-derived geochemical time series to a time series of the δ13C and δ15N of particulate organic matter, δ13C of DIC, δ18OWater, and water temperature in which the mussels lived. Results show that environmental factors such as water temperature and primary productivity dominate shell chemistry while animal age has little or no effect.
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.
2015-12-01
We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.
Chemical structural analysis of diamondlike carbon films: II. Raman analysis
NASA Astrophysics Data System (ADS)
Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji
2018-02-01
The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.
Two distinct crystallization processes in supercooled liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu
2016-05-21
Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less
Length of winter coat in horses depending on husbandry conditions.
Bocian, Krzysztof; Strzelec, Katarzyna; Janczarek, Iwona; Jabłecki, Zygmunt; Kolstrung, Ryszard
2017-02-01
This paper analyzes changes in the length of coat on selected body areas in horses and ponies kept under different husbandry (stable) conditions during the winter-spring period. The study included 12 Małpolski geldings and 12 geldings of Felin ponies aged 10-15 years. Horses were kept in two stables (six horses and six ponies in each stable). The type of performance, husbandry conditions and feeding of the studied animals were comparable. As of December 1, samples of hair coat from the scapula, sternum, back and abdomen areas of both body sides were collected seven times. The lengths of 20 randomly selected hair fibers were measured. Daily measurements of air temperature in the stables were also taken. An analysis of variance (ANOVA) was performed using the following factors: the body part from where the coat was sampled, the subsequent examination and the stable as well as the interaction between these factors. The significance of differences between means was determined with a t-Tukey test. The relations between air temperature in the stable and hair length were calculated using Pearson's correlation. It was found that air temperature in the stable impacts the length of winter coat in horses and ponies. The effect of this factor is more pronounced in ponies; as in the stables with lower temperatures it produces a longer hair coat which is more evenly distributed over the body in comparison with horses. Keeping horses and ponies in stables with a low air temperature accelerates coat shedding by approximately 25 days. Coat shedding begins from the scapula area. © 2016 Japanese Society of Animal Science.
Phenomenology of Polymorphism, III: p, TDiagram and Stability of Piracetam Polymorphs
NASA Astrophysics Data System (ADS)
Céolin, R.; Agafonov, V.; Louër, D.; Dzyabchenko, V. A.; Toscani, S.; Cense, J. M.
1996-02-01
The nootropic drug Piracetam is known to crystallize in three phases. In order to obtain their stability hierarchy from sublimation pressure inequalities, the drawing of a topologicalp,Tdiagram was attempted. For such a purpose and also for quality control, crystallographic and thermodynamic data were required. Powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) were used. Molecular energy calculations were performed. Phase I melts at 426 K (ΔfusH(I) = +180 J·g-1). Phase II transforms into Phase I at 399 K (Δ(II→I)H= +24 J·g-1). Phase III transforms into phase I at 392 K (Δ(III→I)H= +28 J·g-1) or melts at 412 K (ΔfusH(III) = +210 J·g-1). Thep,Tdiagram shows that phase I is stable at higher temperature and phase II at lower temperature, like phase III, which is stable under high pressure. At room temperature, phase II is the more stable form, and phase I the less stable one. This agrees with the spontaneous I → II transformation observed at 298 K within a few hours, and with lattice energies, calculated previously. Molecular energy calculations and crystal structure comparison show how intermolecular hydrogen bonds and H-bonded dimers, in phases II and III, may stabilize conformations higher in energy than those of the isolated molecule and of phase I.
Super Stable Ferroelectrics with High Curie Point.
Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang
2016-04-07
Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie - Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C.
Super Stable Ferroelectrics with High Curie Point
Gao, Zhipeng; Lu, Chengjia; Wang, Yuhang; Yang, Sinuo; Yu, Yuying; He, Hongliang
2016-01-01
Ferroelectric materials are of great importance in the sensing technology due to the piezoelectric properties. Thermal depoling behavior of ferroelectrics determines the upper temperature limit of their application. So far, there is no piezoelectric material working above 800 °C available. Here, we show Nd2Ti2O7 with a perovskite-like layered structure has good resistance to thermal depoling up to 1400 °C. Its stable behavior is because the material has only 180° ferroelectric domains, complex structure change at Curie point (Tc) and their sintering temperature is below their Tc, which avoided the internal stresses produced by the unit cell volume change at Tc. The phase transition at Tc shows a first order behavior which involving the tilting and rotation of the octahedron. The Curie – Weiss temperature is calculated, which might explain why the thermal depoling starts at about 1400 °C. PMID:27053338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fei; Wu, Yuan; Lou, Hongbo
Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiationmore » X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. Lastly, as pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.« less
The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.
Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui
2017-10-04
This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.
Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z
2012-06-01
To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing high-sensitivity TLD has been carried out. It enabled consistent and accurate annealing of high- sensitivity TLDs which could significantly improve the efficiency of brachytherapy source characterizations. Supported in part by NIH grant R01-CA134627. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor)
2006-01-01
An optical component especially suited for common path heterodyne interferometry comprises a symmetric dual-periscope configuration. Each periscope is substantially identical to the other with regard to certain design aspects. The resulting design is an optical component that is highly stable with variations in temperature and angular deviations.
Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling
2017-06-21
γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.
Onn, Tzia Ming; Monai, Matteo; Dai, Sheng; Fonda, Emiliano; Montini, Tiziano; Pan, Xiaoqing; Graham, George W; Fornasiero, Paolo; Gorte, Raymond J
2018-04-11
The concept of self-regenerating or "smart" catalysts, developed to mitigate the problem of supported metal particle coarsening in high-temperature applications, involves redispersing large metal particles by incorporating them into a perovskite-structured support under oxidizing conditions and then exsolving them as small metal particles under reducing conditions. Unfortunately, the redispersion process does not appear to work in practice because the surface areas of the perovskite supports are too low and the diffusion lengths for the metal ions within the bulk perovskite too short. Here, we demonstrate reversible activation upon redox cycling for CH 4 oxidation and CO oxidation on Pd supported on high-surface-area LaFeO 3 , prepared as a thin conformal coating on a porous MgAl 2 O 4 support using atomic layer deposition. The LaFeO 3 film, less than 1.5 nm thick, was shown to be initially stable to at least 900 °C. The activated catalysts exhibit stable catalytic performance for methane oxidation after high-temperature treatment.
Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress.
Zhang, Hua; Xu, Heng; Feng, Mengjie; Zhu, Ying
2018-01-01
High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Fiber Bragg Grating Sensors for Harsh Environments
Mihailov, Stephen J.
2012-01-01
Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
Mechaly, Adva; Marx, Sharon; Levy, Orly; Yitzhaki, Shmuel; Fisher, Morly
2016-06-21
This study shows the development of dry, highly stable immunoassays for the detection of bio warfare agents in complex matrices. Thermal stability was achieved by the lyophilization of the complete, homogeneous, bead-based immunoassay in a special stabilizing buffer, resulting in a ready-to-use, simple assay, which exhibited long shelf and high-temperature endurance (up to 1 week at 100 °C). The developed methodology was successfully implemented for the preservation of time-resolved fluorescence, Alexa-fluorophores, and horse radish peroxidase-based bead assays, enabling multiplexed detection. The multiplexed assay was successfully implemented for the detection of Bacillus anthracis, botulinum B, and tularemia in complex matrices.
NIM gas controlled sodium heat pipe
NASA Astrophysics Data System (ADS)
Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.
2013-09-01
Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.
Overcoming the limitations of silver nanowire electrodes for light emitting applications
NASA Astrophysics Data System (ADS)
Chen, Dustin Yuan
The global lighting market is projected to exceed 100 billion dollars by 2020, undergoing rapid transitions driven by technological advancements. In conjunction with increased demand for new technology, global regulations have become increasingly stringent, mandating the development and implementation of more fuel-efficient light sources. As prior generations of lighting technology such as incandescent bulbs and florescent lighting progressively become phased out, newer technologies such as light emitting diodes (LEDs) and organic light emitting diodes (OLEDs) have become progressively popular and commonplace. Though they still lag behind LEDs in terms of market penetration, OLEDs have garnered increasing amounts of attention in recent years due to unique attributes such as their exotic and large scale form factors, mechanical flexibility, and potential for high volume, low-cost manufacturing. Unfortunately, the costs for OLED manufacturing are currently still prohibitively high for several applications, with the anode and substrate representing 20-25 percent of this total cost. Significant technical and processing improvements for OLED substrates are of utmost necessity for fiscal cost reduction and commercialization of OLED technology. Silver nanowires have gained traction as a potential replacement for the current status quo, indium tin oxide (ITO) due to attributes such as flexibility, low cost processing, and high optoelectronic properties. However, due to nanoscale size effects, the integration of silver nanowires in both process flows and operational use has proven to be problematic. This work makes several key contributions towards enabling the use of silver nanowires for practical and commercial applications within the lighting industry. First, a novel method for the fabrication of a high temperature-stable, flexible substrate with surface roughness (Ra) < 2 nm is presented, based on atomic layer deposition of a conformal metal oxide film on silver nanowires. This development of a thermally stable AgNW based substrate is critical for the future of flexible OLEDs, as both polymers and AgNWs are unstable at elevated temperatures required for certain OLED processing. However, at the time publication, no solutions existed for flexible OLED substrates simultaneously having thermal stability in excess of 230 °C for more than a few minutes while maintaining a smooth surface for subsequent device fabrication. The thermally stable silver nanowires developed in this work are able to withstand temperatures of 500 °C in ramping tests, and when integrated with a thermally stable polymer matrix, withstand temperatures of 300 °C for at least 6 hours, representing an increase in allowable processing temperatures of 70 °C for several hours longer. Resulting polymer light emitting devices (PLEDs) requiring high temperature processing fabricated on this thermally stable exhibit comparable performance to the same devices fabricated on ITO, validating its compatibility for integration in traditional process flows, and validity for use in extreme processing conditions. Secondly, the aforementioned method is applied to understanding the electrical stability of silver nanowires. At the time of publication, previous works on the electrical failure of silver nanowires centered on the observation of failure under current flow, without a solution offered for how to mitigate the phenomenon. However, because the underlying purpose of these electrodes is to transport current, providing a solution for the failure flow is paramount to the success of AgNWs in future commercial applications. The importance of the development of this solution cannot be understated, especially in light of the fact that silver nanowires have been shown to fail under electrical stresses below typical operating conditions of various optoelectronic devices. The same technique mentioned previously can be leveraged for electrically stable silver nanowire networks, which show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled in part by the substrate, which further allowed for the high mechanical performance. The electroluminescence performance of the perovskite quantum dot LEDs was found to be virtually fully recoverable after being subjected to a bending radius of 2.5 mm, or repeated cycles of bending and unbending to a 4 mm radius, representing the first report of a highly flexible and mechanically perovskite quantum dot light emitting device with high electroluminescence performance. The improved stability of AgNWs with regards to both manufacturing and operational use, in addition to proof of concept in various light emitting devices demonstrates the potential of this technology for large-scale, commercial lighting applications.
Structural transformations in Ge{sub 2}Sb{sub 2}Te{sub 5} under high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mio, A. M.; Privitera, S., E-mail: stefania.privitera@imm.cnr.it; D'Arrigo, G.
2015-08-14
The structural transformations occurring in Ge{sub 2}Sb{sub 2}Te{sub 5} films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt andmore » of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.« less
NASA Astrophysics Data System (ADS)
Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils
2017-04-01
The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (<2°C) as can be expected for a tropical palaeolatitude. A comparison of the results from Egypt with literature data enabled the reconstruction of latitudinal temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine faunal diversity patterns.
NASA Astrophysics Data System (ADS)
Cavusoglu, G.; Dallmann, F.; Lichtenberg, H.; Goldbach, A.; Dittmeyer, R.; Grunwaldt, J.-D.
2016-05-01
Microreactor technology with high heat transfer in combination with stable catalysts is a very attractive approach for reactions involving major heat effects such as methane steam reforming and to some extent, also the high temperature water gas shift (WGS) reaction. For this study Rh/ceria catalysts and an ultrathin hydrogen selective membrane were characterized in situ in a microreactor specially designed for x-ray absorption spectroscopic measurements under WGS conditions. The results of these experiments can serve as a basis for further development of the catalysts and membranes.
Wijayaratne, L K Wolly; Fields, Paul G; Arthur, Frank H
2012-04-01
The residual efficacy of the juvenile hormone analog methoprene (Diacon II) was evaluated in bioassays using larvae of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed on unsealed concrete or varnished wood treated with a liquid formulation and held at different temperatures. When these two types of surfaces were stored at 20, 30 or 35 degrees C for 0-24 wk, the percentage of adult emergence on concrete increased with time. In contrast, there was no adult emergence from larvae exposed to varnished wood at 24 wk after treatment at any of these temperatures. The presence of flour reduced residual efficacy of methoprene on concrete, but not on varnished wood, with no differences between cleaning frequencies. Methoprene was also stable for 48 h on concrete held at 65 degrees C and wheat, Triticum aestivum L., held at 46 degrees C. Results show that methoprene is stable at a range of temperatures commonly encountered in indoor food storage facilities and at high temperatures attained during insecticidal heat treatments of structures. The residual persistence of methoprene applied to different surface substrates may be affected more by the substrate than by temperature.
Room-Temperature Synthesis of GaN Driven by Kinetic Energy beyond the Limit of Thermodynamics.
Imaoka, Takane; Okada, Takeru; Samukawa, Seiji; Yamamoto, Kimihisa
2017-12-06
The nitridation reaction is significantly important to utilize the unique properties of nitrides and nitrogen-doped materials. However, nitridation generally requires a high temperature or highly reactive reagents (often explosive) because the energies of N-N bond cleavage and nitrogen anion formation (N 3- ) are very high. We demonstrate the first room-temperature synthesis of GaN directly from GaCl 3 by nanoscale atom exchange reaction. Nonequilibrium nitrogen molecules with very high translational energy were used as a chemically stable and safe nitrogen source. The irradiation of molecular nitrogen to the desired reaction area successfully provided a gallium nitride (GaN) nanosheet that exhibited a typical photoluminescence spectrum. Because this process retains the target substrate room temperature and does not involve any photon nor charged ion, it allows damage-less synthesis of the semiconducting metal nitrides, even directly on plastic substrates such as polyethylene terephthalate (PET).
NASA Astrophysics Data System (ADS)
Rao, Ashwin; Bosak, Gregg; Joshi, Binay; Keane, Jennifer; Nally, Luke; Peng, Adam; Perera, Susanthri; Waring, Alfred; Poudel, Bed
2017-04-01
The choice of the appropriate metallizing layer for high-temperature thermoelectric (TE) materials is a tricky task and poses varied challenges to researchers. In this work, a n type TiAl metallizing layer (90% Ti with 10% Al by weight with a copper foil) is proposed for a Yb_{0.2}Co4Sb_{12} skutterudite (SK) TE material coupled with a standard ` p type' SK base of Nd_{0.45}Ce_{0.45}Fe_{3.5}Co_{0.5}Sb_{12} with a 60:12:28% Fe:Ni:Cr metallizing layer. The n type and p type nanostructured SK powders are sintered at high temperatures and pressures in a DC hot press from which a TE device is assembled using diced, polished and property characterized TE legs (high figure of merit zT of 1.4 for n type and 1.2 for p type, respectively). The device is evaluated for functional degradation with repeated cycling to 500°C hot side (HS) and 50°C cold side (CS) temperatures in a specially designed high-vacuum test rig with key TE properties like peak power, open circuit voltage, and material internal resistance continuously recorded over each cycle. The device shows stable performance with <7% drop in TE harvested power over 2500 thermal cycles. With the industry benchmark for evaluating TE device performance being around 1000 thermal cycles (<10% drop in TE power over time), the study indicates stable performance of the n type TiAl metallizing layer over the device lifetime.
Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation
NASA Astrophysics Data System (ADS)
Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.
2017-12-01
The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the literature, while the highest rate of AOM was measured in Nankai Trough sediments from 616 m incubated at 70˚C with 10 mM NO2- (0.44 ± .01 µmol 13CO2 day-1 g-1 dry weight sediment). Further analysis is required to investigate the identities and functional adaptations of CH4-cycling organisms active under high pressure and high temperature.
Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas
2015-12-19
Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.
López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel
2017-11-01
Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.
NASA Astrophysics Data System (ADS)
Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang
2017-10-01
The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.
Metrani, Rita; Jayaprakasha, G K; Patil, Bhimanagouda S
2018-03-01
The present study describes the rapid microplate method to determine pyruvic acid content in different varieties of onions. Onion juice was treated with 2,4-dinitrophenylhydrazine to obtain hydrazone, which was further treated with potassium hydroxide to get stable colored complex. The stability of potassium complex was enhanced up to two hours and the structures of hydrazones were confirmed by LC-MS for the first time. The developed method was optimized by testing different bases, acids with varying concentrations of dinitrophenyl hydrazine to get stable color and results were comparable to developed method. Repeatability and precision showed <9% relative standard deviation. Moreover, sweet onion juice was stored for four weeks at different temperatures for the stability; the pyruvate remained stable at all temperatures except at 25°C. Thus, the developed method has good potential to determine of pungency in large number of onions in a short time using minimal amount of reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meta-stable magnetic transitions and its field dependence in Co2.75Fe0.25O4 ferrite
NASA Astrophysics Data System (ADS)
Aswathi M., C.; Bhowmik, R. N.
2018-04-01
The Co2.75Fe0.25O4 ferrite has been prepared by chemical co-precipitation route. The as-prepared sample has been annealed at 500° C. X-ray diffraction pattern indicated cubic spinel structure in the sample. The sample showed ferrimagnetic nature with magnetic irreversibility and hysteresis loop. Magnetization data revealed high anisotropic nature and at least two prominent meta-stable magnetic transitions below the highest measurement temperature 350 K.
Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)
2008-07-10
a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
Ryu, Jungho; Han, Guifang; Lee, Jong-Pil; Lim, Dong-Soo; Park, Yun-Soo; Jeong, Dae-Yong
2013-05-01
Spinel structured highly dense NiMn2O4-based (NMO) negative temperature coefficient (NTC) thermistor thick films were fabricated by aerosol-deposition at room temperature. To enhance the thermistor B constant, which represents the temperature sensitivity of the NMO thermistor material, Co and Co-Fe doping was applied. In the case of single element doping of Co, 5 mol% doped NMO showed a high B constant of over 5000 K, while undoped NMO showed -4000 K. By doping Fe to the 5 mol% Co doped NMO, the B constant was more enhanced at over 5600 K. The aging effect on the NTC characteristics of Co doped and Fe-Co co-doped NMO thick film showed very stable resistivity-time characteristics because of the highly dense microstructure.
Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine
NASA Astrophysics Data System (ADS)
Izumida, Yuki
2018-03-01
The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Development of the Larzac Engine Rig for Compressor Stall Testing
2011-12-01
due to high vibration levels. Most pressure and all temperature sensors were of conventional type, providing analogue output signals, but of...Must have enough thermal stability to withstand the flow temperature at the particular location. 4. Must be stable in relation to engine vibration ...Instabilities in an Aeroengine ”, ICIASF ’97 Record, IEEE Publications 1997. 7. Hoess, B., Leinhos, D., Fottner, L., 2000, “Stall Inception in the
Li, Q; Thonhauser, T
2012-10-24
The hydrogen-methane compound (H(2))(4)CH(4)-or for short H4M-is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH(4); including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.
NASA Astrophysics Data System (ADS)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.
2013-08-09
of Hf,Zr oxychloride hydrates, triethyl borate , and phenolic resin to form precipitate free sols that turn into stable gels with no catalyst addition...minutes, shows the glass -ceramic coating (that formed a shell upon cooling) was generated from within the UHTC filled C-C composite. Notice, in Figure...generation of the coating during high temperature exposure to oxygen. The formation of a ZrO2-SiO2 glass -ceramic coating on the C-C composite is believed to
Effect of high pressure-high temperature process on meat product quality
NASA Astrophysics Data System (ADS)
Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie
2011-03-01
High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.
Ultrastrong ductile and stable high-entropy alloys at small scales.
Zou, Yu; Ma, Huan; Spolenak, Ralph
2015-07-10
Refractory high-entropy alloys (HEAs) are a class of emerging multi-component alloys, showing superior mechanical properties at elevated temperatures and being technologically interesting. However, they are generally brittle at room temperature, fail by cracking at low compressive strains and suffer from limited formability. Here we report a strategy for the fabrication of refractory HEA thin films and small-sized pillars that consist of strongly textured, columnar and nanometre-sized grains. Such HEA pillars exhibit extraordinarily high yield strengths of ∼ 10 GPa--among the highest reported strengths in micro-/nano-pillar compression and one order of magnitude higher than that of its bulk form--and their ductility is considerably improved (compressive plastic strains over 30%). Additionally, we demonstrate that such HEA films show substantially enhanced stability for high-temperature, long-duration conditions (at 1,100 °C for 3 days). Small-scale HEAs combining these properties represent a new class of materials in small-dimension devices potentially for high-stress and high-temperature applications.
NASA Astrophysics Data System (ADS)
Qing, Jiasheng; Wang, Lei; Dou, Kun; Wang, Bao; Liu, Qing
2016-06-01
The influence of V-N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10-3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800-900°, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.
Bacterial Cell Production from Hexadecane at High Temperatures
Sukatsch, Dieter A.; Johnson, Marvin J.
1972-01-01
On mineral medium with hexadecane as the sole carbon source, stable mixed bacterial enrichment cultures were obtained from soil inoculum at 25, 35, 45, 55, and 65 C. Cell yields (grams of dry cells per gram of hexadecane) were determined for each of the enrichment cultures grown at the temperature at which they were enriched, and also for the 55 and 65 C cultures grown at various temperatures. In all cases, cell yields decreased with increasing growth temperature. The highest yield obtained at 65 C was 0.26, and the lowest yield obtained at 25 or 35 C was 1.02. Slower growth was observed at higher temperatures. PMID:5021971
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Martinek, Janna G
Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles andmore » s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.« less
High strength, tough alloy steel
Thomas, Gareth; Rao, Bangaru V. N.
1979-01-01
A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.
High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase
NASA Astrophysics Data System (ADS)
Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.
2009-03-01
Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.
Mutation-Screening of Pleurotus Ferulae with High Temperature Tolerance by Nitrogen Ion Implantation
NASA Astrophysics Data System (ADS)
Chen, Henglei; Wan, Honggui; Zhang, Jun; Zeng, Xianxian
2008-08-01
In order to obtain Pleurotus ferulae with high temperature tolerance, conidiophores of wild type strain ACK were implanted with nitrogen ions in energy of 5 ~15 keV and dose of 1.5 × 1015 ~ 1.5 × 1016 cm-2, and a mutant CGMCC1763 was isolated subsequently through thermotolerant screening method. It was found that during riper period the surface layer mycelium of the mutant in mushroom bag wasn't aging neither grew tegument even above 30° C. The mycelium endurable temperature of the mutant was increased by 5°C compared to that of the wild type strain. The fruiting bodies growth temperature of the mutant was 18 ~22°C in daytime and 8~14°C at night. The highest growth temperature of fruiting bodies of the mutant was increased about 7°C w.r.t. that of original strain. Through three generations investigations, it was found that the mutant CGMCC1763 was stable with high temperature tolerance.
Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo
2016-11-09
Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T g ) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C -1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.
The anomalously high melting temperature of bilayer ice.
Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria
2010-03-28
Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.
NASA Astrophysics Data System (ADS)
Nishijima, G.; Kitaguchi, H.; Tshuchiya, Y.; Nishimura, T.; Kato, T.
2013-01-01
We have developed an apparatus to investigate transport critical current (Ic) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating Ic measurement environment for a high-Tc superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.
NASA Astrophysics Data System (ADS)
Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo
2016-11-01
Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C-1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.
NASA Astrophysics Data System (ADS)
Popinako, Anna V.; Antonov, Mikhail Yu.; Bezsudnova, Ekaterina Yu.; Prokopiev, Georgiy A.; Popov, Vladimir O.
2017-11-01
The study of structural adaptations of proteins from polyextremophilic organisms using computational molecular dynamics method is appealing because the obtained knowledge can be applied to construction of synthetic proteins with high activity and stability in polyextreme media which is useful for many industrial applications. To investigate molecular adaptations to high temperature, we have focused on a superthermostable short-chain dehydrogenase TsAdh319 from the Thermococcus sibiricus polyextremophilic archaeon and its closest structural homologues. Molecular dynamics method is widely used for molecular structure refinement, investigation of biological macromolecules motion, and, consequently, for interpreting the results of certain biophysical experiments. We performed molecular dynamics simulations of the proteins at different temperatures. Comparison of root mean square fluctuations (RMSF) of the atoms in thermophilic alcohol dehydrogenases (ADHs) at 300 K and 358 K revealed the existence of stable residues at 358 K. These residues surround the active site and form a "nucleus of rigidity" in thermophilic ADHs. The results of our studies suggest that the existence of the "nucleus of rigidity" is crucial for the stability of TsAdh319. Absence of the "nucleus of rigidity" in non-thermally stable proteins causes fluctuations throughout the protein, especially on the surface, triggering the process of denaturation at high temperatures.
Stable superconducting magnet. [high current levels below critical temperature
NASA Technical Reports Server (NTRS)
Boom, R. W. (Inventor)
1967-01-01
Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.
A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers
NASA Astrophysics Data System (ADS)
Sliski, David H.; Blake, Cullen H.; Halverson, Samuel
2017-12-01
We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2018-03-01
Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.
Kibe, Taiga; Nagata, Hajime
2017-01-01
Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910
Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius
NASA Technical Reports Server (NTRS)
Gregory, Otto; Fralick, Gustave (Technical Monitor)
2003-01-01
Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.
NASA Astrophysics Data System (ADS)
Burdette, E.; Okazaki, K.; Hirth, G.
2017-12-01
The complicated brittle-ductile rheology of antigorite at subduction zone pressures and temperatures, resulting from its anisotropic mechanical properties, low dehydration temperature, and high water content has made interpretation of dehydration weakening problematic. Recent analyses indicate that antigorite is both ductile and brittle at high temperatures, and follows effective pressure frictional laws while dehydrating. In this study we focus on the role of rig compliance and reaction kinetics on frictional weakening and frictional stability. In addition, we correlate the evolution of mechanical behavior with AE activity at conditions within and above the thermal stability limit of antigorite. We conducted experiments at confining pressures from 0.25 GPa to 1GPa in a Griggs apparatus and modified rig compliance by including compliant components within the loading frame. We also modeled in-situ reaction progress using parameters from Sawai et al. (2013) to quantify relationships between weakening and fluid production. Without modifying the compliance, low pressure runs show stable dehydration weakening. With a modified, low compliance, results were nearly identical to stable weakening at standard compliance at 1 GPa. However, at lower pressures, many acoustic emissions were recorded at peak reaction rates during temperature ramping, with a rapid failure event occurring several minutes afterward (with the caveat that we still need to verify that AEs occur within the sample). No AEs are observed during room temperature experiments in samples that fault, nor were any observed in the high temperature experiments at conditions within the antigorite stability field - consistent with prior studies. Our results demonstrate that understanding in-situ dehydration reaction kinetics and their feedback with rheology and system compliance are key to scaling laboratory antigorite rheology to earth.
Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150°C
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Agustin, M.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.
2018-02-01
New applications in industrial, automotive and datacom applications require vertical-cavity surface-emitting lasers (VCSELs) operating at very high ambient temperatures at ultrahigh speed. We discuss issues related to high temperature performance of the VCSELs including temperature response and spectral properties. The influence of the gain-to-cavity wavelength detuning on temperature performance and spectral width of the VCSELs is discussed. Performance of the oxide-confined 850 nm VCSELs with increased temperature stability capable of operating at bit rates up to 25 Gbit/s at heat sink temperature of 150°C and 35Gbit/s at 130°C. Furthermore, opposite to previous studies of VCSELs with large gain-to-cavity detuning, which demonstrated strongly increased spectral width and a strong redistribution of the mode intensities upon current increase. VCSELs demonstrated in this work show good reproducibility of a narrow spectrum in a wide range of currents and temperatures. Such performance strongly improves the transmission distance over multi-mode fiber and can reduce mode partition noise during high speed operation.
Zhang, Yu; Luo, Hao; Carr, Peter W.
2011-01-01
A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745
Multilayer screen gives cathode ray tube high contrast
NASA Technical Reports Server (NTRS)
Bullinger, H.; Hilborn, E. H.
1970-01-01
Fabrication method for cathode ray tubes uses low-cost siloxane resin formulations. The resins contain sufficient methyl or phenyl groups for solubility in organic solvents. After vaporization and baking, the polymerized material is stable under vacuum and under temperatures required for tube fabrication.
Optical Characterization Laboratory | Energy Systems Integration Facility |
Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liangxin; Zhao, Jiangtao; Hong, Bin
2016-04-14
Vanadium dioxide (VO{sub 2}) epitaxial films were grown on perovskite single-crystal strontium titanate (SrTiO{sub 3}) substrates by reactive radio-frequency magnetron sputtering. The growth temperature-dependent metal–insulator transition (MIT) behavior of the VO{sub 2} epitaxial films was then investigated. We found that the order of magnitude of resistance change across the MIT increased from 10{sup 2} to 10{sup 4} with increasing growth temperature. In contrast, the temperature of the MIT does not strongly depend on the growth temperature and is fairly stable at about 345 K. On one hand, the increasing magnitude of the MIT is attributed to the better crystallinity and thusmore » larger grain size in the (010)-VO{sub 2}/(111)-SrTiO{sub 3} epitaxial films at elevated temperature. On the other hand, the strain states do not change in the VO{sub 2} films deposited at various temperatures, resulting in stable V-V chains and V-O bonds in the VO{sub 2} epitaxial films. The accompanied orbital occupancy near the Fermi level is also constant and thus the MIT temperatures of VO{sub 2} films deposited at various temperatures are nearly the same. This work demonstrates that high-quality VO{sub 2} can be grown on perovskite substrates, showing potential for integration into oxide heterostructures and superlattices.« less
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.
Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner
2016-10-01
Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.
Low emissivity high-temperature tantalum thin film coatings for silicon devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.
The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found thatmore » after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.« less
Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach
NASA Astrophysics Data System (ADS)
Perşoiu, A.; Bojar, A.-V.
2012-04-01
Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.
High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.
Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee
2017-08-02
Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).
Tin in granitic melts: The role of melting temperature and protolith composition
NASA Astrophysics Data System (ADS)
Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier
2018-06-01
Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn-hosts, the small volume of the high-temperature melt will not be diluted by low-temperature, low-Sn melts and, therefore, could have high Sn-contents. The combination of multiple melt extractions and Sn-mobilization at high temperature results in strong Sn enrichment in late, high-temperature melts. Metal enrichment during partial melting becomes particularly efficient, if the sedimentary protolith had experienced intense chemical alteration as the loss of Na and Ca together with a relative enrichment of K favors muscovite-rich metamorphic mineral assemblages that produce large amounts of melt during muscovite dehydration melting.
NASA Tech Briefs, Februrary 2013
NASA Technical Reports Server (NTRS)
2013-01-01
Topics covered include: Measurements of Ultra-Stable Oscillator (USO) Allan Deviations in Space; Gaseous Nitrogen Orifice Mass Flow Calculator; Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards; Rover Low Gain Antenna Qualification for Deep Space Thermal Environments; Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip; Measuring and Estimating Normalized Contrast in Infrared Flash Thermography; Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source; High-Reliability Waveguide Vacuum/Pressure Window; Methods of Fabricating Scintillators With Radioisotopes for Beta Battery Applications; Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR); CMOS-Compatible SOI MESFETS for Radiation-Hardened DC-to-DC Converters; Silicon Heat Pipe Array; Adaptive Phase Delay Generator; High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications; Treatment to Control Adhesion of Silicone-Based Elastomers; High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies; Rockballer Sample Acquisition Tool; Rock Gripper for Sampling, Mobility, Anchoring, and Manipulation; Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity; Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range; Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures; Visible-Infrared Hyperspectral Image Projector; Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor Change_Detection.m; AGATE: Adversarial Game Analysis for Tactical Evaluation; Ionospheric Simulation System for Satellite Observations and Global Assimilative; Modeling Experiments (ISOGAME); An Extensible, User- Modifiable Framework for Planning Activities; Mission Operations Center (MOC) - Precipitation Processing System (PPS) Interface Software System (MPISS); Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter; Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays; RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers; Powered Descent Guidance with General Thrust-Pointing Constraints; X-Ray Detection and Processing Models for Spacecraft Navigation and Timing; and Extreme Ionizing-Radiation-Resistant Bacterium
Cost-Cutting Powdered Lubricant
NASA Technical Reports Server (NTRS)
2005-01-01
Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.
A Gain-Programmable Transit-Time-Stable and Temperature-Stable PMT Voltage Divider
NASA Astrophysics Data System (ADS)
Liu, Yaqiang; Li, Hongdi; Wang, Yu; Xing, Tao; Xie, Shuping; Uribe, J.; Baghaei, H.; Ramirez, R.; Kim, Soonseok; Wong, Wai-Hoi
2004-10-01
A gain-programmable, transit-time-stable, temperature-stable photomultiplier (PMT) voltage divider design is described in this paper. The signal-to-noise ratio can be increased by changing a PMT gain directly instead of adjusting the gain of the preamplifier. PMT gain can be changed only by adjusting the voltages for the dynodes instead of changing the total high voltage between the anode and the photocathode, which can cause a significant signal transit-time variation that cannot be accepted by an application with a critical timing requirement, such as positron emission tomography (PET) or time-of-flight (TOF) detection/PET. The dynode voltage can be controlled by a digital analog converter isolated with a linear optocoupler. The optocoupler consists of an infrared light emission diode (LED) optically coupled with two phototransistors, and one is used in a servo feedback circuit to control the LED drive current for compensating temperature characteristics. The results showed that a six times gain range could be achieved; the gain drift was <0.5% over a 20/spl deg/C temperature range; 250 ps transit-time variation was measured over the entire gain range. A compact print circuit board (PCB) for the voltage divider integrated with a fixed-gain preamplifier has been designed and constructed. It can save about $30 per PMT channel compared with a commercial PMT voltage divider along with a variable gain amplifier. The preamplifier can be totally disabled, therefore in a system with a large amount of PMTs, only one channel can be enabled for calibrating the PMT gain. This new PMT voltage divider design is being applied to our animal PET camera and TOF/PET research.
Thermally Stable Nanocrystalline Steel
NASA Astrophysics Data System (ADS)
Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.
2017-10-01
Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.
Disentangling the surface and bulk electronic structures of LaOFeAs
Zhang, P.; Ma, J.; Qian, T.; ...
2016-09-20
We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.
Chemical stability of extemporaneously prepared Lorazepam suspension at two temperatures.
Lee, Wan-Man Ellaria; Lugo, Ralph A; Rusho, William J; Mackay, Mark; Sweeley, John
2004-10-01
The objective of this study was to determine the chemical stability of extemporaneously prepared lorazepam suspension (1 mg/mL) stored at two temperatures (4°C and 22°C) for 3 months. Lorazepam tablets marketed by two manufacturers (Mylan Pharmaceuticals and Watson Laboratories) were used to extemporaneously formulate two independently prepared suspensions. Each suspension was prepared using sterile water, Ora-Plus(®) and Ora-Sweet(®) to achieve a final concentration of 1 mg/mL. The two brands of tablets required different volumes of vehicles to prepare a pharmaceutically optimal suspension. The suspensions were stored in amber glass bottles at 4°C and 22°C for 91 days. Samples were analyzed by high performance liquid chromatography at baseline and on days 2, 3, 7, 14, 21, 28, 42, 63, and 91. The suspensions were considered stable if the mean lorazepam concentration remained greater than 90% of the initial concentration.The chemical stabilities of these two extemporaneously prepared lorazepam suspensions were comparable throughout the study. Both lorazepam suspensions were stable for 63 days when stored at 4°C or 22°C, and both were stable for 91 days when refrigerated at 4°C. When stored at room temperature, the suspension prepared from the Watson tablet retained 88.9 ± 1.4% of the initial concentration on day 91 and was therefore considered unstable, while the suspension prepared from the Mylan tablet was stable for the entire 91-day study.
NASA Technical Reports Server (NTRS)
Goldstein, D.; Magnotti, F.; Chinitz, W.
1983-01-01
Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.
Superconductivity of novel tin hydrides (Sn(n)H(m)) under pressure.
Mahdi Davari Esfahani, M; Wang, Zhenhai; Oganov, Artem R; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S; Zhou, Xiang-Feng
2016-03-11
With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. I4m2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3-group in I4m2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen
As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL willmore » design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.« less
Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun
2008-06-01
Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.
[Co-composting of high-moisture vegetable waste and flower waste in a batch operation].
Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng
2003-09-01
Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.
NASA Astrophysics Data System (ADS)
Mu, Yan; Gao, Yi Qin
2007-09-01
We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.
NASA Astrophysics Data System (ADS)
Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan
2018-03-01
A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.
Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.
Wilson, P A; Norris, R D
2001-07-26
The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.
NASA Astrophysics Data System (ADS)
Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke
2018-05-01
For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.
Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism
NASA Astrophysics Data System (ADS)
Beaudoin, Patrice; Strugarek, Antoine; Charbonneau, Paul
2018-05-01
We present a set of four global Eulerian/semi-Lagrangian fluid solver (EULAG) hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations of solar convection, two of which are restricted to the nominal convection zone, and the other two include an underlying stably stratified fluid layer. While all four simulations generate reasonably solar-like latitudinal differential rotation profiles where the equatorial region rotates faster than the polar regions, the rotational isocontours vary significantly among them. In particular, the purely HD simulation with a stable layer alone can break the Taylor–Proudman theorem and produce approximately radially oriented rotational isocontours at medium to high latitudes. We trace this effect to the buildup of a significant latitudinal temperature gradient in the stable fluid immediately beneath the convection zone, which imprints itself on the lower convection zone. It develops naturally in our simulations as a consequence of convective overshoot and rotational influence of rotation on convective energy fluxes. This favors the establishment of a thermal wind balance that allows evading the Taylor–Proudman constraint. A much smaller latitudinal temperature gradient develops in the companion MHD simulation that includes a stable fluid layer, reflecting the tapering of deep convective overshoot that occurs at medium to high latitudes, which is caused by the strong magnetic fields that accumulate across the base of the convection zone. The stable fluid layer also has a profound impact on the large-scale magnetic cycles developing in the two MHD simulations. Even though both simulations operate in the same convective parameter regime, the simulation that includes a stable layer eventually loses cyclicity and transits to a non-solar, steady quadrupolar state.
Correlation between corneal and ambient temperature with particular focus on polar conditions.
Slettedal, Jon Klokk; Ringvold, Amund
2015-08-01
To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Curtin, T.
2016-12-01
Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71.5 to -86.5‰ (VSMOW) in the Cascades. Stable isotopic differences between mountain ranges reflect distance from the ocean and increasing elevation. Stable isotopes of water show no correlation with air or lake water temperatures. Average annual precipitation and bedrock across this topographic gradient controls the major ions and stable isotopic composition of these lakes.
An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.
Baker, Graham; de Borst, René
2005-11-15
The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.
The role of moisture in the nest thermoregulation of social wasps.
Klingner, R; Richter, K; Schmolz, E; Keller, B
2005-09-01
Paper nests of social wasps are intriguing constructions for both, biologists and engineers. We demonstrate that moisture and latent heat significantly influence the thermal performance of the nest construction. Two colonies of the hornet Vespa crabro were investigated in order to clarify the relation of the temperature and the moisture regime inside the nest. Next to fairly stable nest temperatures the hornets maintain a high relative humidity inside the nest. We found that in consequence a partial vapor-pressure gradient between nest and ambient drives a constant vapor flux through the envelope. The vapor flux is limited by the diffusion resistance of the envelope. The driving force of vapor flux is heat, which is consumed through evaporation inside the nest. The colony has to compensate this loss with metabolic heat production in order to maintain a stable nest temperature. However, humidity fluctuations inside the nest induce circadian adsorption and desorption cycles, which stabilize the nest temperature and thus contribute significantly to temperature homeostasis. Our study demonstrates that both mechanisms influence nest thermoregulation and need to be considered to understand the thermodynamic behavior of nests of wasps and social insects in general.
Brischoux, François; Bonnet, Xavier; Shine, Richard
2009-12-23
Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by 'stealing' heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds.
Accretion disc origin of the Earth's water.
Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario
2013-07-13
Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Cool roofs with high solar reflectance for the welfare of dairy farming animals
NASA Astrophysics Data System (ADS)
Santunione, G.; Libbra, A.; Muscio, A.
2017-01-01
Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Laventure, Audrey [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000208670231); Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000250652694); Lebel, Olivier [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4] (ORCID:0000000217376843); Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000347158473); Pellerin, Christian [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000161441318)
2017-02-01
It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 103, comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).
NASA Astrophysics Data System (ADS)
Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok
2018-06-01
A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.
NASA Astrophysics Data System (ADS)
Fashandi, Hossein; Dahlqvist, Martin; Lu, Jun; Palisaitis, Justinas; Simak, Sergei I.; Abrikosov, Igor A.; Rosen, Johanna; Hultman, Lars; Andersson, Mike; Lloyd Spetz, Anita; Eklund, Per
2017-08-01
The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K F; Schweizer, Kenneth S; Zhang, Yang
2016-11-11
We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-04-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-01-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.
2016-11-10
In this paper, we report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ A = T A/T g in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ A ≈ 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ A ≈ 1.4 and usually in their supercooled states. The θ A valuesmore » for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E ∞ is universally found to be ~11k BT g and uncorrelated with the fragility or the reduced crossover temperature θ A for metallic and molecular liquids. Finally, these observations provide a way to estimate the low-temperature glassy characteristics (T g and m) from the high-temperature liquid quantities (E ∞ and θ A).« less
Dong, Yun-wei
2015-01-01
To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus) from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50), less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change. PMID:26580550
Wang, Qing-Lin; Yu, Shan-Shan; Dong, Yun-Wei
2015-01-01
To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus) from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50), less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change.
A Stable Polymer Burnable Poison Material With Special Attributes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulenko, James S.; Baney, Ronald H.; Pressley, Linda
2002-07-01
The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials which appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA) and also Spent Fuel Containers (SFC). This new material ('Carborane') has the special properties of containing a tailored amount of boron, an extremely high hydrogen content, and being extremely stable to high temperatures. 'Carborane' reduces the water displacement penalty by 59% by the hydrogen present in the 'Carborane'. In addition to increasing safety margins, a cost benefit of approximately $500,000 per two-yearmore » cycle is projected from reduced enrichments, resulting from the use of this burnable poison material, making it no longer necessary to offset the water displacement reactivity penalty. This research program is supported by a Department of Energy NEER grant. (authors)« less
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-02-06
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-01-01
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
NASA Astrophysics Data System (ADS)
Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo
2018-01-01
Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.
New Polymorph of Fe3O4 Stable at Core-Mantle Boundary Conditions
NASA Astrophysics Data System (ADS)
Greenberg, E.; Prakapenka, V. B.
2017-12-01
Magnetite Fe3O4 (and its high-pressure polymorphs) is one of the most studied iron bearing minerals. One reason for the interest in magnetite is that it contains both Fe2+ and Fe3+, which is especially important for understanding the physical and chemical properties of Earth's deep interior. Early studies on magnetite debated the nature of the structural phase transition at 35 GPa [1-4]. This high-pressure structure was shown to be of the CaTi2O4-type [5], but with Fe3+ occupying multiple sites. Furthermore, at pressures above 65 GPa a second structural transition to a Pmma space group was shown to take place [5], similar to that in Fe3-xTixO4 solid solution [6]. Other studies have focused on the P-T stability of Fe3O4. Early studies by Lazor et al. [7] predicted that Fe3O4 might disproportionate into FeO and h-Fe2O3 at 50 GPa. Other studies suggested that the high-pressure phase should be stable up to 100 GPa [3]. A more recent experimental study by Ricolleau and Fei [8] revealed that Fe3O4 is stable at least up to 103 GPa. Thus far, structural studies of Fe3O4 have been limited to pressures below 105 GPa. We have studied Fe3O4 up to pressures of 175 GPa and temperatures above 4000K, using diamond anvil cells in combination with synchrotron x-ray diffraction and an online pulsed laser-heating system to study the stability of Fe3O4 at relevant pressure-temperature conditions. Our results show that Fe3O4 is stable up to at least 176 GPa and 4200 K. We have discovered a new polymorph of Fe3O4 at these high P-T conditions. This new phase is stable in the pressure range of at least 100
NASA Astrophysics Data System (ADS)
Schwikowski, M.; Schläppi, M.; Santibañez, P.; Rivera, A.; Casassa, G.
2012-12-01
Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
NASA Astrophysics Data System (ADS)
Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo
2014-09-01
Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.
Development of Stable, Low Resistance Solder Joints for a Space-Flight HTS Lead Assemblies
NASA Technical Reports Server (NTRS)
Canavan, Edgar R.; Chiao, Meng; Panashchenko, Lyudmyla; Sampson, Michael
2017-01-01
The solder joints in spaceflight high temperature superconductor (HTS) lead assemblies for certain astrophysics missions have strict constraints on size and power dissipation. In addition, the joints must tolerate years of storage at room temperature, many thermal cycles, and several vibration tests between their manufacture and their final operation on orbit. As reported previously, solder joints between REBCO coated conductors and normal metal traces for the Astro-H mission showed low temperature joint resistance that grew approximately as log time over the course of months. Although the assemblies worked without issue in orbit, for the upcoming X-ray Astrophysics Recovery Mission we are attempting to improve our solder process to give lower, more stable, and more consistent joint resistance. We produce numerous sample joints and measure time- and thermal cycle-dependent resistance, and characterize the joints using x-ray and other analysis tools. For a subset of the joints, we use SEMEDS to try to understand the physical and chemical processes that effect joint behavior.
High temperature two component explosive
Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles
1981-01-01
A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.
Curtis, J.B.; Vaughn, L.S.; Torn, M.S.; Conrad, M.S.; Chafe, O.; Bill, M.
2015-12-31
In August-October 2012 and June-October 2013, co-located measurements were made of surface CH4 and CO2 flux, soil pore space concentrations and stable isotope compositions of CH4 and CO2, and subsurface temperature and soil moisture. Measurements were made in intensive study site 1 areas A, B, and C, and from the site 0 and AB transects, from high-centered, flat-centered, and low-centered polygons, from the center, edge, and trough of each polygon.
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.
2017-08-01
The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...
2017-08-11
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Stable mineral recrystallization in low temperature aqueous systems: A critical review
NASA Astrophysics Data System (ADS)
Gorski, Christopher A.; Fantle, Matthew S.
2017-02-01
Minerals may undergo recrystallization reactions in low temperature (<100 °C) aqueous systems, during which they exchange isotopes and trace elements with the dissolved reservoir without undergoing overt structural, bulk compositional, or morphological changes. These interfacial reactions, which are often referred to in the literature as "atom exchange" and herein as "stable mineral recrystallization", have important implications for the use of isotopic and elemental proxies to interpret past temperatures, oxidation states, and aqueous chemistries on Earth. The reactions are also significant for modern environments, including engineered systems, as they imply that mineral lattices may be substantially more open to exchanging toxic elements and radionuclides with coexisting solutions than previously thought. To date, observations of stable mineral recrystallization are distributed among several disciplines, and no work has attempted to review their findings comprehensively. Accordingly, this review article presents laboratory evidence for stable mineral recrystallization, describes data collection and interpretation strategies, summarizes similar recrystallization systematics observed in multiple studies, explores the potential occurrence of stable mineral recrystallization in natural systems, and discusses possible mechanisms by which stable mineral recrystallization occurs. The review focuses primarily on carbonates, sulfates, and iron oxides because these minerals have been studied most extensively to date. The review concludes by presenting key questions that should be addressed in this field to further understand and account for stable mineral recrystallization in natural and engineered aqueous systems at low temperatures.
Ben Dkhil, Sadok; Pfannmöller, Martin; Schröder, Rasmus R; Alkarsifi, Riva; Gaceur, Meriem; Köntges, Wolfgang; Heidari, Hamed; Bals, Sara; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine
2018-01-31
The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl
Method of making high strength, tough alloy steel
Thomas, Gareth; Rao, Bangaru V. N.
1979-01-01
A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.
Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.
Isojima, Tatsushi; Lattuada, Marco; Vander Sande, John B; Hatton, T Alan
2008-09-23
Janus nanoparticles have been synthesized consisting of approximately 5 nm magnetite nanoparticles coated on one side with a pH-dependent and temperature-independent polymer (poly(acrylic acid), PAA), and functionalized on the other side by a second (tail) polymer that is either a pH-independent polymer (polystyrene sodium sulfonate, PSSNa) or a temperature-dependent polymer (poly(N-isopropyl acrylamide), PNIPAM). These Janus nanoparticles are dispersed stably as individual particles at high pH values and low temperatures, but can self-assemble at low pH values (PSSNa) or at high temperatures (>31 degrees C) (PNIPAM) to form stable dispersions of clusters of approximately 80-100 nm in hydrodynamic diameter. The Janus nanoparticle compositions were verified using FTIR and XPS, and their structures observed directly by TEM. Their clustering behavior is analyzed by dynamic light scattering and zeta potential measurements.
Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-10-01
Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.
NASA Astrophysics Data System (ADS)
Gu, Lin; Wang, Yewu; Fang, Yanjun; Lu, Ren; Sha, Jian
2013-12-01
In this paper, we report the supercapacitor electrodes with excellent cycle stability, which are made of silicon carbide nanowires (SiC NWs) grown on flexible carbon fabric. A high areal capacitance of 23 mF cm-2 is achieved at a scan rate of 50 mV s-1 at room temperature and capacitances increase with the rise of the working temperature. Owing to the excellent thermal stability of SiC NWs and carbon fabric, no observable decrease of capacitance occurs at room temperature (20 °C) after 105 cycles, which satisfies the demands of the commercial applications. Further increasing the measurement temperature to 60 °C, 90% of the initial capacitance is still retained after 105 cycles. This study shows that silicon carbide nanowires on carbon fabric are a promising electrode material for high temperature and stable micro-supercapacitors.
Ma, Cong; Yu, Shuili; Shi, Wenxin; Heijman, S G J; Rietveld, L C
2013-08-01
A bench-scale immersed microfiltration coupled with 50 g/L PAC was developed to treat micro-polluted surface water (MPSW) under 10 and 20 °C and the effects of temperatures on the performance and the membrane fouling were also investigated. The low temperature (10 °C) delayed the time for the start-up by 9 days and the complete nitrification by 10 days. In the stable operation, two systems both had high NH₃-N removal efficiency (above 90%) and better removal of organic matters (10% DOC, 5% UV₂₅₄ and 4% SUVA) at 10 °C. Polysaccharides (SMP) were the main membrane fouling matters at low temperature (10 °C) and low temperature (10 °C) didn't cause serious chemical irreversible membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction
Yao, Siyu; Zhang, Xiao; Zhou, Wu; ...
2017-06-22
Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCmore » at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Al-Areqi, Wadee'ah Mohd; Ruf, Mohd'Izzat Fahmi Mohd; Majid, Amran Ab.
2017-01-01
Interest of fluoride salts have recently revived due to the high temperature application in nuclear reactors. Molten Salt Reactor (MSR) was designed to operate at high temperature in range 700 - 800°C and its fuel is dissolved in a circulating molten fluoride salt mixture. Molten fluoride salts are stable at high temperature, have good heat transfer properties and can dissolve high concentration of actinides and fission product. The aim of this paper was to discuss the physical properties (melting temperature, density and heat capacity) of two systems fluoride salt mixtures i.e; LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) in terms of their application as coolant and fuel solvent in MSR. Both of these salts showed almost same physical properties but different applications in MSR. The advantages and the disadvantages of these fluoride salt systems will be discussed in this paper.
Effect of severe plastic deformation on the structure and mechanical properties of Al-Cu-Mg alloy
NASA Astrophysics Data System (ADS)
Khafizova, E.; Islamgaliev, R.
2014-08-01
Aluminum Al-Cu-Mg alloy has been subjected to high pressure torsion (HPT) and equal-channel angular pressing (ECAP) at various temperatures. An ultrafine-grained (UFG) structure thermally stable up to a temperature of 175 °C was produced in all the investigated samples. Simultaneous increase in strength and ductility has been demonstrated in an ECAPed sample in comparison with a coarse-grained sample subjected to standard treatment.
A magnetic levitation rotating plate model based on high-Tc superconducting technology
NASA Astrophysics Data System (ADS)
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
Extreme creep resistance in a microstructurally stable nanocrystalline alloy
NASA Astrophysics Data System (ADS)
Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.
2016-09-01
Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of microstructurally stable structural alloys with high strength and creep resistance for various high-temperature applications, including in the aerospace, naval, civilian infrastructure and energy sectors.
Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J
2017-03-29
Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.
Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin
2017-03-15
Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.
Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z
2011-06-07
The effect of chlorine (Cl) chemisorption on the energetics and atomic structure of the Cu(001) surface over a wide range of chlorine pressures and temperatures has been studied using equilibrium ab initio atomistic thermodynamics to elucidate the formation of cuprous chloride (CuCl) as part of the Deacon reaction on copper metal. The calculated surface free energies show that the 1/2 monolayer (ML) c(2 × 2)-Cl phase with chlorine atoms adsorbed at the hollow sites is the most stable structure for a wide range of Cl chemical potential, in agreement with experimental observations. It is also found that at very low pressure and exposure, but elevated temperature, the 1/9 ML and 1/4 ML phases become the most stable. By contrast, a high coverage of Cl does not lead to thermodynamically stable geometries. The subsurface adsorption of Cl atoms, however, dramatically increases the stability of the 1 ML and 2 ML adsorption configurations providing a possible pathway for the formation of the bulk-chloride surface phases in the kinetic regime.
Thallium Bromide as an Alternative Material for Room-Temperature Gamma-Ray Spectroscopy and Imaging
NASA Astrophysics Data System (ADS)
Koehler, William
Thallium bromide is an attractive material for room-temperature gamma-ray spectroscopy and imaging because of its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3), and a wide bandgap (2.68 eV). In this work, 5 mm thick TlBr detectors achieved 0.94% FWHM at 662 keV for all single-pixel events and 0.72% FWHM at 662 keV from the best pixel and depth using three-dimensional position sensing technology. However, these results were limited to stable operation at -20°C. After days to months of room-temperature operation, ionic conduction caused these devices to fail. Depth-dependent signal analysis was used to isolate room-temperature degradation effects to within 0.5 mm of the anode surface. This was verified by refabricating the detectors after complete failure at room temperature; after refabrication, similar performance and functionality was recovered. As part of this work, the improvement in electron drift velocity and energy resolution during conditioning at -20°C was quantified. A new method was developed to measure the impurity concentration without changing the gamma ray measurement setup. The new method was used to show that detector conditioning was likely the result of charged impurities drifting out of the active volume. This space charge reduction then caused a more stable and uniform electric field. Additionally, new algorithms were developed to remove hole contributions in high-hole-mobility detectors to improve depth reconstruction. These algorithms improved the depth reconstruction (accuracy) without degrading the depth uncertainty (precision). Finally, spectroscopic and imaging performance of new 11 x 11 pixelated-anode TlBr detectors was characterized. The larger detectors were used to show that energy resolution can be improved by identifying photopeak events from their Tl characteristic x-rays.
Long-term stability of Cu surface nanotips
NASA Astrophysics Data System (ADS)
Jansson, V.; Baibuz, E.; Djurabekova, F.
2016-07-01
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1991-01-01
It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.
Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1990-01-01
It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.
Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.
2017-01-01
The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less
Abrasive wear of ceramic wear protection at ambient and high temperatures
NASA Astrophysics Data System (ADS)
Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.
2017-05-01
Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.
Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology
NASA Astrophysics Data System (ADS)
Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin
2013-08-01
The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable integral incremental digital PID algorithm is used in the TEC temperature control system. The experimental results show that comparing with other schemes, the output power of laser in our scheme is more stable and reliable, moreover the peak value is bigger, and the temperature can be precisely controlled in +/-0.1°C, then the volume of the device is smaller. Using this laser equipment, the ideal Raman spectra of materials can be obtained combined with SHINERS technology and spectrometer equipment.
Norberg, J.; DeAngelis, D.L.
1997-01-01
A model of a closed phytoplankton—zooplankton ecosystem was analyzed for effects of temperature on stocks and stability and the dependence of these effects on light and total nutrient concentration of the system. An analysis of the steady state equations showed that the effect of temperature on zooplankton and POM biomass was levelled when primary production is nutrient limited. Temperature increase had a generally negative effect on all biomasses at high nutrient levels due to increased maintenance costs. Nutrient limitation of net primary production is the main factor governing the effect of stocks and flows as well as the stability of the system. All components of the system, except for phytoplankton biomass, are proportional to net production and thus to the net effect of light on photosynthesis. However, temperature determines the slope of that relationship. The resilience of the system was measured by calculating the eigenvalues of the steady state. Under oligotrophic conditions, the system can be stable, but an increase in temperature can cause instability or a decrease in resilience. This conclusion is discussed in the face of recent models that take spatial heterogeneity into account and display far more stable behavior, in better agreement to empirical data. Using simulations, we found that the amplitude of fluctuations of the herbivore stock increases with temperature while the mean biomass and minimum values decrease in comparison with steady state predictions
2010-12-10
absorption spectra of 1,3,5,7- tetranitro-1,3,5,7-tetrazocane ( HMX ) polymorphs ,” Chem. Phys. Lett. 489(1-3), 48–53 (2010). 23. P. Main, R. E...The β polymorph is the most stable form of the four polymorphs (α,β,γ,δ) of HMX and the room temperature THz spectrum of β- HMX has been measured by...EXPRESS 27248 polymorph to be formed. The α- HMX and δ- HMX forms are described as stable above room temperature: α- HMX is stable from 377 K to 429 K [24
Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
NASA Astrophysics Data System (ADS)
Arthur, Michael A.; Williams, Douglas F.; Jones, Douglas S.
1983-11-01
Stable isotope records across annual growth increments in specimens of the surf clam Spisula solidissima from the mid-Atlantic Bight shelf from 10 m and 45 m depths reflect the changes in temperature and nutrient concentrations on the shelf over the year. The δ18O and δ13C records from clams at the two depths record well-mixed conditions in the water column during the winter months and the development of a thermocline during the summer. Spring high productivity and a transient salinity excursion in surface waters are also recorded. Reconstructing the paleoceanography of late Cenozoic temperate continental shelves may be possible using stable isotope records from fossil Spisula solidissima and other bivalves. *Present address: Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.
Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less
Solid lubricant materials for high temperatures: A review
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1985-01-01
Solid lubricants that can be used above 300 C in air are discussed, including coatings and self-lubricating composite bearing materials. The lubricants considered are representative dichalcogenides, graphite, graphite fluoride, polyimides, soft oxides, oxidatively stable fluorides, and hard coating materials. A few general design considerations revelant to solid lubrication are interspersed.
Cellobiohydrolase I gene and improved variants
Adney, William S [Golden, CO; Decker, Stephen R [Berthoud, CO; Mc Carter, Suzanne [San Carlos, CA; Baker, John O [Golden, CO; Nieves, Raphael [Lakewood, CO; Himmel, Michael E [Littleton, CO; Vinzant, Todd B [Golden, CO
2008-05-20
The disclosure provides a method for preparing an active exoglucanase in a heterologous host of eukaryotic origin. The method includes mutagenesis to reduce glycosylation of the exoglucanase when expressed in a heterologous host. It is further disclosed a method to produce variant cellobiohydrolase that is stable at high temperature through mutagenesis.
Beuerlein, Michaela A.; Kumar, Nitish; Usher, Tedi -Marie; ...
2016-09-01
Here, as part of a continued push for high permittivity dielectrics suitable for use at elevated operating temperatures and/or large electric fields, modifications of BaTiO 3 with Bi( M)O 3, where M represents a net-trivalent B-site occupied by one or more species, have received a great deal of recent attention. Materials in this composition family exhibit weakly coupled relaxor behavior that is not only remarkably stable at high temperatures and under large electric fields, but is also quite similar across various identities of M. Moderate levels of Bi content (as much as 50 mol%) appear to be crucial to themore » stability of the dielectric response. In addition, the presence of significant Bi reduces the processing temperatures required for densification and increases the required oxygen content in processing atmospheres relative to traditional X7R-type BaTiO 3-based dielectrics. Although detailed understanding of the structure–processing–property relationships in this class of materials is still in its infancy, this article reviews the current state of understanding of the mechanisms underlying the high and stable values of both relative permittivity and resistivity that are characteristic of BaTiO 3-Bi( M)O 3 dielectrics as well as the processing challenges and opportunities associated with these materials.« less
Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong
2013-01-01
Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.
Preparation and rheological behavior of polymer-modified asphalts
NASA Astrophysics Data System (ADS)
Yousefi, Ali Akbar
1999-09-01
Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.
Micromachined evaporators for AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Crowley, C.J.
1996-12-31
To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less
Recent developments in polyimide and bismaleimide adhesives
NASA Technical Reports Server (NTRS)
Politi, R. E.
1985-01-01
Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.
Phosphate Reactions as Mechanisms of High-Temperature Lubrication
NASA Technical Reports Server (NTRS)
Nagarajan, Anitha; Garrido, Carolina; Gatica, Jorge E.; Morales, Wilfredo
2006-01-01
One of the major problems preventing the operation of advanced gas turbine engines at higher temperatures is the inability of currently used liquid lubricants to survive at these higher temperatures under friction and wear conditions. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence some other form of lubrication is necessary. Vapor-phase lubrication is a promising new technology for high-temperature lubrication. This lubrication method employs a liquid phosphate ester that is vaporized and delivered to bearings or gears; the vapor reacts with the metal surfaces, generating a solid lubricious film that has proven very stable at high temperatures. In this study, solid lubricious films were grown on cast-iron foils in order to obtain reaction and diffusion rate data to help characterize the growth mechanism. A phenomenological mathematical model of the film deposition process was derived incorporating transport and kinetic parameters that were coupled to the experimental data. This phenomenological model can now be reliably used as a predictive and scale-up tool for future vapor-phase lubrication studies.
Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T
2013-01-01
We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.
Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo
2016-01-01
Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C−1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature. PMID:27827436
Multifunctional Composites for Improved Polyimide Thermal Stability
NASA Technical Reports Server (NTRS)
Miller, Sandi G.
2007-01-01
The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Siyu; Zhang, Xiao; Zhou, Wu
Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCatmore » 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less
Increasing Laser Stability with Improved Electronic Instruments
NASA Astrophysics Data System (ADS)
Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.
2010-03-01
We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.
Robust and durable superhydrophobic cotton fabrics for oil/water separation.
Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo
2013-08-14
By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.
Method for depositing an oxide coating
NASA Technical Reports Server (NTRS)
Mcdonald, G. E. (Inventor)
1982-01-01
A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.
Method of preparing high-temperature-stable thin-film resistors
Raymond, L.S.
1980-11-12
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
Method of preparing high-temperature-stable thin-film resistors
Raymond, Leonard S.
1983-01-01
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.
2014-01-01
This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.
Engineered Human Antibody Constant Domains with Increased Stability*S⃞
Gong, Rui; Vu, Bang K.; Feng, Yang; Prieto, DaRue A.; Dyba, Marzena A.; Walsh, Joseph D.; Prabakaran, Ponraj; Veenstra, Timothy D.; Tarasov, Sergey G.; Ishima, Rieko; Dimitrov, Dimiter S.
2009-01-01
The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising as scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. However, previous work has shown that an isolated murine CH2 domain is relatively unstable to thermally induced unfolding. To explore unfolding mechanisms of isolated human CH2 and increase its stability γ1 CH2 was cloned and a panel of cysteine mutants was constructed. Human γ1 CH2 unfolded at a higher temperature (Tm = 54.1 °C, as measured by circular dichroism) than that previously reported for a mouse CH2 (41 °C). One mutant (m01) was remarkably stable (Tm = 73.8 °C). Similar results were obtained by differential scanning calorimetry. This mutant was also significantly more stable than the wild-type CH2 against urea induced unfolding (50% unfolding at urea concentration of 6.8 m versus 4.2 m). The m01 was highly soluble and monomeric. The existence of the second disulfide bond in m01 and its correct position were demonstrated by mass spectrometry and nuclear magnetic resonance spectroscopy, respectively. The loops were on average more flexible than the framework in both CH2 and m01, and the overall secondary structure was not affected by the additional disulfide bond. These data suggest that a human CH2 domain is relatively stable to unfolding at physiological temperature, and that both CH2 and the highly stable mutant m01 are promising new scaffolds for the development of therapeutics against human diseases. PMID:19307178
NASA Astrophysics Data System (ADS)
Botsyun, Svetlana; Donnadieu, Yannick; Sepulchre, Pierre; Risi, Camille; Fluteau, Frédéric
2015-04-01
The evolution of Asian climate during the Cenozoic as well as the onset of monsoon systems in this area is highly debated. Factors that control climate include the geographical position of continents, the land-sea distribution and altitude of orogens. In tern, several climatic parameters such as air temperature, precipitation amount and isotopic fractionation through mass-dependent processes impact precipitation δ18O lapse rate. Stable oxygen paleoaltimetry is considered to be a very efficient and widely applied technique, but the link between stable oxygen composition of precipitation and climate is not well established. To quantify the influence of paleogeography changes on climate and precipitation δ18O over Asia, the atmospheric general circulation model LMDZ-iso, with embedded stable oxygen isotopes, was used. For more realistic experiments, sea surface temperatures were calculated with the fully coupled model FOAM. Various scenarios of TP growth have been applied together with Paleocene, Eocene, Oligocene and Miocene boundary conditions. The results of our numerical modelling show a significant influence of paleogeography changes on the Asian climate. The retreat of the Paratethys ocean, the changes in latitudinal position of India, and the height of the Tibetan Plateau most likely control precipitation patterns over Asia and cause spatial and temporal isotopic variations linked with the amount effect. Indian Ocean currents restructuring during the Eocene induces a substantial warming over Asian continent. The adiabatic and non-adiabatic temperature effects explain some of δ18O signal variations. We highlight the importance of these multiple factor on paleoelevations estimates derived using oxygen stable isotopes.
Control of RNA synthesis in Escherichia coli after a shift to higher temperature.
Ryals, J; Little, R; Bremer, H
1982-01-01
Parameters of RNA synthesis were measured after a temperature upshift in a pair of Escherichia coli B/r strains that are isogenic except for having relA and relA+ loci, to examine the cause for a reported anomaly in the correlation between guanosine tetraphosphate (ppGpp) and stable RNA (rRNA, tRNA) synthesis under such conditions. Two main results were: (i) the specific stable RNA gene activity (stable RNA per total RNA synthesis) correlated in the conventionally expected fashion with the level of ppGpp but was obscured by a nonspecific increase in the RNA chain elongation rate due to the higher temperature; (ii) the temperature upshift caused a transient reduction in the RNA polymerase activity (transcribing per total enzyme) that accounts for the previously observed oscillating RNA synthesis rate after a temperature shift. PMID:6179925
High-temperature superconductor coating for coupling impedance reduction in the FCC-hh beam screen
NASA Astrophysics Data System (ADS)
Krkotić, Patrick; Niedermayer, Uwe; Boine-Frankenheim, Oliver
2018-07-01
The international Future Circular Collider study develops a conceptual design for a post Large Hadron Collider particle accelerator using 16 T superconducting dipoles for achieving p-p center-of-mass collision energies up to 100 TeV. One concern for this project is the beam coupling impedance especially at injection energy. A copper coated beam screen as in the LHC is planned, but preliminary studies indicate that copper at the high operating temperature of 50 K might not provide a sufficiently low impedance for a stable beam. In order to reduce the coupling impedance, we investigate high-temperature superconductors as a possible coating material in combination with copper as a hybrid system. The effect of different coating combinations are estimated through numerical calculations to identify the best hybrid beam screen coating system.
Design for Oxidation Resistance
NASA Technical Reports Server (NTRS)
Smialek, James L.; Schaeffer, Jon C.; Barrett, Charles A.
1997-01-01
Alloys intended for use in high-temperature environment rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation and hot corrosion resistance. To be protective, this oxide layer must be chemically, thermodynamically stable. Successful alloy design for oxidative environment is best achieved by developing alloys that are capable of forming adherent scales of either alumina (Al2O3), chromia (Cr2O3), or silica (SiO2). In this article, emphasis has been placed on the issue related to high-temperature oxidation of superalloys used in gas turbine engine application. Despite the complexity of these alloys, optimal performance has been associated with protective alumina scale formation. As will be described below, both compositional makeup and protective coatings play key role in providing oxidation protection. Other high-temperature materials described include nickel and titanium aluminide intermetallics, refractory metal, and ceramics.
Room temperature solid-state quantum emitters in the telecom range.
Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo
2018-03-01
On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.
NASA Astrophysics Data System (ADS)
Samoc, A.; Holland, A.; Tsuchimori, M.; Watanabe, O.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.
2005-09-01
We investigated linear optical and second-order nonlinear optical (NLO) properties of films of urethane-urea copolymer (UU2) functionalised with a high concentration of an azobenzene chromophore. The polymer films on ITO-coated substrate were corona poled to induce a noncentrosymmetric organization of chromophore dipoles and data on the second harmonic generated with the laser beam (the fundamental wavelength 1053 nm, 6 ps/pulse, 20 Hz repetition rate) was acquired as a function of time and temperature. Second harmonic generation (SHG) was used to monitor in situ the polar alignment and relaxation of orientation of the side-chain Disperse Red-like chromophore molecules in the films poled at room temperature and high above the glass transition temperature (Tg 140-150oC). The deff coefficient was determined from the Maker-fringe method and corrected for absorption. A strong second harmonic effect with a fast relaxation was observed in "cold" (room temperature) poling experiments. A large second-order resonantly enhanced optical nonlinearity (d33 of the order of 200 pm/V) was obtained in high temperature poling. A strong and stable nonlinearity has persisted for years after the films were high-temperature poled.
Use of spacecraft data to derive regions on Mars where liquid water would be stable
Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.
2001-01-01
Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter topography data, we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40°. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia, where 34% of the year liquid water would be stable if it were present. Locations of stability appear to correlate with the distribution of valley networks. PMID:11226204
Use of Spacecraft Data to Drive Regions on Mars where Liquid Water would be Stable
NASA Technical Reports Server (NTRS)
Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.; MacElroy, Robert D.
2001-01-01
Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter (MOLA) topography data we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40 degrees. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia where 34% of the year liquid water would be stable if it was present. Locations of stability appear to correlate with the distribution of valley networks.
Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand
2015-04-28
The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less
NASA Astrophysics Data System (ADS)
Wu, Yunwen; Momma, Toshiyuki; Ahn, Seongki; Yokoshima, Tokihiko; Nara, Hiroki; Osaka, Tetsuya
2017-10-01
This work reports a new chemical pre-lithiation method to fabricate lithium sulfide (Li2S) cathode. This pre-lithiation process is taken place simply by dropping the organolithium reagent lithium naphthalenide (Li+Naph-) on the prepared sulfur cathode. It is the first time realizing the room temperature chemical pre-lithaition reaction attributed by the 3D nanostructured carbon nanotube (CNT) current collector. It is confirmed that the Li2S cathode fabricated at room temperature showing higher capacity and lower hysteresis than the Li2S cathode fabricated at high temperature pre-lithiation. The pre-lithiated Li2S cathode at room temperature shows stable cycling performance with a 600 mAh g-1 capacity after 100 cycles at 0.1 C-rate and high capacity of 500 mAh g-1 at 2 C-rate. This simple on-site pre-lithiation method at room temperature is demonstrated to be applicable for the in-situ pre-lithiation in a Li metal free battery.
Wide-Range Temperature Sensors with High-Level Pulse Train Output
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad; Patterson, Richard L.
2009-01-01
Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.
1977-03-01
below 183 K and it can be transferred through glassware in vacuum rack manipulations, a white polymer is al- ways left behind where the ketone had been...produced a white solid, stable at room temperature, from red gaseous PtF6 and colorless Xe. It was XePtf6 -_ the first confirmed noble gas compound. As...compound phase of our synthesis research was reluctantly discontinued.. It is interesting however to note thot exciplexes formed from noble .gas atoms are
Electronic Power System Application of Diamond-Like Carbon Films
NASA Technical Reports Server (NTRS)
Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.
2003-01-01
A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.
Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo
2014-11-15
The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.
Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo
2011-07-01
The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).
NASA Astrophysics Data System (ADS)
Quinn, E. T.; Schwab, B. E.
2012-12-01
A series of one-atmosphere high-temperature anhydrous phase equilibrium melting experiments was performed on a natural rhyodacite pumice from the 1103±13 years BP pyroclastic flow from the Chaos Crags, Lassen Volcanic Center, California. The pumice (CCP) is the most silicic product known of the 1103 eruption of Chaos Crags. All experimental runs were performed in a Deltech VT-31 one-atmosphere gas-mixing furnace at the Experimental Petrology Lab, Humboldt State University, Arcata, California. Six ~90-99 hour runs were conducted at 35-55°C intervals, with target temperatures from 1000°C to 1200°C at the Ni-NiO buffer. The nominally anhydrous liquidus of the rhyodacite pumice is >1196°C and solidus is <998°C, outside the investigated temperature range. All experimental run products contain glass, plagioclase, quartz, and Fe-Ti oxides. Amphibole with breakdown textures is observed at temperatures ≤1159°C, and appears more stable in lower temperature runs. At 998°C, amphibole appears most stable, with only minor breakdown texture. Biotite, a major phase in starting material, is not observed in any run products. Based on comparison between experimental and natural phase assemblages and glass, plagioclase, and amphibole compositions, the Chaos Crags rhyodacite pumice erupted at a temperature <998°C, the lowest experimental run temperature investigated. Additional experimental runs at temperatures <998°C are currently being conducted.
Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying
NASA Technical Reports Server (NTRS)
Sen, S.; ODell, S.; Gorti, S.; Litchford, R.
2006-01-01
The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.
PETIs as High-Temperature Resin-Transfer-Molding Materials
NASA Technical Reports Server (NTRS)
Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.
2005-01-01
Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.
Nanostructure templating using low temperature atomic layer deposition
Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL
2011-12-20
Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.
Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.
Li, Yinshi; Sun, Xianda; Feng, Ying
2017-05-22
Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M.; Schneider, M.; Bittner, A.
2015-02-14
Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less
de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor
2011-10-01
Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.
Stability of tacrolimus solutions in polyolefin containers.
Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K
2016-02-01
Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Long-Term Stability of Volatile Nitrosamines in Human Urine.
Hodgson, James A; Seyler, Tiffany H; Wang, Lanqing
2016-07-01
Volatile nitrosamines (VNAs) are established teratogens and carcinogens in animals and classified as probable (group 2A) and possible (group 2B) carcinogens in humans by the IARC. High levels of VNAs have been detected in tobacco products and in both mainstream and sidestream smoke. VNA exposure may lead to lipid peroxidation and oxidative stress (e.g., inflammation), chronic diseases (e.g., diabetes) and neurodegenerative diseases (e.g., Alzheimer's disease). To conduct epidemiological studies on the effects of VNA exposure, short-term and long-term stabilities of VNAs in the urine matrix are needed. In this report, the stability of six VNAs (N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitrosopiperidine, N-nitrosopyrrolidine and N-nitrosomorpholine) in human urine is analyzed for the first time using in vitro blank urine pools fortified with a standard mixture of all six VNAs. Over a 24-day period, analytes were monitored in samples stored at ∼20°C (collection temperature), 4-10°C (transit temperature) and -20 and -70°C (long-term storage temperatures). All six analytes were stable for 24 days at all temperatures (n = 15). The analytes were then analyzed over a longer time period at -70°C; all analytes were stable for up to 1 year (n = 62). A subset of 44 samples was prepared as a single batch and stored at -20°C, the temperature at which prepared samples are stored. These prepared samples were run in duplicate weekly over 10 weeks, and all six analytes were stable over the entire period (n = 22). Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Brischoux, François; Bonnet, Xavier; Shine, Richard
2009-01-01
Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by ‘stealing’ heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds. PMID:19656862
Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film
NASA Astrophysics Data System (ADS)
He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang
2016-11-01
We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.
CuInP₂S₆ Room Temperature Layered Ferroelectric.
Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V
2015-06-10
We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".
High-pressure phases of Mg2Si from first principles
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.
2016-03-01
First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.
Kadoya, Tomofumi; Ashizawa, Minoru; Higashino, Toshiki; Kawamoto, Tadashi; Kumeta, Shohei; Matsumoto, Hidetoshi; Mori, Takehiko
2013-11-07
BTBT ([1]benzothieno[3,2-b][1]benzothiophene) is an organic semiconductor that realizes high mobility in organic transistors. Here we report that the charge-transfer (CT) salt, (BTBT)2PF6, shows a high room-temperature conductivity of 1500 S cm(-1). This compound exhibits a resistivity jump around 150 K, but when it is covered with Apiezon N grease the resistivity jump is suppressed, and the metallic conductivity is maintained down to 60 K. Owing to the very high conductivity, the ESR signal shows a significantly asymmetric Dysonian lineshape (A/B ≅ 3) even at room temperature. Since most organic conductors are based on strong electron donors, it is remarkable that such a weak electron donor as BTBT realizes a stable and highly conducting organic metal.
Jennings, Ryan de Montmollin; Moran, James J.; Jay, Zackary J.; ...
2017-02-03
Biological fixation of CO 2 is the primary mechanism of C reduction in natural systems, and provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs. The extent and mechanisms of CO 2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous ‘streamer’ communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO 2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeotamore » and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum amounts of autotrophic C in microbial biomass were > 50 % in the majority of communities analyzed, but were also dependent on the amounts of heterotrophy and/or accumulation of landscape C. Furthermore, the significance of CO 2 as a C source in these communities provides a foundation for understanding metabolic linkages among autotrophs and heterotrophs, community assembly and succession, and the likely coevolution of deeply-branching thermophiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ruiguo; Mishra, Kuber; Li, Xiaolin
Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples basedmore » upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.« less
3D printed high performance strain sensors for high temperature applications
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul
2018-01-01
Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.
Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V
1994-01-15
We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.
Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie
Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less
Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts
Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; ...
2015-06-05
Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less
Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.
2010-01-01
The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.
A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T.
Hurlston, S E; Brey, W W; Suddarth, S A; Johnson, G A
1999-05-01
The design and operation of a high-temperature superconducting (HTS) probe for magnetic resonance microscopy (MRM) at 400 MHz are presented. The design of the probe includes a Helmholtz coil configuration and a stable open-cycle cooling mechanism. Characterization of coil operating parameters is presented to demonstrate the suitability of cryo-cooled coils for MRM. Specifically, the performance of the probe is evaluated by comparison of signal-to-noise (SNR) performance with that of a copper Helmholtz pair, analysis of B1 field homogeneity, and quantification of thermal stability. Images are presented to demonstrate the SNR advantage of the probe for typical MRM applications.
NASA Technical Reports Server (NTRS)
Morris, D. E.
1981-01-01
A series of saturated hydrocarbon based urethanes was prepared and characterized for hydrolytic and oxidative stability. A series of ether based urethanes was used as a basis for comparison. The alkane base urethanes were found to be hydrolytically and oxidatively stable and had excellent electrical properties. The alkane based materials absorbed little or no water and were reversion resistant. There was little loss in hardness or weight when exposed to high temperature and humidity. Dielectric properties were excellent and suffered little adverse effects from the high temperature/humidity conditions. The alkane based urethanes were not degraded by ozone exposure.
Isotopic modeling of the sub-cloud evaporation effect in precipitation.
Salamalikis, V; Argiriou, A A; Dotsika, E
2016-02-15
In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic composition hardly changes even at high temperatures while at drier and warm conditions the enrichment of (18)Ο reaches up to 20‰, depending on the raindrop size and the initial meteorological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
A Stable Room-Temperature Luminescent Biphenylmethyl Radical.
Ai, Xin; Chen, Yingxin; Feng, Yuting; Li, Feng
2018-03-05
There is only one family of room-temperature luminescent radicals, the triphenylmethyl radicals, to date. Herein, we synthesize a new stable room-temperature luminescent radical, (N-carbazolyl)bis(2,4,6-tirchlorophenyl)methyl radical (CzBTM), which has improved properties compared to the triphenylmethyl radicals. X-ray crystallography, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements confirmed the radical structure. CzBTM shows room-temperature deep-red to near-infrared emission in various solutions. Both thermal and photo stability were significantly enhanced by the replacement of trichlorobenzene by the carbazole moiety. The electroluminescence results of CzBTM verify its potential application to circumvent the problem of triplet harvesting in traditional fluorescent OLEDs. A new family of stable luminescent radicals based on CzBTM is anticipated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J
2018-05-23
Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.
Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar
2017-12-01
A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kwan -Soo; Spendelow, Jacob Schatz; Choe, Yoong -Kee
Here, fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100°C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180°C; however, these devices degrade when exposed to water below 140°C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibitmore » stable performance at 80–160°C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.« less
Study of the structure of PyHReO{sub 4} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kichanov, S. E., E-mail: ekich@nf.jinr.ru; Kozlenko, D. P.; Wasicki, J. W.
2007-05-15
The structure of deuterated pyridinium perrhenate (d{sub 5}PyH)ReO{sub 4} (C{sub 5}D{sub 5}NHReO{sub 4}) is studied by X-ray diffraction at room temperature and pressures up to 3.5 GPa and by neutron diffraction in the temperature range 10-293 K and at pressures up to 2.0 GPa. Under normal conditions, this compound belongs to the orthorhombic space group Cmc2{sub 1} (ferroelectric phase II). At room temperature and pressures above P > 0.7 GPa, a transition to an orthorhombic phase (paraelectric phase II) is observed. This paraelectric phase is described by the space group Cmcm. At a pressure as high as P = 2.0more » GPa, phase I remains stable at temperatures down to 10 K. This fact indicates that the high pressure suppresses the ferroelectric state in deuterated pyridinium perrhenate (d{sub 5}PyH)ReO{sub 4}.« less
NASA Astrophysics Data System (ADS)
So, Hongyun; Senesky, Debbie G.
2016-11-01
Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.
Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.
Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo
2017-01-09
Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.
Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E.
The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperaturemore » annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.« less
Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.
Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C
2014-01-01
Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel
2016-03-01
Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.
Rare-metal-free high-performance Ga-Sn-O thin film transistor
NASA Astrophysics Data System (ADS)
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-03-01
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.
Rare-metal-free high-performance Ga-Sn-O thin film transistor
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-01-01
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547
Rare-metal-free high-performance Ga-Sn-O thin film transistor.
Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi
2017-03-14
Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm 2 /Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.
A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.
Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang
2018-06-07
In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.
NASA Technical Reports Server (NTRS)
Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.
1974-01-01
The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.
Barbee, Jr., Troy W.; Simpson, Randall L.; Gash, Alexander E.; Satcher, Jr., Joe H.
2012-12-11
Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (-30 C to 150 C) and both low (0%) and high relative humidity (100%).
Barbee, Jr., Troy W.; Simpson, Randall L [Livermore, CA; Gash, Alexander E [Brentwood, CA; Satcher, Jr., Joe H.
2011-05-31
Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic booster materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (-30 C to 150 C) and both low (0%) and high relative humidity (100%).
Acoustic Levitation With One Transducer
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.
1987-01-01
Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.
C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
2015-12-03
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Tough, High-Performance, Thermoplastic Addition Polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard
1991-01-01
Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.
Electrochemical separation and concentration of hydrogen sulfide from gas mixtures
Winnick, Jack; Sather, Norman F.; Huang, Hann S.
1984-10-30
A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.
ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES
Winnick, Jack; Sather, Norman F.; Huang, Hann S.
1984-10-30
A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.
Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N.
Jimenez-Izal, Elisa; Saeys, Mark; Alexandrova, Anastassia N
2016-08-26
The top monolayers of surface carbides and nitrides of Co and Ni are predicted to yield new stable 2D materials upon exfoliation. These 2D phases are p4g clock reconstructed, and contain planar tetracoordinated C or N. The stability of these flat carbides and nitrides is high, and ab-initio molecular dynamics at a simulation temperature of 1800 K suggest that the materials are thermally stable at elevated temperatures. The materials owe their stability to local triple aromaticity (π-, σ-radial, and σ-peripheral) associated with binding of the main group element to the metal. All predicted 2D phases are conductors, and the two alloys of Co are also ferromagnetic - a property especially rare among 2D materials. The preparation of 2D carbides and nitrides is envisioned to be done through surface deposition and peeling, possibly on a metal with a larger lattice constant for reduced affinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, M.D.
1995-12-31
The Earth`s largest atmospheric convective center is the Indonesian Low. It generates the Australasian monsoon, drives the zonal tropospheric Walker Circulation, and is implicated in the genesis of the El Nino-Southern Oscillation (ENSO). The long-term variability of the Indonesian Low is poorly characterized, yet such information is crucial for evaluating whether changes in the strength and frequency of ENSO events are a possible manifestation of global warming. Stable oxygen isotope ratios ({delta}{sup 18}O) in shallow-water reef coral skeletons track topical convective activity over hundreds of years because the input of isotopically-depleted rainwater dilutes seawater {delta}{sup 18}O. Corals also impose amore » temperature-dependent fractionation on {delta}{sup 18}O, but where annual rainfall is high and sea surface temperature (SST) variability is low the freshwater flux effect dominates.« less
Two-dimensional tricycle arsenene with a direct band gap.
Ma, ShuangYing; Zhou, Pan; Sun, L Z; Zhang, K W
2016-03-28
Based on a comprehensive investigation including ab initio phonon and finite-temperature molecular dynamics calculations, we find that two-dimensional tricycle-shaped arsenene (T-As) is robust and even stable under high temperature. T-As is energetically comparable to previously reported chair-shaped arsenene (C-As) and more stable than stirrup-shaped arsenene (S-As). In contrast to C-As and S-As, the monolayer T-As is a direct band gap semiconductor with an energy gap of 1.377 eV. Our results indicate that the electronic structure of T-As can be effectively modulated by stacking, strain, and patterning, which shows great potential of T-As in future nano-electronics. Moreover, by absorbing H or F atoms on the surface of T-As along a specific direction, nanoribbons with desired edge type and even width can be obtained, which is suitable for the fabrication of nano-devices.
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Metallic impurities-silicon carbide interaction in HTGR fuel particles
NASA Astrophysics Data System (ADS)
Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio
1990-12-01
Corrosion of the coating layers of silicon carbide (SiC) by metallic impurities was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors with an optical microscope and an electron probe micro-analyzer. The SiC layers were attacked from the outside of the particles. The main element observed in the corroded areas was iron, but sometimes iron and nickel were found. These elements must have been contained as impurities in the graphite matrix in which the coated particles were dispersed. Since these elements are more stable thermodynamically in the presence of SiC than in the presence of graphite at irradiation temperatures, they were transferred to the SiC layer to form more stable silicides. During fuel manufacturing processes, intensive care should be taken to prevent the fuel from being contaminated with those elements which react with SiC.
Electrochemical separation and concentration of sulfur containing gases from gas mixtures
Winnick, Jack
1981-01-01
A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.
Stable operation of a Secure QKD system in the real-world setting
NASA Astrophysics Data System (ADS)
Tomita, Akihisa
2007-06-01
Quantum Key Distribution (QKD) now steps forward from the proof of principle to the validation of the practical feasibility. Nevertheless, the QKD technology should respond to the challenges from the real-world such as stable operation against the fluctuating environment, and security proof under the practical setting. We report our recent progress on stable operation of a QKD system, and key generation with security assurance. A QKD system should robust to temperature fluctuation in a common office environment. We developed a loop-mirror, a substitution of a Faraday mirror, to allow easy compensation for the temperature dependence of the device. Phase locking technique was also employed to synchronize the system clock to the quantum signals. This technique is indispensable for the transmission system based on the installed fiber cables, which stretch and shrink due to the temperature change. The security proof of QKD, however, has assumed the ideal conditions, such as the use of a genuine single photon source and/or unlimited computational resources. It has been highly desirable to give an assurance of security for practical systems, where the ideal conditions are no longer satisfied. We have constructed a theory to estimate the leakage information on the transmitted key under the practically attainable conditions, and have developed a QKD system equipped with software for secure key distillation. The QKD system generates the final key at the rate of 2000 bps after 20 km fiber transmission. Eavesdropper's information on the final key is guaranteed to be less than 2-7 per bit. This is the first successful generation of the secure key with quantitative assurance of the upper bound of the leakage information. It will put forth the realization of highly secure metropolitan optical communication network against any types of eavesdropping.