Sample records for stable intermediates determine

  1. Development of technical solutions for securing stable operation of the intermediate separation and steam reheating system for the K-1000-60/3000 turbine unit

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Kovalenko, E. V.; Nikolaenkova, E. K.; Tren'kin, V. B.

    2012-09-01

    The intermediate separation and steam reheating system and its equipment are described. Problems concerned with the presence of condensate in the stack's lower chamber and in the removing chamber, with cavitation failure of the separated moisture pumps, with misalignment of heating steam flowrates, with unstable draining of heating steam condensate, with occurrence of self oscillations, etc. are considered. A procedure for determining the level in removing heating steam condensate from steam reheater elements is proposed. Technical solutions for ensuring stable operation of the intermediate separation and steam reheating system and for achieving smaller misalignment between the apparatuses are developed.

  2. A new intermediate for the production of flexible stable polymers

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  3. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore, in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  4. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  5. A Native to Amyloidogenic Transition Regulated by a Backbone Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eakin,C.; Berman, A.; Miranker, A.

    2006-01-01

    Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamicmore » and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.« less

  6. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POMmore » clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.« less

  7. Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7.

    PubMed

    Gsponer, Joerg; Hopearuoho, Harri; Whittaker, Sara B-M; Spence, Graham R; Moore, Geoffrey R; Paci, Emanuele; Radford, Sheena E; Vendruscolo, Michele

    2006-01-03

    We present a detailed structural characterization of the intermediate state populated during the folding and unfolding of the bacterial immunity protein Im7. We achieve this result by incorporating a variety of experimental data available for this species in molecular dynamics simulations. First, we define the structure of the exchange-competent intermediate state of Im7 by using equilibrium hydrogen-exchange protection factors. Second, we use this ensemble to predict Phi-values and compare the results with the experimentally determined Phi-values of the kinetic refolding intermediate. Third, we predict chemical-shift measurements and compare them with the measured chemical shifts of a mutational variant of Im7 for which the kinetic folding intermediate is the most stable state populated at equilibrium. Remarkably, we found that the properties of the latter two species are predicted with high accuracy from the exchange-competent intermediate that we determined, suggesting that these three states are characterized by a similar architecture in which helices I, II, and IV are aligned in a native-like, but reorganized, manner. Furthermore, the structural ensemble that we obtained enabled us to rationalize the results of tryptophan fluorescence experiments in the WT protein and a series of mutational variants. The results show that the integration of diverse sets of experimental data at relatively low structural resolution is a powerful approach that can provide insights into the structural organization of this conformationally heterogeneous three-helix intermediate with unprecedented detail and highlight the importance of both native and non-native interactions in stabilizing its structure.

  8. Pathways and intermediates in forced unfolding of spectrin repeats.

    PubMed

    Altmann, Stephan M; Grünberg, Raik G; Lenne, Pierre-François; Ylänne, Jari; Raae, Arnt; Herbert, Kristina; Saraste, Matti; Nilges, Michael; Hörber, J K Heinrich

    2002-08-01

    Spectrin repeats are triple-helical coiled-coil domains found in many proteins that are regularly subjected to mechanical stress. We used atomic force microscopy technique and steered molecular dynamics simulations to study the behavior of a wild-type spectrin repeat and two mutants. The experiments indicate that spectrin repeats can form stable unfolding intermediates when subjected to external forces. In the simulations the unfolding proceeded via a variety of pathways. Stable intermediates were associated to kinking of the central helix close to a proline residue. A mutant stabilizing the central helix showed no intermediates in experiments, in agreement with simulation. Spectrin repeats may thus function as elastic elements, extendable to intermediate states at various lengths.

  9. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin

    PubMed Central

    2018-01-01

    Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD) simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM) to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins. PMID:29698481

  10. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO2 (110) Model Electrode.

    PubMed

    Exner, Kai S; Anton, Josef; Jacob, Timo; Over, Herbert

    2016-06-20

    Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2 (110) model electrode. The full procedure is introduced, starting from the stable reaction intermediates, computing the energy barriers, and finally performing microkinetic simulations, all performed under the influence of the solvent and the electrode potential. Full kinetics from first-principles allows the rate-determining step in the CER to be identified and the experimentally observed change in the Tafel slope to be explained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  13. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.

    2000-01-12

    The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less

  14. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  15. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE PAGES

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    2016-08-31

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  16. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  17. Hydroxyacetone production from C 3 Criegee intermediates

    DOE PAGES

    Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon; ...

    2016-12-21

    Hydroxyacetone (CH 3C(O)CH 2OH) is observed as a stable end product from reactions of the (CH 3) 2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerizationmore » via hydrogen atom transfer and –OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. As a result, the hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.« less

  18. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers.

    PubMed

    Armendáriz-Vidales, Georgina; Hernández-Muñoz, Lindsay S; González, Felipe J; de Souza, Antonio A; de Abreu, Fabiane C; Jardim, Guilherme A M; da Silva, Eufrânio N; Goulart, Marilia O F; Frontana, Carlos

    2014-06-06

    Electrochemical, spectroelectrochemical, and theoretical studies of the reduction reactions in nor-β-lapachone derivatives including a nitro redox center showed that reduction of the compounds involves the formation of several radical intermediates, including a biradical dianion resultant from the separate reduction of the quinone and nitro groups in the molecules. Theoretical descriptions of the corresponding Fukui functions f(αα)⁺ and f(ββ)⁺(r) and LUMO densities considering finite differences and frozen core approximations for describing the changes in electron and spin densities of the system allowed us to confirm these results. A description of the potential relationship with the obtained results and biological activity selectivity indexes suggests that both the formation of stable biradical dianion species and the stability of the semiquinone intermediates during further reduction are determining factors in the description of their biological activity.

  19. Examination of the Mechanism of Human Brain Aspartoacylase through the Binding of an Intermediate Analogue†‡

    PubMed Central

    Le Coq, Johanne; Pavlovsky, Alexander; Malik, Radhika; Sanishvili, Ruslan; Xu, Chengfu; Viola, Ronald E.

    2009-01-01

    Canavan disease is a fatal neurological disorder caused by the malfunctioning of a single metabolic enzyme, aspartoacylase, that catalyzes the deacetylation of N-acetyl-l-aspartate to produce l-aspartate and acetate. The structure of human brain aspartoacylase has been determined in complex with a stable tetrahedral intermediate analogue, N-phosphonomethyl-l-aspartate. This potent inhibitor forms multiple interactions between each of its heteroatoms and the substrate binding groups arrayed within the active site. The binding of the catalytic intermediate analogue induces the conformational ordering of several substrate binding groups, thereby setting up the active site for catalysis. The highly ordered binding of this inhibitor has allowed assignments to be made for substrate binding groups and provides strong support for a carboxypeptidase-type mechanism for the hydrolysis of the amide bond of the substrate, N-acetyl-l-aspartate. PMID:18293939

  20. Examination of the mechanism of human brain aspartoacylase through the binding of an intermediate analogue.

    PubMed

    Le Coq, Johanne; Pavlovsky, Alexander; Malik, Radhika; Sanishvili, Ruslan; Xu, Chengfu; Viola, Ronald E

    2008-03-18

    Canavan disease is a fatal neurological disorder caused by the malfunctioning of a single metabolic enzyme, aspartoacylase, that catalyzes the deacetylation of N-acetyl-L-aspartate to produce L-aspartate and acetate. The structure of human brain aspartoacylase has been determined in complex with a stable tetrahedral intermediate analogue, N-phosphonomethyl-L-aspartate. This potent inhibitor forms multiple interactions between each of its heteroatoms and the substrate binding groups arrayed within the active site. The binding of the catalytic intermediate analogue induces the conformational ordering of several substrate binding groups, thereby setting up the active site for catalysis. The highly ordered binding of this inhibitor has allowed assignments to be made for substrate binding groups and provides strong support for a carboxypeptidase-type mechanism for the hydrolysis of the amide bond of the substrate, N-acetyl- l-aspartate.

  1. Intergenerational educational mobility is associated with cardiovascular disease risk behaviours in a cohort of young Australian adults: The Childhood Determinants of Adult Health (CDAH) Study

    PubMed Central

    2010-01-01

    Background Although educational disparity has been linked to single risk behaviours, it has not previously been studied as a predictor of overall lifestyle. We examined if current education, parental education or educational mobility between generations was associated with healthy lifestyles in young Australian adults. Methods In 2004-06, participant and parental education (high [bachelor degree or higher], intermediate [vocational training], low [secondary school only]) were assessed. Educational mobility was defined as: stable high (participant and parent in high group), stable intermediate (participant and parent in intermediate group), stable low (participant and parent in low group), downwardly (lower group than parent) and upwardly (higher group than parent) mobile. We derived a lifestyle score from 10 healthy behaviours (BMI, non-smoking, alcohol consumption, leisure time physical activity and six components of diet). Scores >4 indicated a high healthy lifestyle score. We estimated the likelihood of having a high healthy lifestyle score by education (participant and parent) and educational mobility. Results Complete data were available for 1973 participants (53% female, age range 26 to 36 years). Those with lower education were less likely to have healthy lifestyles. Parental education was not associated with having a high healthy lifestyle score after adjustment for participant's education. Those who moved upward or downward were as likely to have a high healthy lifestyle score as those in the group they attained. Conclusions We found clear disparities in health behaviour by participant education and intergenerational educational mobility. People attaining a higher level of education than their parents appeared protected from developing an unhealthy lifestyle suggesting that population-wide improvements in education may be important for health. PMID:20122282

  2. Photochemical and radiation-chemical aspects of matrix acidity effects on some organic systems

    NASA Astrophysics Data System (ADS)

    Ambroz, H. B.; Przybytniak, G. K.; Wronska, T.; Kemp, T. J.

    The role of matrix effects in radiolysis and photolysis is illustrated using two systems: organosulphur compounds and benzenediazonium salts. Their intermediates as detected by low temperature ESR and optical spectroscopy or FAB-MS give evidence that the main reaction pathways depend strongly on these effects. Changes in matrix acidity can control the formation of neutral radical, ion-radical or ionic species which are crucial to the character of the final products of irradiation of organosulphur compounds, which are of great importance in medicine, biology, ecology and industry. Microenvironmental influences determine whether the triplet aryl cation or radical species are detected as the principal or sole intermediates in the decomposition of diazonium salts, a process leading to different stable products with industrial application.

  3. Nucleation via an unstable intermediate phase.

    PubMed

    Sear, Richard P

    2009-08-21

    The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.

  4. The stability of monomeric intermediates controls amyloid formation: Abeta25-35 and its N27Q mutant.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2006-05-15

    The structure and stabilities of the intermediates affect protein folding as well as misfolding and amyloid formation. By applying Kramer's theory of barrier crossing and a Morse-function-like energy landscape, we show that intermediates with medium stability dramatically increase the rate of amyloid formation; on the other hand, very stable and very unstable intermediates sharply decrease amyloid formation. Remarkably, extensive molecular dynamics simulations and conformational energy landscape analysis of Abeta25-35 and its N27Q mutant corroborate the mathematical description. Both experimental and current simulation results indicate that the core of the amyloid structure of Abeta25-35 formed from residues 28-35. A single mutation of N27Q of Abeta25-35 makes the Abeta25-35 N27Q amyloid-free. Energy landscape calculations show that Abeta25-35 has extended intermediates with medium stability that are prone to form amyloids, whereas the extended intermediates for Abeta25-35 N27Q split into stable and very unstable species that are not disposed to form amyloids. The results explain the contribution of both alpha-helical and beta-strand intermediates to amyloid formation. The results also indicate that the structure and stability of the intermediates, as well as of the native folded and the amyloid states can be targeted in drug design. One conceivable approach is to stabilize the intermediates to deter amyloid formation.

  5. Evolution and polymorphism in the multilocus Levene model with no or weak epistasis.

    PubMed

    Bürger, Reinhard

    2010-09-01

    Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context. Copyright 2010 Elsevier Inc. All rights reserved.

  6. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  7. Attention doesn’t slide: spatiotopic updating after eye movements instantiates a new, discrete attentional locus

    PubMed Central

    Marino, Alexandria C.; Chun, Marvin M.

    2011-01-01

    During natural vision, eye movements can drastically alter the retinotopic (eye-centered) coordinates of locations and objects, yet the spatiotopic (world-centered) percept remains stable. Maintaining visuospatial attention in spatiotopic coordinates requires updating of attentional representations following each eye movement. However, this updating is not instantaneous; attentional facilitation temporarily lingers at the previous retinotopic location after a saccade, a phenomenon known as the retinotopic attentional trace. At various times after a saccade, we probed attention at an intermediate location between the retinotopic and spatiotopic locations to determine whether a single locus of attentional facilitation slides progressively from the previous retinotopic location to the appropriate spatiotopic location, or whether retinotopic facilitation decays while a new, independent spatiotopic locus concurrently becomes active. Facilitation at the intermediate location was not significant at any time, suggesting that top-down attention can result in enhancement of discrete retinotopic and spatiotopic locations without passing through intermediate locations. PMID:21258903

  8. Identifying Trajectories of Borderline Personality Features in Adolescence

    PubMed Central

    Haltigan, John D.

    2016-01-01

    Objective: To examine trajectories of adolescent borderline personality (BP) features in a normative-risk cohort (n = 566) of Canadian children assessed at ages 13, 14, 15, and 16 and childhood predictors of trajectory group membership assessed at ages 8, 10, 11, and 12. Method: Data were drawn from the McMaster Teen Study, an on-going study examining relations among bullying, mental health, and academic achievement. Participants and their parents completed a battery of mental health and peer relations questionnaires at each wave of the study. Academic competence was assessed at age 8 (Grade 3). Latent class growth analysis, analysis of variance, and logistic regression were used to analyze the data. Results: Three distinct BP features trajectory groups were identified: elevated or rising, intermediate or stable, and low or stable. Parent- and child-reported mental health symptoms, peer relations risk factors, and intra-individual risk factors were significant predictors of elevated or rising and intermediate or stable trajectory groups. Child-reported attention-deficit hyperactivity disorder (ADHD) and somatization symptoms uniquely predicted elevated or rising trajectory group membership, whereas parent-reported anxiety and child-reported ADHD symptoms uniquely predicted intermediate or stable trajectory group membership. Child-reported somatization symptoms was the only predictor to differentiate the intermediate or stable and elevated or rising trajectory groups (OR 1.15, 95% CI 1.04 to 1.28). Associations between child-reported reactive temperament and elevated BP features trajectory group membership were 10.23 times higher among children who were bullied, supporting a diathesis–stress pathway in the development of BP features for these youth. Conclusions: Findings demonstrate the heterogeneous course of BP features in early adolescence and shed light on the potential prodromal course of later borderline personality disorder. PMID:27254092

  9. Identifying Trajectories of Borderline Personality Features in Adolescence: Antecedent and Interactive Risk Factors.

    PubMed

    Haltigan, John D; Vaillancourt, Tracy

    2016-03-01

    To examine trajectories of adolescent borderline personality (BP) features in a normative-risk cohort (n = 566) of Canadian children assessed at ages 13, 14, 15, and 16 and childhood predictors of trajectory group membership assessed at ages 8, 10, 11, and 12. Data were drawn from the McMaster Teen Study, an on-going study examining relations among bullying, mental health, and academic achievement. Participants and their parents completed a battery of mental health and peer relations questionnaires at each wave of the study. Academic competence was assessed at age 8 (Grade 3). Latent class growth analysis, analysis of variance, and logistic regression were used to analyze the data. Three distinct BP features trajectory groups were identified: elevated or rising, intermediate or stable, and low or stable. Parent- and child-reported mental health symptoms, peer relations risk factors, and intra-individual risk factors were significant predictors of elevated or rising and intermediate or stable trajectory groups. Child-reported attention-deficit hyperactivity disorder (ADHD) and somatization symptoms uniquely predicted elevated or rising trajectory group membership, whereas parent-reported anxiety and child-reported ADHD symptoms uniquely predicted intermediate or stable trajectory group membership. Child-reported somatization symptoms was the only predictor to differentiate the intermediate or stable and elevated or rising trajectory groups (OR 1.15, 95% CI 1.04 to 1.28). Associations between child-reported reactive temperament and elevated BP features trajectory group membership were 10.23 times higher among children who were bullied, supporting a diathesis-stress pathway in the development of BP features for these youth. Findings demonstrate the heterogeneous course of BP features in early adolescence and shed light on the potential prodromal course of later borderline personality disorder. © The Author(s) 2015.

  10. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy.

    PubMed

    Toth, Gabor G; Toth, Balint; Johnson, Nils P; De Vroey, Frederic; Di Serafino, Luigi; Pyxaras, Stylianos; Rusinaru, Dan; Di Gioia, Giuseppe; Pellicano, Mariano; Barbato, Emanuele; Van Mieghem, Carlos; Heyndrickx, Guy R; De Bruyne, Bernard; Wijns, William

    2014-12-01

    Fractional flow reserve (FFR) measurement of intermediate coronary stenoses is recommended by guidelines when demonstration of ischemia by noninvasive testing is unavailable. The study aims to evaluate the penetration of this recommendation into current thinking about revascularization strategies for stable coronary artery disease. International Survey on Interventional Strategy was conducted via a web-based platform. First, participants' experiences in interventional cardiology were queried. Second, 5 complete angiograms were provided, presenting only focal intermediate stenoses. FFR and quantitative coronary angiography values were known; however, remained undisclosed. Determination of stenosis significance was asked for each lesion. In cases of uncertainty, the most appropriate adjunctive invasive diagnostic method among quantitative coronary angiography, intravascular ultrasound, optical coherence tomography, or FFR needed to be selected. International Survey on Interventional Strategy was taken by 495 participants who provided 4421 lesion evaluations. In 3158 (71%) decisions, participants relied solely on angiographic appearance that was discordant in 47% with the known FFR, using 0.80 as cutoff value. The use of FFR and imaging modalities was requested in 21% and 8%, respectively. Comparing 4 groups of participants according to the experience in FFR, angiogram-based decisions were less frequent with increasing experience (77% versus 72% versus 69% versus 67%, respectively; P<0.001). As a result, requests for FFR were more frequent (14% versus 19% versus 24% versus 28%, respectively; P<0.001) and rates of discordant decisions decreased (51% versus 49% versus 47% versus 43%, respectively; P<0.022). The findings confirm that, even when all potential external constraints are virtually eliminated, visual estimation continues to dominate the treatment decisions for intermediate stenoses, indicative of a worrisome disconnect between recommendations and current practice. © 2014 American Heart Association, Inc.

  11. Permanganate ion oxidations. IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones.

    PubMed

    Freeman, F; Karchefski, E M

    1976-10-04

    Uniquely stable manganese intermediates (complexes) are formed from the permanganate ion oxidation of the 5,6-carbon-carbon double bond in several 2,4(1H,3H)-pyrimidinediones [uracil, (compound 7), 5-methyluracil (thymine, compound 5), and 6-methyluracil (compound 8)]. These manganese complexes, which represent some of the most stable intermediate manganese species observed thus far in the oxidation of carbon-carbon double bonds, show absorption maxima in the 285-296 nm region (epsilon max approximately 4500). The relative reactivities of 6-methyluracil: uracil: thymine are 1: 23 : 194 and the bimolecular oxidation process is characterized by relatively small deltaH++ values and large negative deltaS++ values.

  12. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  13. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics.

    PubMed

    Hatzfeld, Mechthild; Keil, René; Magin, Thomas M

    2017-06-01

    Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. A novel intermediate in the reaction of seleno CYP119 with m-chloroperbenzoic acid.

    PubMed

    Sivaramakrishnan, Santhosh; Ouellet, Hugues; Du, Jing; McLean, Kirsty J; Medzihradszky, Katalin F; Dawson, John H; Munro, Andrew W; Ortiz de Montellano, Paul R

    2011-04-12

    Cytochrome P450-mediated monooxygenation generally proceeds via a reactive ferryl intermediate coupled to a ligand radical [Fe(IV)═O]+• termed Compound I (Cpd I). The proximal cysteine thiolate ligand is a critical determinant of the spectral and catalytic properties of P450 enzymes. To explore the effect of an increased level of donation of electrons by the proximal ligand in the P450 catalytic cycle, we recently reported successful incorporation of SeCys into the active site of CYP119, a thermophilic cytochrome P450. Here we report relevant physical properties of SeCYP119 and a detailed analysis of the reaction of SeCYP119 with m-chloroperbenzoic acid. Our results indicate that the selenolate anion reduces rather than stabilizes Cpd I and also protects the heme from oxidative destruction, leading to the generation of a new stable species with an absorbance maximum at 406 nm. This stable intermediate can be returned to the normal ferric state by reducing agents and thiols, in agreement with oxidative modification of the selenolate ligand itself. Thus, in the seleno protein, the oxidative damage shifts from the heme to the proximal ligand, presumably because (a) an increased level of donation of electrons more efficiently quenches reactive species such as Cpd I and (b) the protection of the thiolate ligand provided by the protein active site structure is insufficient to shield the more oxidizable selenolate ligand.

  15. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing's syndrome: a 15-year retrospective study.

    PubMed

    Di Dalmazi, Guido; Vicennati, Valentina; Garelli, Silvia; Casadio, Elena; Rinaldi, Eleonora; Giampalma, Emanuela; Mosconi, Cristina; Golfieri, Rita; Paccapelo, Alexandro; Pagotto, Uberto; Pasquali, Renato

    2014-05-01

    Incidental discovery of adrenal masses has increased over the past few years. Mild alterations in cortisol secretion without clinical signs of overt hypercortisolism (subclinical Cushing's syndrome) are a common finding in patients with these tumours. Although metabolic alterations and increased cardiovascular risk have been noted in patients with subclinical Cushing's syndrome, incidence of cardiovascular events and mortality in the long term have not been assessed. We aimed to ascertain the frequency of new cardiovascular events and mortality in patients with non-secreting adrenal incidentalomas, tumours of intermediate phenotype, or those causing subclinical Cushing's syndrome. From January, 1995, to September, 2010, consecutive outpatients with adrenal incidentalomas who were referred to the endocrinology unit of S Orsola-Malpighi Hospital, Bologna, Italy, were enrolled into our study. Individuals were assessed every 18-30 months for the first 5 years (mean follow-up 7·5 [SD 3·2] years, range 26 months to 15 years). Cortisol concentrations after the 1 mg dexamethasone suppression test (DST) were used to define non-secreting (+50 nmol/L) and intermediate phenotype (50-138 nmol/L) adrenal incidentalomas and subclinical Cushing's syndrome (+138 nmol/L). At the end of follow-up, patients were reclassified as having either unchanged or worsened secreting patterns from baseline. 198 outpatients were assessed; at the end of follow-up, 114 patients had stable non-secreting adrenal incidentalomas, 61 had either a stable intermediate phenotype or subclinical Cushing's syndrome, and 23 had a pattern of secretion that had worsened. By comparison with patients with stable non-secreting adrenal incidentalomas, the incidence of cardiovascular events was higher in individuals with a stable intermediate phenotype or subclinical Cushing's syndrome (6·7% vs 16·7%; p=0·04) and in those with worsened secreting patterns (6·7% vs 28·4%; p=0·02). Cardiovascular events were associated independently with a change (from baseline to the end of follow-up) in cortisol concentrations post DST (hazard ratio 1·13, 95% CI 1·05-1·21; p=0·001). Survival rates for all-cause mortality were lower in patients with either stable intermediate phenotype adrenal incidentalomas or subclinical Cushing's syndrome compared with those with stable non-secreting masses (57·0% vs 91·2%; p=0·005). Factors associated with mortality were age (hazard ratio 1·06, 95% CI 1·01-1·12; p=0·03) and mean concentrations of cortisol post DST (1·10, 1·01-1·19; p=0·04). Compared with patients with stable non-secreting adrenal incidentalomas, unadjusted survival for cardiovascular-specific mortality was lower in patients with either a stable intermediate phenotype or subclinical Cushing's syndrome (97·5% vs 78·4%; p=0·02) and in those with worsened secreting patterns (97·5% vs 60·0%; p=0·01). Cancer mortality did not differ between groups. Even when clinical signs of overt hypercortisolism are not present, patients with adrenal incidentalomas and mild hypercortisolism have an increased risk of cardiovascular events and mortality. None. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Novel aminobenzyl and imidobenzyl benzenes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; Pratt, J. R.; Stump, B. L.

    1976-01-01

    Compounds are useful as intermediates for several classes of polymers. Amines can function as cross-linking agents for epoxide and urethane polymers, as well as intermediates for synthesis of thermally-stable addition-type polyimides. Imide derivatives can be obtained by reacting amines with certain monoanhydrides containing olefinic unsaturation.

  17. Visualization of a stable intermediate phase in photoinduced metal-to-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian

    First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).

  18. Stable isotope analysis of CO2 in breath indicates metabolic fuel shifts in torpid arctic ground squirrels.

    PubMed

    Lee, Trixie N; Richter, Melanie M; Williams, Cory T; Tøien, Øivind; Barnes, Brian M; O'Brien, Diane M; Buck, C Loren

    2017-07-01

    Stable carbon isotope ratios (δ 13 C) in breath show promise as an indicator of immediate metabolic fuel utilization in animals because tissue lipids have a lower δ 13 C value than carbohydrates and proteins. Metabolic fuel consumption is often estimated using the respiratory exchange ratio (RER), which has lipid and carbohydrate boundaries, but does not differentiate between protein and mixed fuel catabolism at intermediate values. Because lipids have relatively low δ 13 C values, measurements of stable carbon isotopes in breath may help distinguish between catabolism of protein and mixed fuel that includes lipid. We measured breath δ 13 C and RER concurrently in arctic ground squirrels (Urocitellus parryii) during steady-state torpor at ambient temperatures from -2 to -26°C. As predicted, we found a correlation between RER and breath δ 13 C values; however, the range of RER in this study did not reach intermediate levels to allow further resolution of metabolic substrate use with the addition of breath δ 13 C measurements. These data suggest that breath δ 13 C values are 1.1‰ lower than lipid tissue during pure lipid metabolism. From RER, we determined that arctic ground squirrels rely on nonlipid fuel sources for a significant portion of energy during torpor (up to 37%). The shift toward nonlipid fuel sources may be influenced by adiposity of the animals in addition to thermal challenge. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention wasmore » measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.« less

  20. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  1. Time-resolved distance determination by tryptophan fluorescence quenching: probing intermediates in membrane protein folding.

    PubMed

    Kleinschmidt, J H; Tamm, L K

    1999-04-20

    The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.

  2. Mechanistic Studies on the Cis to Trans Epimerization of Trisubstituted-1,2,3,4-Tetrahydro-β-Carbolines

    PubMed Central

    Van Linn, Michael L.; Cook, James M.

    2010-01-01

    It is well known that Nb-benzyl tryptophan alkyl esters undergo the Pictet-Spengler reaction with aldehydes to furnish both cis and trans 1,2,3,4-tetrahydro-β-carbolines, with the trans isomer predominating. Epimerization at C-1 took place under acidic conditions to produce, exclusively, the thermodynamically more stable trans diastereomer via internal asymmetric induction. Recent kinetic experiments provided insight into the cis to trans epimerization mechanism involved in the Pictet-Spengler reaction of 1,2,3-trisubsituted tetrahydro-β-carbolines. Since the epimerization reaction had been shown to be sensitive to electronic effects at C-1, the rate data for a series of 1-phenyl-substituted-1,2,3,4-tetrahydro-β-carbolines was investigated via a Hammett study. Analysis of the data supported the presence of a positively charged intermediate with a ρ value of −1.4, although the existence of an iminium ion intermediate or a carbocationic intermediate could not be determined from this data alone. Analysis of the rate of epimerization demonstrated first-order kinetics with respect to TFA following the initial protonation of the substrate. This observation was consistent with the formation of a doubly protonated intermediate as the rate determining step in the carbocation-mediated cis to trans epimerization process. In addition, the observed first-order rate dependence was inconsistent with the retro Pictet-Spengler mechanism since protonation at the indole-2 position was not rate determining as demonstrated by kinetic isotope effects. Based on this kinetic data, the retro Pictet-Spengler pathway was ruled out for the cis to trans epimerization of 1,2,3-trisubstituted-1,2,3,4-tetrahydro-β-carbolines, while the olefinic mechanism had been ruled out by experiments carried out in TFA-d. PMID:20429580

  3. cis-β-Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence.

    PubMed

    Tang, Khanh G; Kent, Greggory T; Erden, Ihsan; Wu, Weiming

    2017-10-04

    cis -β-Bromostyrene derivatives were synthesized stereospecifically from cinnamic acids through β-lactone intermediates. The synthetic sequence did not require the purification of the β-lactone intermediates although they were found to be stable and readily purified in most cases.

  4. Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response

    PubMed Central

    Schauer, Dominic; Starlinger, Patrick; Alidzanovic, Lejla; Zajc, Philipp; Maier, Thomas; Feldman, Alexandra; Padickakudy, Robin; Buchberger, Elisabeth; Elleder, Vanessa; Spittler, Andreas; Stift, Judith; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine

    2016-01-01

    ABSTRACT We have previously reported that intermediate monocytes (CD14++/CD16+) were increased in colorectal cancer (CRC) patients, while the subset of pro-angiogenic TIE2-expressing monocytes (TEMs) was not significantly elevated. This study was designed to evaluate changes in frequency and function of intermediate monocytes and TEMs during chemotherapy and anti-angiogenic cancer treatment and their relation to treatment response. Monocyte populations were determined by flow cytometry in 60 metastasized CRC (mCRC) patients who received neoadjuvant chemotherapy with or without bevacizumab. Blood samples were taken before treatment, after two therapy cycles, at the end of neoadjuvant therapy and immediately before surgical resection of liver metastases. Neoadjuvant treatment resulted in a significant increase in circulating intermediate monocytes which was most pronounced after two cycles and positively predicted tumor response (AUC = 0.875, p = 0.005). With a cut-off value set to 1% intermediate monocytes of leukocytes, this parameter showed a predictive sensitivity and specificity of 75% and 88%. Anti-angiogenic therapy with bevacizumab had no impact on monocyte populations including TEMs. In 15 patients and six healthy controls, the gene expression profile and the migratory behavior of monocyte subsets was evaluated. The profile of intermediate monocytes suggested functions in antigen presentation, inflammatory cytokine production, chemotaxis and was remarkably stable during chemotherapy. Intermediate monocytes showed a preferential migratory response to tumor-derived signals in vitro and correlated with the level of CD14+/CD16+ monocytic infiltrates in the resected tumor tissue. In conclusion, the rapid rise of intermediate monocytes during chemotherapy may offer a simple marker for response prediction and a timely change in regimen. PMID:27471631

  5. Evidence for a Stable Intermediate in Leukemia Virus Activation in AKR Mouse Embryo Cells

    PubMed Central

    Ihle, James N.; Kenney, Francis T.; Tennant, Raymond W.

    1974-01-01

    Analysis of the requirement for serum in the activation of the endogenous leukemia virus expression in AKR mouse embryo cells by 5-iododeoxyuridine shows that activation can be dissociated into two discrete serum-dependent events. The first involves incorporation of 5-iododeoxyuridine into DNA and results in the formation of a stable “activation intermediate” resembling the provirus formed during infection of stationary mouse embryo cells with exogenous leukemia virus. The second event, resulting in expression of the activation intermediate as synthesis of virus proteins, requires DNA replication but not 5-iododeoxyuridine. PMID:4604455

  6. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    PubMed

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Photoproduction of One-Electron Reducing Intermediates by Chromophoric Dissolved Organic Matter (CDOM): Relation to O2- and H2O2 Photoproduction and CDOM Photooxidation.

    PubMed

    Zhang, Yi; Blough, Neil V

    2016-10-06

    A molecular probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap), was employed to determine the formation rates of one-electron reducing intermediates generated photochemically from both untreated and borohydride-reduced Suwanee River fulvic and humic acids (SRFA and SRHA, respectively). This stable nitroxyl radical reacts rapidly with reducing radicals and other one-electron reductants to produce a relatively stable product, the hydroxylamine, which can be derivatized with fluorescamine, separated by HPLC and quantified fluorimetrically. We provide evidence that O 2 and 3ap compete for the same pool(s) of photoproduced reducing intermediates, and that under appropriate experimental conditions, the initial rate of hydroxylamine formation (R H ) can provide an estimate of the initial rate of superoxide (O 2 - ) formation. However, comparison of the initial rates of H 2 O 2 formation (R H2O2 ) to that of R H show far larger ratios of R H /R H2O2 (∼6-13) than be accounted for by simple O 2 - dismutation (R H /R H2O2 = 2), implying a significant oxidative sink of O 2 - (∼67-85%). Because of their high reactivity with O 2 - and their likely importance in the photochemistry of CDOM, we suggest that coproduced phenoxy radicals could represent a viable oxidative sink. Because O 2 - /phenoxy radical reactions can lead to more highly oxidized products, O 2 - could be playing a far more significant role in the photooxidation of CDOM than has been previously recognized.

  8. Interactions of "bora-penicilloates" with serine β-lactamases and DD-peptidases.

    PubMed

    Dzhekieva, Liudmila; Adediran, S A; Pratt, R F

    2014-10-21

    Specific boronic acids are generally powerful tetrahedral intermediate/transition state analogue inhibitors of serine amidohydrolases. This group of enzymes includes bacterial β-lactamases and DD-peptidases where there has been considerable development of boronic acid inhibitors. This paper describes the synthesis, determination of the inhibitory activity, and analysis of the results from two α-(2-thiazolidinyl) boronic acids that are closer analogues of particular tetrahedral intermediates involved in β-lactamase and DD-peptidase catalysis than those previously described. One of them, 2-[1-(dihydroxyboranyl)(2-phenylacetamido)methyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid, is a direct analogue of the deacylation tetrahedral intermediates of these enzymes. These compounds are micromolar inhibitors of class C β-lactamases but, very unexpectedly, not inhibitors of class A β-lactamases. We rationalize the latter result on the basis of a new mechanism of boronic acid inhibition of the class A enzymes. A stable inhibitory complex is not accessible because of the instability of an intermediate on its pathway of formation. The new boronic acids also do not inhibit bacterial DD-peptidases (penicillin-binding proteins). This result strongly supports a central feature of a previously proposed mechanism of action of β-lactam antibiotics, where deacylation of β-lactam-derived acyl-enzymes is not possible because of unfavorable steric interactions.

  9. The possible reduction pathways of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Feng, Hua-jun; Liu, Shao-ying; Wang, Chao-jun; Zhang, Yuan; Gao, Yan-ni; Li, Wen-bing; Yao, Jun; Wang, Mei-zhen; Shen, Dong-sheng

    2011-01-01

    To predict the final fate of 2,4,6-trinitrotoluene (TNT) and its intermediates in an anaerobic fermentative solution containing reduced sulfur species and to provide a basis for the adoption of remediation methods, we investigated the pathways of TNT (TNT(0) = 50 mg/L) reduction by Na(2)S at 30 ± 1 °C in an acetic acid-sodium bicarbonate buffer. Liquid chromatography/mass spectrometry (LC/MS) was used to identify TNT metabolites at different reaction times. The law of growth and decline of TNT and its metabolites was determined with time. The LC/MS result, combined with the physicochemical characteristics of related products and information from the literature, indicated possible TNT conversion pathways. Sulfide can initiate both nitroreduction and denitration of TNT simultaneously. Nitroreduction led to the accumulation of primary intermediates 4-hydroxylaminodinitrotoluene and 4-aminodinitrotoluene, whereas denitration resulted in the production of unidentified substances with molecular weight less than that of TNT. Also, polyreaction between the above intermediates formed many unidentified substances. Humification was concluded to be the best choice for remediation of TNT-contaminated soil and water due to the formation of intermediates with stable, intact aromatic systems. However, the denitration pathway of TNT offered the possibility of mineralization.

  10. Investigation of Unexpected Reaction Intermediates in the Alkaline Hydrolysis of Methyl 3,5-Dinitrobenzoate

    ERIC Educational Resources Information Center

    Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo

    2009-01-01

    An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…

  11. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    NASA Astrophysics Data System (ADS)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  12. Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase.

    PubMed

    Scholl, Zackary N; Yang, Weitao; Marszalek, Piotr E

    2017-05-09

    Proteins obtain their final functional configuration through incremental folding with many intermediate steps in the folding pathway. If known, these intermediate steps could be valuable new targets for designing therapeutics and the sequence of events could elucidate the mechanism of refolding. However, determining these intermediate steps is hardly an easy feat, and has been elusive for most proteins, especially large, multidomain proteins. Here, we effectively map part of the folding pathway for the model large multidomain protein, Luciferase, by combining single-molecule force-spectroscopy experiments and coarse-grained simulation. Single-molecule refolding experiments reveal the initial nucleation of folding while simulations corroborate these stable core structures of Luciferase, and indicate the relative propensities for each to propagate to the final folded native state. Both experimental refolding and Monte Carlo simulations of Markov state models generated from simulation reveal that Luciferase most often folds along a pathway originating from the nucleation of the N-terminal domain, and that this pathway is the least likely to form nonnative structures. We then engineer truncated variants of Luciferase whose sequences corresponded to the putative structure from simulation and we use atomic force spectroscopy to determine their unfolding and stability. These experimental results corroborate the structures predicted from the folding simulation and strongly suggest that they are intermediates along the folding pathway. Taken together, our results suggest that initial Luciferase refolding occurs along a vectorial pathway and also suggest a mechanism that chaperones may exploit to prevent misfolding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Storage Stability and Improvement of Intermediate Moisture Foods

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1976-01-01

    Shelf life tests are used to estimate the rate of nonenzymatic browning; however, controlling the reducing sugar levels below 23:1 molar ratio to amines, slows the rate. In addition, liquid glycols surpress browning. The protozoan Tetrahymena pyriformis W can be used to estimate nutrition losses during browning. At high temperatures (80 to 120 C) used in processing intermediate moisture foods (IMF), vitamin C destruction shifts to a zero order mechanism. BHA and BHT are the most effective antioxidants against rancidity. In shelf life testing however, 45 C should be the maximum temperature used. Water binding agents are studied. The five isotherms of thirteen humectants were determined. The results show that neither the method of addition nor sequence of addition affects the a sub u lowering ability of these humectants. Results were used to formulate shelf stable IMF processed cheese foods with at least four months shelf life.

  14. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-04

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  15. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  16. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology

    Treesearch

    Jeffrey F. Kelly

    2000-01-01

    Differential fractionation of stable isotopes of carbon during photosynthesis causes C4 plants and C3 plants to have distinct carbon-isotope signatures. In addition, marine C3 plants have stable-isotope ratios of carbon that are intermediate between C4 and terrestrial C3 plants. The direct incorporation of the carbon-isotope ratio (13C/12C) of plants into consumers...

  17. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  18. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    NASA Astrophysics Data System (ADS)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  19. Kinetically trapped metastable intermediate of a disulfide-deficient mutant of the starch-binding domain of glucoamylase.

    PubMed

    Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi

    2009-08-01

    Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.

  20. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentiallymore » stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.« less

  1. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE PAGES

    Zhang, Xiaoming; Liu, Ping; Yu, Shansheng; ...

    2015-05-21

    We employed density functional theory (DFT) to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt 1ML) supported on an M surface, Pt 1ML/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt 1ML shell depending on the conditions. In vacuum conditions, the Pt 1ML shell can be stabilized on the mostmore » of M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt ML shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt 1ML/M 1ML/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt 1ML shell were also discussed.« less

  2. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoming; Yu, Shansheng; Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn, E-mail: pingliu3@bnl.gov

    2015-05-21

    We employed density functional theory to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt{sub 1ML}) supported on an M surface, Pt{sub 1ML}/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt{sub 1ML} shell depending on the conditions. In vacuum conditions, the Pt{sub 1ML} shell can be stabilized on the most ofmore » M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt{sub ML} shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt{sub 1ML}/M{sub 1ML}/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt{sub 1ML} shell were also discussed.« less

  3. Intermediates detected by visible spectroscopy during the reaction of nitrite with deoxyhemoglobin: the effect of nitrite concentration and diphosphoglycerate.

    PubMed

    Nagababu, Enika; Ramasamy, Somasundaram; Rifkind, Joseph M

    2007-10-16

    The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.

  4. Prediction of serious complications in patients with seemingly stable febrile neutropenia: validation of the Clinical Index of Stable Febrile Neutropenia in a prospective cohort of patients from the FINITE study.

    PubMed

    Carmona-Bayonas, Alberto; Jiménez-Fonseca, Paula; Virizuela Echaburu, Juan; Antonio, Maite; Font, Carme; Biosca, Mercè; Ramchandani, Avinash; Martínez, Jerónimo; Hernando Cubero, Jorge; Espinosa, Javier; Martínez de Castro, Eva; Ghanem, Ismael; Beato, Carmen; Blasco, Ana; Garrido, Marcelo; Bonilla, Yaiza; Mondéjar, Rebeca; Arcusa Lanza, María Ángeles; Aragón Manrique, Isabel; Manzano, Aránzazu; Sevillano, Elena; Castañón, Eduardo; Cardona, Mercé; Gallardo Martín, Elena; Pérez Armillas, Quionia; Sánchez Lasheras, Fernando; Ayala de la Peña, Francisco

    2015-02-10

    To validate a prognostic score predicting major complications in patients with solid tumors and seemingly stable episodes of febrile neutropenia (FN). The definition of clinical stability implies the absence of organ dysfunction, abnormalities in vital signs, and major infections. We developed the Clinical Index of Stable Febrile Neutropenia (CISNE), with six explanatory variables associated with serious complications: Eastern Cooperative Oncology Group performance status ≥ 2 (2 points), chronic obstructive pulmonary disease (1 point), chronic cardiovascular disease (1 point), mucositis of grade ≥ 2 (National Cancer Institute Common Toxicity Criteria; 1 point), monocytes < 200 per μL (1 point), and stress-induced hyperglycemia (2 points). We integrated these factors into a score ranging from 0 to 8, which classifies patients into three prognostic classes: low (0 points), intermediate (1 to 2 points), and high risk (≥ 3 points). We present a multicenter validation of CISNE. We prospectively recruited 1,133 patients with seemingly stable FN from 25 hospitals. Complication rates in the training and validation subsets, respectively, were 1.1% and 1.1% in low-, 6.1% and 6.2% in intermediate-, and 32.5% and 36% in high-risk patients; mortality rates within each class were 0% in low-, 1.6% and 0% in intermediate-, and 4.3% and 3.1% in high-risk patients. Areas under the receiver operating characteristic curves in the validation subset were 0.652 (95% CI, 0.598 to 0.703) for Talcott, 0.721 (95% CI, 0.669 to 0.768) for Multinational Association for Supportive Care in Cancer (MASCC), and 0.868 (95% CI, 0.827 to 0.903) for CISNE (P = .002 for comparison between CISNE and MASCC). CISNE is a valid model for accurately classifying patients with cancer with seemingly stable FN episodes. © 2015 by American Society of Clinical Oncology.

  5. Theoretical characterization of stable eta1-N2O-, eta2-N2O-, eta1-N2-, and eta2-N2-bound species: intermediates in the addition reactions of nitrogen hydrides with the pentacyanonitrosylferrate(II) ion.

    PubMed

    Olabe, José A; Estiú, Guillermina L

    2003-08-11

    The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.

  6. The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis.

    PubMed

    Genders, Tessa S S; Petersen, Steffen E; Pugliese, Francesca; Dastidar, Amardeep G; Fleischmann, Kirsten E; Nieman, Koen; Hunink, M G Myriam

    2015-04-07

    The optimal imaging strategy for patients with stable chest pain is uncertain. To determine the cost-effectiveness of different imaging strategies for patients with stable chest pain. Microsimulation state-transition model. Published literature. 60-year-old patients with a low to intermediate probability of coronary artery disease (CAD). Lifetime. The United States, the United Kingdom, and the Netherlands. Coronary computed tomography (CT) angiography, cardiac stress magnetic resonance imaging, stress single-photon emission CT, and stress echocardiography. Lifetime costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios. The strategy that maximized QALYs and was cost-effective in the United States and the Netherlands began with coronary CT angiography, continued with cardiac stress imaging if angiography found at least 50% stenosis in at least 1 coronary artery, and ended with catheter-based coronary angiography if stress imaging induced ischemia of any severity. For U.K. men, the preferred strategy was optimal medical therapy without catheter-based coronary angiography if coronary CT angiography found only moderate CAD or stress imaging induced only mild ischemia. In these strategies, stress echocardiography was consistently more effective and less expensive than other stress imaging tests. For U.K. women, the optimal strategy was stress echocardiography followed by catheter-based coronary angiography if echocardiography induced mild or moderate ischemia. Results were sensitive to changes in the probability of CAD and assumptions about false-positive results. All cardiac stress imaging tests were assumed to be available. Exercise electrocardiography was included only in a sensitivity analysis. Differences in QALYs among strategies were small. Coronary CT angiography is a cost-effective triage test for 60-year-old patients who have nonacute chest pain and a low to intermediate probability of CAD. Erasmus University Medical Center.

  7. Novel Inhibitor Cystine Knot Peptides from Momordica charantia

    PubMed Central

    Clark, Richard J.; Tang, Jun; Zeng, Guang-Zhi; Franco, Octavio L.; Cantacessi, Cinzia; Craik, David J.; Daly, Norelle L.; Tan, Ning-Hua

    2013-01-01

    Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III), were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK) motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature. PMID:24116036

  8. The nucleotide-free state of heterotrimeric G proteins α-subunit adopts a highly stable conformation.

    PubMed

    Andhirka, Sai Krishna; Vignesh, Ravichandran; Aradhyam, Gopala Krishna

    2017-08-01

    Deciphering the mechanism of activation of heterotrimeric G proteins by their cognate receptors continues to be an intriguing area of research. The recently solved crystal structure of the ternary complex captured the receptor-bound α-subunit in an open conformation, without bound nucleotide has improved our understanding of the activation process. Despite these advancements, the mechanism by which the receptor causes GDP release from the α-subunit remains elusive. To elucidate the mechanism of activation, we studied guanine nucleotide-induced structural stability of the α-subunit (in response to thermal/chaotrope-mediated stress). Inherent stabilities of the inactive (GDP-bound) and active (GTP-bound) forms contribute antagonistically to the difference in conformational stability whereas the GDP-bound protein is able to switch to a stable intermediate state, GTP-bound protein loses this ability. Partial perturbation of the protein fold reveals the underlying influence of the bound nucleotide providing an insight into the mechanism of activation. An extra stable, pretransition intermediate, 'empty pocket' state (conformationally active-state like) in the unfolding pathway of GDP-bound protein mimics a gating system - the activation process having to overcome this stable intermediate state. We demonstrate that a relatively more complex conformational fold of the GDP-bound protein is at the core of the gating system. We report capturing this threshold, 'metastable empty pocket' conformation (the gate) of α-subunit of G protein and hypothesize that the receptor activates the G protein by enabling it to achieve this structure through mild structural perturbation. © 2017 Federation of European Biochemical Societies.

  9. Comparative reactivity of different types of stable cyclic and acyclic mono- and diamino carbenes with simple organic substrates.

    PubMed

    Martin, David; Canac, Yves; Lavallo, Vincent; Bertrand, Guy

    2014-04-02

    A series of stable carbenes, featuring a broad range of electronic properties, were reacted with simple organic substrates. The N,N-dimesityl imidazolylidene (NHC) does not react with isocyanides, whereas anti-Bredt di(amino)carbene (pyr-NHC), cyclic (alkyl)(amino)carbene (CAAC), acyclic di(amino)carbene (ADAC), and acyclic (alkyl)(amino)carbene (AAAC) give rise to the corresponding ketenimines. NHCs are known to promote the benzoin condensation, and we found that the CAAC, pyr-NHC, and ADAC react with benzaldehyde to give the ketone tautomer of the Breslow intermediate, whereas the AAAC first gives the corresponding epoxide and ultimately the Breslow intermediate, which can be isolated. Addition of excess benzaldehyde to the latter does not lead to benzoin but to a stable 1,3-dioxolane. Depending on the electronic properties of carbenes, different products are also obtained with methyl acrylate as a substrate. The critical role of the carbene electrophilicity on the outcome of reactions is discussed.

  10. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction.

    PubMed

    Elsässer, Brigitta; Valiev, Marat; Weare, John H

    2009-03-25

    The RNaseA enzyme efficiently cleaves phosphodiester bonds in the RNA backbone. Phosphoryl transfer plays a central role in many biochemical reactions, and this is one of the most studied enzymes. However, there remains considerable controversy about the reaction mechanism. Most of this debate centers around the roles of the conserved residues, structures of the transition state or states, the possibility of a stable intermediate, and the charge and structure of this intermediate. In this communication we report calculations of the mechanism of the hydrolysis step in this reaction using a comprehensive QM/MM theoretical approach that includes a high level calculation of the interactions in the QM region, free energy estimates along an NEB optimized reaction path, and the inclusion of the interaction of the protein surroundings and solvent. Contrary to prior calculations we find a stable pentacoordinated dianionic phosphorane intermediate in the reaction path supporting an A(N)+D(N) reaction mechanism. In the transition state in the path from the reactant to the intermediate state (with barrier of 3.96 kcal/mol and intermediate stability of 2.21 kcal/mol) a proton from the attacking water is partially transferred to the His119 residue and the PO bond only partially formed from the remaining nucleophilic OH(-) species (bond order (BO) 0.11). In passing from the intermediate to the product state (barrier 13.22 kcal/mol) the PO bond on the cyclic phosphorane intermediate is nearly broken (BO 0.28) and the transfer of the proton from the Lys41 is almost complete (Lys41-H BO 0.87). In the product state a proton has been transferred from Lys41 to the O2' position of the sugar. The role of Lys41 as the catalytic acid is a result of the relative positioning of the Lys41 and His12 in the catalytic site. This configuration is supported by calculations and docking studies.

  11. Formation of a quinoneimine intermediate of 4-fluoro-N-methylaniline by FMO1: carbon oxidation plus defluorination.

    PubMed

    Driscoll, James P; Aliagas, Ignacio; Harris, Jennifer J; Halladay, Jason S; Khatib-Shahidi, Sheerin; Deese, Alan; Segraves, Nathaniel; Khojasteh-Bakht, S Cyrus

    2010-05-17

    Here, we report on the mechanism by which flavin-containing monooxygenase 1 (FMO1) mediates the formation of a reactive intermediate of 4-fluoro-N-methylaniline. FMO1 catalyzed a carbon oxidation reaction coupled with defluorination that led to the formation of 4-N-methylaminophenol, which was a reaction first reported by Boersma et al. (Boersma et al. (1993) Drug Metab. Dispos. 21 , 218 - 230). We propose that a labile 1-fluoro-4-(methylimino)cyclohexa-2,5-dienol intermediate was formed leading to an electrophilic quinoneimine intermediate. The identification of N-acetylcysteine adducts by LC-MS/MS and NMR further supports the formation of a quinoneimine intermediate. Incubations containing stable labeled oxygen (H(2)(18)O or (18)O(2)) and ab initio calculations were performed to support the proposed reaction mechanism.

  12. Forest Canopy Water Cycling Responses to an Intermediate Disturbance Revealed Through Stable Water Vapor Isotopes

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.

    2016-12-01

    Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.

  13. An overlapping region between the two terminal folding units of the outer surface protein A (OspA) controls its folding behavior.

    PubMed

    Makabe, Koki; Nakamura, Takashi; Dhar, Debanjan; Ikura, Teikichi; Koide, Shohei; Kuwajima, Kunihiro

    2018-04-27

    Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions. Copyright © 2018. Published by Elsevier Ltd.

  14. Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas

    USGS Publications Warehouse

    Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Macfarlane, P.A.

    1998-01-01

    A suite of chemical and isotope tracers (dissolved noble gases, stable isotopes of water, radiocarbon, and CI) have been analyzed along a flow path in the Dakota aquifer system to determine likely recharge sources, ground water residence times, and the extent of mixing between local and intermediate flow systems, presumably caused by large well screens. Three water types were distinguished with the tracers, each having a very different history. Two of the water types were found in south-eastern Colorado where the Dakota is poorly confined. The tracer data suggest that the first group recharged locally during the last few thousand years and the second group was composed of ground water that recharged earlier during a cooler climate, presumably during the last glacial period (LGP) and mixed aged water. The paleotemperature record archived in this groundwater system indicates that south-eastern Colorado was about 5??C cooler during the LGP than during the late Holocene. Similar temperature changes derived from dissolved noble gases in other aquifer systems have been reported earlier for the south-western United States. The third water type was located down gradient of the first two in the confined Dakota in western and central Kansas. Groundwater residence time of this water mass is on the order of 104-105 yrs and its recharge location is near the Colorado and Kansas border down gradient of the other water types. The study shows the importance of using multiple tracers when investigating ground water systems.A suite of chemical and isotope tracers (dissolved noble gases, stable isotopes of water, radiocarbon, and CL) were analyzed along a flow path in the Dakota aquifer system to determine likely recharge sources, ground water residence times, and the extent of mixing between local and intermediate flow systems. Three water types were distinguished with the tracers, each having a very different history. Two of the water types were located in south-eastern Colorado where the Dakota is poorly confined. The third water type was located down gradient of the first two in the confined Dakota in western and central Kansas.

  15. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    NASA Astrophysics Data System (ADS)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  16. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  17. Use of stable carbon and nitrogen isotopes to trace the larval striped bass food chain in the Sacramento-San Joaquin Estuary, California, April to September 1985

    USGS Publications Warehouse

    Rast, Walter; Sutton, J.E.

    1989-01-01

    To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)

  18. Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface--a density functional theoretical study.

    PubMed

    Bothra, Pallavi; Periyasamy, Ganga; Pati, Swapan K

    2013-04-21

    The complete hydrogenation mechanisms of CO2 are explored on Ni(110) surface catalyst using density functional theory. We have studied the possible hydrogenation mechanism to form product methane from the stable adsorption-co-adsorption intermediates of CO2 and H2 on Ni(110) surface. Our computations clearly elucidate that the mechanism for the formation of methyl, methoxy and methane moieties from carbon dioxide on the nickel catalyst. Moreover, our studies clearly show that the methane formation via hydroxyl carbonyl intermediate requires a lower energy barrier than via carbon monoxide and formate intermediates on the Ni(110) surface.

  19. M-aminophenyltrialkylstannane

    DOEpatents

    Kassis, Amin I.; Khawli, Leslie A.

    1990-01-01

    m-Radiohalo-aniline is a stable intermediate for preparing biotin-m-radiohalo-anilide to be used as an imaging agent or therapeutic agent. The invention also contemplates m-aminophenyltrialkylstannane which can be radiohalogenated and linked to biotin.

  20. Gas exchange parameters inferred from {delta}{sup 13}C of conifer annual rings throughout the 20th century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J.D.; Monserud, R.A.

    1995-12-31

    In this study the stable isotopes of carbon in plant tissue provided a means of inferring the proportional decrease in carbon dioxide concentration across the stomata, which is closely related to photosynthetic water-use efficiency. The authors analyzed the stable carbon isotope composition of tree rings laid down over the past 80 years to determine whether the proportional decrease in CO{sub 2} concentration across the stomata had increased. Dominant and codominant trees of western white pine (Pinus monticola), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii var. glauca) growing at the Priest River Experimental Forest, in northern Idaho, were analyzed. Tomore » avoid confounding age and year, the authors compared the innermost rings of mature trees to trees of intermediate age and to saplings. The isotopic data were corrected for changes in isotopic composition and carbon dioxide concentration using published data from ice cores.« less

  1. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.

    PubMed

    Wolhuter, Kathryn; Whitwell, Harry J; Switzer, Christopher H; Burgoyne, Joseph R; Timms, John F; Eaton, Philip

    2018-02-01

    S-nitrosation, commonly referred to as S-nitrosylation, is widely regarded as a ubiquitous, stable post-translational modification that directly regulates many proteins. Such a widespread role would appear to be incompatible with the inherent lability of the S-nitroso bond, especially its propensity to rapidly react with thiols to generate disulfide bonds. As anticipated, we observed robust and widespread protein S-nitrosation after exposing cells to nitrosocysteine or lipopolysaccharide. Proteins detected using the ascorbate-dependent biotin switch method are typically interpreted to be directly regulated by S-nitrosation. However, these S-nitrosated proteins are shown to predominantly comprise transient intermediates leading to disulfide bond formation. These disulfides are likely to be the dominant end effectors resulting from elevations in nitrosating cellular nitric oxide species. We propose that S-nitrosation primarily serves as a transient intermediate leading to disulfide formation. Overall, we conclude that the current widely held perception that stable S-nitrosation directly regulates the function of many proteins is significantly incorrect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. M-aminophenyltrialkylstannane

    DOEpatents

    Kassis, A.I.; Khawli, L.A.

    1990-12-11

    m-Radiohalo-aniline is a stable intermediate for preparing biotin-m-radiohalo-anilide to be used as an imaging agent or therapeutic agent. The invention also contemplates m-aminophenyltrialkylstannane which can be radiohalogenated and linked to biotin. No Drawings

  3. Food web of the intertidal rocky shore of the west Portuguese coast - Determined by stable isotope analysis.

    PubMed

    Vinagre, Catarina; Mendonça, Vanessa; Narciso, Luís; Madeira, Carolina

    2015-09-01

    The characterization of food web structure, energy pathways and trophic linkages is essential for the understanding of ecosystem functioning. Isotopic analysis was performed on food web components of the rocky intertidal ecosystem in four sites along the Portuguese west coast. The aim was to 1) determine the general food web structure, 2) estimate the trophic level of the dominant organisms and 3) track the incorporation of organic carbon of different origins in the diet of the top consumers. In this food web, fish are top consumers, followed by shrimp. Anemones and gastropods are intermediate consumers, while bivalves and zooplankton are primary consumers. Macroalgae Bifurcaria bifurcata, Ulva lactuca, Fucus vesiculosus, Codium sp. and phytoplankton are the dominant producers. Two energy pathways were identified, pelagic and benthic. Reliance on the benthic energy pathway was high for many of the consumers but not as high as previously observed in subtidal coastal food webs. The maximum TL was 3.3, which is indicative of a relatively short food web. It is argued that the diet of top consumers relies directly on low levels of the food web to a considerable extent, instead of on intermediate levels, which shortens the trophic length of the food web. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Theoretical Probe for Excitation Mechanisms of Sun-like and Mira-like Oscillations of Stars

    NASA Astrophysics Data System (ADS)

    Xiong, Da-run; Deng, Li-cai

    2013-01-01

    The linear nonadiabatic oscillations for evolutionary models of 0.6- 3M8 stars are calculated by using a nonlocal and time-dependent convection theory. The results show that in the HR diagram the pulsation-unstable low- temperature stars on the right side of instability strip can be divided into two groups. One group indicates the Sun-like oscillation stars composed of the main- sequence dwarfs, sub-giants and red giants (RGs) of low and intermediate lu- minosities, which are unstable in the intermediate- and high-order (n ≥ 12) p- modes, and stable in the low-order (n ≤ 5) p-modes. Another group indicates the Mira-like stars composed of the bright RGs and asymptotic giant branch (AGB) stars, which are just contrary to Sun-like stars, unstable in low-order (n ≤ 5) p-modes and stable in the intermediate- and high-order (n ≥ 12) p-modes. The oscillations for the red edge of Cepheid (δ Scuti) instability strip, Sun-like and Mira-like stars can be explained uniformly by the coupling between convection and oscillation (CCO). For the low-temperature stars on the right side of in- stability strip, CCO is the dominant excitation and damping mechanism of the oscillations of low- and intermediate-order p-modes, and the turbulent stochas- tic excitation becomes important only for the high-order p-modes of Sun-like oscillations.

  5. Differentiation among Multiple Sources of Anthropogenic Nitrate in a Complex Groundwater System using Dual Isotope Systematics: A case study from Mortandad Canyon, New Mexico

    NASA Astrophysics Data System (ADS)

    Larson, T. E.; Perkins, G.; Longmire, P.; Heikoop, J. M.; Fessenden, J. E.; Rearick, M.; Fabyrka-Martin, J.; Chrystal, A. E.; Dale, M.; Simmons, A. M.

    2009-12-01

    The groundwater system beneath Los Alamos National Laboratory has been affected by multiple sources of anthropogenic nitrate contamination. Average NO3-N concentrations of up to 18.2±1.7 mg/L have been found in wells in the perched intermediate aquifer beneath one of the more affected sites within Mortandad Canyon. Sources of nitrate potentially reaching the alluvial and intermediate aquifers include: (1) sewage effluent, (2) neutralized nitric acid, (3) neutralized 15N-depleted nitric acid (treated waste from an experiment enriching nitric acid in 15N), and (4) natural background nitrate. Each of these sources is unique in δ18O and δ15N space. Using nitrate stable isotope ratios, a mixing model for the three anthropogenic sources of nitrate was established, after applying a linear subtraction of the background component. The spatial and temporal variability in nitrate contaminant sources through Mortandad Canyon is clearly shown in ternary plots. While microbial denitrification has been shown to change groundwater nitrate stable isotope ratios in other settings, the redox potential, relatively high dissolved oxygen content, increasing nitrate concentrations over time, and lack of observed NO2 in these wells suggest minimal changes to the stable isotope ratios have occurred. Temporal trends indicate that the earliest form of anthropogenic nitrate in this watershed was neutralized nitric acid. Alluvial wells preserve a trend of decreasing nitrate concentrations and mixing models show decreasing contributions of 15N-depleted nitric acid. Nearby intermediate wells show increasing nitrate concentrations and mixing models indicate a larger component derived from 15N-depleted nitric acid. These data indicate that the pulse of neutralized 15N-depleted nitric acid that was released into Mortandad Canyon between 1986 and 1989 has infiltrated through the alluvial aquifer and is currently affecting two intermediate wells. This hypothesis is consistent with previous research suggesting that the perched intermediate aquifers in the Mortandad Canyon watershed are recharged locally from the overlying alluvial aquifers.

  6. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  7. Sb-rich Si-Sb-Te phase change material for multilevel data storage: The degree of disorder in the crystalline state

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Cheng, Yan; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin; Chen, Bomy

    2011-07-01

    The phase change memory with monolayer chalcogenide film (Si18Sb52Te30) is investigated for the feasibility of multilevel data storage. During the annealing of the film, a relatively stable intermediate resistance can be obtained at an appropriate heating rate. The transmission electron microscopy in situ analysis reveals a conversion of crystallization mechanism from nucleation to crystal growth, which leads a continuous reduction in the degree of disorder. It is indicated from the electrical properties of the devices that the fall edge of the voltage pulse is the critical factor that determines a reliable triple-level resistance state of the phase change memory cell.

  8. Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.

    2003-07-01

    The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).

  9. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    NASA Astrophysics Data System (ADS)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  10. GdnHCl-induced unfolding intermediate in the mitochondrial carbonic anhydrase VA.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2016-10-01

    Carbonic anhydrase VA (CAVA) is a mitochondrial enzyme belonging to the α-family of CAs, which is involved in several physiological processes including ureagenesis, lipogenesis, gluconeogenesis and neuronal transmission. Here, we have tried to understand the folding mechanism of CAVA using guanidine hydrochloride (GdnHCl)-induced denaturation at pH 8.0 and 25°C. The conformational stability was measured from the GdnHCl-induced denaturation study of CAVA monitored by circular dichroism (CD) and fluorescence measurements. On increasing the concentration of GdnHCl up to 5.0, a stable intermediate was observed between the concentrations 3.25M to 3.40M of the denaturant. However, CAVA gets completely denatured at 4.0M GdnHCl. The existence of a stable intermediate state was validated by 1-anilinonaphthalene-8-sulfonic acid (ANS binding) fluorescence and near-UV CD measurements. In silico studies were also performed to analyse the effect of GdnHCl on the structure and stability of CAVA under explicit conditions. Molecular dynamics simulations for 40ns were carried out and a well-defined correlation was established for both in vitro and in silico studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Coherence resonance in low-density jets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

    2017-11-01

    Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  12. New observations concerning the chloroacetaldehyde reaction with some tRNA constituents. Stable intermediates, kinetics and selectivity of the reaction.

    PubMed Central

    Biernat, J; Ciesiołka, J; Górnicki, P; Adamiak, R W; Kryzosiak, W J; Wiewiórowski, M

    1978-01-01

    The stable intermediates formed in the reaction of cytosine, cytidine and adenosine with chloracetaldehyde were isolated. The -CH2CH/OH/- bridge between the exo and endo nitrogen atoms of the parent base was found in these compounds by means of PMR spectroscopy. Their acid-induced dehydration resulted in formation of appropriate ethenoderivatives. The rate constants of the intermediate formation and its dehydration were found to be 38x10(-4) and 47x10(-4) /min-1/ for adenosine, and 33x10(-4) and 10x10(-4) /min-1/ for cytidine. The PH range of 4.5--5.0 was found to be optimum for both adenosine and cytidine reactions. The quantitative modification of these two nucleosides in the presence of guanosine may be achieved with high selectivity only at a low pH of 3.0--4.0 N6-methyladenosine and N4-methylcytidine react quantitatively with chloroacetaldehyde and the reaction rate is higher than in the case of the parent nucleosides. The structure of the reaction products was assigned on the basis of PMR spectroscopy. PMID:25420

  13. Urinary functional outcomes and toxicity five years after proton therapy for low- and intermediate-risk prostate cancer: Results of two prospective trials

    PubMed Central

    2013-01-01

    Background. To assess genitourinary (GU) function and toxicity in patients treated with image-guided proton therapy (PT) for early- and intermediate-risk prostate cancer and to analyze the impact of pretreatment urinary obstructive symptoms on urinary function after PT. Material and methods. Two prospective trials accrued 171 prostate cancer patients from August 2006 to September 2007. Low-risk patients received 78 cobalt gray equivalent (CGE) in 39 fractions and intermediate-risk patients received 78–82 CGE. Median follow-up was five years. The International Prostate Symptom Score (IPSS) and GU toxicities (per CTCAE v3.0 and v4.0) were documented prospectively. Results. Five transient GU events were scored Gr 3 per CTCAE v4.0, for a cumulative late GU toxicity rate of 2.9% at five years. There were no Gr 4 or 5 events. On multivariate analysis (MVA), the only factor predictive of Gr 2 + GU toxicity was pretreatment GU symptom management (p = 0.0058). Patients with pretreatment IPSS of 15–25 had a decline (clinical improvement) in median IPSS from 18 before treatment to 10 at their 60-month follow-up. At last follow-up, 18 (54.5%) patients had a > 5-point decline, 14 (42.5%) remained stable, and two patients (3%) had a > 5-point rise (deterioration) in IPSS. Patients with IPSS < 15 had a stable median IPSS of 6 before treatment and at 60 months. Conclusion. Urologic toxicity at five years with image-guided PT has been uncommon and transient. Patients with pretreatment IPSS of < 15 had stable urinary function five years after PT, but patients with 15–25 showed substantial improvement (decline) in median IPSS, a finding not explained by initiation or dose adjustment of alpha blockers. This suggests that PT provides a minimally toxic and effective treatment for low and intermediate prostate cancer patients, including those with significant pretreatment GU dysfunction (IPSS 15–25). PMID:23477359

  14. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  15. Urinary biomarkers of trimethoprim bioactivation in vivo following therapeutic dosing in children.

    PubMed

    van Haandel, Leon; Goldman, Jennifer L; Pearce, Robin E; Leeder, J Steven

    2014-02-17

    The antimicrobial trimethoprim-sulfamethoxazole (TMP-SMX) is widely used for the treatment of skin and soft-tissue infections in the outpatient setting. Despite its therapeutic benefits, TMP-SMX has been associated with a number of adverse drug reactions, which have been primarily attributed to the formation of reactive metabolites from SMX. Recently, in vitro experiments have demonstrated that TMP may form reactive intermediates as well. However, evidence of TMP bioactivation in patients has not yet been demonstrated. In this study, we performed in vitro trapping experiments with N-acetyl-l-cysteine (NAC) to determine stable markers of reactive TMP intermediates, focusing on eight potential markers (NAC-TMP adducts), some of which were previously identified in vitro. We developed a specific and sensitive assay involving liquid chromatography followed by tandem mass spectrometry for measurement of these adducts in human liver microsomal samples and expanded the methodology toward the detection of these analytes in human urine. Urine samples from four patients receiving TMP-SMX treatment were analyzed, and all samples demonstrated the presence of six NAC-TMP adducts, which were also detected in vitro. These adducts are consistent with the formation of imino-quinone-methide and para-quinone-methide reactive intermediates in vivo. As a result, the TMP component of TMP-SMX should be considered as well when evaluating adverse drug reactions to TMP-SMX.

  16. Analysis of heat recovery of diesel engine using intermediate working fluid

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming

    2017-07-01

    The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.

  17. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.

    PubMed

    Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C

    2015-08-05

    Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.

  18. Analysis of the gas phase reactivity of chlorosilanes.

    PubMed

    Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo

    2013-06-27

    Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.

  19. Theory of Disk-to-Vesicle Transformation

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  20. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?

    PubMed

    Wang, Yixuan; Nakamura, Shinichiro; Tasaki, Ken; Balbuena, Perla B

    2002-04-24

    To elucidate the role of vinylene carbonate (VC) as a solvent additive in organic polar solutions for lithium-ion batteries, reductive decompositions for vinylene carbonate (VC) and ethylene carbonate (EC) molecules have been comprehensively investigated both in the gas phase and in solution by means of density functional theory calculations. The salt and solvent effects are incorporated with the clusters (EC)nLi+(VC) (n = 0-3), and further corrections that account for bulk solvent effects are added using the polarized continuum model (PCM). The electron affinities of (EC)nLi+(VC) (n = 0-3) monotonically decrease when the number of EC molecules increases; a sharp decrease of about 20.0 kcal/mol is found from n = 0 to 1 and a more gentle variation for n > 1. For (EC)nLi+(VC) (n = 1-3), the reduction of VC brings about more stable ion-pair intermediates than those due to reduction of the EC molecule by 3.1, 6.1, and 5.3 kcal/mol, respectively. This finding qualitatively agrees with the experimental fact that the reduction potential of VC in the presence of Li salt is more negative than that of EC. The calculated reduction potentials corresponding to radical anion formation are close to the experimental potentials determined with cyclic voltammetry on a gold electrode surface (-2.67, -3.19 eV on the physical scale for VC and EC respectively vs experimental values -2.96 and -2.94 eV). Regarding the decomposition mechanisms, the VC and EC moieties undergo homolytic ring opening from their respective reduction intermediates, and the energy barrier of VC is about one time higher than that of EC (e.g., 20.1 vs 8.8 kcal/mol for (EC)2Li+(VC)); both are weakly affected by the explicit solvent molecules and by a bulk solvent represented by a continuum model. Alternatively, starting from the VC-reduction intermediate, the ring opening of the EC moiety via an intramolecular electron-transfer transition state has also been located; its barrier lies between those of EC and VC (e.g., 17.2 kcal/mol for (EC)2Li+(VC)). On the basis of these results, we suggest the following explanation about the role that VC may play as additive in EC-based lithium-ion battery electrolytes; VC is initially reduced to a more stable intermediate than that from EC reduction. One possibility then is that the reduced VC decomposes to form a radical anion via a barrier of about 20 kcal/mol, which undergoes a series of reactions to give rise to more active film-forming products than those resulting from EC reduction, such as lithium divinylene dicarbonate, Li-C carbides, lithium vinylene dicarbonate, R-O-Li compound, and even oligomers with repeated vinylene and carbonate-vinylene units. Another possibility starting from the VC-reduction intermediate is that the ring opening occurs on the unreduced EC moiety instead of being on the reduced VC, via an intramolecular electron transfer transition state, the energy barrier of which is lower than that of the former, in which VC just helps the intermediate formation and is not consumed. The factors that determine the additive functioning mechanism are briefly discussed, and consequently a general rule for the selection of electrolyte additive is proposed.

  1. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.

    PubMed

    Liu, Wen; Jiang, Jianbing; Yang, Ke R; Mi, Yingying; Kumaravadivel, Piranavan; Zhong, Yiren; Fan, Qi; Weng, Zhe; Wu, Zishan; Cha, Judy J; Zhou, Henghui; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2017-04-04

    Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

  2. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate

    NASA Astrophysics Data System (ADS)

    Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang

    2016-11-01

    It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.

  3. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  4. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  5. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    PubMed

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Direct synthesis of anti-1,3-diols through nonclassical reaction of aryl Grignard reagents with isopropenyl acetate.

    PubMed

    Jiao, Yinchun; Cao, Chenzhong; Zhou, Zaichun

    2011-01-21

    A series of symmetrical aromatic 1,3-diols were efficiently synthesized from substituted aryl Grignard reagents and isopropenyl acetate in a one-step reaction that formed anti products as the major species. Both experimental and theoretical studies suggested that the reaction involves the formation of a relatively stable intermediate E containing a six-membered ring from intermediate A. The stereoselectivity of the reactions and the molecular structure of the products were confirmed by NMR spectroscopy, X-ray diffraction, and gas chromatography.

  7. Structure-property relationships in thermomechanically treated beryllia dispersed nickel alloys

    NASA Technical Reports Server (NTRS)

    Grewal, M. S.; Sastri, S. A.; Grant, N. J.

    1975-01-01

    BeO dispersed nickel alloys, produced by powder metallurgy techniques, were studied extensively in stress rupture at 815, 982, and 1093 C (1088, 1255, and 1366 K) and by transmission electron microscopy. The alloys were subjected to a variety of thermomechanical treatments (TMT) to determine the benefits of TMT on properties. It is shown that the use of intermediate annealing treatments after 10 pct reduction steps is highly beneficial on both low and high temperature properties. It is indicated that the high temperature strength is not primarily dependent on the grain aspect ratio or texture but depends strongly on the dislocation density and distribution of dislocations in a stable substructure which is pinned by the fine oxide dispersion.

  8. Reaction of rat liver glutathione S-transferases and bacterial dichloromethane dehalogenase with dihalomethanes.

    PubMed

    Blocki, F A; Logan, M S; Baoli, C; Wackett, L P

    1994-03-25

    Dichloromethane dehalogenase from Methylophilus sp. DM11 is a glutathione S-transferase homolog that is specifically active with dihalomethane substrates. This bacterial enzyme and rat liver glutathione S-transferases were purified to investigate their relative reactivity with CH2Cl2 and related substrates. Rat liver alpha class glutathione transferases were inactive and mu class enzymes showed low activity (7-23 nmol/min/mg of protein) with CH2Cl2. theta class glutathione transferase 5-5 from rat liver and Methylophilus sp. dichloromethane dehalogenase showed specific activities of > or = 1 mumol/min/mg of protein. Apparent Kcat/Km were determined to be 3.3 x 10(4) and 6.0 x 10(4) L M-1 S-1 for the two enzymes, respectively. Dideutero-dichloromethane was processed to dideutereo-formaldehyde, consistent with a nucleophilic halide displacement mechanism. The possibility of a GSCH2X reaction intermediate (GS, glutathione; X, halide) was probed using CH2ClF to generate a more stable halomethylglutathione species (GSCH2F). The reaction of CH2ClF with dichloromethane dehalogenase produced a kinetically identifiable intermediate that decomposed to formaldehyde at a similar rate to synthetic HOCH2CH2SCH2F. 19F-NMR revealed the transient formation of an intermediate identified as GSCH2F by its chemical shift, its triplet resonance, and H-F coupling constant consistent with a fluoromethylthioether. Its decomposition was matched by a stoichiometric formation of fluoride. These studies indicated that the bacterial dichloromethane dehalogenase directs a nucleophilic attack of glutathione on CH2Cl2 to produce a halomethylthioether intermediate. This focuses attention on the mechanism used by theta class glutathione transferases to generate a halomethylthioeter from relatively unreactive dihalomethanes.

  9. Understanding and Mitigating the Effects of Stable Dodecahydro- closo -dodecaborate Intermediates on Hydrogen-Storage Reactions

    DOE PAGES

    White, James L.; Newhouse, Rebecca J.; Zhang, Jin Z.; ...

    2016-10-25

    Alkali metal borohydrides can reversibly store hydrogen; however, the materials display poor cyclability, often times linked to occurrence of stable closo-polyborate intermediate species. In an effort to understand the role of such intermediates on the hydrogen storage properties of metal borohydrides, several alkali metal dodecahydro-closo-dodecaborate salts were isolated in anhydrous form and characterized by diffraction and spectroscopic techniques. Mixtures of Li 2B 12H 12, Na 2B 12H 12, and K 2B 12H 12 with the corresponding alkali metal hydrides were subjected to hydrogenation conditions known to favor partial or full reversibility in metal borohydrides. The stoichiometric mixtures of MH andmore » M 2B 12H 12 salts form the corresponding metal borohydrides MBH 4 (M=Li, Na, K) in almost quantitative yield at 100 MPa H 2 and 500 °C. In addition, stoichiometric mixtures of Li 2B 12H 12 and MgH 2 were found to form MgB 2 at 500 °C and above upon desorption in vacuum. The two destabilization strategies outlined above suggest that metal polyhydro-closo-polyborate species can be converted into the corresponding metal borohydrides or borides, albeit under rather harsh conditions of hydrogen pressure and temperature.« less

  10. Triggering the approach of an arene or heteroarene towards an aldehyde via Lewis acid-aldehyde communication.

    PubMed

    Pratihar, Sanjay

    2016-03-14

    The present work reports a combined experimental/computational study of the Lewis acid promoted hydroxyalkylation reaction involving aldehyde and arene/heteroarene and reveals a mechanism in which the rate determining aldehyde to alcohol formation via a four-member cyclic transition state (TS) involves a transfer of hydrogen from arene/heteroarene C-H to aldehyde oxygen with the breaking of the C-H bond and formation of C-C and O-H bonds. The effect of different Sn(iv) derivatives on the hydroxyalkylation reaction from different in situ NMR and computational studies reveals that although the exergonic formation of the intermediate and its gained electrophilicity at the carbonyl carbon drive the reaction in SnCl4 compared to other Sn(iv) derivatives, the overall reaction is low yielding because of its stable intermediate. With respect to different aldehydes, LA promoted hydroxylation was found to be more feasible for an electron withdrawing aldehyde compared to electron rich aldehyde because of lower stability, enhanced electrophilicity gained at the aldehyde center, and a lower activation barrier between its intermediate and TS in the former as compared to the latter. The relative stability of the LA-aldehyde adduct decreases in the order SnCl4 > AlCl3 > InCl3 > BF3 > ZnCl2 > TiCl4 > SiCl4, while the activation barrier (ΔG(#)) between intermediate and transition states increases in the order AlCl3 < SnCl4 < InCl3 < BF3 < TiCl4 < ZnCl2 < SiCl4. On the other hand, the activation barriers in the case of different arenes/heteroarenes are in the order of indole < furan < anisole < thiophene < toluene < benzene < chlorobenzene < cyanobenzene, which suggests a facile reaction in the case of indole and the most difficult reaction in the case of cyanobenzene. The ease of formation of the corresponding diaryl methyl carbocation from the alcohol-LA intermediate is responsible for the determination of the undesired product and is found to be more viable in the case of strong LAs like AlCl3, InCl3 and SnCl4 because they have negative free energy of formation (ΔG) for alcohol to the corresponding diaryl methyl carbocation.

  11. Computational Study of the Thermodynamics of Atmospheric Nitration of PAHs via OH-Radical-Initiated Reaction

    NASA Astrophysics Data System (ADS)

    Jariyasopit, N.; Cheong, P.; Simonich, S. L.

    2011-12-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are an important class of PAH derivatives that are more toxic than their parent PAHs (1) and are emitted from direct emission and secondary emission to the atmosphere. The secondary emissions, particularly the OH-radical initiated and NO3-radical-initiated reactions, have been shown to influence the NPAH concentrations in the atmosphere. Gas-phase reactions are thought to be the major sources of NPAHs containing four or fewer rings (2). Besides NPAHs, PAHs lead to a number of other products including oxygenated, hydroxy substituted and ring-opened PAH derivatives (3). For some PAHs, the OH-initiated and NO3-initiated reactions result in the formation of different NPAH isomers, allowing the ratio of these isomers to be used in the determination of direct or secondary emission sources. Previous studies have shown that the PAH gas-phase reactions with OH radical is initiated by the addition of OH radical to the aromatic ring to form hydroxycyclohexadienyl radicals (4). In the presence of NO2, these reactive intermediates readily nitrate with the elimination of water (4). The hydroxycyclohexadienyl-type radical intermediates are also prone to react with other species in the atmosphere or revert back to the original compound (3). The objective of this study was to investigate the thermodynamics of PAH nitration through day-time OH-radical-initiated reactions. The theoretical investigation were carried out using Density Functioanl Theory (B3LYP) and the 6-31G(d) basis set, as implemented in Gaussian03. A number of different PAHs were studied including fluoranthene, pyrene, as well as the molecular weight 302 PAHs such as dibenzo[a,l]pyrene. Computations were also used to predict unknown NPAHs formed by OH-radical-initiated reaction. All intermediates for the OH-radical addition and the following nitration were computed. We have discovered that the thermodynamic stability of the intermediates involved in the PAH oxygenation and nitration pathways are critical in explaining the atmospheric abundances of NPAHs. Specifically, we have found that the experimentally most abundant species had the most stable intermediates. Interestingly, the overall free energy of reaction was not a factor in determining the relative abundances of NPAHs.

  12. Intermediate introns in nuclear genes of euglenids - are they a distinct type?

    PubMed

    Milanowski, Rafał; Gumińska, Natalia; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bożena

    2016-02-29

    Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, -7 and -6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns.

  13. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps.

    PubMed

    Rea, Anita M; Simpson, Emma R; Meldrum, Jill K; Williams, Huw E L; Searle, Mark S

    2008-12-02

    The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.

  14. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia

    NASA Astrophysics Data System (ADS)

    Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh

    2018-06-01

    Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  15. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia

    NASA Astrophysics Data System (ADS)

    Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh

    2017-12-01

    Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  16. Control of Synchronization Regimes in Networks of Mobile Interacting Agents

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, Fernando; Zillmer, Ruediger; Groß, Roderich

    2017-05-01

    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more-realistic K -nearest-neighbor and cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.

  17. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Soil properties of crocker formation and its influence on slope instability along the Ranau-Tambunan highway, Sabah

    NASA Astrophysics Data System (ADS)

    Azlan, Noran Nabilla Nor; Simon, Norbert; Hussin, Azimah; Roslee, Rodeano

    2016-11-01

    The Crocker formation on the study area consists of an inter-bedded shale and sandstone. The intense deformation and discontinuity on sandstone and shale beds of the arenaceous Crocker Formation makes them easily exposed to weathering and instability. In this study, a total of 15 selected slopes representing highly weathered material of stable and unstable conditions were studied to identify the characteristics of soil material on both conditions and how these characteristics will lead to instability. Physical properties analysis of soil material were conducted on 5 samples from stable slopes and 10 samples from failed slopes collected along the Ranau-Tambunan highway (RTM), Sabah. The analysis shows that the Crocker Formation consists mainly of poorly graded materials of sandy SILT with low plasticity (MLS) and PI value ranges from 1%-14. The failures materials are largely consist of low water content (0.94%-2.03%), higher finer texture material (11%-71%), intermediate liquid limit (21%-44%) and low plastic limit (20%-30%) while stable material consist of low water content (1.25%-1.80%), higher coarser texture material (43%-78%), low liquid limit (25%-28%) and low plastic limit (22%-25%). Specific gravity shows a ranges value of 2.24-2.60 for both slope conditions. The clay content in failed slope samples exhibit a slightly higher percentage of clay indicating a higher plasticity value compared to stable slopes. Statistical analysis was carried out to examine the association between landslide occurrences with soil physical properties in both stable and unstable slopes. The significant of both slope condition properties association to landslide occurrences was determined by mean rank differences. The study reveals that the grain size and plasticity of soil have contributed largely to slope instability in the study area.

  19. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase.

    PubMed

    Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya

    2017-05-31

    Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Copyright © 2017 the authors 0270-6474/17/375496-•$15.00/0.

  20. Trends in initial management of prostate cancer in New Hampshire.

    PubMed

    Ingimarsson, Johann P; Celaya, Maria O; Laviolette, Michael; Rees, Judy R; Hyams, Elias S

    2015-06-01

    Prostate cancer management strategies are evolving with increased understanding of the disease. Specifically, there is emerging evidence that "low-risk" cancer is best treated with observation, while localized "high-risk" cancer requires aggressive curative therapy. In this study, we evaluated trends in management of prostate cancer in New Hampshire to determine adherence to evidence-based practice. From the New Hampshire State Cancer Registry, cases of clinically localized prostate cancer diagnosed in 2004-2011 were identified and classified according to D'Amico criteria. Initial treatment modality was recorded as surgery, radiation therapy, expectant management, or hormone therapy. Temporal trends were assessed by Chi-square for trend. Of 6,203 clinically localized prostate cancers meeting inclusion criteria, 34, 30, and 28% were low-, intermediate-, and high-risk disease, respectively. For low-risk disease, use of expectant management (17-42%, p < 0.001) and surgery (29-39%, p < 0.001) increased, while use of radiation therapy decreased (49-19 %, p < 0.001). For intermediate-risk disease, use of surgery increased (24-50%, p < 0.001), while radiation decreased (58-34%, p < 0.001). Hormonal therapy alone was rarely used for low- and intermediate-risk disease. For high-risk patients, surgery increased (38-47%, p = 0.003) and radiation decreased (41-38%, p = 0.026), while hormonal therapy and expectant management remained stable. There are encouraging trends in the management of clinically localized prostate cancer in New Hampshire, including less aggressive treatment of low-risk cancer and increasing surgical treatment of high-risk disease.

  1. AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG.

    PubMed

    Hosseinian, Farah S; Muir, Alister D; Westcott, Neil D; Krol, Ed S

    2007-02-21

    Secoisolariciresinol (SECO ) is the major lignan found in flaxseed (Linum usitatissimum L.) and is present in a polymer that contains secoisolariciresinol diglucoside (SDG ). SECO, SDG and the polymer are known to have a number of health benefits, including reduction of serum cholesterol levels, delay in the onset of type II diabetes and decreased formation of breast, prostate and colon cancers. The health benefits of SECO and SDG may be partially attributed to their antioxidant properties. To better understand their antioxidant properties, SECO and SDG were oxidized using 2,2'-azobis(2-amidinopropane), an in vitro model of radical scavenging. The major lignan radical-scavenging oxidation products and their formation over time were determined. SDG was converted to four major products, which were the result of a phenoxyl radical intermediate. One of these products, a dimer of SDG, decomposed under the reaction conditions to form two of the other major products, and . SECO was converted to five major products, two of which were also the result of a phenoxyl radical intermediate. The remaining products were the result of an unexpected alkoxyl radical intermediate. The phenol oxidation products were stable under the reaction conditions, whereas two of the alcohol oxidation products decomposed. In general, only one phenol group on the lignans was oxidized, suggesting that the number of phenols per molecule may not predict radical scavenging antioxidant ability of lignans. Finally, SECO is a superior antioxidant to SDG, and it may be that the additional alcohol oxidation pathway contributes to its greater antioxidant ability.

  2. Test--retest variability of Randot stereoacuity measures gathered in an unselected sample of UK primary school children.

    PubMed

    Adler, Paul; Scally, Andrew J; Barrett, Brendan T

    2012-05-01

    To determine the test-retest reliability of the Randot stereoacuity test when used as part of vision screening in schools. Randot stereoacuity (graded-circles) and logMAR visual acuity measures were gathered in an unselected sample of 139 children (aged 4-12, mean 8.1±2.1 years) in two schools. Randot testing was repeated on two occasions (average interval between successive tests 8 days, range: 1-21 days). Three Randot scores were obtained in 97.8% of children. Randot stereoacuity improved by an average of one plate (ie, one test level) on repeat testing but was little changed when tested on the third occasion. Within-subject variability was up to three test levels on repeat testing. When stereoacuity was categorised as 'fine', 'intermediate' or 'coarse', the greatest variability was found among younger children who exhibited 'intermediate' or 'coarse'/nil stereopsis on initial testing. Whereas 90.8% of children with 'fine' stereopsis (≤50 arc-seconds) on the first test exhibited 'fine' stereopsis on both subsequent tests, only ∼16% of children with 'intermediate' (>50 but ≤140 arc-seconds) or 'coarse'/nil (≥200 arc-seconds) stereoacuity on initial testing exhibited stable test results on repeat testing. Children exhibiting abnormal stereoacuity on initial testing are very likely to exhibit a normal result when retested. The value of a single, abnormal Randot graded-circles stereoacuity measure from school screening is therefore questionable.

  3. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.

    PubMed

    Blasco, Teresa

    2010-12-01

    This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.

  4. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    PubMed Central

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  5. In situ characterization of the decomposition behavior of Mg(BH4)2 by X-ray Raman scattering spectroscopy.

    PubMed

    Sahle, Christoph J; Kujawski, Simon; Remhof, Arndt; Yan, Yigang; Stadie, Nicholas P; Al-Zein, Ali; Tolan, Metin; Huotari, Simo; Krisch, Michael; Sternemann, Christian

    2016-02-21

    We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

  6. A Broad Stability Investigation of Nb-Doped SrCoO 2.5+δ as a Reversible Oxygen Electrode for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Wang, Jie; Jiang, Long; Xiong, Xiaolei; ...

    2016-06-10

    The present work reports a systematic study on the structural, thermal, electrical and electrochemical stability of SrCo 1–xNb xO 2.5+δ series as a potential reversible oxygen-electrode for intermediate-temperature solid oxide fuel cells. The identified best composition is x = 0.10, which exhibits a stable pseudo primitive cubic structure at <700°C and a reversible oxygen redox reaction at 350°C. The conductivity of this material is p-type and also exhibits a peak at 350°C, implying that the electron hole conduction is closely associated with the oxygen nonstoichiometry. Electrochemical impedance spectroscopy analysis indicates a low polarization resistance rate-limited by a slower surface Omore » 2 dissociation step. Altogether, the material is thermally stable and oxygen redox reversible below 700°C, above which a catalytically less active brownmillerite SrCoO 2.5 is formed.« less

  7. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  8. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers

    NASA Astrophysics Data System (ADS)

    Truskett, Thomas M.; Johnston, Keith; Maynard, Jennifer; Borwankar, Ameya; Miller, Maria; Wilson, Brian; Dinin, Aileen; Khan, Tarik; Kaczorowski, Kevin

    2012-02-01

    Stabilizing concentrated protein solutions is of wide interest in drug delivery. However, a major challenge is how to reliably formulate concentrated, low viscosity (i.e., syringeable) solutions of biologically active proteins. Unfortunately, proteins typically undergo irreversible aggregation at intermediate concentrations of 100-200 mg/ml. In this talk, I describe how they can effectively avoid these intermediate concentrations by reversibly assembling into nanoclusters. Nanocluster assembly is achieved by balancing short-ranged, cosolute-induced attractions with weak, longer-ranger electrostatic repulsions near the isoelectric point. Theory predicts that native proteins are stabilized by a self-crowding mechanism within the concentrated environment of the nanoclusters, while weak cluster-cluster interactions can result in colloidally-stable dispersions with moderate viscosities. I present experimental results where this strategy is used to create concentrated antibody dispersions (up to 260 mg/ml) comprising nanoclusters of proteins [monoclonal antibody 1B7, polyclonal sheep Immunoglobin G and bovine serum albumin], which upon dilution in vitro or administration in vivo, are conformationally stable and retain activity.

  9. Migrating Myeloid Cells Sense Temporal Dynamics of Chemoattractant Concentrations.

    PubMed

    Petrie Aronin, Caren E; Zhao, Yun M; Yoon, Justine S; Morgan, Nicole Y; Prüstel, Thorsten; Germain, Ronald N; Meier-Schellersheim, Martin

    2017-11-21

    Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments. Published by Elsevier Inc.

  10. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells. © 2015 Wiley Periodicals, Inc.

  11. Bi-stable vocal fold adduction: a mechanism of modal-falsetto register shifts and mixed registration.

    PubMed

    Titze, Ingo R

    2014-04-01

    The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast.

  12. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    PubMed

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  13. Bi-stable vocal fold adduction: A mechanism of modal-falsetto register shifts and mixed registration

    PubMed Central

    Titze, Ingo R.

    2014-01-01

    The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast. PMID:25235006

  14. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble

    PubMed Central

    Fisher, Kaitlin M.; Haglund, Ellinor; Noel, Jeffrey K.; Hailey, Kendra L.; Onuchic, José N.; Jennings, Patricia A.

    2015-01-01

    Interleukin-33 (IL-33) is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of the protein is geometrically frustrated, requiring the more stable elements to fold first, acting as a scaffold for docking of the functional element to allow productive folding to the native state. PMID:26630011

  15. Do planetary seasons play a role in attaining stable climates?

    NASA Astrophysics Data System (ADS)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2018-05-01

    A simple phenomenological account for planetary climate instabilities is presented. The description is based on the standard model where the balance of incoming stellar radiation and outward thermal radiation is described by the effective planet temperature. Often, it is found to have three different points, or temperatures, where the influx of radiation is balanced with the out-flux, even with conserved boundary conditions. Two of these points are relatively long-term stable, namely the point corresponding to a cold climate and the point corresponding to a hot climate. In a classical sense these points are equilibrium balance points. The hypothesis promoted in this paper is the possibility that the intermediate third point can become long-term stable by being driven dynamically. The initially unstable point is made relatively stable over a long period by the presence of seasonal climate variations.

  16. The Synthesis and Chemiluminescence of a Stable 1,2-Dioxetane.

    ERIC Educational Resources Information Center

    Meijer, E. W.; Wynberg, Hans

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for the synthesis and chemiluminescence of adamantylideneadamantane-1,2-dioxetane (I). Results provided were obtained during a normal junior level organic laboratory course. All intermediates and products were identified using routine spectroscopic analysis.…

  17. Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector

    DTIC Science & Technology

    2016-07-27

    Instability in a Multi- Element Injector 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew Harvazinski, Yogin...Simulations of Transverse  Combustion Instability in a Multi‐ Element  Injector 2 History Damaged engine injector  faceplate caused by combustion...Clearance #16346 3 Single  Element  Studies Short Post Marginally Stable Intermediate Post Unstable Long Post Stable Long Post Unstable CVRC Experiment

  18. The global extent and determinants of savanna and forest as alternative biome states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon A

    2011-10-14

    Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.

  19. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemble,C.; Johnson, L.; Kridel, S.

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibitionmore » and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.« less

  1. Foods for a Mission to Mars: Investigations of Low-Dose Gamma Radiation Effects

    NASA Technical Reports Server (NTRS)

    Gandolph, J.; Shand, A.; Stoklosa, A.; Ma, A.; Weiss, I.; Alexander, D.; Perchonok, M.; Mauer, L. J.

    2007-01-01

    Food must be safe, nutritious, and acceptable throughout a long duration mission to maintain the health, well-being, and productivity of the astronauts. In addition to a developing a stable pre-packaged food supply, research is required to better understand the ability to convert edible biomass into safe, nutritious, and acceptable food products in a closed system with many restrictions (mass, volume, power, crew time, etc.). An understanding of how storage conditions encountered in a long-term space mission, such as elevated radiation, will impact food quality is also needed. The focus of this project was to contribute to the development of the highest quality food system possible for the duration of a mission, considering shelf-stable extended shelf-life foods, bulk ingredients, and crops to be grown in space. The impacts of space-relevant radiation doses on food, bulk ingredient, and select candidate crop quality and antioxidant capacity were determined. Interestingly, increasing gamma-radiation doses (0 to 1000 Gy) did not always increase dose-related effects in foods. Intermediate radiation doses (10 to 800Gy) often had significantly larger impact on the stability of bulk ingredient oils than higher (1000Gy) radiation doses. Overall, most food, ingredient, and crop systems investigated showed no significant differences between control samples and those treated with 3 Gy of gamma radiation (the upper limit estimated for a mission to Mars). However, this does not mean that all foods will be stable for 3-5 years, nor does it mean that foods are stable to space radiation comprising more than gamma rays.

  2. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  3. Recursive formulas for determining perturbing accelerations in intermediate satellite motion

    NASA Astrophysics Data System (ADS)

    Stoianov, L.

    Recursive formulas for Legendre polynomials and associated Legendre functions are used to obtain recursive relationships for determining acceleration components which perturb intermediate satellite motion. The formulas are applicable in all cases when the perturbation force function is presented as a series in spherical functions (gravitational, tidal, thermal, geomagnetic, and other perturbations of intermediate motion). These formulas can be used to determine the order of perturbing accelerations.

  4. Young driver licensing: examination of population-level rates using New Jersey's state licensing database.

    PubMed

    Curry, Allison E; Pfeiffer, Melissa R; Durbin, Dennis R; Elliott, Michael R; Kim, Konny H

    2015-03-01

    Recent surveys have provided insight on the primary reasons why US teens delay licensure but are limited in their ability to estimate licensing rates and trends. State administrative licensing data are the ideal source to provide this information but have not yet been analyzed for this purpose. Our objective was to analyze New Jersey's (NJ) licensing database to: (1) describe population-based rates of licensure among 17- to 20-year-olds, overall and by gender and zip code level indicators of household income, population density, and race/ethnicity; and (2) examine recent trends in licensure. We obtained records on all licensed NJ drivers through June 2012 from the NJ Motor Vehicle Commission's licensing database and determined each young driver's age at the time of intermediate and full licensure. Data from the US Census and American Community Survey were used to estimate a fixed cohort of NJ residents who turned 17 years old in 2006-2007 (n=255,833). Licensing data were used to estimate the number of these drivers who obtained an intermediate license by each month of age (numerators) and, among those who obtained an intermediate license, time to graduation to full licensure. Overall, 40% of NJ residents-and half of those who ultimately obtained a license by age 21-were licensed within a month of NJ's minimum licensing age of 17, 64% by their 18th birthday, and 81% by their 21st birthday. Starkly different patterns of licensure were observed by socioeconomic indicators; for example, 65% of 17-year-olds residing in the highest-income zip codes were licensed in the first month of eligibility compared with 13% of residents living in the lowest-income zip codes. The younger an individual obtained their intermediate license, the earlier they graduated to a full license. Finally, the rate and timing of licensure in NJ has been relatively stable from 2006 to 2012, with at most a 1-3% point decline in rates. These findings support the growing body of literature suggesting that teens delay licensure primarily for economic reasons and that a substantial proportion of potentially high-risk teens may be obtaining licenses outside the auspices of a graduated driver licensing system. Finally, our finding of a relatively stable trend in licensure in recent years is in contrast to national-level reports of a substantial decline in licensure rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Furosemide Prescription During the Dry State Is a Predictor of Long-Term Survival of Stable, Optimally Medicated Patients With Systolic Heart Failure.

    PubMed

    Sargento, Luis; Simões, Andre Vicente; Longo, Susana; Lousada, Nuno; Reis, Roberto Palma Dos

    2017-05-01

    Furosemide is associated with poor prognosis in patients with heart failure and reduced ejection fraction (HFrEF). To evaluate the association between daily furosemide dose prescribed during the dry state and long-term survival in stable, optimally medicated outpatients with HFrEF. Two hundred sixty-six consecutive outpatients with left ventricular ejection fraction <40%, clinically stable in the dry state and on optimal heart failure therapy, were followed up for 3 years in a heart failure unit. The end point was all-cause death. There were no changes in New York Heart Association class and therapeutics, including diuretics, and no decompensation or hospitalization during 6 months. Furosemide doses were categorized as low or none (0-40 mg/d), intermediate (41-80 mg/d), and high (>80 mg). Cox regression was adjusted for significant confounders. The 3-year mortality rate was 33.8%. Mean dose of furosemide was 57.3 ± 21.4 mg/d. A total of 47.6% of patients received the low dose, 42.1% the intermediate dose, and 2.3% the high dose. Receiver operating characteristics for death associated with furosemide dose showed an area under the curve of 0.74 (95% confidence interval [CI]: 0.68-0.79; P < .001), and the best cutoff was >40 mg/d. An increasing daily dose of furosemide was associated with worse prognosis. Those receiving the intermediate dose (hazard ratio [HR] = 4.1; 95% CI: 2.57-6.64; P < .001) or high dose (HR = 19.8; 95% CI: 7.9-49.6; P < .001) had a higher risk of mortality compared to those receiving a low dose. Patients receiving >40 mg/d, in a propensity score-matched cohort, had a greater risk of mortality than those receiving a low dose (HR = 4.02; 95% CI: 1.8-8.8; P = .001) and those not receiving furosemide (HR = 3.9; 95% CI: 0.07-14.2; P = .039). Furosemide administration during the dry state in stable, optimally medicated outpatients with HFrEF is unfavorably associated with long-term survival. The threshold dose was 40 mg/d.

  6. Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes

    DOEpatents

    Hammond, P.R.

    1983-12-29

    Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

  7. Shape transformation of viral capsids and HIV

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan

    2005-03-01

    We present a continuum description of the shape transformation of viral capsids. The cone-like HIV virus is shown to be an thermodynamic stable shape, intermediate between icosahedral and sphero-cylinder capsid shapes. A generalized Caspar-Klug classification is introduced to describe spherical, conical and cylinderical shapes of virus.

  8. Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes

    DOEpatents

    Hammond, Peter R.

    1986-01-01

    Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

  9. Modifying a known gelator scaffold for nitrite detection.

    PubMed

    Zurcher, Danielle M; Adhia, Yash J; Romero, Julián Díaz; McNeil, Anne J

    2014-07-25

    The process of selecting and modifying a known gelator scaffold to develop a new nitrite-based sensor is described. Five new azo-sulfonate gelators were discovered and characterized. The most promising scaffold exhibits a stable diazonium intermediate, proceeds in a high yield, and gels nitrite-spiked tap, river, and pond water.

  10. Development and validation of a high performance liquid chromatographic method for the separation of exo and endo isomers of granatamine (9-methyl-9-azabicyclo[3.3.1]nonan-3-amine); a key intermediate of granisetron.

    PubMed

    Krishna, S Radha; Babu, P Suresh; Rao, B M; Rao, N Someswara

    2009-12-01

    A simple and accurate high-performance liquid chromatographic method was developed for the determination of exo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine in endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine, commercially known as grantamine and used as a key intermediate in the preparation of granisetron bulk drug. Chromatographic separation of the exo and endo isomers of 9-methyl-9-azabicyclo[3.3.1]nonan-3-amine was achieved on an Inertsil C8 column using a mobile phase containing 0.3% trifluoroacetic acid. The resolution between the two isomers was found to be more than 4. The limit of detection (LOD) and limit of quantification (LOQ) of exo isomer were 0.8 and 2.5 microg x mL(-1) respectively, for a 10 microL injection volume. The percentage recovery of exo-isomer ranged from 99 to 102% w/w in the endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine sample. The test solution and mobile phase were observed to be stable up to 48 h after preparation. The validated method yielded good results for precision, linearity, accuracy, robustness and ruggedness. The proposed method was found to be suitable and accurate for the quantitative determination of exo-isomer in bulk samples of endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine.

  11. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

    PubMed

    Exner, Kai S; Over, Herbert

    2017-05-16

    Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO 2 (110), while the kinetics of the OER over RuO 2 (110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G rds # , defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G max (RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG loss , as a descriptor for the kinetics.

  12. Validation and application of an improved method for the rapid determination of proline in grape berries.

    PubMed

    Rienth, Markus; Romieu, Charles; Gregan, Rebecca; Walsh, Caroline; Torregrosa, Laurent; Kelly, Mary T

    2014-04-16

    A rapid and sensitive method is presented for the determination of proline in grape berries. Following acidification with formic acid, proline is derivatized by heating at 100 °C for 15 min with 3% ninhydrin in dimethyl sulfoxide, and the absorbance, which is stable for at least 60 min, is read at 520 nm. The method was statistically validated in the concentration range from 2.5 to 15 mg/L, giving a repeatability and intermediate precision of generally <3%; linearity was determined using the lack of fit test. Results obtained with this method concurred (r = 0.99) with those obtained for the same samples on an amino acid analyzer. In terms of sample preparation, a simple dilution (5-20-fold) is required, and sugars, primary amino acids, and anthocyanins were demonstrated not to interfere, as the latter are bleached by ninhydrin under the experimental conditions. The method was applied to the study of proline accumulation in the fruits of microvines grown in phytotrons, and it was established that proline accumulation and concentrations closely resemble those of field-grown macrovines.

  13. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  14. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  15. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  16. Room-Temperature C-H Functionalization Sequence under Benchtop Conditions for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chen, Shuming

    2018-01-01

    An iridium(III)-mediated C-H functionalization sequence involving a concerted cyclometalation-deprotonation/migratory insertion pathway is reported for the undergraduate chemistry laboratory. The air- and water-stable iridacycle intermediates are readily isolated and characterized by NMR spectroscopy. Both steps of the experiment are performed at…

  17. Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations

    USDA-ARS?s Scientific Manuscript database

    The winter wheat (Triticum aestivum L.) summer fallow rotation typically practiced in the intermediate precipitation zone [300-450 mm (12-18 in)] of the inland Pacific Northwest has proven to be economically stable for producers in this region. However multiple tillage operations are used to control...

  18. Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate

    ERIC Educational Resources Information Center

    Mattson, Bruce; Hoette, Trisha

    2007-01-01

    The combustion of hydrogen in air is quite complex with at least 28 mechanistic steps and twelve reaction species. Most of the species involved are radicals (having unpaired electrons) in nature. Among the various species generated, a few are stable, including hydrogen peroxide. In a normal hydrogen flame, the hydrogen peroxide goes on to further…

  19. Seasonal variations in optimized applications of intermediate stable alpha-amylase in raw sugar manufacture

    USDA-ARS?s Scientific Manuscript database

    In recent years, starch being delivered to and processed in U.S. factories has risen markedly because of the increased production of green (unburnt) and combine-harvested (billeted) sugarcane and the introduction of new sugarcane varieties with higher starch content. To prevent carry-over alpha-amy...

  20. THERMALLY STABLE PERFLUORINATED POLYMERS

    DTIC Science & Technology

    this system has been found which involves addition of perfluoroalkyl - dihydrazides to perfluoroalkyldinitriles in a highly polar solvent. Inactivation...formation of an intermediate poly( perfluorodiacyl hydrazine) from the reaction of perfluorodiacyl chlorides with perfluoroalkyldihydrazides ....Work on the poly( perfluoroalkylene -1,2,4,4H-triazole system has been continued with the objectives of increasing the polymer molecular weights

  1. THERMALLY STABLE PERFLUORINATED POLYMERS.

    DTIC Science & Technology

    Ring closure of the N ( perfluoroacylimidoyl ) perfluoroalkyl amidine by acylation with perfluoroacyl chloride was apparently hindered by formation of...quantitatively. The reaction of perfluoroadiphydrazidine with perfluoroadiponitrile produced the intermediate polyimidoylhydrazidine as a step in a... perfluoroalkyltriazole polymer synthesis. Reaction of perfluoroglutaronitrile with N2H4 produced a cyclic compound which may be useful as a single monomer for

  2. Unexpected dependence on pH of NO release from Paracoccus pantotrophus cytochrome cd1.

    PubMed

    Sam, Katharine A; Tolland, John D; Fairhurst, Shirley A; Higham, Christopher W; Lowe, David J; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J

    2008-07-11

    A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd(1) at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d(1)-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d(1)Fe(II)-NO and 45% cFe(II)d(1)Fe(II)-NO(+). No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.

  3. A Pictet-Spengler ligation for protein chemical modification

    PubMed Central

    Agarwal, Paresh; van der Weijden, Joep; Sletten, Ellen M.; Rabuka, David; Bertozzi, Carolyn R.

    2013-01-01

    Aldehyde- and ketone-functionalized proteins are appealing substrates for the development of chemically modified biotherapeutics and protein-based materials. Their reactive carbonyl groups are typically conjugated with α-effect nucleophiles, such as substituted hydrazines and alkoxyamines, to generate hydrazones and oximes, respectively. However, the resulting C=N linkages are susceptible to hydrolysis under physiologically relevant conditions, which limits the utility of such conjugates in biological systems. Here we introduce a Pictet-Spengler ligation that is based on the classic Pictet-Spengler reaction of aldehydes and tryptamine nucleophiles. The ligation exploits the bioorthogonal reaction of aldehydes and alkoxyamines to form an intermediate oxyiminium ion; this intermediate undergoes intramolecular C–C bond formation with an indole nucleophile to form an oxacarboline product that is hydrolytically stable. We used the reaction for site-specific chemical modification of glyoxyl- and formylglycine-functionalized proteins, including an aldehyde-tagged variant of the therapeutic monoclonal antibody Herceptin. In conjunction with techniques for site-specific introduction of aldehydes into proteins, the Pictet-Spengler ligation offers a means to generate stable bioconjugates for medical and materials applications. PMID:23237853

  4. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    PubMed Central

    Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah Y.; Wang, Heng; Sioud, Salim; Raji, Misjudeen A.; Kohse-Höinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels. PMID:29183984

  5. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.

    PubMed

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-03-27

    Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.

  6. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  7. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  8. Intensive Care Unit Utilization Among Medicare Patients Hospitalized with Non-ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Fanaroff, Alexander C; Peterson, Eric D; Chen, Anita Y; Thomas, Laine; Doll, Jacob D; Fordyce, Christopher B; Newby, L Kristin; Amsterdam, Ezra A; Kosiborod, Mikhail N; de Lemos, James A; Wang, Tracy Y

    2018-01-01

    Importance Intensive care unit (ICU) utilization may have important implications for the care and outcomes of patients with non-ST-segment elevation myocardial infarction (NSTEMI). Objectives To examine inter-hospital variation in ICU utilization in the United States for older adults with hemodynamically stable NSTEMI and outcomes associated with ICU utilization among patients with at low, moderate, or high mortality risk. Design, Settings and Participants Retrospective analysis of 28,018 Medicare patients ≥65 years old admitted with NSTEMI to 346 hospitals participating in ACTION Registry-GWTG between April 1, 2011 and December 31, 2012. Patients with cardiogenic shock or cardiac arrest on presentation were excluded. Exposure Hospitals with high (>70% NSTEMI patients treated in an ICU during the index hospitalization), intermediate (30–70%), or low (< 30%) ICU utilization rates Main Outcome and Measure 30-day mortality Results Of NSTEMI patients ≥ 65 years old, 11,934 (43%) had an ICU stay. The proportion of NSTEMI patients treated in the ICU varied across hospitals (median 38% [26%, 54%]), but there were no significant differences in hospital characteristics or NSTEMI patient characteristics between hospitals with high, intermediate, or low ICU utilization rates. Compared with high ICU utilization hospitals, hospitals with low or intermediate ICU utilizations rates were only marginally more selective of higher risk patients, as determined by ACTION in-hospital mortality risk score or initial troponin level. Thirty-day mortality rates did not significantly differ based on hospital ICU utilization (high vs. low: 8.7% vs. 8.7%, adjusted OR 0.91, 95% CI 0.76–1.08; intermediate vs. low: 9.6% vs. 8.7%, adjusted OR 1.06, 95% CI 0.94–1.20). The relationship between hospital ICU utilization and mortality was similar in analyses stratified by low, moderate, or high ACTION risk score categories (adjusted interaction p 0.86). Conclusions and Relevance ICU utilization for older NSTEMI patients varied significantly among hospitals. This variability was not explained by hospital characteristics nor driven by patient risk. Post-MI mortality did not significantly differ among hospitals with high, intermediate, or low ICU utilization. PMID:27806171

  9. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE PAGES

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.; ...

    2017-10-25

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  11. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.

    Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less

  12. Thermal inactivation of alkali phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Tarasevich, B. N.; Chukhrai, E. S.; Poltorak, O. M.

    2009-02-01

    The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25-70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (˜200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.

  13. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  14. Exploring the WTI crude oil price bubble process using the Markov regime switching model

    NASA Astrophysics Data System (ADS)

    Zhang, Yue-Jun; Wang, Jing

    2015-03-01

    The sharp volatility of West Texas Intermediate (WTI) crude oil price in the past decade triggers us to investigate the price bubbles and their evolving process. Empirical results indicate that the fundamental price of WTI crude oil appears relatively more stable than that of the market-trading price, which verifies the existence of oil price bubbles during the sample period. Besides, by allowing the WTI crude oil price bubble process to switch between two states (regimes) according to a first-order Markov chain, we are able to statistically discriminate upheaval from stable states in the crude oil price bubble process; and in most of time, the stable state dominates the WTI crude oil price bubbles while the upheaval state usually proves short-lived and accompanies unexpected market events.

  15. Is the Ordos Basin floored by a trapped oceanic plateau?

    NASA Astrophysics Data System (ADS)

    Kusky, Tim; Mooney, Walter

    2015-11-01

    The Ordos Basin in China has about 10 km of Neoarchean to Quaternary sediments covering an enigmatic basement of uncertain origin. The basement is tectonically stable, has a thick mantle root, low heat flow, few earthquakes, and has been slowly subsiding for billions of years. The basement has geophysical signatures that indicate it is dominantly intermediate to mafic in composition, and is similar to some other cratons world-wide, and also to several major oceanic plateaus. It was accreted to the amalgamated Eastern Block and Central Orogenic belt of the North China Craton (NCC) in the Paleoproterozoic, then involved in several Proterozoic tectonic events including being over-thrust by an accretionary orogen, and intruded by Andean arc-related magmas, and then involved in a continent-continent collision during amalgamation with the Columbia Supercontinent. Thus, the basement rocks are deformed, metamorphosed to granulite facies, and determining their initial origin is difficult. We suggest that the data is consistent with an origin as an oceanic plateau that accreted to the NCC and, later experienced different episodes of differentiation associated with later subduction and collisions. Formation of cratonic lithosphere by accretion of oceanic plateaus may be one mechanism to create stable cratons. Other cratons that apparently formed by partial melting of underplated and imbricated oceanic slabs are stable in some cases, but also re-activated and ;de-cratonized; in some cases in Asia, where they have been affected by younger subduction, hydration, slab roll-back, and melt-peridotite reactions. This suggests that the initial mode of craton formation may be a factor in the preservation of stable cratons, and de-cratonization is not only influenced by younger tectonic activity.

  16. Evolution of cooperation with shared costs and benefits

    PubMed Central

    Brown, Joel S; Vincent, Thomas L

    2008-01-01

    The quest to determine how cooperation evolves can be based on evolutionary game theory, in spite of the fact that evolutionarily stable strategies (ESS) for most non-zero-sum games are not cooperative. We analyse the evolution of cooperation for a family of evolutionary games involving shared costs and benefits with a continuum of strategies from non-cooperation to total cooperation. This cost–benefit game allows the cooperator to share in the benefit of a cooperative act, and the recipient to be burdened with a share of the cooperator's cost. The cost–benefit game encompasses the Prisoner's Dilemma, Snowdrift game and Partial Altruism. The models produce ESS solutions of total cooperation, partial cooperation, non-cooperation and coexistence between cooperation and non-cooperation. Cooperation emerges from an interplay between the nonlinearities in the cost and benefit functions. If benefits increase at a decelerating rate and costs increase at an accelerating rate with the degree of cooperation, then the ESS has an intermediate level of cooperation. The game also exhibits non-ESS points such as unstable minima, convergent-stable minima and unstable maxima. The emergence of cooperative behaviour in this game represents enlightened self-interest, whereas non-cooperative solutions illustrate the Tragedy of the Commons. Games having either a stable maximum or a stable minimum have the property that small changes in the incentive structure (model parameter values) or culture (starting frequencies of strategies) result in correspondingly small changes in the degree of cooperation. Conversely, with unstable maxima or unstable minima, small changes in the incentive structure or culture can result in a switch from non-cooperation to total cooperation (and vice versa). These solutions identify when human or animal societies have the potential for cooperation and whether cooperation is robust or fragile. PMID:18495622

  17. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water, evidence of 18O enriched water in the remaining sulfate in the experiments that contained nitrite also demonstrates that SO3(2-) recycling to sulfate affects sulfur and oxygen isotope fractionation during bacterial sulfate reduction to some extent. Even though reduction of adenosine-5'-phosphosulfate (APS) to sulfite of -25 per thousand was not fully expressed, SO3(2-) was recycled to SO4(2-). On the basis of the results of this study a sulfur isotope fractionation for APSR of upto approximately -30 per thousand can be assumed. However, reported NO2(-) concentrations of up to 20 microM in freshwater and marine habitats may not significantly impact the ability to use stable isotope analysis in assessing bacterial sulfate reduction.

  18. Non-invasive assessment of low- and intermediate-risk patients with chest pain

    PubMed Central

    Balfour, Pelbreton C.; Gonzalez, Jorge A.; Kramer, Christopher M.

    2016-01-01

    Coronary artery disease (CAD) remains a significant global public health burden despite advancements in prevention and therapeutic strategies. Common non-invasive imaging modalities, anatomic and functional, are available for the assessment of patients with stable chest pain. Exercise electrocardiography is a long-standing method for evaluation for CAD and remains the initial test for the majority of patients who can exercise adequately with a baseline interpretable electrocardiogram. The addition of cardiac imaging to exercise testing provides incremental benefit for accurate diagnosis for CAD and is particularly useful in patients who are unable to exercise adequately and/or have uninterpretable electrocardiograms. Radionuclide myocardial perfusion imaging and echocardiography with exercise or pharmacological stress provide high sensitivity and specificity in the detection and further risk stratification of patients with CAD. Recently, coronary computed tomography angiography has demonstrated its growing role to rule out significant CAD given its high negative predictive value. Although less available, stress cardiac magnetic resonance provides a comprehensive assessment of cardiac structure and function and provides a high diagnostic accuracy in the detection of CAD. The utilization of non-invasive testing is complex due to various advantages and limitations, particularly in the assessment of low- and intermediate-risk patients with chest pain, where no single study is suitable for all patients. This review will describe currently available non-invasive modalities, along with current evidence-based guidelines and appropriate use criteria in the assessment of low- and intermediate-risk patients with suspected, stable CAD. PMID:27717538

  19. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  20. Traveling waves in an optimal velocity model of freeway traffic

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  1. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.

    PubMed

    Dubnikova, Faina; Tamburu, Carmen; Lifshitz, Assa

    2016-09-29

    The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.

  2. Electrochemical properties of the acetaminophen on the screen printed carbon electrode towards the high performance practical sensor applications.

    PubMed

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Velmurugan, Murugan; Karuppiah, Chelladurai

    2016-12-01

    Acetaminophen is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of acetaminophen can cause hepatic toxicity and kidney damage. Hence, the determination of acetaminophen receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid and sensitive detection of the acetaminophen based on the bare (unmodified) screen printed carbon electrode (BSPCE) and its electrochemistry was studied in various pHs. From the observed results, the mechanism of the electro-oxidation of acetaminophen was derived for various pHs. The acetaminophen is not stable in strong acidic and strong alkaline media, which is hydrolyzed and hydroxylated. However, it is stable in intermediate pHs due to the dimerization of acetaminophen. The kinetics of the acetaminophen oxidation was briefly studied and documented in the schemes. In addition, the surface morphology and disorders of BSPCE was probed by scanning electron microscope (SEM) and Raman spectroscopy. Moreover, the BSPCE determined the acetaminophen with the linear concentration ranging from 0.05 to 190μM and the lower detection limit of 0.013μM. Besides that it reveals the good recoveries towards the pharmaceutical samples and shows the excellent selectivity, sensitivity and stability. To the best of our knowledge, this is the better performance compare to the previously reported unmodified acetaminophen sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of Highly Selective Ga-68 Labeling.

    PubMed

    Vágner, Adrienn; Forgács, Attila; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Wurzer, Alexander; Wester, Hans-Jürgen; Notni, Johannes; Baranyai, Zsolt

    2018-01-01

    In order to rationalize the influence of Fe III contamination on labeling with the 68 Ga eluted from 68 Ge/ 68 Ga- g enerator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of Ga III - and Fe III -complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H 6 TRAP). The stability and protonation constants of the [Fe(TRAP)] 3- complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO 3 , 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31 P-NMR spectroscopy in the pH range 4.5-6.5 in the presence of 5-40 fold H x TRAP (x-6) excess (x = 1 and 2, 0.15 M NaNO 3 , 25°C). The kinetic inertness of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- was examined by the trans-chelation reactions with 10 to 20-fold excess of H x HBED (x-4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)] 3- (log K FeL = 26.7) is very similar to that of [Ga(TRAP)] 3- (log K GaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- with H x HBED (x-4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)] 3- , [M(TRAP)OH] 4- and [M(TRAP)(OH) 2 ] 5- species. Dissociation half-lives ( t 1/2 ) of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- complexes are 1.1 × 10 5 and 1.4 × 10 5 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)] 3- and [Ga(TRAP)] 3- are also slow due to the formation of the unusually stable monoprotonated [ * M(HTRAP)] 2- intermediates [ * log K Ga(HL) = 10.4 and * log K Fe(HL) = 9.9], which are much more stable than the [ * Ga(HNOTA)] + intermediate [ * log K Ga(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [ * M(HTRAP)] 2- intermediates into the final complex occur via OH - -assisted reactions. Rate constants ( k OH ) characterizing the OH - -driven deprotonation and transformation of [ * Ga(HTRAP)] 2- and [ * Fe(HTRAP)] 2- intermediates are 1.4 × 10 5 M -1 s -1 and 3.4 × 10 4 M -1 s -1 , respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of Fe III and Ga III -ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68 Ga III in presence of excess Fe III .

  4. Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of Highly Selective Ga-68 Labeling

    PubMed Central

    Vágner, Adrienn; Forgács, Attila; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Wurzer, Alexander; Wester, Hans-Jürgen; Notni, Johannes; Baranyai, Zsolt

    2018-01-01

    In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3− complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5–6.5 in the presence of 5–40 fold HxTRAP(x−6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3− and [Ga(TRAP)]3− was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x−4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3− (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3− (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3− and [Ga(TRAP)]3− with HxHBED(x−4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3−, [M(TRAP)OH]4− and [M(TRAP)(OH)2]5− species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3− and [Ga(TRAP)]3− complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3− and [Ga(TRAP)]3− are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2− intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2− intermediates into the final complex occur via OH−-assisted reactions. Rate constants (kOH) characterizing the OH−-driven deprotonation and transformation of [* Ga(HTRAP)]2− and [*Fe(HTRAP)]2− intermediates are 1.4 × 105 M−1s−1 and 3.4 × 104 M−1s−1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII. PMID:29876344

  5. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones.

    PubMed

    Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  6. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

    PubMed Central

    Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products. PMID:28904625

  7. Difluoromethyl 2-pyridyl sulfone: a new gem-difluoroolefination reagent for aldehydes and ketones.

    PubMed

    Zhao, Yanchuan; Huang, Weizhou; Zhu, Lingui; Hu, Jinbo

    2010-04-02

    Difluoromethyl 2-pyridyl sulfone, a previously unknown compound, was found to act as a novel and efficient gem-difluoroolefination reagent for both aldehydes and ketones. It was found that the fluorinated sulfinate intermediate in the reaction is relatively stable, which can be observed by (19)F NMR and trapped with CH(3)I.

  8. How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway

    PubMed Central

    Dyson, H. Jane; Wright, Peter E.

    2017-01-01

    Conspectus Although each type of protein fold and in some cases individual proteins within a fold classification can have very different mechanisms of folding, the underlying biophysical and biochemical principles that operate to cause a linear polypeptide chain to fold into a globular structure must be the same. In an aqueous solution, the protein takes up the thermodynamically most stable structure, but the pathway along which the polypeptide proceeds in order to reach that structure is a function of the amino acid sequence, which must be the final determining factor, not only in shaping the final folded structure, but in dictating the folding pathway. A number of groups have focused on a single protein or group of proteins, to determine in detail the factors that influence the rate and mechanism of folding in a defined system, with the hope that hypothesis-driven experiments can elucidate the underlying principles governing the folding process. Our research group has focused on the folding of the globin family of proteins, and in particular on the monomeric protein apomyoglobin. Apomyoglobin (apoMb) folds relatively slowly (~2 seconds) via an ensemble of obligatory intermediates that form rapidly after the initiation of folding. The folding pathway can be dissected using rapid-mixing techniques, which can probe processes in the millisecond time range. Stopped-flow measurements detected by circular dichroism (CD) or fluorescence spectroscopy give information on the rates of folding events. Quench-flow experiments utilize the differential rates of hydrogen-deuterium exchange of amide protons protected in parts of the structure that are folded early; protection of amides can be detected by mass spectrometry or proton nuclear magnetic resonance spectroscopy (NMR). In addition, apoMb forms an intermediate at equilibrium at pH ~ 4, which is sufficiently stable for it to be structurally characterized by solution methods such as CD, fluorescence and NMR spectroscopies, and the conformational ensembles formed in the presence of denaturing agents and low pH can be characterized as models for the unfolded states of the protein. Newer NMR techniques such as measurement of residual dipolar couplings in the various partly folded states, and relaxation dispersion measurements to probe invisible states present at low concentrations, have contributed to providing a detailed picture of the apomyoglobin folding pathway. The research summarized in this review was aimed at characterizing and comparing the equilibrium and kinetic intermediates both structurally and dynamically, as well as delineating the complete folding pathway at a residue-specific level, in order to answer the question “What is it about the amino acid sequence that causes each molecule in the unfolded protein ensemble to start folding, and, once started, to proceed towards the formation of the correctly folded three-dimensional structure?” PMID:28032989

  9. Rubisco Accumulation Factor 1 from Thermosynechococcus elongatus participates in the final stages of ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro.

    PubMed

    Kolesinski, Piotr; Belusiak, Iwona; Czarnocki-Cieciura, Mariusz; Szczepaniak, Andrzej

    2014-09-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) biosynthesis is a multi-step process in which specific chaperones are involved. Recently, a novel polypeptide, Rubisco Accumulation Factor 1 (RAF1), has been identified as a protein that is necessary for proper assembly of this enzyme in maize cells (Zea mays). However, neither its specific function nor its mode of action have as yet been determined. The results presented here show that the prokaryotic homolog of RAF1 from Thermosynechococcus elongatus is expressed in cyanobacterial cells and interacts with a large Rubisco subunit (RbcL). Using a heterologous expression system, it was demonstrated that this protein promotes Rubisco assembly in Escherichia coli cells. Moreover, when co-expressed with RbcL alone, a stable RbcL-RAF1 complex is formed. Molecular mass determination for this Rubisco assembly intermediate by size-exclusion chromatography coupled with multi-angle light scattering indicates that it consists of an RbcL dimer and two RAF1 molecules. A purified RbcL-RAF1 complex dissociated upon addition of a small Rubisco subunit (RbcS), leading to formation of the active holoenzyme. Moreover, titration of the octameric (RbcL8) core of Rubisco with RAF1 results in disassembly of such a stucture and creation of an RbcL-RAF1 intermediate. The results presented here are the first attempt to elucidate the role of cyanobacterial Rubisco Accumulation Factor 1 in the Rubisco biosynthesis process. © 2014 FEBS.

  10. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds.

    PubMed

    Wang, Zhandong; Popolan-Vaida, Denisia M; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah Y; Wang, Heng; Sioud, Salim; Raji, Misjudeen A; Kohse-Höinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R; Sarathy, S Mani

    2017-12-12

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure ( n -alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels. Copyright © 2017 the Author(s). Published by PNAS.

  11. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability ofmore » liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. In conclusion, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.« less

  12. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    DOE PAGES

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; ...

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability ofmore » liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. In conclusion, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.« less

  13. Porphyrinoids as a platform of stable radicals

    PubMed Central

    Shimizu, Daiki

    2018-01-01

    The non-innocent ligand nature of porphyrins was observed for compound I in enzymatic cycles of cytochrome P450. Such porphyrin radicals were first regarded as reactive intermediates in catabolism, but recent studies have revealed that porphyrinoids, including porphyrins, ring-contracted porphyrins, and ring-expanded porphyrins, display excellent radical-stabilizing abilities to the extent that radicals can be handled like usual closed-shell organic molecules. This review surveys four types of stable porphyrinoid radical and covers their synthetic methods and properties such as excellent redox properties, NIR absorption, and magnetic properties. The radical-stabilizing abilities of porphyrinoids stem from their unique macrocyclic conjugated systems with high electronic and structural flexibilities. PMID:29675188

  14. Video- Demonstrations of Stable and Unstable Solid Body Rotation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates stable and unstable modes for solid body rotation on the ISS. Using a hard cover textbook, he demonstrates that it will rotate stably about the longest and shortest axis, which represent the maximum and minimum movements of Inertia. Trying to rotate the book around an intermediate axis results in an unstable rotation in which the book appears to flip-flop while it rotates.

  15. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    PubMed

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  17. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects

    PubMed Central

    Antinone, Sarah E.; Ghadge, Ghanashyam D.; Ostrow, Lyle W.; Roos, Raymond P.; Green, William N.

    2017-01-01

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord. PMID:28120938

  18. An integrated analysis of social stress in laying hens: The interaction between physiology, behaviour, and hierarchy.

    PubMed

    Carvalho, Renata Rezende; Palme, Rupert; da Silva Vasconcellos, Angélica

    2018-04-01

    Livestock is the category of animals that suffers the most severe welfare problems. Among these, physical, physiological, and behavioural distress caused by artificial grouping are some of the challenges faced by these animals. Groups whose members are frequently changed have been reported as socially unstable, which could jeopardise the welfare of animals. Here, we assessed the effect of social instability on aggression, stress, and productivity in groups of laying hens (Gallus gallus domesticus). We studied 36 females, distributed into three stable groups (without group membership change) and three unstable groups (where the dominant member was rotated every week) over the course of 10 weeks. We evaluated the frequency of agonistic interactions, glucocorticoid metabolites (GCM) concentrations, and egg production. In both treatments, dominant hens produced more eggs compared to intermediate and subordinates, and intermediate hens had the highest GCM concentrations. Socially unstable groups had lower productivity and higher frequencies of agonistic interactions than stable groups. Social instability also affected GCM of the animals: in stable groups, subordinate hens had higher concentrations than dominants; in unstable groups, this pattern was reversed. Our results point to a social destabilisation in groups whose members were alternated, and suggest the welfare of individuals in unstable groups was compromised. Our results pointed to a complex relationship between hierarchy, productivity, physiological stress and aggression in laying hens, and have implications for their husbandry and management and, consequently, for their welfare levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Towards deployable meta-implants.

    PubMed

    Bobbert, F S L; Janbaz, S; Zadpoor, A A

    2018-06-07

    Meta-biomaterials exhibit unprecedented or rare combinations of properties not usually found in nature. Such unusual mechanical, mass transport, and biological properties could be used to develop novel categories of orthopedic implants with superior performance, otherwise known as meta-implants. Here, we use bi-stable elements working on the basis of snap-through instability to design deployable meta-implants. Deployable meta-implants are compact in their retracted state, allowing them to be brought to the surgical site with minimum invasiveness. Once in place, they are deployed to take their full-size load-bearing shape. We designed five types of meta-implants by arranging bi-stable elements in such a way to obtain a radially-deployable structure, three types of auxetic structures, and an axially-deployable structure. The intermediate stable conditions ( i.e. multi-stability features), deployment force, and stiffness of the meta-implants were found to be strongly dependent on the geometrical parameters of the bi-stable elements as well as on their arrangement.

  20. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.

    PubMed

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang

    2017-05-26

    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes.

    PubMed

    Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini

    2016-05-03

    In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.

  2. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin.

    PubMed

    Stewart, James J P

    2017-05-01

    The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.

  3. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  4. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers

    DOE PAGES

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-04-27

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short-and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without externalmore » water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species.« less

  5. Ultrashort pulse laser micro-welding of cyclo-olefin copolymers

    NASA Astrophysics Data System (ADS)

    Roth, Gian-Luca; Rung, Stefan; Hellmann, Ralf

    2017-06-01

    We report on the joining of transparent thermoplastic polymers using infrared femtosecond laser pulses. Due to nonlinear absorption, the developed micro-welding process for cyclo-olefin copolymers does not require any intermediate absorbing layers or any surface pre-processing of the welding partners. In view of an optimized and stable micro-welding process, the influence of the welding speed and focal position on both, the quality and shear force strength are investigated. We highlight that welding seam widths of down to 65 μm are feasible for welding speeds of up to 75 mm/s. However, a variation of the welding speed affects the required focal position for a successful joining process. The shear force strength of the welding seam is determined to 37 MPa, which corresponds to 64% of the shear strength of the bulk material and is not affected by the welding speed.

  6. Assessing Attention Deficit by Binocular Rivalry.

    PubMed

    Amador-Campos, Juan Antonio; Aznar-Casanova, J Antonio; Ortiz-Guerra, Juan Jairo; Moreno-Sánchez, Manuel; Medina-Peña, Antonio

    2015-12-01

    To determine whether the frequency and duration of the periods of suppression of a percept in a binocular rivalry (BR) task can be used to distinguish between participants with ADHD and controls. A total of 122 participants (6-15 years) were assigned to three groups: ADHD-Combined (ADHD-C), ADHD-Predominantly Inattentive (ADHD-I), and controls. They each performed a BR task and two measures were recorded: alternation rate and duration of exclusive dominance periods. ADHD-C group presented fewer alternations and showed greater variability than did the control group; results for the ADHD-I group being intermediate between the two. The duration of dominance periods showed a differential profile: In control group, it remained stable over time, whereas in the clinical groups, it decreased logarithmically as the task progressed. The differences between groups in relation to the BR indicators can be attributed to the activity of involuntary inhibition. © The Author(s) 2013.

  7. Long-Range Interactions Restrict Water Transport in Pyrophyllite Interlayers

    PubMed Central

    Zarzycki, Piotr; Gilbert, Benjamin

    2016-01-01

    Water diffusion within smectite clay interlayers is reduced by confinement and hence is highly determined by the interlayer spacings that are adopted during swelling. However, a molecular understanding of the short- and long-range forces governing interlayer water structure and dynamics is lacking. Using molecular dynamics simulations of water intercalated between pyrophyllite (smectite prototype) layers we provide a detailed picture of the variation of interlayered water mobility accompanying smectite expansion. Subtle changes in hydrogen bond network structure cause significant changes in water mobility that is greater for stable hydration states and reduced for intermediate separations. By studying pyrophyllite with and without external water we reveal that long-range electrostatic forces apply a restraining effect upon interlayer water mobility. Our findings are relevant for broad range of confining nanostructures with walls thin enough to permit long-range interactions that could affect the mobility of confined solvent molecules and solute species. PMID:27118164

  8. Effects of tethering a multistate folding protein to a surface

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2011-05-01

    Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

  9. Unstable equilibrium behaviour in collapsible tubes.

    PubMed

    Bertram, C D

    1986-01-01

    Thick-walled silicone rubber tube connected to rigid pipes upstream and downstream was externally pressurised (pe) to cause collapse while aqueous fluid flowed through propelled by a constant upstream head. Three types of equilibrium were found: stable equilibria (steady flow) at high downstream flow resistance R2, self-excited oscillations at low R2, and 'unattainable' (by varying external pressure) or exponentially unstable equilibria at intermediate R2. The self-excited oscillations were highly non-linear and appeared in four, apparently discrete, frequency bands: 2.7 Hz, 3.8-5.0 Hz, 12-16 Hz and 60-63 Hz, suggesting that the possible oscillation modes may be harmonically related. Stable, intermediate 'two-in-every-three-beats' oscillation was also observed, with a repetition frequency in the 3.8-5.0 Hz band. As pe was increased, self-excited oscillations were eventually suppressed, leaving internal fluid pressure varying with no single dominant frequency as a result of turbulent jet dissipation at the downstream rigid pipe connection. Comparison of pressure-wave velocity calculated from the local pressure-area relation for the tube with fluid velocity indicated that supercritical velocities were attained in the course of the self-excited oscillations.

  10. Preformulation stability study of the EGFR inhibitor HKI-272 (Neratinib) and mechanism of degradation.

    PubMed

    Lu, Qinghong; Ku, Mannching Sherry

    2012-03-01

    The stability in solution of HKI-272 (Neratinib) was studied as a function of pH. The drug is most stable from pH 3 to 4, and degradation rate increases rapidly around pH 6 and appears to approach a maximum asymptotic limit in the range of pH 812. Pseudo first-order reaction kinetics was observed at all pH values. The structure of the major degradation product indicates that it is formed by a cascade of reactions within the dimethylamino crotonamide group of HKI-272. It is assumed that the rate-determining step is the initial isomerization from allyl amine to enamine functionality, followed by hydrolysis and subsequent cyclization to a stable lactam. The maximum change in degradation rate as a function of pH occurs at about pH 6, which corresponds closely to the theoretical pKa value of the dimethylamino group of HKI-272 when accounting for solvent/temperature effects. The observed relationship between pH and degradation rate is discussed, and a self-catalyzed mechanism for the allylamine-enamine isomerization reaction is proposed. The relevance of these findings to other allylamine drugs is discussed in terms of the relative stability of the allylic anion intermediate through which, the isomerization occurs.

  11. Evolutionary behaviour, trade-offs and cyclic and chaotic population dynamics.

    PubMed

    Hoyle, Andy; Bowers, Roger G; White, Andy

    2011-05-01

    Many studies of the evolution of life-history traits assume that the underlying population dynamical attractor is stable point equilibrium. However, evolutionary outcomes can change significantly in different circumstances. We present an analysis based on adaptive dynamics of a discrete-time demographic model involving a trade-off whose shape is also an important determinant of evolutionary behaviour. We derive an explicit expression for the fitness in the cyclic region and consequently present an adaptive dynamic analysis which is algebraic. We do this fully in the region of 2-cycles and (using a symbolic package) almost fully for 4-cycles. Simulations illustrate and verify our results. With equilibrium population dynamics, trade-offs with accelerating costs produce a continuously stable strategy (CSS) whereas trade-offs with decelerating costs produce a non-ES repellor. The transition to 2-cycles produces a discontinuous change: the appearance of an intermediate region in which branching points occur. The size of this region decreases as we move through the region of 2-cycles. There is a further discontinuous fall in the size of the branching region during the transition to 4-cycles. We extend our results numerically and with simulations to higher-period cycles and chaos. Simulations show that chaotic population dynamics can evolve from equilibrium and vice-versa.

  12. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  13. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    PubMed Central

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  14. Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme.

    PubMed Central

    Tani, T; Kamimura, S

    1999-01-01

    Fragmented flagellar axonemes of sand dollar spermatozoa were reactivated by rapid photolysis of caged ATP. After a time lag of 10 ms, axonemes treated with protease started sliding disintegration. Axonemes without protease digestion started nanometer-scale high-frequency oscillation after a similar time lag. Force development in the sliding disintegration was measured with a flexible glass needle and its time course was corresponded well to that of the dynein-ADP intermediate production estimated using kinetic rates previously reported. However, with a high concentration ( approximately 80 microM) of vanadate, which binds to the dynein-ADP intermediate and forms a stable complex of dynein-ADP-vanadate, the time course of force development in sliding disintegration was not affected at all. In the case of high frequency oscillation, the time lag to start the oscillation, the initial amplitude, and the initial frequency were not affected by vanadate, though the oscillation once started was damped more quickly at higher concentrations of vanadate. These results suggest that during the initial turnover of ATP hydrolysis, force generation of dynein is not blocked by vanadate. A vanadate-insensitive dynein-ADP is postulated as a force-generating intermediate. PMID:10465762

  15. Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model.

    PubMed

    Yamada, Hidetaka; Matsuzaki, Yoichi; Higashii, Takayuki; Kazama, Shingo

    2011-04-14

    We used density functional theory (DFT) calculations with the latest continuum solvation model (SMD/IEF-PCM) to determine the mechanism of CO(2) absorption into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP). Possible absorption process reactions were investigated by transition-state optimization and intrinsic reaction coordinate (IRC) calculations in the aqueous solution at the SMD/IEF-PCM/B3LYP/6-31G(d) and SMD/IEF-PCM/B3LYP/6-311++G(d,p) levels of theory to determine the absorption pathways. We show that the carbamate anion forms by a two-step reaction via a zwitterion intermediate, and this occurs faster than the formation of the bicarbonate anion. However, we also predict that the carbamate readily decomposes by a reverse reaction rather than by hydrolysis. As a result, the final product is dominated by the thermodynamically stable bicarbonate anion that forms from AMP, H(2)O, and CO(2) in a single-step termolecular reaction.

  16. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  17. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  18. Structure and Reactivity of a Thermostable Prokaryotic Nitric-oxide Synthase That Forms a Long-lived Oxy-Heme Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhamsu,J.; Crane, B.

    2006-01-01

    In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxymore » species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.« less

  19. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy.

    PubMed

    Baird, Nathan J; Ludtke, Steven J; Khant, Htet; Chiu, Wah; Pan, Tao; Sosnick, Tobin R

    2010-11-24

    RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.

  20. Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik

    2016-08-01

    Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.

  1. Biological Reactive Intermediates (BRIs) Formed from Botanical Dietary Supplements

    PubMed Central

    Dietz, Birgit M.; Bolton, Judy L.

    2013-01-01

    The use of botanical dietary supplements is increasingly popular, due to their natural origin and the perceived assumption that they are safer than prescription drugs. While most botanical dietary supplements can be considered safe, a few contain compounds, which can be converted to reactive biological reactive intermediates (BRIs) causing toxicity. For example, sassafras oil contains safrole, which can be converted to a reactive carbocation forming genotoxic DNA adducts. Alternatively, some botanical dietary supplements contain stable BRIs such as simple Michael acceptors that react with chemosensor proteins such as Keap1 resulting in induction of protective detoxification enzymes. Examples include curcumin from turmeric, xanthohumol from hops, and Z-ligustilide from dang gui. Quinones (sassafras, kava, black cohosh), quinone methides (sassafras), and epoxides (pennyroyal oil) represent BRIs of intermediate reactivity, which could generate both genotoxic and/or chemopreventive effects. The biological targets of BRIs formed from botanical dietary supplements and their resulting toxic and/or chemopreventive effects are closely linked to the reactivity of BRIs as well as dose and time of exposure. PMID:20970412

  2. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes.

    PubMed

    Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-10-22

    Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

  3. From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions.

    PubMed

    Gualandi, Andrea; Mengozzi, Luca; Manoni, Elisabetta; Giorgio Cozzi, Pier

    2016-06-01

    What do quantum cellular automata (QCA), "on water" reactions, and SN 1-type organocatalytic transformations have in common? The link between these distant arguments is the practical access to useful intermediates and key products through the use of stabilized carbenium ions. Over 10 years, starting with a carbenium ion bearing a ferrocenyl group, to the 1,3-benzodithiolylium carbenium ion, our group has exploited the use of these intermediates in useful and practical synthetic transformations. In particular, we have applied the use of carbenium ions to stereoselective organocatalytic alkylation reactions, showing a possible solution for the "holy grail of organocatalysis". Examples of the use of these quite stabilized intermediates are now also considered in organometallic chemistry. On the other hand, the stable carbenium ions are also applied to tailored molecules adapted to quantum cellular automata, a new possible paradigm for computation. Carbenium ions are not a problem, they can be a/the solution! © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluating the Mn/Ca Ratio of Foraminiferal Calcite Determined by Flow-Through ICP-MS as a Proxy for Terrigenous Input, Upwelling, and Carbon Rain Rate

    NASA Astrophysics Data System (ADS)

    Klinkhammer, G. P.; Mix, A. C.; Benway, H. M.; Haley, B. A.

    2004-12-01

    The Mn/Ca ratio of the biogenic calcite preserved in deep-sea sediments has potential as a tracer of terrestrial input, upwelling, and carbon rain rate over geologic time scales. The basis for this potential lies in features of the Mn cycle in the oceans, which are well known. Manganese is a biogeochemically reactive element, but has a lower affinity for dissolved oxygen and organic matter than iron, making it more stable over short time scales, and less affected by speciation. Depth profiles of Mn in oligotrophic ocean waters show a sharp contrast between low concentrations in deep water (0.20 nM) and relatively high concentrations in the mixed layer (2-5 nM). Mn oxides are stable in high oxygen environments but reduced in the suboxic conditions found in the oxygen minimum zone (OMZ). This behavior makes the intermediate water to surface water concentration ratio of Mn sensitive to the intensity of the OMZ, an artifact of the carbon rain rate, and dust/river input. In sediments, suboxic dissolution is balanced by the formation of carbonate making Mn highly reactive during early diagenesis. These features of the Mn cycle in seawater make the Mn/Ca ratio of foraminifera an attractive paleoproxy, but only if the primary signature can be recovered after diagenetic alteration. Recently our laboratory developed a flow-through extraction system that gives us fresh insight into this problem by making it possible to separate mineral phases associated with the foraminiferal fraction by differences in their solubilities. This paper examines foraminiferal Mn/Ca ratios in core tops and down core records from the eastern equatorial Pacific determined with this new technique. We access the potential of flow-through Mn/Ca by comparing its record to those of Mg/Ca and stable isotopes.

  5. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    PubMed Central

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R. F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-01-01

    Background Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. Methods and Findings A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2−10 ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2−10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2−10 ≥ 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. Conclusions High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process. PMID:19323591

  6. Identification and characterization of monomeric, volatile SiCl3NH2 as product of the reaction between SiCl4 and NH3: an important intermediate on the way to silicon nitride?

    PubMed

    Himmel, Hans-Jörg; Schiefenhövel, Nils; Binnewies, Michael

    2003-03-17

    We studied the reaction of SiCl(4) with NH(3) by mass spectrometry and IR spectroscopy. By means of mass spectrometry, SiCl(3)NH(2) was for the first time identified as an intermediate generated in significant amounts in the course of the reaction. In additional experiments, SiCl(3)NH(2) was formed as a stable gaseous product of the ammonolysis of SiCl(4), and the product was identified and characterized in detail by IR spectroscopic methods (gas phase and matrix isolation) in combination with quantum-chemical calculations. The calculations also gave access to important thermodynamical data.

  7. Field Theoretic Study of Bilayer Membrane Fusion. I. Hemifusion Mechanism

    PubMed Central

    Katsov, K.; Müller, M.; Schick, M.

    2004-01-01

    Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate-limiting process. The relevant barrier is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram. PMID:15326031

  8. Mating System Evolution under Strong Pollen Limitation: Evidence of Disruptive Selection through Male and Female Fitness in Clarkia xantiana.

    PubMed

    Briscoe Runquist, Ryan D; Geber, Monica A; Pickett-Leonard, Michael; Moeller, David A

    2017-05-01

    Selection on floral traits in hermaphroditic plants is determined by both male and female reproductive success. However, predictions regarding floral trait and mating system evolution are often based solely on female fitness. Selection via male fitness has the potential to affect the outcomes of floral evolution. In this study, we used paternity analysis to assess individual selfing rates and selection on floral traits via male and female fitness in an experimental population of Clarkia xantiana where pollen limitation of seed set was strong. We detected selection through both female and male fitness with reinforcing or noninterfering patterns of selection through the two sex functions. For female fitness, selection favored reduced herkogamy and protandry, traits that promote increased autonomous selfing. For male fitness, selection on petal area was disruptive, with higher trait values conferring greater pollinator attraction and outcross siring success and smaller trait values leading to higher selfed siring success. Combining both female and male fitness, selection on petal area and protandry was disruptive because intermediate phenotypes were less successful as both males and females. Finally, functional relationships among male and female fertility components indicated that selfing resulted in seed discounting and pollen discounting. Under these functional relationships, the evolutionarily stable selfing rate can be intermediate or predominantly selfing or outcrossing, depending on the segregating load of deleterious mutations.

  9. Identification of persisten anionic surfactant-derived chemicals in sewage effluent and groundwater

    USGS Publications Warehouse

    Field, J.A.; Leenheer, J.A.; Thorn, K.A.; Barber, L.B.; Rostad, C.; Macalady, D.L.; Daniel, S.R.

    1992-01-01

    Preparative isolation and fractionation procedures coupled with spectrometric analyses were used to identify surfactant-derived contaminants in sewage effluent and sewage-contaminated groundwater from a site located on Cape Cod, Massachusetts. Anionic surfactants and their biodegradation intermediates were isolated from field samples by ion exchange and fractionated by solvent extraction and adsorption chromatography. Fractions were analyzed by 13C nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Carboxylated residues of alkylphenol polyethoxylate surfactants were detected in sewage effluent and contaminated groundwater. Linear alkylbenzenesulfonates (LAS) were identified in sewage effluent and groundwater. Groundwater LAS composition suggested preferential removal of select isomers and homologs due to processes of biodegradation and partitioning. Tetralin and indane sulfonates (DATS), alicyclic analogs of LAS, were also identified in field samples. Although DATS are a minor portion of LAS formulations, equivalent concentrations of LAS and DATS in groundwater suggested persistence of alicyclic contaminant structures over those of linear structure. Sulfophenyl-carboxylated (SPC) LAS biodegradation intermediates were determined in sewage effluent and groundwater. Homolog distributions suggested that SPC containing 3-10 alkyl-chain carbons persist during infiltration and groundwater transport. Surfactant-derived residues detected in well F300-50 groundwater have a minimum residence time in the range of 2.7-4.6 yr. LAS detected in groundwater at 500 m from infiltration has been stable over an estimated 50-500 half lives.

  10. Identification of persistent anionic surfactant-derived chemicals in sewage effluent and groundwater

    USGS Publications Warehouse

    Field, Jennifer A.; Leenheer, Jerry A.; Thorn, Kevin A.; Barber, Larry B.; Rostad, Colleen; Macalady, Donald L.; Daniel, Stephen R.

    1992-01-01

    Preparative isolation and fractionation procedures coupled with spectrometric analyses were used to identify surfactant-derived contaminants in sewage effluent and sewage-contaminated groundwater from a site located on Cape Cod, Massachusetts. Anionic surfactants and their biodegradation intermediates were isolated from field samples by ion exchange and fractionated by solvent extraction and adsorption chromatography. Fractions were analyzed by 13C nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Carboxylated residues of alkylphenol polyethoxylate surfactants were detected in sewage effluent and contaminated groundwater. Linear alkylbenzenesulfonates (LAS) were identified in sewage effluent and groundwater. Groundwater LAS composition suggested preferential removal of select isomers and homologs due to processes of biodegradation and partitioning. Tetralin and indane sulfonates (DATS), alicyclic analogs of LAS, were also identified in field samples. Although DATS are a minor portion of LAS formulations, equivalent concentrations of LAS and DATS in groundwater suggested persistence of alicyclic contaminant structures over those of linear structure. Sulfophenyl-carboxylated (SPC) LAS biodegradation intermediates were determined in sewage effluent and groundwater. Homolog distributions suggested that SPC containing 3–10 alkyl-chain carbons persist during infiltration and groundwater transport. Surfactant-derived residues detected in well F300-50 groundwater have a minimum residence time in the range of 2.7–4.6 yr. LAS detected in groundwater at 500 m from infiltration has been stable over an estimated 50–500 half lives.

  11. Carbon-hydrogen vs. carbon-halogen oxidative addition of chlorobenzene by a neutral iridium complex explored by DFT.

    PubMed

    Wu, Hong; Hall, Michael B

    2009-08-14

    Density functional theory (DFT) is used to explore the competitive C-H and C-Cl oxidative additions (OA) of chlorobenzene to the neutral Ir(i) complex: (PNP)Ir(I) [PNP = bis(Z-2-(dimethylphosphino)vinyl)amino]. Consistent with experimental results, our calculation shows that C-H OA is kinetically favored with an activation free-energy barrier of DeltaG(double dagger) = 17.2 kcal mol(-1) that is significantly lower than that for the C-Cl activation at DeltaG(double dagger) = 24.2 kcal mol(-1). However, C-Cl OA is thermodynamically preferred and the C-Cl OA product is 22.6 kcal mol(-1) more stable than the most stable C-H OA product. The calculations also show that the lowest energy path for the conversion of the C-H OA product to the more stable C-Cl OA product is intramolecular through a "benzyne"-type intermediate.

  12. On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts

    DOE PAGES

    Li, Sha; Scaranto, Jessica; Mavrikakis, Manos

    2016-08-03

    Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less

  13. Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho

    2016-03-01

    By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.

  14. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria

    PubMed Central

    Leimkühler, Silke; Wuebbens, Margot M.; Rajagopalan, K.V.

    2010-01-01

    Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center. PMID:21528011

  15. Overdamped Nb/Al-AlO{sub x}/Nb Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacquaniti, V.; Cagliero, C.; Maggi, S.

    2005-01-24

    We report the fabrication and characterization of overdamped Nb/Al-AlO{sub x}/Nb superconductor-insulator-superconductor Josephson junction whose fabrication process derives from that of the well-known hysteretic junctions. These junctions are an intermediate state between the superconductor-normal metal-superconductor and the superconductor-insulator-superconductor Josephson junctions. Stable and reproducible nonhysteretic current-voltage characteristics are obtained with a proper choice of the fabrication parameters. We have measured critical current densities J{sub C} from 10{sup 3} up to 2x10{sup 4} A/cm{sup 2}, with characteristic voltages from 80 to nearly 450 {mu}V. The junctions are stable against time and repeated thermal cycling.

  16. 24 CFR 232.615 - Eligible borrowers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intermediate care facility for which the Secretary of Health and Human Services has determined that the... intermediate care facility will meet not only the applicable fire safety requirements of HHS but will meet... application, a nursing home or intermediate care facility need not be providing such services if upon...

  17. Dynamically Stable Legged Locomotion

    DTIC Science & Technology

    1989-09-01

    length during overground locomotion: task-specific modulation of the locomotor synergy. Journal of Experimental Psychology, 15(3). Raibert, M. I. 1986...energy conversions that intermediates between combus- tion of a fluid fuel such as gasoline , and the controlled delivery of force and power to the...question of this study: Can the extremely high energy density and rapid response of combustible fluid fuels such as gasoline be harnessed to produce

  18. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.

    PubMed

    Mackie, John C; Bacskay, George B

    2005-12-29

    Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].

  19. Inflammatory biomarkers are not predictive of intermediate-term risk of ventricular tachyarrhythmias in stable CHF patients.

    PubMed

    Konstantino, Yuval; Kusniec, Jairo; Reshef, Tamar; David-Zadeh, Ofer; Mazur, Alexander; Strasberg, Boris; Battler, Alexander; Haim, Moti

    2007-08-01

    Elevated levels of inflammatory biomarkers and brain natriuretic peptide (BNP) are associated with increased mortality in patients with heart failure (HF). : The aim of the current study was to assess the correlation between circulating biomarkers and ventricular tachyarrhythmias among patients with HF. Blood samples from 50 stable ambulatory HF patients with moderate to severe systolic left ventricular (LV) dysfunction and an implantable cardioverter defibrillator (ICD) were analyzed for interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), high-sensitivity C-reactive protein (hsCRP) and BNP. Thereafter, the patients were followed for a mean period of 152 +/- 44 days, during which ventricular tachyarrhythmias were recorded by the ICDs. Follow-up data were obtained from 47 patients. Of them, 45 (96%) had ischemic cardiomyopathy, 38 (81%) had New York Heart Association class I-II, 43 (91%) were males, and the mean age was 68.6 +/- 11.1 years. During follow-up, 5 patients (11%) had nonsustained ventricular tachycardia (NSVT), 6 patients (13%) had sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) and 36 patients (76%) had no events. The circulating biomarkers' levels upon enrollment were not significantly different between patients who subsequently had NSVT or VT/VF and patients who were free of events. No correlation was found between plasma levels of IL-6, TNF-alpha, hsCRP and BNP and ventricular arrhythmic events among stable HF patients during an intermediate term follow-up of 5.1 months. Further studies are still required to assess the association between these biomarkers and long-term risk of ventricular tachyarrhythmia. (c) 2007 Wiley Periodicals, Inc.

  20. Evaluation of accelerated stability test conditions for medicated chewing gums.

    PubMed

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  1. Structure of a low-population intermediate state in the release of an enzyme product.

    PubMed

    De Simone, Alfonso; Aprile, Francesco A; Dhulesia, Anne; Dobson, Christopher M; Vendruscolo, Michele

    2015-01-09

    Enzymes can increase the rate of biomolecular reactions by several orders of magnitude. Although the steps of substrate capture and product release are essential in the enzymatic process, complete atomic-level descriptions of these steps are difficult to obtain because of the transient nature of the intermediate conformations, which makes them largely inaccessible to standard structure determination methods. We describe here the determination of the structure of a low-population intermediate in the product release process by human lysozyme through a combination of NMR spectroscopy and molecular dynamics simulations. We validate this structure by rationally designing two mutations, the first engineered to destabilise the intermediate and the second to stabilise it, thus slowing down or speeding up, respectively, product release. These results illustrate how product release by an enzyme can be facilitated by the presence of a metastable intermediate with transient weak interactions between the enzyme and product.

  2. Measuring the masses of intermediate polars with NuSTAR: V709 Cas, NY Lup, and V1223 Sgr

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Mukai, K.; Sivakoff, G. R.; Tomsick, J. A.; Rana, V.

    2018-05-01

    The X-ray spectra of intermediate polars can be modelled to give a direct measurement of white dwarf mass. Here, we fit accretion column models to NuSTAR spectra of three intermediate polars; V709 Cas, NY Lup, and V1223 Sgr in order to determine their masses. From fits to 3-78 keV spectra, we find masses of M_WD=0.88^{+0.05}_{-0.04} M_{⊙}, 1.16^{+0.04}_{-0.02} M_{⊙}, and 0.75 ± 0.02 M⊙ for V709 Cas, NY Lup, and V1223 Sgr, respectively. Our measurements are generally in agreement with those determined by previous surveys of intermediate polars, but with typically a factor ˜2 smaller uncertainties. This work paves the way for an approved NuSTAR Legacy Survey of white dwarf masses in intermediate polars.

  3. TIME COURSE FOR THE DEVELOPMENT OF MUSCLE HISTORY IN LUMBAR PARASPINAL MUSCLE SPINDLES ARISING FROM CHANGES IN VERTEBRAL POSITION

    PubMed Central

    Pickar, Joel G.; Ge, Weiqing

    2008-01-01

    Background Context In neutral spinal postures with low loading moments the lumbar spine is not inherently stable. Small compromises in paraspinal muscle activity may affect lumbar spinal biomechanics. Proprioceptive feedback from muscle spindles is considered important for control of muscle activity. Because skeletal muscle and muscle spindles are thixotropic, their length history changes their physical properties. The present study explores a mechanism that can affect the responsiveness of paraspinal muscle spindles in the lumbar spine. Purpose This study had two aims: to extend our previous findings demonstrating the history dependent effects of vertebral position on the responsiveness of lumbar paraspinal muscle spindles; and to determine the time course for these effects. Based upon previous studies, if a crossbridge mechanism underlies these thixotropic effects, then the relationship between the magnitude of spindle discharge and the duration of the vertebral position will be one of exponential decay or growth. Study Design/Setting A neurophysiological study using the lumbar spine of a feline model. Methods The discharge from individual muscle spindles afferents innervating lumbar paraspinal muscles in response to the duration and direction of vertebral position were obtained from teased filaments in the L6 dorsal roots of 30 Nembutal-anesthetized cats. The L6 vertebra was controlled using a displacement-controlled feedback motor and was held in each of 3 different conditioning positions for durations of 0, 0.5, 1, 1.5, and 2 seconds. Two of the conditioning positions stretched or shortened the lumbar muscles relative to an intermediate conditioning position. Conditioning positions for all cats ranged from 0.9 – 2.0 mm dorsal and ventralward relative to the intermediate position. These magnitudes were determined based upon the displacement that loaded the L6 vertebra to 50–60% of the cat’s body weight. Conditioning was thought to simulate a motion segment’s position that might be passively maintained due to fixation, external load, a prolonged posture, or structural change. Following conditioning positions that stretched (hold-long) and shortened (hold-short) the spindle, the vertebra was repositioned identically and muscle spindle discharge at rest and to movement was compared with conditioning at the intermediate position. Results Lumbar vertebral positions maintained for less than 2 seconds were capable of evoking different discharge rates from lumbar paraspinal muscle spindles despite the vertebra having been returned to identical locations. Both resting spindle discharge and their responsiveness to movement were altered. Conditioning vertebral positions that stretched the spindles decreased spindle activity and positions that unloaded the spindles increased spindle activity upon returning the vertebra to identical original (intermediate) positions. The magnitude of these effects increased as conditioning duration increased to 2 seconds. These effects developed with a time course following a first order exponential reaching a maximal value after approximately 4 seconds of history. The time constant for a hold-short history was 2.6 seconds and for a hold-long history was approximately half of that at 1.1 seconds. Conclusions Thixotropic contributions to the responsiveness of muscles spindles in the low back are caused by the rapid, spontaneous formation of stable crossbridges. These sensory alterations due to vertebral history would represent a proprioceptive input not necessarily representative of the current state of intersegmental positioning. As such, they would constitute a source of inaccurate sensory feedback. Examples are presented suggesting ways in which this novel finding may affect spinal physiology. PMID:17938002

  4. From stable to unstable anomaly-induced inflation

    NASA Astrophysics Data System (ADS)

    Netto, Tibério de Paula; Pelinson, Ana M.; Shapiro, Ilya L.; Starobinsky, Alexei A.

    2016-10-01

    Quantum effects derived through conformal anomaly lead to an inflationary model that can be either stable or unstable. The unstable version requires a large dimensionless coefficient of about 5× {10}^8 in front of the {R}^2 term that results in the inflationary regime in the R+{R}^2 ("Starobinsky") model being a generic intermediate attractor. In this case the non-local terms in the effective action are practically irrelevant, and there is a `graceful exit' to a low curvature matter-like dominated stage driven by high-frequency oscillations of R - scalarons, which later decay to pairs of all particles and antiparticles, with the amount of primordial scalar (density) perturbations required by observations. The stable version is a genuine generic attractor, so there is no exit from it. We discuss a possible transition from stable to unstable phases of inflation. It is shown that this transition is automatic if the sharp cut-off approximation is assumed for quantum corrections in the period of transition. Furthermore, we describe two different quantum mechanisms that may provide a required large {R}^2-term in the transition period.

  5. The OH-Initiated Oxidation of CS2 in the Presence of NO: FTIR Matrix-Isolation and Theoretical Studies.

    PubMed

    Bil, A; Grzechnik, K; Sałdyka, M; Mielke, Z

    2016-09-01

    We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.

  6. Two-dimensional symmetry breaking of fluid density distribution in closed nanoslits.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2008-01-14

    Stable and metastable fluid density distributions (FDDs) in a closed nanoslit between two identical parallel solid walls have been identified on the basis of a nonlocal canonical ensemble density functional theory. Similar to Monte Carlo simulations, periodicity of the FDD in one of the lateral (parallel to the walls surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered uniform. It was found that depending on the average fluid density in the slit, both uniform as well as nonuniform FDDs in the x direction can occur. The uniform FDDs are either symmetric or asymmetric about the middle plane between walls; the latter FDD being the consequence of a symmetry breaking across the slit. The nonuniform FDDs in the x direction occur either in the form of a bump on a thin liquid film covering the walls or as a liquid bridge between those walls and provide symmetry breaking in the x direction. For small and large average densities, the stable state is uniform in the x direction and is symmetric about the middle plane between walls. In the intermediate range of the average density and depending on the length L(x) of the FDD period, the stable state can be represented either by a FDD, which is uniform in the x direction and asymmetric about the middle of the slit (small values of L(x)), or by a bump- and bridgelike FDD for intermediate and large values of L(x), respectively. These results are in agreement with the Monte Carlo simulations performed earlier by other authors. Because the free energy of the stable state decreases monotonically with increasing L(x), one can conclude that the real period is very large (infinite) and that for the values of the parameters employed, a single bridge of finite length over the entire slit is generated.

  7. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 3: A paleoperspective based on present-day data-model comparison for oxygen stable isotopes in carbonates

    NASA Astrophysics Data System (ADS)

    Caley, T.; Roche, D. M.

    2013-03-01

    Oxygen stable isotopes (18O) are among the most usual tools in paleoclimatology/paleoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity iLOVECLIM allowing fully coupled atmosphere-ocean simulations. In this study, we present the validation of the model results for present day climate against global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite 18O signal of speleothems for a data-model comparison exercise. On the contrary, the reconstructed surface ocean calcite δ18O signal in iLOVECLIM does show a very good agreement with late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil δ18O signal recorded in foraminifer shells and that depth habitat and seasonality play a role but have secondary importance. We argue that a data-model comparison for surface ocean calcite δ18O in past climate, such as the last glacial maximum (≈21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.

  8. A Confirmation of the Quench-Cryoannealing Relaxation Protocol for Identifying Reduction States of Freeze-Trapped Nitrogenase Intermediates

    PubMed Central

    2015-01-01

    We have advanced a mechanism for nitrogenase catalysis that rests on the identification of a low-spin EPR signal (S = 1/2) trapped during turnover of a MoFe protein as the E4 state, which has accumulated four reducing equivalents as two [Fe–H–Fe] bridging hydrides. Because electrons are delivered to the MoFe protein one at a time, with the rate-limiting step being the off-rate of oxidized Fe protein, it is difficult to directly control, or know, the degree of reduction, n, of a trapped intermediate, denoted En, n = 1–8. To overcome this previously intractable problem, we introduced a quench-cryoannealing relaxation protocol for determining n of an EPR-active trapped En turnover state. The trapped “hydride” state was allowed to relax to the resting E0 state in frozen medium, which prevents additional accumulation of reducing equivalents; binding of reduced Fe protein and release of oxidized protein from the MoFe protein both are abolished in a frozen solid. Relaxation of En was monitored by periodic EPR analysis at cryogenic temperature. The protocol rests on the hypothesis that an intermediate trapped in the frozen solid can relax toward the resting state only by the release of a stable reduction product from FeMo-co. In turnover under Ar, the only product that can be released is H2, which carries two reducing equivalents. This hypothesis implicitly predicts that states that have accumulated an odd number of electrons/protons (n = 1, 3) during turnover under Ar cannot relax to E0: E3 can relax to E1, but E1 cannot relax to E0 in the frozen state. The present experiments confirm this prediction and, thus, the quench-cryoannealing protocol and our assignment of E4, the foundation of the proposed mechanism for nitrogenase catalysis. This study further gives insights into the identity of the En intermediates with high-spin EPR signals, 1b and 1c, trapped under high electron flux. PMID:24635454

  9. Prognostic Markers in Core-Binding Factor AML and Improved Survival with Multiple Consolidation Cycles of Intermediate/High-dose Cytarabine.

    PubMed

    Prabahran, Ashvind; Tacey, Mark; Fleming, Shaun; Wei, Andrew; Tate, Courtney; Marlton, Paula; Wight, Joel; Grigg, Andrew; Tuckfield, Annabel; Szer, Jeff; Ritchie, David; Chee, Lynette

    2018-05-02

    Core-binding factor acute myeloid leukaemia (CBF AML) defined by t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22) has a favourable prognosis, however 30-40% of patients still relapse after chemotherapy. We sought to evaluate risk factors for relapse in a de novo CBF AML cohort. A retrospective review of patients from 4 Australian tertiary centres from 2001-2012, comprising 40 t(8;21) and 30 inv(16) AMLs. Multivariate analysis identified age (p=0.032) and WCC>40 (p=0.025) as significant predictors for inferior OS and relapse respectively. Relapse risk was higher in the inv(16) group vs the t(8;21) group (57% vs 18%, HR 4.31, 95% CI: 1.78-10.42, p=0.001). Induction therapy had no bearing on OS or relapse free survival (RFS) however, consolidation treatment with >3 cycles of intermediate/high dose cytarabine improved OS (p=0.035) and relapse-free survival (RFS) (p=0.063). 5 patients demonstrated post-treatment stable q PCR positivity without relapse. (1)>3 consolidation cycles of intermediate/ high-dose cytarabine improves patient outcomes. (2)Age and inv(16) CBF AML subtype are predictors of inferior OS and RFS respectively. (3)Stable low-level MRD by qPCR does not predict relapse. (4)Similar OS in the inv(16) cohort compared to the t(8;21) cohort, despite a higher relapse rate, confirms salvageability of relapsed disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection of intermediates and their toxicity.

    PubMed

    Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F

    2018-02-01

    In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of the Stable Isotope Label Approach in Clinical Development-Supporting Dissolution Specifications for a Commercial Tablet Product with Tafenoquine, a Long Half-life Compound.

    PubMed

    Goyal, Navin; Mohamed, Khadeeja; Rolfe, Katie; Sahota, Satty; Ernest, Terry; Duparc, Stephan; Taylor, Maxine; Casillas, Linda; Koh, Gavin C K W

    2018-06-04

    Bioavailability/bioequivalence studies supporting clinical drug development or commercial supply of drug formulations are often time, cost, and resource intensive. The drug's pharmacokinetic (PK) variability, systemic half-life, and safety issues may pose additional challenges. The stable isotope label (SIL) approach provides a useful tool to significantly reduce the study size in clinical PK studies. Tafenoquine (TQ) is an 8-aminoquinoline under development for preventing Plasmodium vivax malaria relapse. This SIL study assessed the impact of differences in the in vitro dissolution profiles on in vivo exposure of TQ tablets. Fourteen healthy volunteers received a single dose of 300 mg TQ Intermediate Aged or 300 mg TQ Control formulations in this single-center, two-arm, randomized, open-label, parallel-group study. Endpoints included the geometric means ratio of the area under the concentration-time curve (AUC (0-t) and AUC (0-∞) ; primary endpoint) and maximum plasma concentration (C max ) for Intermediate Aged versus Control TQ; correlation of PK parameters for venous versus peripheral (via microsample) blood samples; and safety and tolerability endpoints. Geometric mean ratios for PK parameters (AUC and C max ) and their 90% confidence intervals fell well within standard bioequivalence limits (0.80-1.25). Only one mild adverse event (skin abrasion) was reported. In summary, this SIL methodology-based study demonstrates that the observed differences in the in vitro dissolution profiles between the Control and Intermediate Aged TQ tablets have no clinically relevant effect on systemic TQ exposure. The SIL approach was successfully implemented to enable the setting of a clinically relevant dissolution specification. This study (GSK study number 201780) is registered at clinicaltrials.gov with identifier NCT02751294.

  12. The acceleration rate of cosmic rays at cosmic ray modified shocks

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  13. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  14. 42 CFR 423.756 - Procedures for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... civil money penalties. 423.756 Section 423.756 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... BENEFIT Intermediate Sanctions § 423.756 Procedures for imposing intermediate sanctions and civil money....509. (e) Notice to impose civil money penalties—(1) CMS notice to OIG. If CMS determines that a Part D...

  15. 42 CFR 422.756 - Procedures for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... civil money penalties. 422.756 Section 422.756 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Intermediate Sanctions § 422.756 Procedures for imposing intermediate sanctions and civil money penalties. (a... money penalties—(1) CMS notice to OIG. If CMS determines that an MA organization has failed to comply...

  16. A variable conductance gas switch for intermediate temperature operation of liquid He/liquid N2 cryostats

    NASA Technical Reports Server (NTRS)

    Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.

    1988-01-01

    A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.

  17. Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.

    PubMed

    Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem

    2006-10-27

    Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.

  18. Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo

    2018-02-01

    The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.

  19. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery

    PubMed Central

    Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A.; Jung, Yousung; Choi, Jang Wook

    2014-01-01

    Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na+ while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials. PMID:24379365

  20. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2012-09-01

    Understanding intermediate water circulation across the last deglacial is critical in assessing the role of oceanic heat transport associated with Atlantic Meridional Overturning Circulation variability across abrupt climate events. However, the links between intermediate water circulation and abrupt climate events such as the Younger Dryas (YD) and Heinrich Event 1 (H1) are still poorly constrained. Here, we reconstruct changes in Antarctic Intermediate Water (AAIW) circulation in the subtropical North Atlantic over the past 25 kyr by measuring authigenic neodymium isotope ratios in sediments from two sites in the Florida Straits. Our authigenic Nd isotope records suggest that there was little to no penetration of AAIW into the subtropical North Atlantic during the YD and H1. Variations in the northward penetration of AAIW into the Florida Straits documented in our authigenic Nd isotope record are synchronous with multiple climatic archives, including the Greenland ice core δ18O record, the Cariaco Basin atmosphere Δ14C reconstruction, the Bermuda Rise sedimentary Pa/Th record, and nutrient and stable isotope data from the tropical North Atlantic. The synchroneity of our Nd records with multiple climatic archives suggests a tight connection between AAIW variability and high-latitude North Atlantic climate change.

  1. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery.

    PubMed

    Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A; Jung, Yousung; Choi, Jang Wook

    2014-01-14

    Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na(+) while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials.

  2. Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution.

    PubMed

    Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K

    2006-12-08

    Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.

  3. Characterization of folding intermediates during urea-induced denaturation of human carbonic anhydrase II.

    PubMed

    Wahiduzzaman; Dar, Mohammad Aasif; Haque, Md Anzarul; Idrees, Danish; Hassan, Md Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2017-02-01

    Knowledge of folding/unfolding pathway is fundamental basis to study protein structure and stability. Human carbonic anhydrase II (HCAII) is a ∼29kDa, β-sheet dominated monomeric protein of 259 amino acid residues. In the present study, the urea-induced denaturation of HCAII was carried out which was a tri-phasic process, i.e., N (native) ↔ X I ↔ X II ↔ D (denatured) with stable intermediates X I and X II populated around 2 and 4M urea, respectively. The far-UV CD was used to characterize the intermediate states (X I and X II ) for secondary structural content, near-UV CD for tertiary structure, dynamic light scattering for hydrodynamic radius and ANS fluorescence spectroscopy for the presence of exposed hydrophobic patches. Based on these experiments, we concluded that urea-induced X I state has characteristics of molten globule state while X II state bears characteristics features of pre-molten globule state. Characterization of the intermediates on the folding pathway will contribute to a deeper understanding of the structure-function relationship of HCAII. Furthermore, this system may provide an excellent model to study urea stress and the strategies adopted by the organisms to combat such a stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity.

    PubMed

    Emelyanenko, A V; Osipov, M A

    2003-11-01

    A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.

  5. Understanding the Biosynthesis SF2575: A Potent Antitumor Compound With Novel Modes of Action

    DTIC Science & Technology

    2009-09-01

    analyzed on HPLC and LCMS to try to identify any potential stable intermediates that may be present (Figure 3). Using selected ion monitoring, the... polyketides . One known example is that of thermorubin, in which the salicylate moiety is Figure 6: Proposed biosynthetic pathways for the pendants 30...DISTRIBUTION STATEMENT: (Check one ) X Approved for public release; distribution unlimited Distribution limited to U.S

  6. Mesoscale studies of ionic closed membranes with polyhedral geometries

    DTIC Science & Technology

    2016-07-25

    assembled ionic amphiphiles.4 The most commonly observed polyhedral symmetry in self-organized homogeneous structures is the icosahedron, which has the...Possible buckled structures can be obtained considering components A, B with intermediate compositions f of the B component such that the stable shape...lines aids the faceting of the shell into a polyhedral structure often with three-fold vertices. Such vertices are joined together by sharp edges

  7. Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro

    DTIC Science & Technology

    2011-09-01

    parameters of temperature and time may be selected to simulate effects on microstructure during annealing , solution treating, quenching, and tempering...nucleation may be taken into account by use of a wetting angle function. Activation energy may be taken into account for rapidly quenched alloys...the stable forms of precipitates that result from solutionizing, annealing or intermediate heat treatment, and phase formation during nonequilibrium

  8. A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria.

    PubMed

    Koella, Jacob C; Boëte, C

    2003-05-01

    We describe a model of host-parasite coevolution, where the interaction depends on the investments by the host in its immune response and by the parasite in its ability to suppress (or evade) its host's immune response. We base our model on the interaction between malaria parasites and their mosquito hosts and thus describe the epidemiological dynamics with the Macdonald-Ross equation of malaria epidemiology. The qualitative predictions of the model are most sensitive to the cost of the immune response and to the intensity of transmission. If transmission is weak or the cost of immunity is low, the system evolves to a coevolutionarily stable equilibrium at intermediate levels of investment (and, generally, at a low frequency of resistance). At a higher cost of immunity and as transmission intensifies, the system is not evolutionarily stable but rather cycles around intermediate levels of investment. At more intense transmission, neither host nor parasite invests any resources in dominating its partner so that no resistance is observed in the population. These results may help to explain the lack of encapsulated malaria parasites generally observed in natural populations of mosquito vectors, despite strong selection pressure for resistance in areas of very intense transmission.

  9. Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI).

    PubMed

    Esperante, Sebastián A; Covaleda, Giovanni; Trejo, Sebastián A; Bronsoms, Sílvia; Aviles, Francesc X; Ventura, Salvador

    2017-07-14

    Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.

  10. Array design considerations for exploitation of stable weakly dispersive modal pulses in the deep ocean

    NASA Astrophysics Data System (ADS)

    Udovydchenkov, Ilya A.

    2017-07-01

    Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.

  11. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  12. Biosynthesis of 3-acetyldeoxynivalenol and sambucinol. Identification of the two oxygenation steps after trichodiene.

    PubMed

    Zamir, L O; Nikolakakis, A; Huang, L; St-Pierre, P; Sauriol, F; Sparace, S; Mamer, O

    1999-04-30

    The first two oxygenation steps post-trichodiene in the biosyntheses of the trichothecenes 3-acetyldeoxynivalenol and sambucinol were investigated. The plausible intermediates 2-hydroxytrichodiene (2alpha- and 2beta-) and 12,13-epoxytrichodiene and the dioxygenated compounds 12,13-epoxy-9,10-trichoene-2-ol (2alpha- and 2beta-) were prepared specifically labeled with stable isotopes. They were then fed separately and/or together to Fusarium culmorum cultures, and the derived trichothecenes were isolated, purified, and analyzed. The stable isotopes enable easy localization of the labels in the products by 2H NMR, 13C NMR, and mass spectrometry. We found that 2alpha-hydroxytrichodiene is the first oxygenated step in the biosynthesis of both 3-acetyldeoxynivalenol and sambucinol. The stereoisomer 2beta-hydroxytrichodiene and 12,13-epoxytrichodiene are not biosynthetic intermediates and have not been isolated as metabolites. We also demonstrated that the dioxygenated 12, 13-epoxy-9,10-trichoene-2alpha-ol is a biosynthetic precursor to trichothecenes as had been suggested in a preliminary work. Its stereoisomer was not found in the pathway. A further confirmation of our results was the isolation of both oxygenated trichodiene derivatives 2alpha-hydroxytrichodiene and 12,13-epoxy-9, 10-trichoene-2alpha-ol as natural metabolites in F. culmorum cultures.

  13. Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System*

    PubMed Central

    Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio

    2013-01-01

    Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032

  14. Deriving in vivo biotransformation rate constants and metabolite parent concentration factor/stable metabolite factor from bioaccumulation and bioconcentration experiments: An illustration with worm accumulation data.

    PubMed

    Kuo, Dave Ta Fu; Chen, Ciara Chun

    2016-12-01

    Growing concern for the biological fate of organic contaminants and their metabolites and the urge to connect in vitro and in vivo toxicokinetics have prompted researchers to characterize the biotransformation behavior of organic contaminants in biota. The whole body biotransformation rate constant (k M ) is currently determined by the difference approach, which has significant methodological limitations. A new approach for determining k M from the kinetic observations of the parent contaminant and its intermediate metabolites is proposed. In this method, k M can be determined by fitting kinetic data of the parent contaminant and the metabolites to analytical equations that depict the bioaccumulation kinetics. The application of the proposed method is illustrated using worm bioaccumulation-biotransformation data collected from the literature. Furthermore, a metabolite parent concentration factor (MPCF) is also proposed to characterize the persistence of the metabolite in biota. Because both the proposed k M method and MPCF build on the existing theoretical framework for bioaccumulation, they can be readily incorporated into standard experimental bioaccumulation protocols or risk assessment procedures or frameworks. Possible limitations, implications, and future directions are elaborated. Environ Toxicol Chem 2016;35:2903-2909. © 2016 SETAC. © 2016 SETAC.

  15. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy.

    PubMed

    Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki

    2017-03-06

    Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Intermediate boundary conditions for LOD, ADI and approximate factorization methods

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.

    1985-01-01

    A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.

  17. Cyclobutanone Mimics of Intermediates in Metallo-β-Lactamase Catalysis.

    PubMed

    Abboud, Martine I; Kosmopoulou, Magda; Krismanich, Anthony P; Johnson, Jarrod W; Hinchliffe, Philip; Brem, Jürgen; Claridge, Timothy D W; Spencer, James; Schofield, Christopher J; Dmitrienko, Gary I

    2018-04-17

    The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine and the metallo-β-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19 F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13 C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all β-lactamase classes. © 2018 Die Autoren. Veröffentlicht von Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Model of the synthesis of trisporic acid in Mucorales showing bistability.

    PubMed

    Werner, S; Schroeter, A; Schimek, C; Vlaic, S; Wöstemeyer, J; Schuster, S

    2012-12-01

    An important substance in the signalling between individuals of Mucor-like fungi is trisporic acid (TA). This compound, together with some of its precursors, serves as a pheromone in mating between (+)- and (-)-mating types. Moreover, intermediates of the TA pathway are exchanged between the two mating partners. Based on differential equations, mathematical models of the synthesis pathways of TA in the two mating types of an idealised Mucor-fungus are here presented. These models include the positive feedback of TA on its own synthesis. The authors compare three sub-models in view of bistability, robustness and the reversibility of transitions. The proposed modelling study showed that, in a system where intermediates are exchanged, a reversible transition between the two stable steady states occurs, whereas an exchange of the end product leads to an irreversible transition. The reversible transition is physiologically favoured, because the high-production state of TA must come to an end eventually. Moreover, the exchange of intermediates and TA is compared with the 3-way handshake widely used by computers linked in a network.

  19. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells.

    PubMed

    Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup

    2015-08-28

    The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.

  20. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  1. Cyclobutanone Mimics of Intermediates in Metallo‐β‐Lactamase Catalysis

    PubMed Central

    Abboud, Martine I.; Kosmopoulou, Magda; Krismanich, Anthony P.; Johnson, Jarrod W.; Hinchliffe, Philip; Brem, Jürgen; Claridge, Timothy D. W.

    2018-01-01

    Abstract The most important resistance mechanism to β‐lactam antibiotics involves hydrolysis by two β‐lactamase categories: the nucleophilic serine and the metallo‐β‐lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β‐lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM‐1. NMR experiments using 19F‐labeled SPM‐1 imply the cyclobutanone binds to SPM‐1 with micromolar affinity. A crystal structure of the SPM‐1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc‐bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13C‐labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition‐state and/or intermediate analogues as inhibitors of all β‐lactamase classes. PMID:29250863

  2. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  3. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum

    NASA Astrophysics Data System (ADS)

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  4. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.

    PubMed

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  5. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  6. Comparison of the bioavailability and adhesiveness of different rotigotine transdermal patch formulations.

    PubMed

    Elshoff, Jan-Peer; Timmermann, Lars; Schmid, Miriam; Arth, Christoph; Komenda, Michael; Brunnert, Marcus; Bauer, Lars

    2013-12-01

    Rotigotine transdermal patch is approved for the treatment of early and advanced idiopathic Parkinson's disease (PD) and moderate-to-severe idiopathic restless legs syndrome (RLS). A cold chain manufacturing and distribution process was temporarily implemented in 2008, as this reduced the crystal formation reported within patches stored at room temperature. In order to overcome the crystallization issue and meet EMA and FDA requirements, a new room temperature stable formulation was developed. The three studies reported here were conducted to determine whether the new room temperature stable patch demonstrated similar bioavailability and adhesiveness to the original and intermediate patches. Data are reported from three cross-over studies that compared the original, cold chain and room temperature stable patch. Two open-label bioequivalence studies investigated the 2 mg/24 h dosage in healthy individuals (SP951, n = 52 [Clinicaltrials.gov: NCT00881894]; SP0987, n = 50 [NCT01059903]) and a double-blind patch adhesiveness study investigated the 8 mg/24 h dosage in patients with PD (SP1066, n = 56 [NCT01338896]). Plasma concentration-time curves and geometric means for pharmacokinetic parameters were similar for the cold chain vs. original patch in SP951 (AUC(0-tz): 2.68 vs. 2.71 ng/mL*h; point estimate: 0.99 [90% confidence interval (CI): 0.91, 1.07]) (Cmax: 0.131 vs. 0.136 ng/mL; 0.96 [0.89, 1.04]) and for the room temperature stable vs. cold chain patch in SP0987 (AUC(0-tz): 4.51 vs. 4.87 ng/mL*h; 0.90 [0.84, 0.97]) (Cmax: 0.23 vs. 0.23 ng/mL; 0.95 [0.88, 1.02]). In both studies, 90% CIs for ratios of AUC(0-tz) and Cmax were within the bioequivalence acceptance range (0.8-1.25). In SP1066, overall median adhesiveness scores were similar for cold chain (0.5 [range: 0-4]) and room temperature stable (0 [0-4]) formulations. These results demonstrated bioequivalence and indicated similar adhesiveness of the approved room temperature stable rotigotine patch with the original and cold chain patches. Potential limitations include the enrolment of healthy volunteers in the bioequivalence studies, as these individuals were likely to be younger than the general PD or RLS population.

  7. LentiPro26: novel stable cell lines for constitutive lentiviral vector production.

    PubMed

    Tomás, H A; Rodrigues, A F; Carrondo, M J T; Coroadinha, A S

    2018-03-27

    Lentiviral vectors (LVs) are excellent tools to promote gene transfer and stable gene expression. Their potential has been already demonstrated in gene therapy clinical trials for the treatment of diverse disorders. For large scale LV production, a stable producer system is desirable since it allows scalable and cost-effective viral productions, with increased reproducibility and safety. However, the development of stable systems has been challenging and time-consuming, being the selection of cells presenting high expression levels of Gag-Pro-Pol polyprotein and the cytotoxicity associated with some viral components, the main limitations. Hereby is described the establishment of a new LV producer cell line using a mutated less active viral protease to overcome potential cytotoxic limitations. The stable transfection of bicistronic expression cassettes with re-initiation of the translation mechanism enabled the generation of LentiPro26 packaging populations supporting high titers. Additionally, by skipping intermediate clone screening steps and performing only one final clone screening, it was possible to save time and generate LentiPro26-A59 cell line, that constitutively produces titers above 10 6 TU.mL -1 .day -1 , in less than six months. This work constitutes a step forward towards the development of improved LV producer cell lines, aiming to efficiently supply the clinical expanding gene therapy applications.

  8. An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E.; Pillai, Suresh C.

    2016-05-01

    An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO2 being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min-1) was three times more active than the undoped sample (0.0076 min-1) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min-1). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.

  9. Hydrogeology of the surficial and intermediate aquifer systems in Sarasota and adjacent counties, Florida

    USGS Publications Warehouse

    Barr, G.L.

    1996-01-01

    From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.

  10. 40 CFR 63.3130 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....3091(a). This record must include all raw data, algorithms, and intermediate calculations. If the..., algorithms, and intermediate calculations. If the guidelines presented in the “Protocol for Determining Daily...

  11. 40 CFR 63.3130 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....3091(a). This record must include all raw data, algorithms, and intermediate calculations. If the..., algorithms, and intermediate calculations. If the guidelines presented in the “Protocol for Determining Daily...

  12. 40 CFR 63.3130 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....3091(a). This record must include all raw data, algorithms, and intermediate calculations. If the..., algorithms, and intermediate calculations. If the guidelines presented in the “Protocol for Determining Daily...

  13. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  14. Chemoselective Hydrodehalogenation of Organic Halides Utilizing Two-Dimensional Anionic Electrons of Inorganic Electride [Ca2N]+·e.

    PubMed

    Kim, Ye Ji; Kim, Sun Min; Yu, Chunghyeon; Yoo, YoungMin; Cho, Eun Jin; Yang, Jung Woon; Kim, Sung Wng

    2017-01-31

    Halogenated organic compounds are important anthropogenic chemicals widely used in chemical industry, biology, and pharmacology; however, the persistence and inertness of organic halides cause human health problems and considerable environmental pollution. Thus, the elimination or replacement of halogen atoms with organic halides has been considered a central task in synthetic chemistry. In dehalogenation reactions, the consecutive single-electron transfer from reducing agents generates the radical and corresponding carbanion and thus removes the halogen atom as the leaving group. Herein, we report a new strategy for an efficient chemoselective hydrodehalogenation through the formation of stable carbanion intermediates, which are simply achieved by using highly mobile two-dimensional electrons of inorganic electride [Ca 2 N] + ·e - with effective electron transfer ability. The consecutive single-electron transfer from inorganic electride [Ca 2 N] + ·e - stabilized free carbanions, which is a key step in achieving the selective reaction. Furthermore, a determinant more important than leaving group ability is the stability control of free carbanions according to the s character determined by the backbone structure. We anticipate that this approach may provide new insight into selective chemical formation, including hydrodehalogenation.

  15. Structure–Reactivity Studies, Characterization, and Transformation of Intermediates by Lithium Chloride in the Direct Insertion of Alkyl and Aryl Iodides to Metallic Zinc Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Chao; Easter, Quinn T.; Blum, Suzanne A.

    Employment of fluorophore-tagged alkyl and aryl iodides permitted detection of persistent surface intermediates during their direct insertion to commercially available zinc powder. The sensitivity of this subensemble microscopy technique enabled structure–reactivity studies in the formation of intermediates that are present in quantities sufficiently low as to have been undetected previously by traditional ensemble analytical techniques. In these surface intermediates we transformed them using lithium chloride, which lead to the assignment of the mechanistic role of lithium chloride as changing the rate-determining step in the reaction by lowering the barrier for solubilization of these otherwise persistent surface organometallic intermediates. The temperaturemore » dependence/qualitative barrier of the direct insertion step was determined independently from the solubilization step and from the barrier for the overall reaction. Detection of these zinc surface intermediates at the single-molecule level, i.e., of individual surface organometallic species, has been achieved for the first time. Energy dispersive X-ray spectroscopy (EDS) measurements of the elemental composition of the surface of the zinc powder determined that lithium chloride does not clean the surface of the oxides; instead, pretreatment of the surface with TMSCl effects partial removal of surface oxides after the 2 h pretreatment time previously reported in the empirically optimized synthetic procedure. The current limitations of this microscopy approach are also determined and discussed with respect to the addition of solid reagents during in operando imaging. Characterization of the resulting soluble fluorophore-tagged organozinc/LiCl complex by 1H NMR spectroscopy, mass spectrometry, and fluorescence spectroscopy provided insight into its solution dynamics and chemical exchange processes.« less

  16. Structure–Reactivity Studies, Characterization, and Transformation of Intermediates by Lithium Chloride in the Direct Insertion of Alkyl and Aryl Iodides to Metallic Zinc Powder

    DOE PAGES

    Feng, Chao; Easter, Quinn T.; Blum, Suzanne A.

    2017-02-03

    Employment of fluorophore-tagged alkyl and aryl iodides permitted detection of persistent surface intermediates during their direct insertion to commercially available zinc powder. The sensitivity of this subensemble microscopy technique enabled structure–reactivity studies in the formation of intermediates that are present in quantities sufficiently low as to have been undetected previously by traditional ensemble analytical techniques. In these surface intermediates we transformed them using lithium chloride, which lead to the assignment of the mechanistic role of lithium chloride as changing the rate-determining step in the reaction by lowering the barrier for solubilization of these otherwise persistent surface organometallic intermediates. The temperaturemore » dependence/qualitative barrier of the direct insertion step was determined independently from the solubilization step and from the barrier for the overall reaction. Detection of these zinc surface intermediates at the single-molecule level, i.e., of individual surface organometallic species, has been achieved for the first time. Energy dispersive X-ray spectroscopy (EDS) measurements of the elemental composition of the surface of the zinc powder determined that lithium chloride does not clean the surface of the oxides; instead, pretreatment of the surface with TMSCl effects partial removal of surface oxides after the 2 h pretreatment time previously reported in the empirically optimized synthetic procedure. The current limitations of this microscopy approach are also determined and discussed with respect to the addition of solid reagents during in operando imaging. Characterization of the resulting soluble fluorophore-tagged organozinc/LiCl complex by 1H NMR spectroscopy, mass spectrometry, and fluorescence spectroscopy provided insight into its solution dynamics and chemical exchange processes.« less

  17. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  18. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  19. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  20. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  1. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, Carol J.

    1987-01-01

    Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  2. Survival of Microbial Pathogens in the Marine Environment

    DTIC Science & Technology

    1979-05-01

    individaal virusesLLd [aried widely In their stability with Coxsackie B-5 being the most stable, HO virus 6 being intermediate, and poliovirus 1 the...Department of Microbiology University of Maryland College Park, Maryland 2074P 1 May 1979 Reproduction in whole or in part is permitted for any...study: poliovirus type 1, coxsackievirus B-5, and Echoviru’ 6. Synthetic seawater was adjusted to 10, 20, and 34 parts per thousand and the temperatures

  3. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  4. Research in Energetic Compounds.

    DTIC Science & Technology

    1981-01-01

    The ring is thus amenable to electrophilic opening. Efforts to polymerize 3, 3-dinitrooxetane will be continued. An intermediate In the preparation of...r- nitronate salts and formaldehyde.2 This reaction is ported to give a stable dialkoxide salt. In order to explore markedly inhibited by a fluorine ...a to nitro as a manifes- further the chemistry of 2-fluoro-2-nitro-I,3-propanediol, tation of the " fluorine effect" or the destabilization of a we

  5. 5-Hydroxymethylcytosine is a predominantly stable DNA modification

    NASA Astrophysics Data System (ADS)

    Bachman, Martin; Uribe-Lewis, Santiago; Yang, Xiaoping; Williams, Michael; Murrell, Adele; Balasubramanian, Shankar

    2014-12-01

    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.

  6. Rapid screening of phytoremediation effluents by off-line tetramethylammonium hydroxide assisted thermochemolysis.

    PubMed

    Poerschmann, Juergen; Schultze-Nobre, Luciana

    2015-06-15

    Tetramethylammonium hydroxide-assisted thermochemolysis performed in an off-line mode proved a useful tool in determining organic compounds in the effluent from laboratory-scale phytoremediation systems. Studies were performed with artificial wastewaters contaminated with xylenols and densely rooted Juncus effuses plants. Analytes in these molecular-level based studies included xylenol substrates, an array of stable intermediates such as low molecular weight carboxylic acids and oxidative coupling products (tetramethyl biphenyldiols, tetramethyl diphenylether monools), diagnostic fatty acid biomarkers, as well as lignin-, carbohydrate-, and protein-based phenols and carboxylic acids. Lignin-based breakdown products belonged to p-hydroxyphenyl- and guaiacyl-units, with lower abundance of syringyl units and the dominance of acids over phenols. Monomeric lignin-, protein- and carbohydrate-based breakdown products could not be detected in the non-treated lyophilized effluent. The formation of diketopiperazines pointed to soluble peptides and proteins. The procedure described herein can easily be applied in every modern laboratory to characterize underlying processes in phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Aerodynamic Database Development for Mars Smart Lander Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bobskill, Glenn J.; Parikh, Paresh C.; Prabhu, Ramadas K.; Tyler, Erik D.

    2002-01-01

    An aerodynamic database has been generated for the Mars Smart Lander Shelf-All configuration using computational fluid dynamics (CFD) simulations. Three different CFD codes, USM3D and FELISA, based on unstructured grid technology and LAURA, an established and validated structured CFD code, were used. As part of this database development, the results for the Mars continuum were validated with experimental data and comparisons made where applicable. The validation of USM3D and LAURA with the Unitary experimental data, the use of intermediate LAURA check analyses, as well as the validation of FELISA with the Mach 6 CF(sub 4) experimental data provided a higher confidence in the ability for CFD to provide aerodynamic data in order to determine the static trim characteristics for longitudinal stability. The analyses of the noncontinuum regime showed the existence of multiple trim angles of attack that can be unstable or stable trim points. This information is needed to design guidance controller throughout the trajectory.

  8. Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength.

    PubMed

    Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-02-02

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  9. Air-coupled piezoelectric transducers with active polypropylene foam matching layers.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2013-05-10

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  10. Fungal oxygen exchange between denitrification intermediates and water.

    PubMed

    Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Anette; Wrage-Mönnig, Nicole; Well, Reinhard

    2014-02-28

    Fungi can contribute greatly to N2O production from denitrification. Therefore, it is important to quantify the isotopic signature of fungal N2O. The isotopic composition of N2O can be used to identify and analyze the processes of N2O production and N2O reduction. In contrast to bacteria, information about the oxygen exchange between denitrification intermediates and water during fungal denitrification is lacking, impeding the explanatory power of stable isotope methods. Six fungal species were anaerobically incubated with the electron acceptors nitrate or nitrite and (18)O-labeled water to determine the oxygen exchange between denitrification intermediates and water. After seven days of incubation, gas samples were analyzed for N2O isotopologues by isotope ratio mass spectrometry. All the fungal species produced N2O. N2O production was greater when nitrite was the sole electron acceptor (129 to 6558 nmol N2O g dw(-1)  h(-1)) than when nitrate was the electron acceptor (6 to 47 nmol N2O g dw(-1)  h(-1)). Oxygen exchange was complete with nitrate as electron acceptor in one of five fungi and with nitrite in two of six fungi. Oxygen exchange of the other fungi varied (41 to 89% with nitrite and 11 to 61% with nitrate). This is the first report on oxygen exchange with water during fungal denitrification. The exchange appears to be within the range previously reported for bacterial denitrification. This adds to the difficulty of differentiating N2O producing processes based on the origin of N2O-O. However, the large oxygen exchange repeatedly observed for bacteria and now also fungi could lead to less variability in the δ(18)O values of N2O from soils, which could facilitate the assessment of the extent of N2O reduction. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Trajectories of Health and Behavioral Health Services Use among Community Corrections–Involved Rural Adults

    PubMed Central

    Mowbray, Orion; McBeath, Bowen; Bank, Lew; Newell, Summer

    2016-01-01

    This article seeks to establish time-based trajectories of health and behavioral health services utilization for community corrections–involved (CCI) adults and to examine demographic and clinical correlates associated with these trajectories. To accomplish this aim, the authors applied a latent class growth analysis (LCGA) to services use data from a sample of rural CCI adults who reported their medical, mental health, and substance use treatment utilization behavior every 60 days for 1.5 years. LCGA established 1.5-year trajectories and demographic correlates of health services among rural CCI adults. For medical services, three classes emerged (stable-low users, 13%; stable-intermediate users, 40%; and stable-high users, 47%). For mental health and substance use services, three classes emerged (stable-low, 69% and 61%, respectively; low-baseline-increase, 10% and 12%, respectively; high-baseline decline, 21% and 28%, respectively). Employment, gender, medication usage, and depression severity predicted membership across all services. Results underscore the importance of social workers and other community services providers aligning health services access with the needs of the CCI population, and highlight CCI adults as being at risk of underservice in critical prevention and intervention domains. PMID:27257353

  12. Characterization of Folding Mechanisms of Trp-cage and WW-domain by Network Analysis of Simulations with a Hybrid-resolution Model

    PubMed Central

    Han, Wei; Schulten, Klaus

    2013-01-01

    In this study, we apply a hybrid-resolution model, namely PACE, to characterize the free energy surfaces (FESs) of trp-cage and a WW domain variant along with the respective folding mechanisms. Unbiased, independent simulations with PACE are found to achieve together multiple folding and unfolding events for both proteins, allowing us to perform network analysis of the FESs to identify folding pathways. PACE reproduces for both proteins expected complexity hidden in the folding FESs, in particular, meta-stable non-native intermediates. Pathway analysis shows that some of these intermediates are, actually, on-pathway folding intermediates and that intermediates kinetically closest to the native states can be either critical on-pathway or off-pathway intermediates, depending on the protein. Apart from general insights into folding, specific folding mechanisms of the proteins are resolved. We find that trp-cage folds via a dominant pathway in which hydrophobic collapse occurs before the N-terminal helix forms; full incorporation of Trp6 into the hydrophobic core takes place as the last step of folding, which, however, may not be the rate-limiting step. For the WW domain variant studied we observe two main folding pathways with opposite orders of formation of the two hairpins involved in the structure; for either pathway, formation of hairpin 1 is more likely to be the rate-limiting step. Altogether, our results suggest that PACE combined with network analysis is a computationally efficient and valuable tool for the study of protein folding. PMID:23915394

  13. Photo-induced bleaching of sensory rhodopsin II (phoborhodopsin) from Halobacterium salinarum by hydroxylamine: identification of the responsible intermediates.

    PubMed

    Tamogami, Jun; Kikukawa, Takashi; Ikeda, Yoichi; Demura, Makoto; Nara, Toshifumi; Kamo, Naoki

    2012-01-05

    Sensory rhodopsin II from Halobacterium salinarum (HsSRII) is a retinal protein in which retinal binds to a specific lysine residue through a Schiff base. Here, we investigated the photobleaching of HsSRII in the presence of hydroxylamine. For identification of intermediate(s) attacked by hydroxylamine, we employed the flash-induced bleaching method. In order to change the concentration of intermediates, such as M- and O-intermediates, experiments were performed under varying flashlight intensities and concentrations of azide that accelerated only the M-decay. We found the proportional relationship between the bleaching rate and area under the concentration-time curve of M, indicating a preferential attack of hydroxylamine on M. Since hydroxylamine is a water-soluble reagent, we hypothesize that for M, hydrophilicity or water-accessibility increases specifically in the moiety of Schiff base. Thus, hydroxylamine bleaching rates may be an indication of conformational changes near the Schiff base. We also considered the possibility that azide may induce a small conformational change around the Schiff base. We compared the hydroxylamine susceptibility between HsSRII and NpSRII (SRII from Natronomonas pharaonis) and found that the M of HsSRII is about three times more susceptible than that of the stable NpSRII. In addition, long illumination to HsSRII easily produced M-like photoproduct, P370. We thus infer that the instability of HsSRII under illumination may be related to this increase of hydrophilicity at M and P370. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex

    PubMed Central

    Bian, Yunqiang; Tan, Cheng; Wang, Jun; Sheng, Yuebiao; Zhang, Jian; Wang, Wei

    2014-01-01

    In this work we studied the folding process of the hybrid-1 type human telomeric DNA G-quadruplex with solvent and ions explicitly modeled. Enabled by the powerful bias-exchange metadynamics and large-scale conventional molecular dynamic simulations, the free energy landscape of this G-DNA was obtained for the first time and four folding intermediates were identified, including a triplex and a basically formed quadruplex. The simulations also provided atomistic pictures for the structures and cation binding patterns of the intermediates. The results showed that the structure formation and cation binding are cooperative and mutually supporting each other. The syn/anti reorientation dynamics of the intermediates was also investigated. It was found that the nucleotides usually take correct syn/anti configurations when they form native and stable hydrogen bonds with the others, while fluctuating between two configurations when they do not. Misfolded intermediates with wrong syn/anti configurations were observed in the early intermediates but not in the later ones. Based on the simulations, we also discussed the roles of the non-native interactions. Besides, the formation process of the parallel conformation in the first two G-repeats and the associated reversal loop were studied. Based on the above results, we proposed a folding pathway for the hybrid-1 type G-quadruplex with atomistic details, which is new and more complete compared with previous ones. The knowledge gained for this type of G-DNA may provide a general insight for the folding of the other G-quadruplexes. PMID:24722458

  15. The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Lignières, François; Petit, Pascal; Aurière, Michel; Wade, Gregg A.; Böhm, Torsten

    2014-08-01

    Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star. Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.

  16. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames

    NASA Astrophysics Data System (ADS)

    Winter, Pierre M.; Rheaume, Michael; Cooksy, Andrew L.

    2017-08-01

    We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien-2-yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combining C3H3O with C2H4, CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZ-F12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10-5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for the C4H5 system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures decrease below 0.1 bar.

  18. Changes in triglyceride levels and risk for coronary heart disease in young men.

    PubMed

    Tirosh, Amir; Rudich, Assaf; Shochat, Tzippora; Tekes-Manova, Dorit; Israeli, Eran; Henkin, Yaakov; Kochba, Ilan; Shai, Iris

    2007-09-18

    Current triglyceride levels might be only a weak predictor of risk for coronary heart disease (CHD). To assess the association between changes over time in fasting triglyceride levels and CHD risk in young adults. Follow-up study over 5.5 years after 2 measurements of fasting triglycerides 5 years apart. The Staff Periodic Examination Center of the Israel Defense Forces, Zrifin, Israel. 13,953 apparently healthy, untreated, young men (age 26 to 45 years) with triglyceride levels less than 3.39 mmol/L (<300 mg/dL). Two triglyceride measurements (at enrollment [time 1] and 5 years later [time 2]), lifestyle variables, and incident cases of angiography-proven CHD. Within 5.5 years, 158 new cases of CHD were identified. The multivariate model was adjusted for age; family history; fasting glucose; high-density lipoprotein cholesterol; blood pressure; body mass index; and changes between time 1 and time 2 in body mass index, physical activity, smoking status, and habit of eating breakfast. Investigators categorized triglyceride levels according to low, intermediate, and high tertiles (as measured at time 1 and time 2 [expressed as tertile at time 1/tertile at time 2]). The risk for CHD in men with high-tertile triglyceride levels at time 1 changed depending on the tertile at time 2 (hazard ratios, 8.23 [95% CI, 2.50 to 27.13] for high/high, 6.84 [CI, 1.95 to 23.98] for high/intermediate, and 4.90 [CI, 1.01 to 24.55] for high/low, compared with the stable low/low group). The risk for CHD in men with low-tertile levels at time 1 also changed depending on the tertile at time 2 (hazard ratios, 3.81 [CI, 0.96 to 15.31] for low/intermediate and 6.76 [CI, 1.34 to 33.92] for low/high, compared with the stable low/low group). Participants were healthy and had a low incidence rate of CHD. The study was observational. Two triglyceride measurements obtained 5 years apart may assist in assessing CHD risk in young men. A decrease in initially elevated triglyceride levels is associated with a decrease in CHD risk compared with stable high triglyceride levels. However, this risk remains higher than in those with persistently low triglyceride levels.

  19. Analysis of some types of intermediate orbits used in the theory of artificial Earth satellite motion for the purposes of geodesy.

    NASA Astrophysics Data System (ADS)

    Kotseva, V. I.

    Survey, analysis and comparison of 15 types of intermediate orbits used in the satellite movement theories for the purposes both of the geodesy and geodynamics have been made. The paper is a continuation of the investigations directed to practical realization both of analytical and semi-analytical methods for satellite orbit determination. It is indicated that the intermediate orbit proposed and elaborated by Aksenov, Grebenikov and Demin has got some good qualities and priorities over all the rest intermediate orbits.

  20. Theoretical studies of large water clusters: (H2O)28, (H2O)29, (H2O)30, and (H2O)31 hexakaidecahedral structures

    NASA Astrophysics Data System (ADS)

    Khan, Arshad

    1997-04-01

    The 28, 29, 30, and 31 mer hexakaidecahedral water clusters were studied by applying the intermediate neglect of differential overlap self-consistent field restricted Hartree-Fock method (INDO SCF RHF) after parametrization for H and O atoms. The most stable 29 and 30 mer clusters have one and two water molecules, respectively within the cavity of the distorted hexakaidecahedral cage with stabilization energy/monomer values of around 10.9 and 11.0 kcal, respectively. The 31 mer cluster with three water molecules within the cavity is less stable than the isomer with two molecules within the cavity and the third one bonded outside of the cage by around 3 kcal/mol.

  1. Method for producing metal oxide aerogels having densities less than 0.02 g/cc

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1994-01-01

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.

  2. Paleoceanography/climate and taphonomy at intermediate water depth in the Subtropical Western North Pacific Ocean over the last 1 Ma from IODP Exp 350 Sites U1436C and U1437B, Izu arc area.

    NASA Astrophysics Data System (ADS)

    Vautravers, Maryline

    2015-04-01

    IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing influences in the Kuroshio/Oyashio currents at orbital time scales over the last 1 Ma. However, the 2 main findings are i.) that of the intense and pervasive carbonate dissolution at such an intermediate water depth, especially during interglacials, and in particular at site U1436C, and ii.) the good and improving carbonate preservation at Site U1437B during glacials, particularly in the upper part of the record.

  3. 42 CFR 422.752 - Basis for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with the organization whose medical condition or history indicates a need for substantial future... determination that could lead to a contract termination under 422.510(a), CMS may impose the intermediate...

  4. 42 CFR 422.752 - Basis for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with the organization whose medical condition or history indicates a need for substantial future... determination that could lead to a contract termination under 422.510(a), CMS may impose the intermediate...

  5. 42 CFR 422.752 - Basis for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with the organization whose medical condition or history indicates a need for substantial future... determination that could lead to a contract termination under 422.510(a), CMS may impose the intermediate...

  6. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  7. Loop vertex expansion for higher-order interactions

    NASA Astrophysics Data System (ADS)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  8. Quantum Computation with Neutral Atoms at Addressable Optical Lattice Sites and Atoms in Confined Geometries

    DTIC Science & Technology

    2014-10-13

    include doublon dissolution, quantum distillation , and confinement of vacancies in a doublon sea, can be 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...include doublon dissolution, quantum distillation , and confinement of vacancies in a doublon sea, can be qualitatively understood even in the intermediate...with a deep enough lattice that isolated doublons are stable; the quantum distillation of singlons out of the doublon sea; and the long term

  9. Tone based command system for reception of very weak signals

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert Steven (Inventor); Jensen, James Robert (Inventor)

    2006-01-01

    This disclosure presents a communication receiver system for spacecraft that includes an open loop receiver adapted to receive a communication signal. An ultrastable oscillator (USO) and a tone detector are connected to the open loop receiver. The open loop receiver translates the communication signal to an intermediate frequency signal using a highly stable reference frequency from the USO. The tone detector extracts commands from the communication signal by evaluating the difference between tones of the communication signal.

  10. Strange metal from local quantum chaos

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Daniel; McGreevy, John

    2018-04-01

    How to make a model of a non-Fermi-liquid metal with efficient current dissipation is a long-standing problem. Results from holographic duality suggest a framework where local critical fermionic degrees of freedom provide both a source of decoherence for the Landau quasiparticle, and a sink for its momentum. This leads us to study a Kondo lattice type model with SYK models in place of the spin impurities. We find evidence for a stable phase at intermediate couplings.

  11. One-Electron Standard Reduction Potentials of Nitroaromatic and Cyclic Nitramine Explosives

    DTIC Science & Technology

    2010-01-01

    the preparation of solutions. Glassware and plasticware was rinsed with acetone and distilled water prior to soaking overnight in a 5.0 M nitric acid ...prior contact with metal ions was soaked in a 5.0 mM oxalic acid bath overnight before following the above procedure. 40-Nitroacetophenone, 1,3...observable (Colon et al., 2006b) nitrosobenzene and N-hydroxylaniline intermediates to form the final stable product aniline (Fig. 1a). However, NACs

  12. Environmentally stable polymers and coatings for space application: CH-5, supplement 10

    NASA Technical Reports Server (NTRS)

    Sykes, G.

    1986-01-01

    High molecular weight, randomly coupled poly(imide siloxane) soluble block copolymers were synthesized from bis(amino propyl) polydimethylsiloxane equilibrates of various molecular weights, aromatic metalinked diamines, and 3,3'-4,4'-benzophenone tetracarboxylic dianhydride (BTDA). Two synthetic procedures were successfully used to synthesize the poly(amic acid siloxane) intermediates. For both synthetic procedures, a cosolvent system was employed to achieve complete solvation of all components throughout the polymerization. Physical property characterization is continuing.

  13. To compare growth outcomes and cost-effectiveness of "Kangaroo ward care" with "intermediate intensive care" in stable extremely low birth weight infants: randomized control trial.

    PubMed

    Sharma, Deepak; Murki, Srinivas; Pratap, Oleti Tejo

    2017-07-01

    To compare growth outcome and cost-effectiveness of "Kangaroo ward care" (KWC) with "Intermediate intensive care" (IIC) in stable extremely low birth weight (ELBW) infants. This is secondary analysis of the study and we analyzed 62 ELBW infants, 33 were randomized to KWC and 29 to IIC once the infant reached a weight of 1150 g. Infants in the KWC group were shifted to the Kangaroo ward immediately after randomization and in the IIC group received IIC care till they attain a weight of 1250 g before shifting to Kangaroo ward. The gain in weight (g/day), length (cm/week), and head circumference (cm/week) were comparable between the two groups. The mean weight, length, and head circumference were comparable at term gestational age. The infants in KWC group were shifted five days earlier to Kangaroo ward when compared to IIC group. The cost-effective analysis using "top-down" and "bottom-up" accounting method showed that there was significant reduction of hospital and parents expenditure in KWC group (p < 0.001) with approximate saving of 452 USD for each patient in the KWC group. Early shifting of ELBW infants for KWC is very efficacious and cost-effective intervention when compared to IIC. (CTRI/2014/05/004625).

  14. G-triplex structure and formation propensity

    PubMed Central

    Cerofolini, Linda; Amato, Jussara; Giachetti, Andrea; Limongelli, Vittorio; Novellino, Ettore; Parrinello, Michele; Fragai, Marco; Randazzo, Antonio; Luchinat, Claudio

    2014-01-01

    The occurrence of a G-triplex folding intermediate of thrombin binding aptamer (TBA) has been recently predicted by metadynamics calculations, and experimentally supported by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data collected on a 3′ end TBA-truncated 11-mer oligonucleotide (11-mer-3′-t-TBA). Here we present the solution structure of 11-mer-3′-t-TBA in the presence of potassium ions. This structure is the first experimental example of a G-triplex folding, where a network of Hoogsteen-like hydrogen bonds stabilizes six guanines to form two G:G:G triad planes. The G-triplex folding of 11-mer-3′-t-TBA is stabilized by the potassium ion and destabilized by increasing the temperature. The superimposition of the experimental structure with that predicted by metadynamics shows a great similarity, with only significant differences involving two loops. These new structural data show that 11-mer-3′-t-TBA assumes a G-triplex DNA conformation as its stable form, reinforcing the idea that G-triplex folding intermediates may occur in vivo in human guanine-rich sequences. NMR and CD screening of eight different constructs obtained by removing from one to four bases at either the 3′ and the 5′ ends show that only the 11-mer-3′-t-TBA yields a relatively stable G-triplex. PMID:25378342

  15. High-Performanced Cathode with a Two-Layered R-P Structure for Intermediate Temperature Solid Oxide Fuel Cells.

    PubMed

    Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Lu, Yalin

    2016-02-01

    Driven by the mounting concerns on global warming and energy crisis, intermediate temperature solid-oxide fuel cells (IT-SOFCs) have attracted special attention for their high fuel efficiency, low toxic gas emission, and great fuel flexibility. A key obstacle to the practical operation of IT-SOFCs is their sluggish oxygen reduction reaction (ORR) kinetics. In this work, we applied a new two-layered Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7-δ (SFO), as the material for oxygen ion conducting IT-SOFCs. Density functional theory calculation suggested that SFO has extremely low oxygen ion formation energy and considerable energy barrier for O(2-) diffusion. Unfortunately, the stable SrO surface of SFO was demonstrated to be inert to O2 adsorption and dissociation reaction, and thus restricts its catalytic activity toward ORR. Based on this observation, Co partially substituted SFO (SFCO) was then synthesized and applied to improve its surface vacancy concentration to accelerate the oxygen adsorptive reduction reaction rate. Electrochemical performance results suggested that the cell using the SFCO single phase cathode has a peak power density of 685 mW cm(-2) at 650 °C, about 15% higher than those when using LSCF cathode. Operating at 200 mA cm(-2), the new cell using SFCO is quite stable within the 100-h' test.

  16. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  17. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radiogenic and Stable Isotope and Hydrogeochemical Investigation of Groundwater, Pajarito Plateau and Surrounding Areas, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman

    2007-07-15

    From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodernmore » (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists of tritium, nitrate, perchlorate, chromate, boron, uranium, and/or high explosive compounds. It is very unlikely that there is only one transport or travel time, ranging from 25 to 62 years, for these conservative chemicals migrating from surface water to the regional water table. Lengths of groundwater flow paths vary within deep saturated zones containing variable concentrations of tritium. The 4-series springs discharging within White Rock Canyon contain a modern component of groundwater, primarily tritium. Average groundwater ages for the regional aquifer beneath the Pajarito Plateau varied from 565 to 10,817 years, based on unadjusted carbon-14 measurements.« less

  19. Determination of aromatics and olefins in wide-boiling petroleum fractions

    NASA Technical Reports Server (NTRS)

    Spakowski, A E; Evans, A; Hibbard, R R

    1950-01-01

    A chromatographic method is described herein for the analysis of aromatics and olefins in wide boiling petroleum fractions. The fuel is split into four fractions: nonaromatic, intermediate, pure aromatic, and wash. The analysis, which need be run only on the intermediate cut to determine aromatics in the fuel, is based on specific dispersion. With analysis times of less than 8 hours, accuracies of 1 percent were attained.

  20. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    PubMed

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  1. Subsequent Success in a Mathematics Course by Students Who Received a Grade in Intermediate Algebra (Math 253) for the Fall, 2002 Semester at Saddleback College

    ERIC Educational Resources Information Center

    Sworder, Steve

    2006-01-01

    The purpose of this study was to determine the effectiveness of a typical California community college Intermediate Algebra course in preparing students for success in the transfer level mathematics courses for which Intermediate Algebra was the prerequisite. The subsequent mathematics course taken by each of the 986 students who received a grade…

  2. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association with intermediate filaments by focusing on the effect of calcium on the maturation process of lamin A. Our result shows that calcium plays a regulatory role in the post-translational processing of lam in A by tuning its molecular conformation and mechanics. Based on these findings we demonstrate that multiple-scale computational modeling provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments. We provide a perspective on research opportunities to improve the foundation for engineering the mechanical and biochemical functions of biomaterials. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  3. Validation of intermediate end points in cancer research.

    PubMed

    Schatzkin, A; Freedman, L S; Schiffman, M H; Dawsey, S M

    1990-11-21

    Investigations using intermediate end points as cancer surrogates are quicker, smaller, and less expensive than studies that use malignancy as the end point. We present a strategy for determining whether a given biomarker is a valid intermediate end point between an exposure and incidence of cancer. Candidate intermediate end points may be selected from case series, ecologic studies, and animal experiments. Prospective cohort and sometimes case-control studies may be used to quantify the intermediate end point-cancer association. The most appropriate measure of this association is the attributable proportion. The intermediate end point is a valid cancer surrogate if the attributable proportion is close to 1.0, but not if it is close to 0. Usually, the attributable proportion is close to neither 1.0 nor 0; in this case, valid surrogacy requires that the intermediate end point mediate an established exposure-cancer relation. This would in turn imply that the exposure effect would vanish if adjusted for the intermediate end point. We discuss the relative advantages of intervention and observational studies for the validation of intermediate end points. This validation strategy also may be applied to intermediate end points for adverse reproductive outcomes and chronic diseases other than cancer.

  4. APpropriAteness of percutaneous Coronary interventions in patients with ischaemic HEart disease in Italy: the APACHE pilot study

    PubMed Central

    Marino, Marcello; Crimi, Gabriele; Maiorana, Florinda; Rizzotti, Diego; Lettieri, Corrado; Bettari, Luca; Zuccari, Marco; Sganzerla, Paolo; Tresoldi, Simone; Adamo, Marianna; Ghiringhelli, Sergio; Sponzilli, Carlo; Pasquetto, Giampaolo; Pavei, Andrea; Pedon, Luigi; Bassan, Luciano; Bollati, Mario; Camisasca, Paola; Trabattoni, Daniela; Brancati, Marta; Poli, Arnaldo; Panciroli, Claudio; Lettino, Maddalena; Tarelli, Giuseppe; Tarantini, Giuseppe; De Luca, Leonardo; Varbella, Ferdinando; Musumeci, Giuseppe; De Servi, Stefano

    2017-01-01

    Objectives To first explore in Italy appropriateness of indication, adherence to guideline recommendations and mode of selection for coronary revascularisation. Design Retrospective, pilot study. Setting 22 percutaneous coronary intervention (PCI)-performing hospitals (20 patients per site), 13 (59%) with on-site cardiac surgery. Participants 440 patients who received PCI for stable coronary artery disease (CAD) or non-ST elevation acute coronary syndrome were independently selected in a 4:1 ratio with half diabetics. Primary and secondary outcome measures Proportion of patients who received appropriate PCI using validated appropriate use scores (ie, AUS≥7). Also, in patients with stable CAD, we examined adherence to the following European Society of Cardiology recommendations: (A) per cent of patients with complex coronary anatomy treated after heart team discussion; (B) per cent of fractional flow reserve-guided PCI for borderline stenoses in patients without documented ischaemia; (C) per cent of patients receiving guideline-directed medical therapy at the time of PCI as well as use of provocative test of ischaemia according to pretest probability (PTP) of CAD. Results Of the 401 mappable PCIs (91%), 38.7% (95% CI 33.9 to 43.6) were classified as appropriate, 47.6% (95% CI 42.7 to 52.6) as uncertain and 13.7% (95% CI 10.5% to 17.5%) as inappropriate. Median PTP in patients with stable CAD without known coronary anatomy was 69% (78% intermediate PTP, 22% high PTP). Ischaemia testing use was similar (p=0.71) in patients with intermediate (n=140, 63%) and with high PTP (n=40, 66%). In patients with stable CAD (n=352) guideline adherence to the three recommendations explored was: (A) 11%; (B) 25%; (C) 23%. AUS was higher in patients evaluated by the heart team as compared with patients who were not (7 (6.8) vs 5 (4.7); p=0.001). Conclusions Use of heart team approaches and adherence to guideline recommendations on coronary revascularisation in a real-world setting is limited. This pilot study documents the feasibility of measuring appropriateness and guideline adherence in clinical practice and identifies substantial opportunities for quality improvement. Trial registration number NCT02748603. PMID:28877948

  5. How incidental values from the environment affect decisions about money, risk, and delay.

    PubMed

    Ungemach, Christoph; Stewart, Neil; Reimers, Stian

    2011-02-01

    How different are £0.50 and £1.50, "a small chance" and "a good chance," or "three months" and "nine months"? Our studies show that people behave as if the differences between these values are altered by incidental everyday experiences. Preference for a £1.50 lottery rather than a £0.50 lottery was stronger among individuals exposed to intermediate supermarket prices than among those exposed to lower or higher prices. Preference for "a good chance" rather than "a small chance" of winning a lottery was stronger among participants who predicted intermediate probabilities of rain than among those who predicted lower or higher chances of rain. Preference for consumption in "three months" rather than "nine months" was stronger among participants who planned for an intermediate birthday than among participants who planned for a sooner or later birthday. These fluctuations directly challenge economic accounts that translate monies, risks, and delays into subjective equivalents with stable functions. The decision-by-sampling model-in which subjective values are rank positions constructed from comparisons with samples-predicts these effects and indicates a primary role for sampling in decision making.

  6. Sulfate radicals enable a non-enzymatic Krebs cycle precursor

    PubMed Central

    Keller, Markus A.; Kampjut, Domen; Harrison, Stuart A.; Ralser, Markus

    2017-01-01

    The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed ‘as an appeal to magic’, citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals. PMID:28584880

  7. Towards a drift-free multi-level Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Ozdemir, Servet; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    For ultra-high density data storage applications, Phase Change Memory (PCM) is considered a potentially disruptive technology. Yet, the long-term reliability of the logic levels corresponding to the resistance states of a PCM device is an important issue for a stable device operation since the resistance levels drift uncontrollably in time. The underlying mechanism for the resistance drift is considered as the structural relaxation and spontaneous crystallization at elevated temperatures. We fabricated a nanoscale single active layer-phase change memory cell with three resistance levels corresponding to crystalline, amorphous and intermediate states by controlling the current injection site geometry. For the intermediate state and the reset state, the activation energies and the trap distances have been found to be 0.021 eV and 0.235 eV, 1.31 nm and 7.56 nm, respectively. We attribute the ultra-low and weakly temperature dependent drift coefficient of the intermediate state (ν = 0.0016) as opposed to that of the reset state (ν = 0.077) as being due to the dominant contribution of the interfacial defects in electrical transport in the case of the mixed phase. Our results indicate that the engineering of interfacial defects will enable a drift-free multi-level PCM device design.

  8. Intermediate states and structure evolution in the free-falling process of the dislocation in graphene

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Yao, Yin; Bai, Jianhui; Wang, Rui

    2017-04-01

    This paper investigated the intermediate states and the structure evolution of the dislocation in graphene when it falls freely from the saddle point of the energy landscape. The O-type dislocation, an unstable equilibrium structure located at the saddle point, is obtained from the lattice theory of the dislocation structure and improved by the ab initio calculation to take the buckling into account. Intermediate states along the kinetics path in the falling process are obtained from the ab initio simulation. Once the dislocation falls from the saddle point to the energy valley, this O-type dislocation transforms into the stable structure that is referred to as the B-type dislocation, and in the meantime, it moves a distance that equals half a Burgers vector. The structure evolution and the energy variation in the free-falling process are revealed explicitly. It is observed that rather than smooth change, a platform manifests itself in the energy curve. The unusual behaviour in the energy curve is mainly originated from symmetry breaking and bond formation in the dislocation core. The results can provide deep insight in the mechanism of the brittle feature of covalent materials.

  9. Identification of oxidative coupling products of xylenols arising from laboratory-scale phytoremediation.

    PubMed

    Poerschmann, J; Schultze-Nobre, L; Ebert, R U; Górecki, T

    2015-01-01

    Oxidative coupling reactions take place during the passage of xylenols through a laboratory-scale helophyte-based constructed wetland system. Typical coupling product groups including tetramethyl-[1,1'-biphenyl] diols and tetramethyl diphenylether monools as stable organic intermediates could be identified by a combination of pre-chromatographic derivatization and GC/MS analysis. Structural assignment of individual analytes was performed by an increment system developed by Zenkevich to pre-calculate retention sequences. The most abundant analyte turned out to be 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diol, which can be formed by a combination of radicals based on 2,6-xylenol or by an attack of a 2,6-xylenol-based radical on 2,6-xylenol. Organic intermediates originating from oxidative coupling could also be identified in anaerobic constructed wetland systems. This finding suggested the presence of (at least partly) oxic conditions in the rhizosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. “Panta rhei”

    PubMed Central

    Moch, Marcin; Kölsch, Anne; Windoffer, Reinhard

    2011-01-01

    The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing. PMID:21866261

  11. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  12. Generalised syntheses of ordered mesoporous oxides: the atrane route

    NASA Astrophysics Data System (ADS)

    Cabrera, Saúl; El Haskouri, Jamal; Guillem, Carmen; Latorre, Julio; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel; Marcos, M. Dolores; Amorós *, Pedro

    2000-06-01

    A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant-inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructured intermediates and the final mesoporous materials are chemically homogeneous. The final ordered mesoporous materials are thermally stable and show unimodal porosity, as well as homogeneous microstructure and texture. Examples of materials synthesised on account of the versatility of this new method, including siliceous, non siliceous and mixed oxides, are presented and discussed.

  13. "Panta rhei": Perpetual cycling of the keratin cytoskeleton.

    PubMed

    Leube, Rudolf E; Moch, Marcin; Kölsch, Anne; Windoffer, Reinhard

    2011-01-01

    The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.

  14. An Iterative, Bimodular Nonribosomal Peptide Synthetase that Converts Anthranilate and Tryptophan into Tetracyclic Asperlicins

    PubMed Central

    Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo; Choi, Moon Seok; Houk, Kendall N.; Tang, Yi; Walsh, Christopher T.

    2013-01-01

    The bimodular 276 kDa nonribosomal peptide synthetase AspA from Aspergillus alliaceus, heterologously expressed in Saccharomyces cerevisiae, converts tryptophan and two molecules of the aromatic β-amino acid anthranilate (Ant) into a pair of tetracyclic peptidyl alkaloids asperlicin C and D in a ratio of 10:1. The first module of AspA activates and processes two molecules of Ant iteratively to generate a tethered Ant-Ant-Trp-S-enzyme intermediate on module two. Release is postulated to involve tandem cyclizations, in which the first step is the macrocyclization of the linear tripeptidyl-S-enzyme, by the terminal condensation (CT) domain to generate the regioisomeric tetracyclic asperlicin scaffolds. Computational analysis of the transannular cyclization of the 11-membered macrocyclic intermediate shows that asperlicin C is the kinetically favored product due to the high stability of a conformation resembling the transition state for cyclization, while asperlicin D is thermodynamically more stable. PMID:23890005

  15. Intermediate visual acuity of presbyopic individuals with and without distance and bifocal lens corrections.

    DOT National Transportation Integrated Search

    1977-03-01

    Visual acuity was determined at the intermediate range for older individuals with various combinations of ocular refractive error (nine subcategories) and accommodative power (three subcategories). Subjects (N=249) read numerals ranging in size to me...

  16. Intermediate-grade squamous intraepithelial lesion may be a valid diagnostic/interpretive category.

    PubMed

    Ravinsky, Esther; Baker, Patricia

    2009-02-01

    We undertook this study to assess the characteristics of smears with features intermediate between high-grade squamous intraepithelial lesion (HSIL) and low-grade squamous intraepithelial lesion (ISIL). We also wanted to determine how these smears correlate with high risk biopsy diagnosis and to compare this with the biopsy correlation of LSIL and HSIL. Seventy-four squamous intraepithelial lesion (SIL) smears were identified as intermediate-grade SIL smears taken at colposcopy in a 1 year period. They were correlated with concurrent colposcopically guided biopsies. Thirty-five percent of cases with intermediate-grade SIL smears had a biopsy diagnosis of moderate dysplasia or higher as compared with 12% for LSIL 74% for HSIL. This confirmed our hypothesis that intermediate-grade SIL smears have a rate of biopsy diagnosis of moderate dysplasia or higher intermediate to that of LSIL and HSIL.

  17. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results.

    PubMed

    Amin, Asim; Dudek, Arkadiusz Z; Logan, Theodore F; Lance, Raymond S; Holzbeierlein, Jeffrey M; Knox, Jennifer J; Master, Viraj A; Pal, Sumanta K; Miller, Wilson H; Karsh, Lawrence I; Tcherepanova, Irina Y; DeBenedette, Mark A; Williams, W Lee; Plessinger, Douglas C; Nicolette, Charles A; Figlin, Robert A

    2015-01-01

    AGS-003 is an autologous immunotherapy prepared from fully matured and optimized monocyte-derived dendritic cells, which are co-electroporated with amplified tumor RNA plus synthetic CD40L RNA. AGS-003 was evaluated in combination with sunitinib in an open label phase 2 study in intermediate and poor risk, treatment naïve patients with metastatic clear cell renal cell carcinoma (mRCC). Twenty-one intermediate and poor risk patients were treated continuously with sunitinib (4 weeks on, 2 weeks off per 6 week cycle). After completion of the first cycle of sunitinib, patients were treated with AGS-003 every 3 weeks for 5 doses, then every 12 weeks until progression or end of study. The primary endpoint was to determine the complete response rate. Secondary endpoints included clinical benefit, safety, progression free survival (PFS) and overall survival (OS). Immunologic response was also monitored. Thirteen patients (62%) experienced clinical benefit (9 partial responses, 4 with stable disease); however there were no complete responses in this group of intermediate and poor risk mRCC patients and enrollment was terminated early. Median PFS from registration was 11.2 months (95% CI 6.0, 19.4) and the median OS from registration was 30.2 months (95% CI 9.4, 57.1) for all patients. Seven (33%) patients survived for at least 4.5 years, while five (24%) survived for more than 5 years, including 2 patients who remain progression-free with durable responses for more than 5 years at the time of this report. AGS-003 was well tolerated with only mild injection-site reactions. The most common adverse events were related to expected toxicity from sunitinib therapy. In patients who had sequential samples available for immune monitoring, the magnitude of the increase in the absolute number of CD8(+) CD28(+) CD45RA(-) effector/memory T cells (CTLs) after 5 doses of AGS-003 relative to baseline, correlated with overall survival. AGS-003 in combination with sunitinib was well tolerated and yielded supportive immunologic responses coupled with extension of median and long-term survival in an unselected, intermediate and poor risk prognosis mRCC population. #NCT00678119.

  18. Determination of isocyanate groups in the organic intermediates by reaction-based headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2016-10-14

    This work reports on a novel method for the determination of isocyanate groups in the related organic intermediates by a reaction-based headspace gas chromatography. The method is based on measuring the CO 2 formed from the reaction between the isocyanate groups in the organic intermediates and water in a closed headspace sample vial at 45°C for 20min. The results showed that the method has a good precision and accuracy, in which the relative standard deviation in the repeatability measurement was 5.26%, and the relative differences between the data obtained by the HS-GC method and the reference back-titration method were within 9.42%. The present method is simple and efficient and is particularly suitable to be used for determining the isocyanate groups in the batch sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Methanogenic pathways in Alaskan peatlands at different trophic levels with evidence from stable isotope ratios and metagenomics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, X.; Langford, L.; Chanton, J.; Roth, S.; Schaefer, J.; Barkay, T.; Hines, M. E.

    2017-12-01

    To better constrain the large uncertainties in emission fluxes, it is necessary to improve the understanding of methanogenic pathways in northern peatlands with heterogeneous surface vegetation and pH. Surface vegetation is an excellent indicator of porewater pH, which heavily influences the microbial communities in peatlands. Stable C isotope ratios (d13C) have been used as a robust tool to distinguish methanogenic pathways, especially in conjunction with metagenomic analysis of the microbial communities. To link surface vegetation species compositions, pH, microbial communities, and methanogenic pathways, 15 peatland sites were studied in Fairbanks and Anchorage, Alaska in the summer of 2014. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acid production rates, d13C values, and surface vegetation composition. In the ombrotrophic group (pH 3.3), various Sphagna species dominanted, but included shrubs Ledum decumbens and Eriophorum vaginatum. Primary fermentation rates were slow with no CH4 detected. The fen cluster (pH 5.3) was dominated by various Carex species, and CH4 production rates were lower than those in the intermediate cluster but more enriched in 13C (-49‰). Methanosaeta and Methanosarcina were the dominant methanogens. In the intermediate trophic level (pH 4.7), Sphagnum squarrosum and Carex aquatilis were abundant. The same methanogens as in fen cluster also dominated this group, but with higher abundances, which, in part, lead to the higher CH4 production rates in this cluster. The syntrophs Syntrophobacter and Pelobacter were also more abundant than the fen sites, which may explain the d13CH4 values that were the lighetest among the three clusters (-54‰). The high methanogenic potential in the intermediate trophic sites warrant further study since they are not only present in large areas currently, but also represent the transient stage during the evolution from bog to fen in projected climate change scenarios.

  20. Shifts in microbial communities and soil nutrients along a fire chronosequence in Alaskan boreal forest

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Mack, M. C.; Cross, A.

    2002-12-01

    Fires are important pathways of carbon loss from boreal forests, while microbial communities form equally important mechanisms for carbon accumulation between fires. We used a chronosequence in Alaska to examine shifts in microbial abundance and community composition in the several decades following severe fire, and then related these responses to soil characteristics in the same sites. The sites are located in upland forests near Delta Junction, Alaska, and represent stages at 3-, 15-, 45-, and over 100-yr following fire. Plant communities shift from herbaceous species in the youngest site, to deciduous shrubs and trees (e.g. Populus tremuloides and Salix) in the intermediate sites, to black spruce (Picea mariana) forest in the oldest site. Soil organic matter accumulated 2.8-fold over time. Potential mineralization was highest in the intermediate-aged sites, as was nitrification and standing pools of inorganic nitrogen. In contrast, inorganic phosphorus pools were highest immediately following fire, and then decreased nine-fold with age. As measured with BiologTM plates, bacterial diversity and abundance were greatest in the oldest sites. Plant roots in the intermediate-aged sites displayed higher colonization by ecto- and arbuscular mycorrhizal fungi than those in the youngest and oldest sites. Likewise, glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was most abundant in the 14-yr old site. Glomalin is believed to contribute to the formation of water-stable aggregates in the soil. However, water stable aggregates were most abundant in the younger sites and did not follow the pattern of glomalin or arbuscular mycorrhizal abundance. Our results indicate that fire may maintain landscape-level diversity of microbial functional groups, and that carbon sequestration in microbial tissues (e.g. glomalin and fungal biomass) may be greatest in areas that have burned several decades earlier. Changes in soil structure may not be directly attributable to microbial activity.

  1. TWISTED RIBBON FUEL ELEMENT

    DOEpatents

    Breden, C.R.; Schultz, A.B.

    1961-06-01

    A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.

  2. Low temperature reactive bonding

    DOEpatents

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  3. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    PubMed

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

  4. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.

    2008-03-01

    We present generic outcomes of collisions between stable solitons with intrinsic vorticity S=1 or S=2 in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, for the axially symmetric configuration. An essential ingredient of the complex Ginzburg-Landau equation is an effective transverse diffusivity (which is known in models of laser cavities), as vortex solitons cannot be stable without it. For the sake of comparison, results are also included for fundamental three-dimensional solitons, with S=0 . Depending on the collision momentum, χ , three generic outcomes are identified: merger of the solitons into a single one, at small χ ; quasielastic interaction, at large χ ; and creation of an extra soliton, in an intermediate region. In addition to the final outcomes, we also highlight noteworthy features of the transient dynamics.

  5. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    NASA Astrophysics Data System (ADS)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  6. Slow walking model for children with multiple disabilities via an application of humanoid robot

    NASA Astrophysics Data System (ADS)

    Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing

    2016-02-01

    Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.

  7. The effect of halo nuclear density on reaction cross-section for light ion collision

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.

    2015-08-01

    In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.

  8. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  9. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies.

    PubMed

    Fischer, Anko; Manefield, Mike; Bombach, Petra

    2016-10-01

    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition† †Dedicated to the memory of Prof. Keiji Morokuma. ‡ ‡Electronic supplementary information (ESI) available: (1) The calculated transition states, intermediates and products of the GB hydrolysis and their important geometry parameters (in Å) for X = SO2, (2) the calculated adsorption energies (in kcal mol–1) of NO2 radicals to Cs8Nb6O19, (3) Cartesian coordinates for all reported structures in xyz format. (structure.xyz). See DOI: 10.1039/c7sc04997h

    PubMed Central

    Kaledin, Alexey L.; Driscoll, Darren M.; Troya, Diego; Collins-Wildman, Daniel L.

    2018-01-01

    The impact of ambient gas molecules (X), NO2, CO2 and SO2 on the structure, stability and decontamination activity of Cs8Nb6O19 polyoxometalate was studied computationally and experimentally. It was found that Cs8Nb6O19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO2 and SO2 molecules on polyoxoniobate Cs8Nb6O19 were fundamentally different from that of NO2 radical. At ambient temperatures, weak coordination of the first NO2 radical to Cs8Nb6O19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO2 adsorbent to form a stable diamagnetic Cs8Nb6O19/(NO2)2 species. Moreover, at low temperatures, NO2 radicals formed stable dinitrogen tetraoxide (N2O4) that weakly interacted with Cs8Nb6O19. It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs8Nb6O19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs8Nb6O19/(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs8Nb6O19–X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs8Nb6O19/X-MPFA-(i-POH) and Cs8Nb6O19/X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs8Nb6O19/X/H]+-core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs8Nb6O19/X/H]+-core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules. PMID:29719688

  11. Photosystem II Component Lifetimes in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Yao, Danny C. I.; Brune, Daniel C.; Vavilin, Dmitri; Vermaas, Wim F. J.

    2012-01-01

    To gain insight in the lifetimes of photosystem II (PSII) chlorophyll and proteins, a combined stable isotope labeling (15N)/mass spectrometry method was used to follow both old and new pigments and proteins. Photosystem I-less Synechocystis cells were grown to exponential or post-exponential phase and then diluted in BG-11 medium with [15N]ammonium and [15N]nitrate. PSII was isolated, and the masses of PSII protein fragments and chlorophyll were determined. Lifetimes of PSII components ranged from 1.5 to 40 h, implying that at least some of the proteins and chlorophyll turned over independently from each other. Also, a significant amount of nascent PSII components accumulated in thylakoids when cells were in post-exponential growth phase. In a mutant lacking small Cab-like proteins (SCPs), most PSII protein lifetimes were unaffected, but the lifetime of chlorophyll and the amount of nascent PSII components that accumulated were decreased. In the absence of SCPs, one of the PSII biosynthesis intermediates, the monomeric PSII complex without CP43, was missing. Therefore, SCPs may stabilize nascent PSII protein complexes. Moreover, upon SCP deletion, the rate of chlorophyll synthesis and the accumulation of early tetrapyrrole precursors were drastically reduced. When [14N]aminolevulinic acid (ALA) was supplemented to 15N-BG-11 cultures, the mutant lacking SCPs incorporated much more exogenous ALA into chlorophyll than the control demonstrating that ALA biosynthesis was impaired in the absence of SCPs. This illustrates the major effects that nonstoichiometric PSII components such as SCPs have on intermediates and assembly but not on the lifetime of PSII proteins. PMID:22090028

  12. Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics

    PubMed Central

    Kumar, Rajinder; Musiyenko, Alla; Oldenburg, Anja; Adams, Brian; Barik, Sailen

    2004-01-01

    Background Although the complete genome sequences of a large number of organisms have been determined, the exact proteomes need to be characterized. More specifically, the extent to which post-translational processes such as proteolysis affect the synthesized proteins has remained unappreciated. We examined this issue in selected protein phosphatases of the protease-rich malaria parasite, Plasmodium falciparum. Results P. falciparum encodes a number of Ser/Thr protein phosphatases (PP) whose catalytic subunits are composed of a catalytic core and accessory domains essential for regulation of the catalytic activity. Two examples of such regulatory domains are found in the Ca+2-regulated phosphatases, PP7 and PP2B (calcineurin). The EF-hand domains of PP7 and the calmodulin-binding domain of PP2B are essential for stimulation of the phosphatase activity by Ca+2. We present biochemical evidence that P. falciparum generates these full-length phosphatases as well as their catalytic cores, most likely as intermediates of a proteolytic degradation pathway. While the full-length phosphatases are activated by Ca+2, the processed cores are constitutively active and either less responsive or unresponsive to Ca+2. The processing is extremely rapid, specific, and occurs in vivo. Conclusions Post-translational cleavage efficiently degrades complex full-length phosphatases in P. falciparum. In the course of such degradation, enzymatically active catalytic cores are produced as relatively stable intermediates. The universality of such proteolysis in other phosphatases or other multi-domain proteins and its potential impact on the overall proteome of a cell merits further investigation. PMID:15230980

  13. Highly Stable Hierarchical Flower-like β-In2S3 Assembled from 2D Nanosheets with high Adsorption-Photodecolorization Activities for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Cheng, Yang; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Chen, Changle; Gao, Yuanhao

    2017-05-01

    The hierarchical flower-like β-In2S3 catalyst assembled from 2D nanosheets was prepared using an organic-component depletion method utilizing inorganic-organic hybrids indium diethyldithiocarbamate (In-DDTC) as a single-source precursor. The crystallization, morphology and composition of the as-synthesized β-In2S3 were characterized by XRD, SEM, TEM, EDS and XPS, respectively. The β-In2S3 possessed high specific surface area of 134.1 m2 g-1, adsorption capacity of 195.5 mg g-1 for methylene blue, and extreme photodecolorization speed under visible light irradiation for the complete removal of methyl orange (MO) dye within 15 min and tetracycline within 60 min. Although methyl orange concentration decreased quickly, the total organic carbon (TOC) decreased slowly. UV-vis and mass spectrometry (MS) were applied to analyze the intermediates coming from the photodecolorization of MO. In order to estimate the roles of active species during the decolorization of MO, trapping experiments were conducted to determine the main active species during the decolorization process. The results indicated that . O2 - radicals and e-1 were the key intermediates. This enhanced activity was attributed to its unique structures assembled from 2D nanosheets with thickness of ca. 5-7 nm, leading to high specific surface area, wide range of pore size distribution and great efficiency in absorbing light and electron/hole separation. The hierarchical flower-like β-In2S3 demonstrated great advantages in the treatment of various wastewater pollutants including textile dyes and antibiotics.

  14. Modulation of frustration in folding by sequence permutation.

    PubMed

    Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V; Graceffa, Rita; Barrea, Raul A; Guo, Liang; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C; Brooks, Charles L; Matthews, C Robert

    2014-07-22

    Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.

  15. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  16. Low-Temperature Synthesis of New Ternary Chalcogenide Compounds of Copper, Gold, and Mercury Using Alkali Metal Polychalcogenide Fluxes

    NASA Astrophysics Data System (ADS)

    Park, Younbong

    In last two decades great efforts have been exerted to find new materials with interesting optical, electrical, and catalytic properties. Metal chalcogenides have been studied extensively because of their interesting physical properties and rich structural chemistry, among the potential materials. Prior to this work, most known metal chalcogenides had been synthesized at high temperature (T > 500^circC). Intermediate temperature synthesis in solid state chemistry was seldom pursued because of the extremely slow diffusion rates between reactants. This intermediate temperature regime could be a new synthesis condition if one looks for new materials with unusual structural features and properties. Metastable or kinetically stable compounds can be stabilized in this intermediate temperature regime, in contrast to the thermodynamically stable high temperature compounds. Molten salts, especially alkali metal polychalcogenide fluxes, can provide a route for exploring new chalcogenide materials at intermediate temperatures. These fluxes are very reactive and melt as low as 145^circC (mp of K_2S_4). Using these fluxes as reaction media, we have encountered many novel chalcogenide compounds with unusual structures and interesting electrical properties (semiconductors to metallic conductors). Low-dimensional polychalcogenide compounds of alpha-ACuQ_4 (A = K, Cs; Q = S, Se), beta -KCuS_4, KAuQ_5 (Q = S, Se), K_3AuSe_ {13}, Na_3AuSe _8, and CsAuSe_3 exhibit the beautiful structural diversity and bonding flexibility of the polychalcogenide ligands. In addition, many novel chalcogenide compounds of Cu, Hg, and Au with low-dimensional structures. The preparation of novel mixed -valence Cu compounds, K_2Cu _5Te_5, Cs _3Cu_8Te_ {10}, Na_3Cu _4Se_4, K _3Cu_8S_4 Te_2, and KCu_4 S_2Te, which show interesting metallic properties, especially underscores the enormous potential of the molten salt method for the synthesis of new chalcogenide materials with interesting physical properties. The materials prepared in this study can be classified as a new class of chalcogenide compounds due to their unique structures. In this dissertation the synthesis, characterization with emphasis on structures, charge transport properties, and magnetic susceptibilities of the materials will be illustrated.

  17. Factorial Effects of Evolocumab and Atorvastatin on Lipoprotein Metabolism.

    PubMed

    Watts, Gerald F; Chan, Dick C; Dent, Ricardo; Somaratne, Ransi; Wasserman, Scott M; Scott, Rob; Burrows, Sally; R Barrett, P Hugh

    2017-01-24

    Monoclonal antibodies against proprotein convertase subtilisin kexin type 9 (PCSK9), such as evolocumab, lower plasma low-density lipoprotein (LDL)-cholesterol concentrations. Evolocumab is under investigation for its effects on cardiovascular outcomes in statin-treated, high-risk patients. The mechanism of action of PCSK9 monoclonal antibodies on lipoprotein metabolism remains to be fully evaluated. Stable isotope tracer kinetics can effectively elucidate the mode of action of new lipid-regulating pharmacotherapies. We conducted a 2-by-2 factorial trial of the effects of atorvastatin (80 mg daily) and subcutaneous evolocumab (420 mg every 2 weeks) for 8 weeks on the plasma kinetics of very-low-density lipoprotein (VLDL)-apolipoprotein B-100 (apoB), intermediate-density lipoprotein-apoB, and LDL-apoB in 81 healthy, normolipidemic, nonobese men. The kinetics of apoB in these lipoproteins was studied using a stable isotope infusion of D3-leucine, gas chromatography/mass spectrometry, and multicompartmental modeling. Atorvastatin and evolocumab independently accelerated the fractional catabolism of VLDL-apoB (P<0.001 and P.032, respectively), intermediate-density lipoprotein-apoB (P=0.021 and P=.002, respectively), and LDL-apoB (P<0.001, both interventions). Evolocumab but not atorvastatin decreased the production rate of intermediate-density lipoprotein-apoB (P=0.043) and LDL-apoB (P<0.001), which contributed to the reduction in the plasma pool sizes of these lipoprotein particles. The reduction in LDL-apoB and LDL-cholesterol concentrations was significantly greater with combination versus either monotherapy (P<0.001). Whereas evolocumab but not atorvastatin lowered the concentration of free PCSK9, atorvastatin lowered the lathosterol/campesterol ratio (a measure of cholesterol synthesis/absorption) and apoC-III concentration. Both interventions decreased plasma apoE, but neither significantly altered lipoprotein lipase and cholesteryl ester protein mass or measures of insulin resistance. In healthy, normolipidemic subjects, evolocumab decreased the concentration of atherogenic lipoproteins, particularly LDL, by accelerating their catabolism. Reductions in intermediate-density lipoprotein and LDL production also contributed to the decrease in LDL particle concentration with evolocumab by a mechanism distinct from that of atorvastatin. These kinetic findings provide a metabolic basis for understanding the potential benefits of PCSK9 monoclonal antibodies incremental to statins in on-going clinical end point trials. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02189837. © 2016 American Heart Association, Inc.

  18. Expected distributions of root-mean-square positional deviations in proteins.

    PubMed

    Pitera, Jed W

    2014-06-19

    The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.

  19. A stable Fe{sup III}-Fe{sup IV} replacement of tyrosyl radical in a class I ribonucleotide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voevodskaya, N.; Lendzian, F.; Graeslund, A.

    2005-05-20

    Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe{sup III}-Fe{sup IV} species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start themore » catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.« less

  20. Effect of shell corrections on the beta decay isobaric mass parabolas

    NASA Astrophysics Data System (ADS)

    Kaur, Sarbjeet; Kaur, Manpreet; Singh, Bir Bikram

    2018-05-01

    The beta decay isobaric mass parabolas have been studied for isobaric families in di erent mass regions. The mass parabolas have been studied using the semi empirical mass formula of Seeger to find the most stable isobar for a particular isobaric family. In addition to liquid drop part VLDM, the shell correction part δU to give binding energy B. E. = VLDM + δU, defined within Strutinsky renormalization procedure, has been used. To elucidate the role of shell e ects on the structure shape of mass parabola, we have made comparison for the δU = 0 and δU ≠ 0 cases. For a particular mass value of isobaric family, the results show that with the inclusion of shell corrections i.e. δU ≠ 0, the minimum for the most stable isobar is strongly pronounced compared to the case without shell corrections. In other words, shell corrections significantly enhance the stability of stable isobar. The study reveals that the role of shell effects on the mass minima is more pronounced in heavy mass region compared to light and intermediate mass regions.

  1. Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition.

    PubMed

    Kaledin, Alexey L; Driscoll, Darren M; Troya, Diego; Collins-Wildman, Daniel L; Hill, Craig L; Morris, John R; Musaev, Djamaladdin G

    2018-02-28

    The impact of ambient gas molecules (X), NO 2 , CO 2 and SO 2 on the structure, stability and decontamination activity of Cs 8 Nb 6 O 19 polyoxometalate was studied computationally and experimentally. It was found that Cs 8 Nb 6 O 19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO 2 and SO 2 molecules on polyoxoniobate Cs 8 Nb 6 O 19 were fundamentally different from that of NO 2 radical. At ambient temperatures, weak coordination of the first NO 2 radical to Cs 8 Nb 6 O 19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO 2 adsorbent to form a stable diamagnetic Cs 8 Nb 6 O 19 /(NO 2 ) 2 species. Moreover, at low temperatures, NO 2 radicals formed stable dinitrogen tetraoxide (N 2 O 4 ) that weakly interacted with Cs 8 Nb 6 O 19 . It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs 8 Nb 6 O 19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs 8 Nb 6 O 19 /(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs 8 Nb 6 O 19 -X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs 8 Nb 6 O 19 /X-MPFA-(i-POH) and Cs 8 Nb 6 O 19 /X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs 8 Nb 6 O 19 /X/H] + -core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs 8 Nb 6 O 19 /X/H] + -core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules.

  2. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system. For the first time to our knowledge, results shed light on sediment processes that help control nutrient retention in phreatic karst conduits and tend to suggest that the karst systems behave as an intermediate N conveyor relative to surface agricultural streams and porous media aquifers.

  3. Epithelial structure revealed by chemical dissection and unembedded electron microscopy.

    PubMed

    Fey, E G; Capco, D G; Krochmalnic, G; Penman, S

    1984-07-01

    Cytoskeletal structures obtained after extraction of Madin-Darby canine kidney epithelial cell monolayers with Triton X-100 were examined in transmission electron micrographs of cell whole mounts and unembedded thick sections. The cytoskeleton, an ordered structure consisting of a peripheral plasma lamina, a complex network of filaments, and chromatin-containing nuclei, was revealed after extraction of intact cells with a nearly physiological buffer containing Triton X-100. The cytoskeleton was further fractionated by extraction with (NH4)2SO4, which left a structure enriched in intermediate filaments and desmosomes around the nuclei. A further digestion with nuclease and elution with (NH4)2SO4 removed the chromatin. The stable structure that remained after this procedure retained much of the epithelial morphology and contained essentially all of the cytokeratin filaments and desmosomes and the chromatin-depleted nuclear matrices. This structural network may serve as a scaffold for epithelial organization. The cytoskeleton and the underlying nuclear matrix intermediate filament scaffold, when examined in both conventional embedded thin sections and in unembedded whole mounts and thick sections, showed the retention of many of the detailed morphological aspects of the intact cells, which suggests a structural continuum linking the nuclear matrix, the intermediate filament network, and the intercellular desmosomal junctions. Most importantly, the protein composition of each of the four fractions obtained by this sequential procedure was essentially unique. Thus, the proteins constituting the soluble fraction, the cytoskeleton, the chromatin fraction, and the underlying nuclear matrix-intermediate filament scaffold are biochemically distinct.

  4. Epithelial structure revealed by chemical dissection and unembedded electron microscopy

    PubMed Central

    Fey, E. G.; Capco, D. G.; Krochmalnic, G.; Penman, S.

    1984-01-01

    Cytoskeletal structures obtained after extraction of Madin-Darby canine kidney epithelial cell monolayers with Triton X-100 were examined in transmission electron micrographs of cell whole mounts and unembedded thick sections. The cytoskeleton, an ordered structure consisting of a peripheral plasma lamina, a complex network of filaments, and chromatin-containing nuclei, was revealed after extraction of intact cells with a nearly physiological buffer containing Triton X-100. The cytoskeleton was further fractionated by extraction with (NH4)2SO4, which left a structure enriched in intermediate filaments and desmosomes around the nuclei. A further digestion with nuclease and elution with (NH4)2SO4 removed the chromatin. The stable structure that remained after this procedure retained much of the epithelial morphology and contained essentially all of the cytokeratin filaments and desmosomes and the chromatin-depleted nuclear matrices. This structural network may serve as a scaffold for epithelial organization. The cytoskeleton and the underlying nuclear matrix intermediate filament scaffold, when examined in both conventional embedded thin sections and in unembedded whole mounts and thick sections, showed the retention of many of the detailed morphological aspects of the intact cells, which suggests a structural continuum linking the nuclear matrix, the intermediate filament network, and the intercellular desmosomal junctions. Most importantly, the protein composition of each of the four fractions obtained by this sequential procedure was essentially unique. Thus, the proteins constituting the soluble fraction, the cytoskeleton, the chromatin fraction, and the underlying nuclear matrix-intermediate filament scaffold are biochemically distinct. PMID:6540264

  5. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  6. Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis

    PubMed Central

    Takaki, Yoshihiro; Chikaraishi, Yoshito; Ikuta, Tetsuro; Ozawa, Genki; Yoshida, Takao; Ohkouchi, Naohiko; Fujikura, Katsunori

    2017-01-01

    Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts. To test this hypothesis, we sequenced the genome of the methanotrophic endosymbiont in Bathymodiolus platifrons. The genome sequence data demonstrated that the endosymbiont potentially generates up to 4,4-dimethyl-cholesta-8,14,24-trienol, a sterol intermediate in cholesterol biosynthesis, from methane. In addition, transcripts for a subset of the enzymes of the biosynthetic pathway to cholesterol downstream from a sterol intermediate derived from methanotroph endosymbionts were detected in our transcriptome data for B. platifrons. These findings suggest that this mussel can de novo synthesize cholesterol from methane in cooperation with the symbionts. By in situ hybridization analyses, we showed that genes associated with cholesterol biosynthesis from both host and endosymbionts were expressed exclusively in the gill epithelial bacteriocytes containing endosymbionts. Thus, cholesterol production is probably localized within these specialized cells of the gill. Considering that the host mussel cannot de novo synthesize cholesterol and depends largely on endosymbionts for nutrition, the capacity of endosymbionts to synthesize sterols may be important in establishing symbiont–host relationships in these chemosynthetic mussels. PMID:28453654

  7. Acrylamide formation in food: a mechanistic perspective.

    PubMed

    Yaylayan, Varoujan A; Stadler, Richard H

    2005-01-01

    Earliest reports on the origin of acrylamide in food have confirmed asparagine as the main amino acid responsible for its formation. Available evidence suggests that sugars and other carbonyl compounds play a specific role in the decarboxylation process of asparagine, a necessary step in the generation of acrylamide. It has been proposed that Schiff base intermediate formed between asparagine and the sugar provides a low energy alternative to the decarboxylation from the intact Amadori product through generation and decomposition of oxazolidin-5-one intermediate, leading to the formation of a relatively stable azomethine ylide. Literature data indicate the propensity of such protonated ylides to undergo irreversible 1,2-prototropic shift and produce, in this case, decarboxylated Schiff bases which can easily rearrange into corresponding Amadori products. Decarboxylated Amadori products can either undergo the well known beta-elimination process initiated by the sugar moiety to produce 3-aminopropanamide and 1-deoxyglucosone or undergo 1,2-elimination initiated by the amino acid moiety to directly generate acrylamide. On the other hand, the Schiff intermediate can either hydrolyze and release 3-aminopropanamide or similarly undergo amino acid initiated 1,2-elimination to directly form acrylamide. Other thermolytic pathways to acrylamide--considered marginal at this stage--via the Strecker aldehyde, acrolein, and acrylic acid, are also addressed. Despite significant progress in the understanding of the mechanistic aspects of acrylamide formation, concrete evidence for the role of the different proposed intermediates in foods is still lacking.

  8. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337

  9. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  10. Metabolic responses to Wii Fit™ video games at different game levels.

    PubMed

    Worley, Jennifer R; Rogers, Sharon N; Kraemer, Robert R

    2011-03-01

    The Wii Fit™ is a form of interactive gaming designed to elicit health and fitness benefits to replace sedentary gaming. This study was designed to determine the effectiveness of Wii Fit™ fitness games. The purpose of the study was to determine the %VO2max and energy expenditure from different Wii Fit™ games at different levels including the step and hula games. Eight healthy young women completed a preliminary trial to determine VO2max and later played the Wii Fit™ during 2 separate counterbalanced trials. During each session, subjects played levels of Wii Fit™ games for 10 minutes each level. One session involved beginning and intermediate hula, and the other session involved beginning and intermediate steps. The VO2 was measured continuously via metabolic cart, and rating of perceived exertion (RPE) was assessed at the end of each game level. The lowest %VO2max, kcal·min, and RPE occurred during the beginning step game and the highest values occurred during the intermediate hula game. Respiratory exchange ratio was significantly higher in the intermediate hula than beginning hula game but was not significantly different between step game levels. The intermediate hula and step games produced the greatest energy expenditure with an equivalent effect of a walking speed of >5.63 km·h (>3.5 miles·h). This is the first study to determine the percentage of VO2max and caloric expenditure elicited by different Wii Fit™ video games at different game levels in adults. Findings suggest that the Wii Fit™ can be used as an effective activity for promoting physical health in this population.

  11. Selective predation and productivity jointly drive complex behavior in host-parasite systems.

    PubMed

    Hall, Spencer R; Duffy, Meghan A; Cáceres, Carla E

    2005-01-01

    Successful invasion of a parasite into a host population and resulting host-parasite dynamics can depend crucially on other members of a host's community such as predators. We do not fully understand how predation intensity and selectivity shape host-parasite dynamics because the interplay between predator density, predator foraging behavior, and ecosystem productivity remains incompletely explored. By modifying a standard susceptible-infected model, we show how productivity can modulate complex behavior induced by saturating and selective foraging behavior of predators in an otherwise stable host-parasite system. When predators strongly prefer parasitized hosts, the host-parasite system can oscillate, but predators can also create alternative stable states, Allee effects, and catastrophic extinction of parasites. In the latter three cases, parasites have difficulty invading and/or persisting in ecosystems. When predators are intermediately selective, these more complex behaviors become less important, but the host-parasite system can switch from stable to oscillating and then back to stable states along a gradient of predator control. Surprisingly, at higher productivity, predators that neutrally select or avoid parasitized hosts can catalyze extinction of both hosts and parasites. Thus, synergy between two enemies can end disastrously for the host. Such diverse outcomes underscore the crucial importance of the community and ecosystem context in which host-parasite interactions occur.

  12. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys

    NASA Astrophysics Data System (ADS)

    Vinod, E. M.; Ramesh, K.; Sangunni, K. S.

    2015-01-01

    Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.

  13. Role of choline and glycine betaine in the formation of N,N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions.

    PubMed

    Bessaire, Thomas; Tarres, Adrienne; Stadler, Richard H; Delatour, Thierry

    2014-01-01

    This study is the first to examine the role of choline and glycine betaine, naturally present in some foods, in particular in cereal grains, to generate N,N-dimethylpiperidinium (mepiquat) under Maillard conditions via transmethylation reactions involving the nucleophile piperidine. The formation of mepiquat and its intermediates piperidine - formed by cyclisation of free lysine in the presence of reducing sugars - and N-methylpiperidine were monitored over time (240°C, up to 180 min) using high-resolution mass spectrometry in a model system comprised of a ternary mixture of lysine/fructose/alkylating agent (choline or betaine). The reaction yield was compared with data recently determined for trigonelline, a known methylation agent present naturally in coffee beans. The role of choline and glycine betaine in nucleophilic displacement reactions was further supported by experiments carried out with stable isotope-labelled precursors (¹³C- and deuterium-labelled). The results unequivocally demonstrated that the piperidine ring of mepiquat originates from the carbon chain of lysine, and that either choline or glycine betaine furnishes the N-methyl groups. The kinetics of formation of the corresponding demethylated products of both choline and glycine betaine, N,N-demethyl-2-aminoethanol and N,N-dimethylglycine, respectively, were also determined using high-resolution mass spectrometry.

  14. Cell differentiation modeled via a coupled two-switch regulatory network

    NASA Astrophysics Data System (ADS)

    Schittler, D.; Hasenauer, J.; Allgöwer, F.; Waldherr, S.

    2010-12-01

    Mesenchymal stem cells can give rise to bone and other tissue cells, but their differentiation still escapes full control. In this paper we address this issue by mathematical modeling. We present a model for a genetic switch determining the cell fate of progenitor cells which can differentiate into osteoblasts (bone cells) or chondrocytes (cartilage cells). The model consists of two switch mechanisms and reproduces the experimentally observed three stable equilibrium states: a progenitor, an osteogenic, and a chondrogenic state. Conventionally, the loss of an intermediate (progenitor) state and the entailed attraction to one of two opposite (differentiated) states is modeled as a result of changing parameters. In our model in contrast, we achieve this by distributing the differentiation process to two functional switch parts acting in concert: one triggering differentiation and the other determining cell fate. Via stability and bifurcation analysis, we investigate the effects of biochemical stimuli associated with different system inputs. We employ our model to generate differentiation scenarios on the single cell as well as on the cell population level. The single cell scenarios allow to reconstruct the switching upon extrinsic signals, whereas the cell population scenarios provide a framework to identify the impact of intrinsic properties and the limiting factors for successful differentiation.

  15. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

    PubMed

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.

  16. A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35

    PubMed Central

    Nasica-Labouze, Jessica; Meli, Massimiliano; Derreumaux, Philippe; Colombo, Giorgio; Mousseau, Normand

    2011-01-01

    The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided. PMID:21625573

  17. Evolution of learning in fluctuating environments: when selection favors both social and exploratory individual learning.

    PubMed

    Borenstein, Elhanan; Feldman, Marcus W; Aoki, Kenichi

    2008-03-01

    Cumulative cultural change requires organisms that are capable of both exploratory individual learning and faithful social learning. In our model, an organism's phenotype is initially determined innately (by its genotypic value) or by social learning (copying a phenotype from the parental generation), and then may or may not be modified by individual learning (exploration around the initial phenotype). The environment alternates periodically between two states, each defined as a certain range of phenotypes that can survive. These states may overlap, in which case the same phenotype can survive in both states, or they may not. We find that a joint social and exploratory individual learning strategy-the strategy that supports cumulative culture-is likely to spread when the environmental states do not overlap. In particular, when the environmental states are contiguous and mutation is allowed among the genotypic values, this strategy will spread in either moderately or highly stable environments, depending on the exact nature of the individual learning applied. On the other hand, natural selection often favors a social learning strategy without exploration when the environmental states overlap. We find only partial support for the "consensus" view, which holds that individual learning, social learning, and innate determination of behavior will evolve at short, intermediate, and long environmental periodicities, respectively.

  18. The nutrient-load hypothesis: patterns of resource limitation and community structure driven by competition for nutrients and light.

    PubMed

    Brauer, Verena S; Stomp, Maayke; Huisman, Jef

    2012-06-01

    Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.

  19. ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae

    PubMed Central

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype. PMID:25803831

  20. Study of MoNbO(y) (y = 2-5) anion and neutral clusters using photoelectron spectroscopy and density functional theory calculations: impact of spin contamination on single point calculations.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Rothgeb, David W; Jarrold, Caroline C

    2012-10-04

    Results of a study combining anion photoelectron spectroscopy and density functional theory calculations on the heteronuclear MoNbO(y)(-) (y = 2-5) transition metal suboxide cluster series are reported and analyzed. The photoelectron spectra, which exhibit broad electronic bands with partially resolved vibrational structure, were compared to spectral simulations generated from calculated spectroscopic parameters for all computationally determined energetically competitive structures. Although computational results on the less oxidized clusters could not be satisfactorily reconciled with experimental spectra, possibly because of heavy spin contamination found in a large portion of the computational results, the results suggest that (1) neutral cluster electron affinity is a strong indicator of whether O-atoms are bound in M-O-M bridge positions or M═O terminal positions, (2) MoNbO(y) anions and neutrals have structures that can be described as intermediate with respect to the unary (homonuclear) Mo(2)O(y) and Nb(2)O(y) clusters, and (3) structures in which O-atoms preferentially bind to the Nb center are slightly more stable than alternative structures. Several challenges associated with the calculations are considered, including spin contamination, which appears to cause spurious single point calculations used to determine vertical detachment energies.

  1. Evidence of a Weakly Absorbing Intermediate Mode of Aerosols in AERONET Data from Saharan and Sahelian Sites

    NASA Technical Reports Server (NTRS)

    Gianelli, Scott M.; Lacis, Andrew A.; Carlson, Barbara E.; Hameed, Sultan

    2013-01-01

    Accurate retrievals of aerosol size distribution are necessary to estimate aerosols' impact on climate and human health. The inversions of the Aerosol Robotic Network (AERONET) usually retrieve bimodal distributions. However, when the inversion is applied to Saharan and Sahelian dust, an additional mode of intermediate size between the coarse and fine modes is sometimes seen. This mode explains peculiarities in the behavior of the Angstrom exponent, along with the fine mode fraction retrieved using the spectral deconvolution algorithm, observed in a March 2006 dust storm. For this study, 15 AERONET sites in northern Africa and on the Atlantic are examined to determine the frequency and properties of the intermediate mode. The mode is observed most frequently at Ilorin in Nigeria. It is also observed at Capo Verde and multiple sites located within the Sahel but much less frequently at sites in the northern Sahara and the Canary Islands. The presence of the intermediate mode coincides with increases in Angstrom exponent, fine mode fraction, single-scattering albedo, and to a lesser extent percent sphericity. The Angstrom exponent decreases with increasing optical depth at most sites when the intermediate mode is present, but the fine mode fraction does not. Single-scattering albedo does not steadily decrease with fine mode fraction when the intermediate mode is present, as it does in typical mixtures of dust and biomass-burning aerosols. Continued investigation is needed to further define the intermediate mode's properties, determine why it differs from most Saharan dust, and identify its climate and health effects.

  2. 75 FR 60138 - Chrysler Financial Services Americas, LLC, a Subsidiary of Finco Intermediate Holding Co., LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,458] Chrysler Financial Services Americas, LLC, a Subsidiary of Finco Intermediate Holding Co., LLC, Troy Customer Contact Center, Troy, Michigan; Notice of Affirmative Determination Regarding Application for Reconsideration By...

  3. Molecular dynamics simulation of gas-phase ozone reactions with sabinene and benzene.

    PubMed

    Ridgway, H F; Mohan, B; Cui, X; Chua, K J; Islam, M R

    2017-06-01

    Gas-phase reactions of ozone (O 3 ) with volatile organic compounds were investigated both by experiment and molecular simulations. From our experiments, it was found ozone readily reacts with VOC pure components and reduces it effectively. By introducing ozone intermittently, the reaction between VOC and ozone is markedly enhanced. In order to understand the relationship between intermediate reactions and end products, ozone reaction with benzene and alicyclic monoterpene sabinene were simulated via a novel hybrid quantum mechanical/molecular mechanics (QM/MM) algorithm that forced repeated bimolecular collisions. Molecular orbital (MO) rearrangements (manifested as bond dissociation or formation), resulting from the collisions, were computed by semi-empirical unrestricted Hartree-Fock methods (e.g., RM1). A minimum of 975 collisions between ozone and targeted organic species were performed to generate a distribution of reaction products. Results indicated that benzene and sabinene reacted with ozone to produce a range of stable products and intermediates, including carbocations, ring-scission products, as well as peroxy (HO 2 and HO 3 ) and hydroxyl (OH) radicals. Among the stable sabinene products observed included formaldehyde and sabina-ketone, which have been experimentally demonstrated in gas-phase ozonation reactions. Among the benzene ozonation products detected composed of oxygen mono-substituted aromatic C 6 H 5 O, which may undergo further transformation or rearrangement to phenol, benzene oxide or 2,4-cyclohexadienone; a phenomenon which has been experimentally observed in vapor-phase photocatalytic ozonation reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Electronic polarization stabilizes tertiary structure prediction of HP-36.

    PubMed

    Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H

    2014-04-01

    Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.

  5. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    PubMed Central

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  6. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  7. What Should be Taught in Intermediate Macroeconomics?

    ERIC Educational Resources Information Center

    de Araujo, Pedro; O'Sullivan, Roisin; Simpson, Nicole B.

    2013-01-01

    A lack of consensus remains on what should form the theoretical core of the undergraduate intermediate macroeconomic course. In determining how to deal with the Keynesian/classical divide, instructors must decide whether to follow the modern approach of building macroeconomic relationships from micro foundations, or to use the traditional approach…

  8. The evolution of environmental and genetic sex determination in fluctuating environments.

    PubMed

    Van Dooren, Tom J M; Leimar, Olof

    2003-12-01

    Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.

  9. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    NASA Astrophysics Data System (ADS)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  10. Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms.

    PubMed

    Carrió, M M; Corchero, J L; Villaverde, A

    1999-09-14

    Inclusion bodies formed by two closely related hybrid proteins, namely VP1LAC and LACVP1, have been compared during their building in Escherichia coli. Features of these proteins are determinant of aggregation rates and protein composition of the bodies, generating insoluble particles with distinguishable volume evolution. Interestingly, in LACVP1 and less perceptibly in VP1LAC bodies, an important fraction of the aggregated polypeptide is lost at a given stage of body construction. Stable degradation intermediates of the more fragile LACVP1 are concomitantly found embedded in the bodies. When recombinant protein synthesis is arrested in growing cells, the amount of aggregated protein drops while the amount of soluble protein undergoes a sudden rise before proteolysis. This indicates an architectural plasticity during the in vivo building of the studied inclusion bodies by a dynamic transition between soluble and insoluble forms of the recombinant proteins involved. During this transition, protease-sensitive polypeptides can suffer an efficient proteolytic attack and the resulting fragments further aggregate as inclusion body components.

  11. Spatial and temporal variation in the stable isotope composition (δ18O and δ2H) of rain across the tropical island of Sri Lanka.

    PubMed

    Edirisinghe, E A N V; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2017-12-01

    Seasonal and spatial variation in δ 18 O and δ 2 H in rainwater was determined in three selected transects across Sri Lanka, the tropical island in the Indian Ocean. Local meteoric water lines (LMWLs) for three distinguished climatic zones; wet, dry and intermediate were constructed. LMWLs show slight variations in their gradients and respective d-excess values, depending on the air moisture origin, circulation and environmental conditions of each climatic zone. The elevation effect and amount effect could be identified but the continental effect is not significantly seen in the isotope composition of rain in the concerned areas. The results reasonably revealed that the distinct rainfall regimes; two monsoonal rains and two convectional (inter-monsoon) rains have characteristic isotopic signatures. Also the impact of (i) terrestrial and oceanic moisture sources, (ii) depression and cyclonic conditions of the Bay of Bengal, and (iii) topography of the country on the variation of the isotopic composition of rain in Sri Lanka could be satisfactorily identified.

  12. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    PubMed Central

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds. PMID:22666117

  13. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.

    PubMed

    Ahmed, Maqsood; Ramos, Tiago André da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-07

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  14. Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves.

    PubMed

    Simkin, Andrew J; Zhu, Changfu; Kuntz, Marcel; Sandmann, Gerhard

    2003-05-01

    The carotenoid content in photosynthetic plant tissue reflects a steady state value resulting from permanent biosynthesis and concurrent photo-oxidation. The contributions of both reactions were determined in illuminated pepper leaves. The amount of carotenoids provided by biosynthesis were quantified by the accumulation of the colourless carotenoid phytoene in the presence of the inhibitor norflurazon. When applied, substantial amounts of this rather photo-stable intermediate were formed in the light. However, carotenoid biosynthesis was completely stalled in darkness. This switch off in the absence of light is related to the presence of very low messenger levels of the phytoene synthase gene, psy and the phytoene desaturase gene, pds. Other carotenogenic genes, such as zds, ptox and Icy-b also were shown to be down-regulated to some extent. By comparison of the carotenoid concentration before and after transfer of plants to increasing light intensities and accounting for the contribution of biosynthesis, the rate of photo-oxidation was estimated for pepper leaves. It could be demonstrated that light-independent degradation or conversion of carotenoids e.g. to abscisic acid is a minor process.

  15. When sources become sinks: migrational meltdown in heterogeneous habitats.

    PubMed

    Ronce, O; Kirkpatrick, M

    2001-08-01

    We consider the evolution of ecological specialization in a landscape with two discrete habitat types connected by migration, for example, a plant-insect system with two plant hosts. Using a quantitative genetic approach. we study the joint evolution of a quantitative character determining performance in each habitat together with the changes in the population density. We find that specialization on a single habitat evolves with intermediate migration rates, whereas a generalist species evolves with both very low and very large rates of movement between habitats. There is a threshold at which a small increase in the connectivity of the two habitats will result in dramatic decrease in the total population size and the nearly complete loss of use of one of the two habitats through a process of "migrational meltdown." In some situations, equilibria corresponding to a specialist and a generalist species are simultaneously stable. Analysis of our model also shows cases of hysteresis in which small transient changes in the landscape structure or accidental demographic disturbances have irreversible effects on the evolution of specialization.

  16. The structure and function of presynaptic endosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de; International Max Planck Research School for Neurosciences, 37077 Göttingen; Rizzoli, Silvio O.

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in themore » sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.« less

  17. On the Time Scale of Nocturnal Boundary Layer Cooling in Valleys and Basins and over Plains

    NASA Astrophysics Data System (ADS)

    de Wekker, Stephan F. J.; Whiteman, C. David

    2006-06-01

    Sequences of vertical temperature soundings over flat plains and in a variety of valleys and basins of different sizes and shapes were used to determine cooling-time-scale characteristics in the nocturnal stable boundary layer under clear, undisturbed weather conditions. An exponential function predicts the cumulative boundary layer cooling well. The fitting parameter or time constant in the exponential function characterizes the cooling of the valley atmosphere and is equal to the time required for the cumulative cooling to attain 63.2% of its total nighttime value. The exponential fit finds time constants varying between 3 and 8 h. Calculated time constants are smallest in basins, are largest over plains, and are intermediate in valleys. Time constants were also calculated from air temperature measurements made at various heights on the sidewalls of a small basin. The variation with height of the time constant exhibited a characteristic parabolic shape in which the smallest time constants occurred near the basin floor and on the upper sidewalls of the basin where cooling was governed by cold-air drainage and radiative heat loss, respectively.

  18. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    PubMed

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  19. Determinants of breeding distributions of ducks

    USGS Publications Warehouse

    Johnson, D.H.; Grier, J.W.

    1988-01-01

    The settling of breeding habitat by migratory waterfowl is a topic of both theoretical and practical interest. We use the results of surveys conducted annually during 1955-81 in major breeding areas to examine the factors that affect the distributions of 10 common North American duck species. Three patterns of settling are described: homing, opportunistic, and flexible. Homing is generally more pronounced among species that use more stable (more predictable) wetlands, such as the redhead (Aythya americana), canvasback (A. valisineria), lesser scaup (A. affinis), mallard (Anas platyrhynchos), gadwall (Anas strepera), and northern shoveler (Anas clypeata). Opportunistic settling is more prevalent among species that use less stable (less predictable) wetlands, such as northern pintail (Anas acuta) and blue-winged teal (Anas discors). Flexible settling is exhibited to various degrees by most species.The 10 species are shown to fall along a natural ordination reflecting different life history characteristics. Average values of indices of r- and K-selection indicated that pintail, mallard, blue-winged teal, and shoveler have the most features associated with unstable or unpredictable environments. Gadwall, American wigeon (Anas americana), and green-winged teal (Anas crecca) were intermediate, and attributes of the diving ducks were associated with the use of stable or predictable environments.Some species--notably mallard, gadwall, blue-winged teal, redhead, and canvasback--tend to fill available breeding habitat first in the central portions of their range, and secondly in peripheral areas. Other species--American wigeon, green-winged teal, northern shoveler, northern pintail, and lesser scaup--fill their habitat in the order it is encountered during spring migration.Age and sex classes within species vary in their settling pattern. Some of this variation can be predicted from the mating systems of ducks in which breeding females, especially successful ones, have a greater investment in habitat resources and are more likely to return to the same area in subsequent years.

  20. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and diverse tropical omnivore communities.

  1. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    PubMed

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  2. One-electron-mediated rearrangements of 2,3-disiladicarbene.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Roesky, Herbert W; Aysin, Rinat R; Leites, Larissa A; Neudeck, Sven; Lübben, Jens; Dittrich, Birger; Holzmann, Nicole; Hermann, Markus; Frenking, Gernot

    2014-06-25

    A disiladicarbene, (Cy-cAAC)2Si2 (2), was synthesized by reduction of Cy-cAAC:SiCl4 adduct with KC8. The dark-colored compound 2 is stable at room temperature for a year under an inert atmosphere. Moreover, it is stable up to 190 °C and also can be characterized by electron ionization mass spectrometry. Theoretical and Raman studies reveal the existence of a Si═Si double bond with a partial double bond between each carbene carbon atom and silicon atom. Cyclic voltammetry suggests that 2 can quasi-reversibly accept an electron to produce a very reactive radical anion, 2(•-), as an intermediate species. Thus, reduction of 2 with potassium metal at room temperature led to the isolation of an isomeric neutral rearranged product and an anionic dimer of a potassium salt via the formation of 2(•-).

  3. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less

  4. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    NASA Astrophysics Data System (ADS)

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-03-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  5. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  6. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  7. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition

    PubMed Central

    Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi

    2004-01-01

    Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401

  8. Quantitative PCR estimates Angiostrongylus cantonensis (rat lungworm) infection levels in semi-slugs (Parmarion martensi)

    PubMed Central

    Jarvi, Susan I.; Farias, Margaret E.M.; Howe, Kay; Jacquier, Steven; Hollingsworth, Robert; Pitt, William

    2013-01-01

    The life cycle of the nematode Angiostrongylus cantonensis involves rats as the definitive host and slugs and snails as intermediate hosts. Humans can become infected upon ingestion of intermediate or paratenic (passive carrier) hosts containing stage L3 A. cantonensis larvae. Here, we report a quantitative PCR (qPCR) assay that provides a reliable, relative measure of parasite load in intermediate hosts. Quantification of the levels of infection of intermediate hosts is critical for determining A. cantonensis intensity on the Island of Hawaii. The identification of high intensity infection ‘hotspots’ will allow for more effective targeted rat and slug control measures. qPCR appears more efficient and sensitive than microscopy and provides a new tool for quantification of larvae from intermediate hosts, and potentially from other sources as well. PMID:22902292

  9. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach.

    PubMed

    Heneberg, Petr; Faltýnková, Anna; Bizos, Jiří; Malá, Milena; Žiak, Juraj; Literák, Ivan

    2015-02-08

    The cutaneous monostome trematode Collyriclum faba (Bremser in Schmalz, 1831) is a bird parasite with a hitherto unknown life cycle and highly focal occurrence across the Holarctic and Neotropic ecozones. Representative specimens of benthic organisms were sampled at multiple sites and dates within the known foci of C. faba occurrence in Slovakia. A combined approach involving detailed morphological examination and sequencing of two independent DNA loci was used for their analysis. We elucidated the complete life cycle of C. faba, which we determined to include the aquatic gastropod mollusk Bythinella austriaca (Frauenfeld, 1857) as the first intermediate host, the mayflies of the family Heptageniidae, Ecdyonurus venosus (Fabricius, 1775) and Rhithrogena picteti Sowa, 1971 x iridina (Kolenati, 1839), as the second intermediate hosts, and birds (primarily but not exclusively passeriform birds) as the definitive hosts. Bythinella austriaca occurs focally in the springs of tributaries of the Danube in the Alpine-Carpathian region. The restricted distribution of B. austriaca explains the highly focal distribution of C. faba noticed previously in spite of the broad distribution of its second intermediate and definitive host species. Utilization of both larval and adult Ephemeroptera spp. as the second intermediate hosts explains the known spectrum of the definitive host species, with the highest prevalence in species feeding on larvae of Ephemeroptera, such as Cinclus cinclus (Linnaeus, 1758) and Motacilla cinerea Tunstall, 1771, or adults of Ephemeroptera, such as Sylvia atricapilla (Linnaeus, 1758) and Regulus regulus (Linnaeus, 1758). In this study, we also determine the prevalence and DNA sequences of other immature trematode specimens found in the examined benthic organisms (particularly the families Microphallidae, Troglotrematidae and Nanophyetidae and Euryhelmis zelleri Grabda-Kazubska, 1980, Heterophyidae), and describe cercariae of C. faba. We determined the full life cycle of the Central European populations of C. faba. We speculate that other species of Bythinella and the closely related genus Amnicola may serve as first intermediate hosts in other parts of the distribution range of C. faba. Similarly, other Ephemeroptera of the family Heptageniidae may serve as the second intermediate hosts of C. faba in the Americas.

  10. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.

    We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.

  12. Chimera states for coupled oscillators.

    PubMed

    Abrams, Daniel M; Strogatz, Steven H

    2004-10-22

    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.

  13. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  14. Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability.

    PubMed

    Liu, Lianjun; Zhao, Cunyu; Zhao, Huilei; Pitts, Daniel; Li, Ying

    2013-05-07

    A novel MgO-patched TiO2 microsphere photocatalyst demonstrated 10 times higher activity toward CO production from CO2 photoreduction with H2O vapor, when the reaction temperature increased from 50 to 150 °C. The catalytic performance of hybrid MgO-TiO2 was much more stable than TiO2, particularly at a higher temperature, likely due to easier desorption of reaction intermediates and the enhanced CO2 adsorption by MgO.

  15. Catalytic biomass pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  16. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  17. The Effect of Presentation Strategy on Reading Comprehension of Iranian Intermediate EFL Learners

    ERIC Educational Resources Information Center

    Khoshsima, Hooshang; Rezaeiantiyar, Forouzan

    2014-01-01

    The present experimental study primarily aimed at examining the effect of presentation strategy on reading comprehension of Iranian intermediate EFL learners. To determine the effect of this strategy, 61 students who enrolled in English Language Center of Chabahar Maritime University were initially selected and then divided randomly into two…

  18. 42 CFR 422.756 - Procedures for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... civil money penalties. 422.756 Section 422.756 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Sanctions § 422.756 Procedures for imposing intermediate sanctions and civil money penalties. (a) Notice of... money penalties—(1) CMS notice to OIG. If CMS determines that an MA organization has failed to comply...

  19. 42 CFR 423.756 - Procedures for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... civil money penalties. 423.756 Section 423.756 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... civil money penalties. (a) Notice of intermediate sanction and opportunity to respond—(1) Notice of....509. (e) Notice to impose civil money penalties—(1) CMS notice to OIG. If CMS determines that a Part D...

  20. Relationship between EFL Learners' Autonomy and Speaking Strategies They Use in Conversation Classes

    ERIC Educational Resources Information Center

    Salehi, Hadi; Ebrahimi, Marziyeh; Sattar, Susan; Shojaee, Mohammad

    2015-01-01

    The present study was conducted at Parsayan Language Institute in Isfahan, Iran. The students in pre-intermediate and intermediate classes were examined to investigate the relationship between degrees of learner autonomy, use of strategies for coping with speaking problems and the learners' success in their speaking classes. To determine the…

  1. 42 CFR 422.756 - Procedures for imposing intermediate sanctions and civil money penalties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... civil money penalties. 422.756 Section 422.756 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Sanctions § 422.756 Procedures for imposing intermediate sanctions and civil money penalties. (a) Notice of... money penalties—(1) CMS notice to OIG. If CMS determines that an MA organization has failed to comply...

  2. Intermediates and the folding of proteins L and G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Scott; Head-Gordon, Teresa

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contactsmore » involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.« less

  3. Intermediates and the folding of proteins L and G

    PubMed Central

    Brown, Scott; Head-Gordon, Teresa

    2004-01-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted β-1 and β-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third β-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment. PMID:15044729

  4. Third-line Targeted Therapy in Metastatic Renal Cell Carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium.

    PubMed

    Wells, J Connor; Stukalin, Igor; Norton, Craig; Srinivas, Sandy; Lee, Jae Lyun; Donskov, Frede; Bjarnason, Georg A; Yamamoto, Haru; Beuselinck, Benoit; Rini, Brian I; Knox, Jennifer J; Agarwal, Neeraj; Ernst, D Scott; Pal, Sumanta K; Wood, Lori A; Bamias, Aristotelis; Alva, Ajjai S; Kanesvaran, Ravindran; Choueiri, Toni K; Heng, Daniel Y C

    2017-02-01

    The use of third-line targeted therapy (TTT) in metastatic renal cell carcinoma (mRCC) is not well characterized and varies due to the lack of robust data to guide treatment decisions. This study examined the use of third-line therapy in a large international population. To evaluate the use and efficacy of targeted therapy in a third-line setting. Twenty-five international cancer centers provided consecutive data on 4824 mRCC patients who were treated with an approved targeted therapy. One thousand and twelve patients (21%) received TTT and were included in the analysis. Patients were analyzed for overall survival (OS) and progression-free survival using Kaplan-Meier curves, and were evaluated for overall response. Cox regression analyses were used to determine the statistical association between OS and the six factors included in the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prognostic model. Subgroup analysis was performed on patients stratified by their IMDC prognostic risk status. Everolimus was the most prevalent third-line therapy (27.5%), but sunitinib, sorafenib, pazopanib, temsirolimus, and axitinib were all utilized in over ≥9% of patients. Patients receiving any TTT had an OS of 12.4 mo, a progression-free survival of 3.9 mo, and 61.1% of patients experienced an overall response of stable disease or better. Patients not receiving TTT had an OS of 2.1 mo. Patients with favorable- (7.2%) or intermediate-risk (65.3%) disease had the highest OS with TTT, 29.9 mo and 15.5 mo, respectively, while poor-risk (27.5%) patients survived 5.5 mo. Results are limited by the retrospective nature of the study. TTT remains highly heterogeneous. The IMDC prognostic criteria can be used to stratify third-line patients. TTT use in favorable- and intermediate-risk patients was associated with the greatest OS. Patients with favorable- and intermediate-prognostic criteria disease treated with third-line targeted therapy have an associated longer overall survival compared with those with poor risk disease. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches

    NASA Astrophysics Data System (ADS)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2015-04-01

    Because aftershock occurrences can cause significant seismic risks for a considerable time after the main shock, prospective forecasting of the intermediate-term aftershock activity as soon as possible is important. The epidemic-type aftershock sequence (ETAS) model with the maximum likelihood estimate effectively reproduces general aftershock activity including secondary or higher-order aftershocks and can be employed for the forecasting. However, because we cannot always expect the accurate parameter estimation from incomplete early aftershock data where many events are missing, such forecasting using only a single estimated parameter set (plug-in forecasting) can frequently perform poorly. Therefore, we here propose Bayesian forecasting that combines the forecasts by the ETAS model with various probable parameter sets given the data. By conducting forecasting tests of 1 month period aftershocks based on the first 1 day data after the main shock as an example of the early intermediate-term forecasting, we show that the Bayesian forecasting performs better than the plug-in forecasting on average in terms of the log-likelihood score. Furthermore, to improve forecasting of large aftershocks, we apply a nonparametric (NP) model using magnitude data during the learning period and compare its forecasting performance with that of the Gutenberg-Richter (G-R) formula. We show that the NP forecast performs better than the G-R formula in some cases but worse in other cases. Therefore, robust forecasting can be obtained by employing an ensemble forecast that combines the two complementary forecasts. Our proposed method is useful for a stable unbiased intermediate-term assessment of aftershock probabilities.

  6. Fortune Favors the Brave. Tactical Behaviors in the Middle Distance Running Events at the 2017 IAAF World Championships.

    PubMed

    Casado, Arturo; Renfree, Andrew

    2018-05-29

    To assess tactical and performance factors associated with progression from qualification rounds in the 800 m and 1500 m running events at the 2017 IAAF World Championships. Official results were used to access final and intermediate positions and times, as well as performance characteristics of competitors. Shared variance between intermediate positions and rank order lap times (ROSPT) with finishing positions were calculated, along with probability of automatic qualification, for athletes in each available race position at the end of every 400 m lap. Differences in race positions and lap times relative to season´s best (SB) performances were assessed between automatic qualifiers (AQ), fastest losers (FL), and non-qualifiers (NQ). Race positions at the end of each 400 m lap remained more stable through 800 m races than 1500 m races. Probability of automatic qualification decreased with both race position and ROSPT on each lap, although ROSPT accounted for a higher degree of shared variance than did intermediate position. In the 1500 m event FL ran at a higher percentage of SB speed, and adopted positions closer to the race lead in the early stages. This was not the case in the 800 m. Intermediate positioning and the ability to produce a fast final race segment are strongly related to advancement from qualification rounds in middle distance running events. The adoption of a more 'risky' strategy characterized by higher speeds relative to SB may be associated with increased likelihood of qualification as FL in the 1500 m event.

  7. Novel application of species richness estimators to predict the host range of parasites.

    PubMed

    Watson, David M; Milner, Kirsty V; Leigh, Andrea

    2017-01-01

    Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus

    PubMed Central

    Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.

    1974-01-01

    The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773

  9. Uses of stable isotopes in fish ecology

    EPA Science Inventory

    Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...

  10. Cortical membrane potential signature of optimal states for sensory signal detection

    PubMed Central

    McGinley, Matthew J.; David, Stephen V.; McCormick, David A.

    2015-01-01

    The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including: rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically-observed inverted-U relationship between task performance and arousal, and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity. PMID:26074005

  11. Enhancement of preservation characteristics of Meju, an intermediate material for Korean legume-based fermented soy sauce, Kanjang, by irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ho; Jo, Cheorun; Yook, Hong-Sun; Park, Byoung-Jun; Byun, Myung-Woo

    2002-07-01

    Meju, an intermediate product for making Korean traditional soy sauce, Kanjang, was prepared and irradiated at 0, 5, 10 and 20 kGy and then stored at 25°C for 12 months (mo). Mould and Lactobacillus spp. were nearly eliminated by gamma irradiation with a dose of 5-10 kGy, and the Bacillus spp. was decreased by 4 decimal reduction with a dose of 10 kGy. Changes of protease activity, NH 3-nitrogen, NH 2-nitrogen, pH and color in the gamma-irradiated Meju were stable compared to non-irradiated control. Sensory evaluation after 12-mo storage showed that soy sauce made from the Meju irradiated with 10 and 20 kGy was acceptable and scored as same as the freshly made one. Therefore, it was considered that the Meju can be stored up to 12 mo by treating with gamma irradiation without any adverse quality change to make soy sauce.

  12. Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species

    PubMed Central

    Pillai, Pradeep; Guichard, Frédéric

    2012-01-01

    We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species. PMID:22448253

  13. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    PubMed

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies

    NASA Astrophysics Data System (ADS)

    Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng

    2017-04-01

    Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).

  15. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass

    NASA Astrophysics Data System (ADS)

    Palenta, Theresia; Fuhrmann, Sindy; Greaves, G. Neville; Schwieger, Wilhelm; Wondraczek, Lothar

    2015-02-01

    We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si4+, Al3+) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

  16. Multiple Near Wake Patterns Behind Annular Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro

    1996-11-01

    Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.

  17. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  18. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  19. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO

    NASA Astrophysics Data System (ADS)

    Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.

    2001-05-01

    The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.

  20. Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland).

    PubMed

    Schaub, Monika; Alewell, Christine

    2009-05-01

    Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r

  1. Stable isotopes and iron oxide mineral products as markers of chemodenitrification.

    PubMed

    Jones, L Camille; Peters, Brian; Lezama Pacheco, Juan S; Casciotti, Karen L; Fendorf, Scott

    2015-03-17

    When oxygen is limiting in soils and sediments, microorganisms utilize nitrate (NO3-) in respiration--through the process of denitrification--leading to the production of dinitrogen (N2) gas and trace amounts of nitrous (N2O) and nitric (NO) oxides. A chemical pathway involving reaction of ferrous iron (Fe2+) with nitrite (NO2-), an intermediate in the denitrification pathway, can also result in production of N2O. We examine the chemical reduction of NO2- by Fe(II)--chemodenitrification--in anoxic batch incubations at neutral pH. Aqueous Fe2+ and NO2- reacted rapidly, producing N2O and generating Fe(III) (hydr)oxide mineral products. Lepidocrotite and goethite, identified by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, were produced from initially aqueous reactants, with two-line ferrihydrite increasing in abundance later in the reaction sequence. Based on the similarity of apparent rate constants with different mineral catalysts, we propose that the chemodenitrification rate is insensitive to the type of Fe(III) (hydr)oxide. With stable isotope measurements, we reveal a narrow range of isotopic fractionation during NO2- reduction to N2O. The location of N isotopes in the linear N2O molecule, known as site preference, was also constrained to a signature range. The coexistence of Fe(III) (hydr)oxide, characteristic 15N and 18O fractionation, and N2O site preference may be used in combination to qualitatively distinguish between abiotic and biogenically emitted N2O--a finding important for determining N2O sources in natural systems.

  2. Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.

    2006-12-01

    Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.

  3. Determination of Formulation Conditions Allowing Double Emulsions Stabilized by PGPR and Sodium Caseinate to Be Used as Capsules.

    PubMed

    Nollet, Maxime; Laurichesse, Eric; Besse, Samantha; Soubabère, Olivier; Schmitt, Véronique

    2018-02-27

    Water-in-oil-in-water (W 1 /O/W 2 ) double emulsions stabilized by polyglycerol polyricinoleate (PGPR), a lipophilic food grade small polymer, and sodium caseinate, a hydrophilic milk protein, were developed to encapsulate vitamin B12, a model hydrophilic substance easy to titrate. Using rheology, sensitive to drop size evolution and water fluxes, static light scattering, and microscopy both giving the evolution of drops' size and vitamin B12 titration assessing the encapsulation, we were able to detect independently the double emulsion drop size, the encapsulation loss, and the flux of water as a function of time. By differentiating the PGPR required to cover the W 1 -droplets' surface from PGPR in excess in the oil phase, we built a PGPR-inner droplet volume fraction diagram highlighting the domains where the double emulsion is stable toward encapsulation and/or water fluxes. We demonstrated the key role played by nonadsorbed PGPR concentration in the intermediate sunflower oil phase on the emulsion stability while, surprisingly, the inner droplet volume fraction had no effect on the emulsion stability. At low PGPR concentration, a release of vitamin B12 was observed and the leakage mechanism of coalescence between droplets and oil-water interface of the oily drops (also called globules hereafter), was identified using confocal microscopy. For high enough PGPR content, the emulsions were stable and may therefore serve as efficient capsules without need of an additional gelling, thickening, complexion or interface rigidifying agent. We generalized these results with the encapsulation of an insecticide: Cydia pomonella granulovirus used in organic arboriculture.

  4. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; O'Neill, C.

    2015-06-01

    We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.

  5. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  6. Motor planning flexibly optimizes performance under uncertainty about task goals.

    PubMed

    Wong, Aaron L; Haith, Adrian M

    2017-03-03

    In an environment full of potential goals, how does the brain determine which movement to execute? Existing theories posit that the motor system prepares for all potential goals by generating several motor plans in parallel. One major line of evidence for such theories is that presenting two competing goals often results in a movement intermediate between them. These intermediate movements are thought to reflect an unintentional averaging of the competing plans. However, normative theories suggest instead that intermediate movements might actually be deliberate, generated because they improve task performance over a random guessing strategy. To test this hypothesis, we vary the benefit of making an intermediate movement by changing movement speed. We find that participants generate intermediate movements only at (slower) speeds where they measurably improve performance. Our findings support the normative view that the motor system selects only a single, flexible motor plan, optimized for uncertain goals.

  7. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    PubMed

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  8. How industries change.

    PubMed

    McGahan, Anita M

    2004-10-01

    It's fairly obvious: To make intelligent investments within your organization, you need to understand how your whole industry is changing. But such knowledge is not always easy to come by. Companies misread clues and arrive at false conclusions all the time. To truly understand where your industry is headed, you have to take a long-term, high-level look at the context in which you do business, says Boston University professor Anita McGahan. She studied a variety of businesses from a cross section of industries over a ten-year period, examining how industry structure affects business profitability and investor returns. Her research suggests that industries evolve along one of four distinct trajectories--radical, progressive, creative, and intermediating--that set boundaries on what will generate profits in a business. These four trajectories are defined by two types of threats. The first is when new, outside alternatives threaten to weaken or make obsolete core activities that have historically generated profits for an industry. The second is when an industry's core assets--its resources, knowledge, and brand capital--fail to generate value as they once did. Industries undergo radical change when core assets and core activities are both threatened with obsolescence; they experience progressive change when neither are jeopardized. Creative change occurs when core assets are under threat but core activities are stable, and intermediating change happens when core activities are threatened while core assets retain their capacity to create value. If your company's innovation strategy is not aligned with your industry's change trajectory, your plan for achieving returns on invested capital cannot succeed, McGahan says. But if you understand which path you're on, you can determine which strategies will succeed and which will backfire.

  9. Impact of High-Flow Nasal Cannula Use on Neonatal Respiratory Support Patterns and Length of Stay.

    PubMed

    Hoffman, Suma B; Terrell, Natalie; Driscoll, Colleen Hughes; Davis, Natalie L

    2016-10-01

    Heated humidified high-flow nasal cannula (HFNC) is thought to be comparable with nasal CPAP. The effect of multimodality mid-level respiratory support use in the neonatal ICU is unknown. The objective of this work was to evaluate the effect of introducing HFNC on length of respiratory support and stay. A chart review was conducted on subjects at 24-32 weeks gestation requiring mid-level support (HFNC/nasal CPAP) 1 y before and after HFNC implementation. The 2 groups were compared for clinical and demographic data using t test or chi-square analysis. Further, multivariate linear and logistic regression was done to determine significant risk factors for outcomes controlling for covariates. Eighty subjects were eligible in the pre-HFNC group, and 83 were eligible in the post-HFNC group. Subjects were similar in their baseline characteristics. In clinical outcomes, the post-HFNC group had higher rates of retinopathy of prematurity (P = .02) and a trend toward higher bronchopulmonary dysplasia rates (P = .063). The post-HFNC subjects had longer duration of mid-level support and were older at the time they were weaned to stable low-flow nasal cannula (P < .05). Although the length of respiratory support and stay and corrected gestational age at discharge were similar, those in the pre-HFNC period were more likely to be receiving full oral feeds and be discharged home versus being transferred to an intermediate care facility (P < .05). HFNC introduction was significantly associated with a longer duration of mid-level respiratory support, decrease in oral feeding at discharge, increased retinopathy of prematurity rates, and higher use of intermediate care facilities, leading us to examine our noninvasive ventilation and weaning strategies. Copyright © 2016 by Daedalus Enterprises.

  10. Acrylic kyphoplasty in recent nonosteoporotic fractures of the thoracolumbar junction: a prospective clinical and 3D radiologic study of 54 patients.

    PubMed

    Saget, Mathieu; Teyssedou, Simon; Prebet, Remi; Vendeuvre, Tanguy; Gayet, Louis-Etienne; Pries, Pierre

    2014-08-01

    Prospective clinical and radiological study. To evaluate the impact of stand-alone acrylic kyphoplasty in the treatment of recent traumatic fractures of the thoracolumbar spine in young patients. The management of fractures of the thoracolumbar spine without neurological deficit remains controversial. For a long time clinicians could only chose between functional treatment, orthopedic treatment, and traditional surgery. The recent advent of minimally invasive surgical techniques is an interesting alternative. Fifty-four patients with a mean age of 45.8±18.2 years and who had recently sustained a fracture of the thoracolumbar junction were enrolled into the study. Balloon kyphoplasty was performed using acrylic cement. Radiologic assessments (computed tomography scans) and clinical assessments (including Visual Analog Scale and Oswestry Disability Index scores) were used to determine kyphoplasty success and measure patient recovery over 2 years. Kyphoplasty reduced mean vertebral kyphosis from 12.8±5.0 degrees at trauma to 8.2±5.1 degrees at 2-year follow-up. Mean vertebral kyphosis was corrected by -5.7±4.7 degrees (P=0.0001) at the point of first verticalization, with no significant change at the 2-year follow-up visit (+1.1±4.3 degrees, P=0.1058). Kyphoplasty significantly augmented the height of the 6 anterior and intermediate segments. Maximum mean augmentation of intermediate vertebral height after 6 months was (11.6%±15.5%, P<0.0001). Patients tolerated the procedure well and 56% of them returned to work 3 months after kyphoplasty. Kyphoplasty is safe and effective in the correction of nonosteoporotic fractures of the thoracolumbar junction in young patients, and remains stable for at least 2 years postsurgery.

  11. Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model.

    PubMed

    Jacobs, Donald J; Livesay, Dennis R; Hules, Jeremy; Tasayco, Maria Luisa

    2006-05-05

    Numerous quantitative stability/flexibility relationships, within Escherichia coli thioredoxin (Trx) and its fragments are determined using a minimal distance constraint model (DCM). A one-dimensional free energy landscape as a function of global flexibility reveals Trx to fold in a low-barrier two-state process, with a voluminous transition state. Near the folding transition temperature, the native free energy basin is markedly skewed to allow partial unfolded forms. Under native conditions the skewed shape is lost, and the protein forms a compact structure with some flexibility. Predictions on ten Trx fragments are generally consistent with experimental observations that they are disordered, and that complementary fragments reconstitute. A hierarchical unfolding pathway is uncovered using an exhaustive computational procedure of breaking interfacial cross-linking hydrogen bonds that span over a series of fragment dissociations. The unfolding pathway leads to a stable core structure (residues 22-90), predicted to act as a kinetic trap. Direct connection between degree of rigidity within molecular structure and non-additivity of free energy is demonstrated using a thermodynamic cycle involving fragments and their hierarchical unfolding pathway. Additionally, the model provides insight about molecular cooperativity within Trx in its native state, and about intermediate states populating the folding/unfolding pathways. Native state cooperativity correlation plots highlight several flexibly correlated regions, giving insight into the catalytic mechanism that facilitates access to the active site disulfide bond. Residual native cooperativity correlations are present in the core substructure, suggesting that Trx can function when it is partly unfolded. This natively disordered kinetic trap, interpreted as a molten globule, has a wide temperature range of metastability, and it is identified as the "slow intermediate state" observed in kinetic experiments. These computational results are found to be in overall agreement with a large array of experimental data.

  12. A Conserved START Domain Coenzyme Q-binding Polypeptide is Required for Efficient Q Biosynthesis, Respiratory Electron Transport, and Antioxidant Function in Saccharomyces cerevisiae

    PubMed Central

    Morvaridi, Susan; Saiki, Ryoichi; Johnson, Jarrett S.; Liau, Wei-Siang; Hirano, Kathleen; Kawashima, Tadashi; Ji, Ziming; Loo, Joseph A.; Shepherd, Jennifer N.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. PMID:23270816

  13. Stringency and relaxation among the halobacteria.

    PubMed Central

    Cimmino, C; Scoarughi, G L; Donini, P

    1993-01-01

    Accumulation of stable RNA and production of guanosine polyphosphates (ppGpp and pppGpp) were studied during amino acid starvation in four species of halobacteria. In two of the four species, stable RNA was under stringent control, whereas one of the remaining two species was relaxed and the other gave an intermediate phenotype. The stringent reaction was reversed by anisomycin, an effect analogous to the chloroamphenicol-induced reversal of stringency in the eubacteria. During the stringent response, neither ppGpp nor pppGpp accumulation took place during starvation. In both growing and starved cells a very low basal level of the two polyphosphates appeared to be present. In the stringent species the intracellular concentration of GTP did not diminish but actually increased during the course of the stringent response. These data demonstrate that (i) wild-type halobacteria can have either the stringent or the relaxed phenotype (all wild-type eubacteria tested have been shown to be stringent); (ii) stringency in the halobacteria is dependent on the deaminoacylation of tRNA, as in the eubacteria; and (iii) in the halobacteria, ppGpp is not an effector of stringent control over stable-RNA synthesis. Images PMID:7691798

  14. Regulation of EMMPRIN (CD147) on monocyte subsets in patients with symptomatic coronary artery disease.

    PubMed

    Sturhan, Henrik; Ungern-Sternberg, Saskia N I v; Langer, Harald; Gawaz, Meinrad; Geisler, Tobias; May, Andreas E; Seizer, Peter

    2015-06-01

    The role of individual monocyte subsets in inflammatory cardiovascular diseases is insufficiently understood. Although the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) regulates important processes for inflammation such as MMP-release, its expression and regulation on monocyte subsets has not been characterized. In this clinical study, blood was obtained from 80 patients with stable coronary artery disease (CAD), 49 with acute myocardial infarction (AMI) and 34 healthy controls. Monocytes were divided into 3 subsets: CD14(++)CD16(-) (low), CD14(++)CD16(+) (intermediate), CD14(+)CD16(++) (high) according to phenotypic markers analyzed by flow cytometry. Surface expression of EMMPRIN was evaluated and compared with CD36 and CD47 expression. In all patients, EMMPRIN expression was significantly different among monocyte subsets with the highest expression on "classical" CD14(++)CD16(-) monocytes. EMMPRIN was upregulated on all monocyte subsets in patients with AMI as compared to patients with stable CAD. Notably, neither CD47 nor CD36 revealed a significant difference in patients with AMI compared to patients with stable CAD. EMMPRIN could serve as a marker for classical monocytes, which is upregulated in patients with acute myocardial infarction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization of two distinct beta2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology.

    PubMed

    Armen, Roger S; Daggett, Valerie

    2005-12-13

    The self-assembly of beta(2)-microglobulin into fibrils leads to dialysis-related amyloidosis. pH-mediated partial unfolding is required for the formation of the amyloidogenic intermediate that then self-assembles into amyloid fibrils. Two partially folded intermediates of beta(2)-microglobulin have been identified experimentally and linked to the formation of fibrils of distinct morphology, yet it remains difficult to characterize these partially unfolded states at high resolution using experimental approaches. Consequently, we have performed molecular dynamics simulations at neutral and low pH to determine the structures of these partially unfolded amyloidogenic intermediates. In the low-pH simulations, we observed the formation of alpha-sheet structure, which was first proposed by Pauling and Corey. Multiple simulations were performed, and two distinct intermediate state ensembles were identified that may account for the different fibril morphologies. The predominant early unfolding intermediate was nativelike in structure, in agreement with previous NMR studies. The late unfolding intermediate was significantly disordered, but it maintained an extended elongated structure, with hydrophobic clusters and residual alpha-extended chain strands in specific regions of the sequence that map to amyloidogenic peptides. We propose that the formation of alpha-sheet facilitates self-assembly into partially unfolded prefibrillar amyloidogenic intermediates.

  16. Assessment of Needs of Adults with Developmental Disabilities in Skilled Nursing and Intermediate Care Facilities in Illinois.

    ERIC Educational Resources Information Center

    Uehara, Edwina S.; And Others

    1991-01-01

    This study evaluated 2,815 adults with developmental disabilities in 328 Illinois intermediate care and skilled nursing facilities. Only 10 percent were determined to be appropriately placed in medical settings; 27 percent were enrolled in day training programs; and many individuals recommended for alternative residential settings had medical and…

  17. Abrupt Deglacial Changes in Subarctic Pacific Ventilation: Intermediate and Deep Water Ventilation, Oxygen Fluctuations, and the relation to carbon cycle dynamics

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, L.; Tiedemann, R.; Gong, X.; Max, L.; Zou, J.; Shi, X.; Lohmann, G.

    2016-12-01

    The modern subarctic Pacific halocline prevents the formation of deepwater masses andonly mid-depth waters are ventilated by North Pacific Intermediate Water (NPIW). During the last glacial, isolation of the deep North Pacific ids thought to have been more pronounced, combined with a better ventilated and expanded NPIW. This glacial deep to intermediate separation, together with upper ocean stratification, has principal implications for the deep ocean storage of carbon, as well as the mid-depth provision of nutrients by NPIW to the lower-latitude thermocline and the Pacific subarctic gyre. To date, conflicting evidence persists how the North Pacific biological and physical carbon pump reorganized during millennial-scale glacial and deglacial changes over the past 50 ka, limiting our understanding of carbon pool dynamics between Pacific ocean and the atmosphere. We present proxydata and paleoclimate modelling evidence for rapid intermediate and deep ocean nutrient and ventilation changes based on a sediment core collection with good temporal and spatial resolution from the Okhotsk Sea, Bering Sea, and the open subarctic North Pacific. High sedimentation rates (20-200 cm/ka) enable us to decipher rapid climatic changes on millennial time scales through MIS 2-3 and with a higher, up to inter-decadal, resolution during the last glacial termination. Paired AMS radiocarbon planktic-benthic ages help us to constrain water mass age changes, while multi-species foraminiferal stable isotope and redox-sensitive elemental time series provide information on past oxygenation and nutrient dynamics. We found evidence for a weaker chemical separation between intermediate and deep water during the glacial than previously thought, with rapid alternations between major NPIW ventilation areas in marginal seas, in particular during Heinrich stadials and the termination. We provide new information about the deglacial mid-depth subarctic Pacific de-oxygenation timing, extent and forcing. Finally, we discuss evidence for the spatial characteristics and causes of observed physical and chemical intermediate and deep ocean changes, based on results from a suite of paleoclimate modelling experiments using the COSMOS Earth System Model, and the high-resolution (eddy-permitting) sea ice - ocean model AWI-FESOM.

  18. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.

    PubMed

    Roberts, Christopher C; Chang, Chia-En A

    2016-08-25

    We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.

  19. Investigating economic specialization on the central Peruvian coast: A reconstruction of Late Intermediate Period Ychsma diet using stable isotopes.

    PubMed

    Marsteller, Sara J; Zolotova, Natalya; Knudson, Kelly J

    2017-02-01

    Hypothetical models of socioeconomic organization in pre-Columbian societies generated from the rich ethnohistoric record in the New World require testing against the archaeological and bioarchaeological record. Here, we test ethnohistorian Maria Rostworowski's horizontality model of socioeconomic specialization for the Central Andean coast by reconstructing dietary practices in the Late Intermediate Period (c. AD 900-1470) Ychsma polity to evaluate complexities in social behaviors prior to Inka imperial influence. Stable carbon and nitrogen isotope analysis of archaeological human bone collagen and apatite (δ 13 C col[VPDB], δ 15 N col[AIR] , δ 13 C ap[VPDB] ) and locally available foods is used to reconstruct the diets of individuals from Armatambo (n = 67), associated ethnohistorically with fishing, and Rinconada Alta (n = 46), associated ethnohistorically with agriculture. Overall, mean δ 15 N col[AIR] is significantly greater at Armatambo, while mean δ 13 C col[VPDB] and mean δ 13 C ap[VPDB] are not significantly different between the two sites. Within large-scale trends, adult mean δ 13 C ap[VPDB] is significantly greater at Armatambo. In addition, nearly one-third of Armatambo adults and adolescents show divergent δ 15 N col[AIR] values. These results indicate greater reliance on marine resources at Armatambo versus Rinconada Alta, supporting the ethnohistoric model of socioeconomic specialization for the Central Andean coast. Deviations from large-scale dietary trends suggest complexities not accounted for by the ethnohistoric model, including intra-community subsistence specialization and/or variation in resource access. © 2016 Wiley Periodicals, Inc.

  20. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris

    1992-01-01

    The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820

  1. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  2. Efficacy and Safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma: A prospective observation study.

    PubMed

    Yu, Wen-Chang; Zhang, Kong-Zhi; Chen, Shi-Guang; Liu, Wei-Fu

    2018-01-01

    This prospective study aimed to evaluate the efficacy and safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma (HCC).The patients with intermediate/advanced HCC, who met predetermined inclusion and exclusion criteria, underwent oral treatment of apatinib 500 mg daily. The drug-related adverse effects were monitored by regular follow-up and workup including laboratory tests and imaging examinations. Tumor response was assessed by response evaluation criteria in solid tumor criteria. The time to tumor progression (TTP) and overall survival rate (OS) were calculated using the Kaplan-Meier method.A total of 31 patients were enrolled in the study from October 28, 2015 to December 28, 2016. The number of patients with intermediate and advanced HCC was 4 (12.90%) and 27 (87.10%), respectively. The mean tumor size was 9.47 ± 5.48 cm (range: 1.2-19 cm). Vascular invasion was seen in 14 patients (45.16%). A total of 21 (67.74%) patients exhibited extrahepatic metastases. On the basis of first follow-up computed tomography and magnetic resonance imaging at 6 weeks after treatment, 10 (32.26%), 15 (48.39%), and 6 (19.35%) of 31 patients achieved a partial response, stable disease, and progression of disease, respectively. Response rate and disease control rate were 32.26% and 80.65%, respectively. The median TTP was 4.8 months (95% confidence interval: 3.75-5.86 months). Furthermore, 6- and 12-month OS rates were 73.8% and 55.4%, respectively. Grade 3 thrombocytopenia (6.45%) and hypertension (48.39%) were the most common hematologic and nonhematologic toxicities. Grade 3 elevation of either serum total bilirubin or aminotransferase (6.45%) was observed as the top incidence among important indexes of liver function.Our preliminary findings suggest apatinib is a safe and effective therapy in intermediate/advanced HCC patients with high tumor response and survival rates. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  3. Efficacy and Safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma: A prospective observation study

    PubMed Central

    Yu, Wen-Chang; Zhang, Kong-Zhi; Chen, Shi-Guang; Liu, Wei-Fu

    2018-01-01

    Abstract This prospective study aimed to evaluate the efficacy and safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma (HCC). The patients with intermediate/advanced HCC, who met predetermined inclusion and exclusion criteria, underwent oral treatment of apatinib 500 mg daily. The drug-related adverse effects were monitored by regular follow-up and workup including laboratory tests and imaging examinations. Tumor response was assessed by response evaluation criteria in solid tumor criteria. The time to tumor progression (TTP) and overall survival rate (OS) were calculated using the Kaplan–Meier method. A total of 31 patients were enrolled in the study from October 28, 2015 to December 28, 2016. The number of patients with intermediate and advanced HCC was 4 (12.90%) and 27 (87.10%), respectively. The mean tumor size was 9.47 ± 5.48 cm (range: 1.2–19 cm). Vascular invasion was seen in 14 patients (45.16%). A total of 21 (67.74%) patients exhibited extrahepatic metastases. On the basis of first follow-up computed tomography and magnetic resonance imaging at 6 weeks after treatment, 10 (32.26%), 15 (48.39%), and 6 (19.35%) of 31 patients achieved a partial response, stable disease, and progression of disease, respectively. Response rate and disease control rate were 32.26% and 80.65%, respectively. The median TTP was 4.8 months (95% confidence interval: 3.75–5.86 months). Furthermore, 6- and 12-month OS rates were 73.8% and 55.4%, respectively. Grade 3 thrombocytopenia (6.45%) and hypertension (48.39%) were the most common hematologic and nonhematologic toxicities. Grade 3 elevation of either serum total bilirubin or aminotransferase (6.45%) was observed as the top incidence among important indexes of liver function. Our preliminary findings suggest apatinib is a safe and effective therapy in intermediate/advanced HCC patients with high tumor response and survival rates. PMID:29505026

  4. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes.

    PubMed

    Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.

  5. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  6. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.

    2018-03-01

    Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

  7. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature

    PubMed Central

    Hutchison, Christopher D. M.; Cordon-Preciado, Violeta; Morgan, Rhodri M. L.; Dorlhiac, Gabriel; Sanchez-Gonzalez, Alvaro; Fitzpatrick, Ann; Fare, Clyde; Marangos, Jon P.; Hunter, Mark S.; DePonte, Daniel P.; Boutet, Sébastien; Owada, Shigeki; Tanaka, Rie; Tono, Kensuke; Iwata, So; van Thor, Jasper J.

    2017-01-01

    The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form. PMID:28880248

  8. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  9. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  10. Determining Solute Sources and Water Flowpaths in a Forested Headwater Catchment: Advances With the Ca-Sr-Ba Multi-tracer

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.

    2011-12-01

    Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.

  11. Perceptual Learning Immediately Yields New Stable Motor Coordination

    ERIC Educational Resources Information Center

    Wilson, Andrew D.; Snapp-Childs, Winona; Bingham, Geoffrey P.

    2010-01-01

    Coordinated rhythmic movement is specifically structured in humans. Movement at 0[degrees] mean relative phase is maximally stable, 180[degrees] is less stable, and other coordinations can, but must, be learned. Variations in perceptual ability play a key role in determining the observed stabilities so we investigated whether stable movements can…

  12. New insights to the formation of dolomite and magnesite through hydrothermal alteration of Ca-carbonates: An experimental approach

    NASA Astrophysics Data System (ADS)

    Kell-Duivestein, Isaac; Dietzel, Martin; Baldermann, Andre; Mavromatis, Vasileios

    2017-04-01

    Advanced knowledge about the physicochemical conditions and reaction paths underlying Ca-Mg carbonate formation, such as dolomite and magnesite, during the advanced stage of diagenesis is a pre-requirement for the accurate interpretation of proxy signals established from carbonate-hosting sedimentary archives. In this study, hydrothermal precipitation experiments were performed in order to trace and quantify the evolution of elemental (Ca, Mg and Sr) and stable isotopic δ18O signatures during the (trans)formation of intermediate aragonite and low-Mg calcite to more stable dolomite and magnesite in the presence of Mg- and Na-chloride-rich brines. Therefore, 330 mg of inorganic CaCO3 seed material (aragonite or calcite) was reacted with 30 mL of an artificial brine solution, originally containing 0.2 M of MgCl2(aq) and 0.1 M or 0.05 M of NaHCO3, in Teflon-lined stainless steel autoclaves at temperatures of 150, 180 and 220˚ C over the course of 365 days. The evolution of reaction products and of the experimental solutions was monitored by ICP-OES, CRDS, FTIR, XRD, EMPA and SEM analyses as well as pH and alkalinity measurements. Based on the apparent solid-phase composition and reactive fluid chemistry the following sequence of mineral growth was established: aragonite and/or low-Mg calcite reacted with aqueous Mg2+ ions to form intermediate huntite, brucite and high-Mg calcite, subsequently altered to Ca-excess dolomite and Ca-rich magnesite and finally converted to nearly stoichiometric endmembers. A progressive evolution in the stoichiometry of dolomite (from 42 to 50 mol% MgCO3) and magnesite (from 80 to 98 mol% MgCO3) as well as the increase in the degree of cation order in dolomite (from 0.26 to 0.74) were observed during this reaction sequence, implying a kinetic drive towards the (thermodynamically stable) end members. The latter processes were also traced, by means of δ18O isotope exchange kinetics between fluid and precipitating solids in bulk (Δ = δ18Ofluid-dolomite±magnesite) which was possible by using a reactive fluid highly depleted in 18O (δ18OV SMOW = -46.4). Our first results show the progressive evolution towards near-equilibrium conditions is highly temperature-dependent but is also affected by the nature of the seed material initially introduced to the reactor, with aragonite reacting much faster than calcite. Plotting the 1000 ln(α18Ofluid-dolomite±magnesite) values for almost pure dolomite and magnesite or mixtures between the two phases against 1/T supports existing experimental and theoretical fractionation lines for dolomite and magnesite. Our obtained results indicate that in the presence of Mg-rich brines metastable CaCO3 polymorphs are on the long term transformed into more stable magnesite and dolomite through the formation of intermediate Mg-Ca carbonates. The experimental results are discussed in the scope of dolomitization of limestone platforms in natural surroundings.

  13. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    PubMed

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  14. L-arabinose metabolism in Herbaspirillum seropedicae.

    PubMed Central

    Mathias, A L; Rigo, L U; Funayama, S; Pedrosa, F O

    1989-01-01

    The pathway for L-arabinose metabolism in Herbaspirillum seropedicae was shown to involve nonphosphorylated intermediates and to produce alpha-ketoglutarate. The activities of the enzymes and the natures of several intermediates were determined. The pathway was inducible by L-arabinose, and two key enzymes, L-arabinose dehydrogenase and 2-keto-glutarate semialdehyde dehydrogenase, were present in all strains of H. seropedicae tested. PMID:2768202

  15. A Personal Narrative: The Synergistic Leadership Theory as It Applies to the Leadership of a Principal of a Rural Intermediate School

    ERIC Educational Resources Information Center

    Manuel, Karlis R.

    2010-01-01

    The purpose of this narrative study was two-fold. First, the researcher, an African American male principal in a rural, high minority, intermediate school, used to reflect on strategies implemented to enhance the learning environment that subsequently increased student achievement. Second, determined through the study was how personal leadership…

  16. Sociodemographic Factors Associated with Tobacco Smoking among Intermediate and Secondary School Students in Jazan Region of Saudi Arabia

    ERIC Educational Resources Information Center

    Gaffar, Abdelrahim Mutwakel; Alsanosy, Rashad Mohammed; Mahfouz, Mohamed Salih

    2013-01-01

    Background: The objectives of this study were to (i) determine the prevalence of and characteristics associated with tobacco smoking; (ii) identify the factors associated with tobacco smoking; and (iii) evaluate the association between tobacco smoking and khat chewing among intermediate and secondary school students in Jazan Region, Saudi Arabia.…

  17. The Effect of Video-Based Tasks in Listening Comprehension of Iranian Pre-Intermediate EFL Learners

    ERIC Educational Resources Information Center

    Sarani, Abdullah; Behtash, Esmail Zare; Nezhad Arani, Saieed Moslemi

    2014-01-01

    This study aims at finding the effect of video-based tasks in improving the listening comprehension ability of Iranian pre-intermediate EFL (English Foreign Language) learners. After determining the level of learners, an experimental and control group, each of 20 participants, were nominated to contribute to the study. From the time the pre-test…

  18. Contrasting effects of cord injury on intravenous and oral pharmacokinetics of diclofenac: a drug with intermediate hepatic extraction.

    PubMed

    Cruz-Antonio, L; Arauz, J; Franco-Bourland, R E; Guízar-Sahagún, G; Castañeda-Hernández, G

    2012-08-01

    Laboratory investigation in rats submitted to experimental spinal cord injury (SCI). To determine the effect of acute SCI on the pharmacokinetics of diclofenac, a marker drug of intermediate hepatic extraction, administered by the intravenous and the oral routes. Female Wistar rats were submitted to complete section of the spinal cord at the T8 level. SCI and sham-injured rats received 3.2 mg kg(-1) of diclofenac sodium either intravenously or orally, diclofenac concentration was measured in whole blood samples and pharmacokinetic parameters were estimated. Diclofenac was not selected as test drug because of its therapeutic properties, but because to its biopharmaceutical properties, that is, intermediate hepatic extraction. Diclofenac bioavailability after intravenous administration was increased in injured rats compared with controls due to a reduced clearance. In contrast, oral diclofenac bioavailability was diminished in SCI animals due to a reduction in drug absorption, which overrides the effect on clearance. Acute SCI induces significant pharmacokinetic changes for diclofenac, a marker drug with intermediate hepatic extraction. SCI-induced pharmacokinetic changes are not only determined by injury characteristics, but also by the route of administration and the biopharmaceutical properties of the studied drug.

  19. Concentration of stable elements in food products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montford, M.A.; Shank, K.E.; Hendricks, C.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less

  20. Effective search for stable segregation configurations at grain boundaries with data-mining techniques

    NASA Astrophysics Data System (ADS)

    Kiyohara, Shin; Mizoguchi, Teruyasu

    2018-03-01

    Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.

Top