Yuan Yj, Ying-jin; Wang Sh, Shu-hao; Song Zx, Zheng-xiao; Gao Rc, Rui-chang
2002-04-01
The conditions for immobilization of an l-aminoacylase-producing strain of Aspergillus oryzae in gelatin and the enzymic characteristics of the immobilized pellets were studied. The optimal concentrations of gelatin, glutaraldehyde and ethyldiamine and time of immobilization were determined. Scanning electron micrographs reveal the cross-linked structure differences between the native and immobilized pellets. Optimum pH and temperature of the native and immobilized pellets were determined. Effects of ionic strength and substrate concentration on relative activity of the native and immobilized pellets were investigated in detail. The immobilized pellets were more stable over broader temperature and pH ranges. In addition, the immobilized pellets showed stable activity under operational and storage conditions. The immobilized pellets lost about 20% of their initial activity after five cycles of reuse. The results reported in this paper show the potential for using the immobilized A. oryzae pellets to resolve d,l-methionine.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, R.V.
1999-02-02
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, R.V.
1997-12-30
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, Ranjani V.
1997-01-01
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas
Siriwardane, Ranjani V.
1999-01-01
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.
Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi
2013-08-01
A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.
NASA Astrophysics Data System (ADS)
Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.
2018-03-01
Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.
Metal hydride composition and method of making
Congdon, James W.
1995-01-01
A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.
Nonsurgical management of cardiac missiles.
Klein, Jillian A; Nowak, Jeffrey E; Sutherell, Jamie S; Wheeler, Derek S
2010-01-01
Modern air-powered pellet guns are capable of propelling their projectiles at velocities of 250 to 930 ft/s depending on their propulsion system-rivaling traditional small caliber firearms in the potential for serious soft tissue injuries. Management decisions regarding thoracic/cardiac pellet gun injuries must be based on the presentation and stability of the patient and the location of the retained pellet. We present a report of the nonsurgical management of an 8-year-old girl with a retained pericardial pellet and small stable effusion.
Fitzpatrick, Shaun; Taylor, Scott; Booth, Steven W; Newton, Michael J
2006-01-01
A development program has been carried out to provide a stable extrusion/spheronisation pellet formulation for a highly water-soluble drug, sitagliptin, which undergoes a change in physical form on processing and is subject to hydrolytic decomposition. A conventional extrusion/spheronization formulation resulted in significant degradation of the drug. The inclusion of glyceryl monostearate into the formulation was found to reduce the water levels required to such a level that there was no significant degradation of the drug during processing to form pellets. The use of a ram extruder to screen formulations with small quantities minimizes the need for the drug in the formulation-screening process, and the results from this method of extrusion were found to be translatable to the use of a screen extruder, which allowed scale-up of the process.
NASA Technical Reports Server (NTRS)
Barnett, Donald M.
1995-01-01
Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.
Metal hydride composition and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
1995-08-22
A dimensionally stable hydride composition and a method for making such a composition are disclosed. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen there through to contact the hydride particles, yetmore » supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles. 3 figs.« less
Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang
2018-04-13
To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.
Trial production of fuel pellet from Acacia mangium bark waste biomass
NASA Astrophysics Data System (ADS)
Amirta, R.; Anwar, T.; Sudrajat; Yuliansyah; Suwinarti, W.
2018-04-01
Fuel pellet is one of the innovation products that can be produced from various sources of biomass such as agricultural residues, forestry and also wood industries including wood bark. Herein this paper, the potential fuel pellet production using Acacia mangium bark that abundant wasted from chip mill industry was studied. Fuel pellet was produced using a modified animal feed pellet press machine equipped with rotating roller-cylinders. The international standards quality of fuel pellet such as ONORM (Austria), SS (Sweden), DIN (Germany), EN (European) and ITEBE (Italy) were used to evaluate the optimum composition of feedstock and additive used. Theresults showed the quality offuel pellet produced were good compared to commercial sawdust pellet. Mixed of Acacia bark (dust) with 10% of tapioca and 20% of glycerol (w/w) was increased the stable form of pellet and the highest heating value to reached 4,383 Kcal/kg (calorific value). Blending of Acacia bark with tapioca and glycerol was positively improved its physical, chemical and combustion properties to met the international standards requirement for export market. Based on this finding, production of fuel pellet from Acacia bark waste biomass was promising to be developed as an alternative substitution of fossil energy in the future.
Fabrication of simulated DUPIC fuel
NASA Astrophysics Data System (ADS)
Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung
2000-12-01
Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.
Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer
NASA Astrophysics Data System (ADS)
Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.
1996-07-01
Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.
NASA Astrophysics Data System (ADS)
Morris, Rachel; Fagan-Murphy, Aidan; MacEachern, Sarah J.; Covill, Derek; Patel, Bhavik Anil
2016-03-01
Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion.
Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C
2009-01-01
Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.
Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia
2018-04-01
The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.
Chen, Bin; Xiao, Wei; Jia, Xiao-Bin; Huang, Yang
2012-07-01
To prepare Danshen phenolic acid fast release micro-pellets and study its preparation craft. The factors which could impact yield, extrude shaping, dissolution of Danshen phenolic acid micro-pellets such as wetting agent, drug loading dose, adjuvant, lactose dose, disintegrant, CMS-Na dose and wetting agent dose was investigated. The optimum preparation craft of Danshen phenolic acid fast release micro-pellets was screened out by orhogonal design. Formula of Danshen phenolic acid fast release micro-pellets was calculated as volume dose 50 g. The formula was as follows: principal agent 22.5 g, lactose 5 g, CMS-Na 2 g, MCC 20.5 g, 27 mL 30% ethanol as wetting agent. Extrusion-spheronization was applied. The optimum conditions were screened out as follows: extrusion frequency (25 Hz), spheronization machine frequency (50 Hz), spheronization time (4 min). The process was scientific and rational. The preparation is stable settles basis for multi-drug delivery system of Tongmai micro-pellets.
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...
2018-03-03
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
Management of BB shot wounds to the heart.
Thompson, E C; Block, E F; Mancini, M C
1996-01-01
The aim of this study was to review our experience with BB shot injuries to the heart. This is a retrospective chart review. Three patients were found to have BB injuries to the heart. All patients were stable upon presentation. Echocardiography localized the BB pellets to the muscular septum. All patients were treated with nonoperative therapy. There was not mortality. One patient developed an interventricular conduction delay that resolved before discharge. Nonoperative management of stable patients who present with BB wounds to the heart is safe and effective if the BB is intramuscular. An echocardiogram should be used to localize the pellets and evaluate the pericardium.
Evaluating gull diets: A comparison of conventional methods and stable isotope analysis
Weiser, Emily L.; Powell, Abby N.
2011-01-01
Samples such as regurgitated pellets and food remains have traditionally been used in studies of bird diets, but these can produce biased estimates depending on the digestibility of different foods. Stable isotope analysis has been developed as a method for assessing bird diets that is not biased by digestibility. These two methods may provide complementary or conflicting information on diets of birds, but are rarely compared directly. We analyzed carbon and nitrogen stable isotope ratios of feathers of Glaucous Gull (Larus hyperboreus) chicks from eight breeding colonies in northern Alaska, and used a Bayesian mixing model to generate a probability distribution for the contribution of each food group to diets. We compared these model results with probability distributions from conventional diet samples (pellets and food remains) from the same colonies and time periods. Relative to the stable isotope estimates, conventional analysis often overestimated the contributions of birds and small mammals to gull diets and often underestimated the contributions of fish and zooplankton. Both methods gave similar estimates for the contributions of scavenged caribou, miscellaneous marine foods, and garbage to diets. Pellets and food remains therefore may be useful for assessing the importance of garbage relative to certain other foods in diets of gulls and similar birds, but are clearly inappropriate for estimating the potential impact of gulls on birds, small mammals, or fish. However, conventional samples provide more species-level information than stable isotope analysis, so a combined approach would be most useful for diet analysis and assessing a predator's impact on particular prey groups.
Lu, Jing; Kan, Shuling; Zhao, Yi; Zhang, Wenli; Liu, Jianping
2016-09-01
The purpose of this study was to develop the novel naproxen/esomeprazole magnesium compound pellets (novel-NAP/EMZ) depending on EMZ acid-independent mechanism which has been proved to be predominate in the mechanism of co-therapy with nonsteroidal anti-inflammatory drug. The novel-NAP/EMZ compound pellets, composed of NAP colon-specific pellets (NAP-CSPs) and EMZ modified-release pellets (EMZ-MRPs), were prepared by fluid-bed coating technology with desired in vitro release profiles. The resulting pellets were filled into hard gelatin capsules for in vivo evaluation in rats and compared with the reference compound pellets, consisted of NAP enteric-coated pellets (NAP-ECPs) and EMZ immediate-release pellets (EMZ-IRPs). The reference compound pellets were prepared simulating the drug delivery system of VIMOVO(®). In vivo pharmacokinetics, EMZ-MRPs had significantly larger AUC0-t (p < 0.01), 1.67 times more than that of EMZ-IRPs, and prolonged mean residence time (7.55 ± 0.12 h) than that of IRPs (1.46 ± 0.39 h). NAP-CSPs and NAP-ECPs showed similar AUC0-t. Compared to the reference compound pellets, the novel-NAP/EMZ compound pellets did not show distinct differences in histological mucosal morphology. However, biochemical tests exhibited enhanced total antioxidant capacity, increased nitric oxide content and reduced malondialdehyde level for novel-NAP/EMZ compound pellets, indicating that the acid-independent action took effect. The gastric pH values of novel-NAP/EMZ compound pellets were at a low and stable level, which could ensure normal physiological range of human gastric pH. As a result, the novel-NAP/EMZ compound pellets may be a more suitable formulation with potential advantages by improving bioavailability of drug and further reducing undesirable gastrointestinal damages.
Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor
NASA Technical Reports Server (NTRS)
Adams, D. W.
1972-01-01
Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.
Li, Hui; Wang, Siyuan; Huang, Zhongliang; Yuan, Xingzhong; Wang, Ziliang; He, Rao; Xi, Yanni; Zhang, Xuan; Tan, Mengjiao; Huang, Jing; Mo, Dan; Li, Changzhu
2018-07-01
Effect of hydrothermal carbonization (HTC) on the hydrochar pelletization and the aldehydes/ketones emission from pellets during storage was investigated. Pellets made from the hydrochar were stored in sealed apparatuses for sampling. The energy consumption during pelletization and the pellets' properties before/after storage, including dimension, density, moisture content, hardness, aldehyde/ketones emission amount/rate and unsaturated fatty acid amount, were analyzed. Compared with untreated-sawdust-pellets, the hydrochar-pellets required more energy consumption for pelletization, and achieved the improved qualities, resulting in the higher stability degree during storage. The species and amount of unsaturated fatty acids in the hydrochar-pellets were higher than those in the untreated-sawdust-pellets. The unsaturated fatty acids content in the hydrochar-pellets was decreased with increasing HTC temperature. Higher aldehydes/ketones emission amount and rates with a longer emission period were found for the hydrochar-pellets, associated with variations of structure and unsaturated fatty acid composition in pellets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xia, Chunjie; Wei, Wei; Hu, Bo
2014-04-01
Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.
Novikova, Anna; Markl, Daniel; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S
2018-01-01
Terahertz pulsed imaging (TPI) was applied to analyse the inner structure of multiple unit pellet system (MUPS) tablets. MUPS tablets containing different amounts of theophylline pellets coated with Eudragit® NE 30 D and with microcrystalline cellulose (MCC) as cushioning agent were analysed. The tablets were imaged by TPI and the results were compared to X-ray microtomography. The terahertz pulse beam propagates through the tablets and is back-reflected at the interface between the MCC matrix and the coated pellets within the tablet causing a peak in the terahertz waveform. Cross-section images of the tablets were extracted at different depths and parallel to the tablet faces from 3D terahertz data to visualise the surface-near structure of the MUPS tablets. The images of the surface-near structure of the MUPS tablets were compared to X-ray microtomography images at the same depths. The surface-near structure could be clearly resolved by TPI at depths between 24 and 152μm below the tablet surface. An increasing amount of pellets within the MUPS tablets appears to slightly decrease the detectability of the pellets within the tablets by TPI. TPI was shown to be a non-destructive method for the detection of pellets within the tablets and could resolve structures thicker than 30μm. In conclusion, a proof-of-concept was provided for TPI as a method of quality control for MUPS tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
High Burn-Up Spent Nuclear Fuel Vibration Integrity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
2015-01-01
The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into localmore » stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.« less
Design of sustained release pellets of ferrous fumarate using cow ghee as hot-melt coating agent.
Sakarkar, Dinesh M; Dorle, Avinash K; Mahajan, Nilesh Manoharrao; Sudke, Suresh Gendappa
2013-07-01
The objective of the present study was to design ferrous fumarate (FF) sustained release (SR) pellets using of cow ghee (CG) as an important hot-melt coating (HMC) agent. The pellets were coated by HMC technique using CG and ethyl cellulose composition by conventional coating pan without the use of spray system. FF formulated as pellets and characterized with regard to the drug content and physico-chemical properties. Stability studies were carried out on the optimized formulation for a period of 6 months at 40 ± 2°C and 75 ± 5% relative humidity. Pellets with good surface morphology and smooth texture confirmed by stereo micrographs. HMC is easy, efficient, rapid and simple method since virtually no agglomeration seen during coating. In-vitro release from pellets at a given level of coating and for present pellet size was dependent upon the physico-chemical property of the drug and mostly aqueous solubility of the drug. The selection of optimized FF formulation was confirmed by comparing percent cumulative drug release with theoretical release profile. Formulation F2 had difference factor (f 1) and similarity factor (f 2) values was found to be 5 and 66 respectively. F2 showed SR of drug for 8 h with cumulative per cent release of 98.03 ± 4.49%. Release kinetics indicates approximately zero order release pattern. HMC pellets were stable during the course of stability study. By means of HMC using CG and ethyl cellulose, SR pellets containing FF were successfully prepared.
Thommes, Markus; Kleinebudde, Peter
2007-11-09
The aim of this study was to systematically evaluate the pelletization process parameters of kappa-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters--screw speed, number of die holes, friction plate speed, and spheronizer temperature--on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 2(4) full factorial design. In addition, 4 drugs--phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride--were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with kappa-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used.
Furtado, Ricardo; Menezes, Dilia; Santos, Carolina Jardim; Catry, Paulo
2016-11-15
Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on the Structures of Two Booster Pellets Having High Initiation Capacity
NASA Astrophysics Data System (ADS)
Shuang-Qi, Hu; Hong-Rong, Liu; Li-shuang, Hu; Xiong, Cao; Xiang-Chao, Mi; Hai-Xia, Zhao
2014-05-01
Insensitive munitions (IM) improve the survivability of both weapons and their associated platforms, which can lead to a reduction in casualties, mission losses, and whole life costs. All weapon systems contain an explosive train that needs to meet IM criteria but reliably initiate a main charge explosive. To ensure that these diametrically opposed requirements can be achieved, new highly effective booster charge structures were designed. The initiation capacity of the two booster pellets was studied using varied composition and axial-steel-dent methods. The results showed that the two new booster pellets can initiate standard main charge pellets with less explosive mass than the ordinary cylindrical booster pellet. The numerical simulation results were in good agreement with the experiment results.
NASA Astrophysics Data System (ADS)
Wiesen, S.; Köchl, F.; Belo, P.; Kotov, V.; Loarte, A.; Parail, V.; Corrigan, G.; Garzotti, L.; Harting, D.
2017-07-01
The integrated model JINTRAC is employed to assess the dynamic density evolution of the ITER baseline scenario when fuelled by discrete pellets. The consequences on the core confinement properties, α-particle heating due to fusion and the effect on the ITER divertor operation, taking into account the material limitations on the target heat loads, are discussed within the integrated model. Using the model one can observe that stable but cyclical operational regimes can be achieved for a pellet-fuelled ITER ELMy H-mode scenario with Q = 10 maintaining partially detached conditions in the divertor. It is shown that the level of divertor detachment is inversely correlated with the core plasma density due to α-particle heating, and thus depends on the density evolution cycle imposed by pellet ablations. The power crossing the separatrix to be dissipated depends on the enhancement of the transport in the pedestal region being linked with the pressure gradient evolution after pellet injection. The fuelling efficacy of the deposited pellet material is strongly dependent on the E × B plasmoid drift. It is concluded that integrated models like JINTRAC, if validated and supported by realistic physics constraints, may help to establish suitable control schemes of particle and power exhaust in burning ITER DT-plasma scenarios.
NASA Astrophysics Data System (ADS)
Baylor, L. R.
2012-10-01
Deuterium pellet injection was used on the DIII-D tokamak to successfully demonstrate for the first time the on-demand triggering of ELMs at a 10x higher rate, and with much smaller intensity, than natural edge localized modes (ELMs). The triggering of small ELMs by high frequency pellet injection has been proposed as a method to prevent large ELMs that can erode the ITER plasma facing components [1]. The demonstration was made by injecting slow (<200 m/s) 1.3 mm diameter deuterium pellets at 60 Hz from the low field side in an ITER similar plasma with 5 Hz natural ELM frequency. The input power was only slightly above the H-mode threshold. Similar non-pellet discharges had ELM energy losses up to 55 kJ (˜8% of total stored energy), while the case with pellets demonstrated ELMs with an average energy loss less than 3 kJ (<1% of the total). Total divertor ELM heat flux was reduced by more than a factor of 10. Central accumulation of Ni was significantly reduced in the pellet triggered ELM case. No significant increase in density or decrease in energy confinement was observed. Stability analysis of these discharges shows that the pedestal parameters are approaching the peeling unstable region just before a natural ELM crash. In the rapid pellet small ELM case, the pedestal conditions are well within the stable region with a narrower pedestal width observed. This narrower width is consistent with a picture in which the pellets are triggering the ELMs before the width expands to the critical ELM width. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of ballooning modes by a local pressure perturbation. The implications of these results for pellet ELM pacing in ITER will be discussed. 6pt [1] P.T. Lang et al., Nucl. Fusion 44, 665 (2004).
NASA Astrophysics Data System (ADS)
Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke
2015-06-01
Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.
Zhang, Si; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang
2011-03-01
Mycelial pellet of Aspergillus niger Y3 was used as a biomass carrier to immobilize the aniline-degrading bacterium, Acinetobacter calcoaceticus JH-9 and the mix culture of the COD rapid degradation bacteria. In order to investigate its removal effect on aniline and COD, the combined mycelial pellets were applied in the SBR. Comparison of the performances was conducted between another SBR inoculated with sole strain JH-9 and the above SBR. The results showed that the stable degradations of aniline and COD were observed in both reactors. In the SBR with combined mycelial pellet, the biological removal efficiency was about 0.9 mg aniline/(L·d). It was much higher than that in the activated sludge reactor. Meanwhile, the performances of the sedimentation velocity, liquid-solid phase separation and the effluent quality were better in the SBR. According to SEM images and PCR-DGGE analysis, the species immobilized on the biomass carrier were more predominant in this system. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Uma; Kapoor, Seema; Sharma, J. D.
2011-12-12
Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}-CaF{sub 2}) and unfluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm,more » respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with {alpha}-TCP (tricalcium phosphate) and {beta}-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.« less
NASA Astrophysics Data System (ADS)
Koo, H. Y.; Kim, J. H.; Hong, S. K.; Ko, Y. N.; Jang, H. C.; Jung, D. S.; Han, J. M.; Hong, Y. J.; Kang, Y. C.; Kang, S. H.; Cho, S. B.
2012-06-01
Fe powders as the heat pellet material for thermal batteries are prepared from iron oxide powders obtained by spray pyrolysis from a spray solution of iron nitrate with ethylene glycol. The iron oxide powders with hollow and thin wall structure produce Fe powders with elongated structure and fine primary particle size at a low reducing temperature of 615 °C. The mean size of the primary Fe powders with elongated structure decreases with increasing concentration of ethylene glycol dissolved into the spray solution. The heat pellets prepared from the fine-size Fe powders with elongated structure have good ignition sensitivities below 1 watt. The heat pellets formed from the Fe powders obtained from the spray solution with 0.5 M EG have an extremely high burn rate of 26 cms-1.
Mackay, Stephen; Gomes, Eduardo; Holliger, Christof; Bauer, Rolene; Schwitzguébel, Jean-Paul
2015-06-01
Despite recent advances in down-stream processing, production of microalgae remains substantially limited because of economical reasons. Harvesting and dewatering are the most energy-intensive processing steps in their production and contribute 20-30% of total operational cost. Bio-flocculation of microalgae by co-cultivation with filamentous fungi relies on the development of large structures that facilitate cost effective harvesting. A yet unknown filamentous fungus was isolated as a contaminant from a microalgal culture and identified as Isaria fumosorosea. Blastospores production was optimized in minimal medium and the development of pellets, possibly lichens, was followed when co-cultured with Chlorella sorokiniana under strict autotrophic conditions. Stable pellets (1-2mm) formed rapidly at pH 7-8, clearing the medium of free algal cells. Biomass was harvested with large inexpensive filters, generating wet slurry suitable for hydrothermal gasification. Nutrient rich brine from the aqueous phase of hydrothermal gasification supported growth of the fungus and may increase the process sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gurram, Rajesh Kumar; Gandra, Suchithra; Shastri, Nalini R
2016-03-10
The objective of the study was to design and optimize a disintegrating pellet formulation of microcrystalline cellulose by non-aqueous extrusion process for a water sensitive drug using various statistical tools. Aspirin was used as a model drug. Disintegrating matrix pellets of aspirin using propylene glycol as a non-aqueous granulation liquid and croscarmellose as a disintegrant was developed. Plackett-Burman design was initially conducted to screen and identify the significant factors. Final optimization of formula was performed by response surface methodology using a central composite design. The critical attributes of the pellet dosage forms (dependent variables); disintegration time, sphericity and yield were predicted with adequate accuracy based on the regression model. Pareto charts and contour charts were studied to understand the influence of factors and predict the responses. A design space was constructed to meet the desirable targets of the responses in terms of disintegration time <5min, maximum yield, sphericity >0.95 and friability <1.7%. The optimized matrix pellets were enteric coated using Eudragit L 100. The drug release from the enteric coated pellets after 30min in the basic media was ~93% when compared to ~77% from the marketed pellets. The delayed release pellets stored at 25°C/60% RH were stable for a period of 10mo. In conclusion, it can be stated that the developed process for disintegrating pellets using non-aqueous granulating agents can be used as an alternative technique for various water sensitive drugs, circumventing the application of volatile organic solvents in conventional drug layering on inert cores. The scope of this study can be further extended to hydrophobic drugs, which may benefit from the rapid disintegration property and the use of various hydrophilic excipients used in the optimized pellet formulation to enhance dissolution and in turn improve bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin
2018-02-01
Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physicochemical properties of film-coated melt-extruded pellets.
Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W
2007-02-01
The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNFmore » are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.« less
NASA Astrophysics Data System (ADS)
Wilson, Stephanie E.; Steinberg, Deborah K.; Buesseler, Ken O.
2008-07-01
We investigated how fecal pellet characteristics change with depth in order to quantify the extent of particle repackaging by mesopelagic zooplankton in two contrasting open-ocean systems. Material from neutrally buoyant sediment traps deployed in the summer of 2004 and 2005 at 150, 300, and 500 m was analyzed from both a mesotrophic (Japanese time-series station K2) and an oligotrophic (Hawaii Ocean Time series—HOT station ALOHA) environment in the Pacific Ocean as part of the VERtical Transport In the Global Ocean (VERTIGO) project. We quantified changes in the flux, size, shape, and color of particles recognizable as zooplankton fecal pellets to determine how these parameters varied with depth and location. Flux of K2 fecal pellet particulate organic carbon (POC) at 150 and 300 m was four to five times higher than at ALOHA, and at all depths, fecal pellets were two to five times larger at K2, reflective of the disparate zooplankton community structure at the two sites. At K2, the proportion of POC flux that consisted of fecal pellets generally decreased with depth from 20% at 150 m to 5% at 500 m, whereas at ALOHA this proportion increased with depth (and was more variable) from 14% to 35%. This difference in the fecal fraction of POC with increasing depth is hypothesized to be due to differences in the extent of zooplankton-mediated fragmentation (coprohexy) and in zooplankton community structure between the two locations. Both regions provided indications of sinking particle repackaging and zooplankton carnivory in the mesopelagic. At ALOHA, this was reflected in a significant increase in the mean flux of larvacean fecal pellets from 150 to 500 m of 3-46 μg C m -2 d -1, respectively, and at K2 a large peak in larvacean mean pellet flux at 300 m of 3.1 mg C m -2 d -1. Peaks in red pellets produced by carnivores occurred at 300 m at K2, and a variety of other fecal pellet classes showed significant changes in their distribution with depth. There was also evidence of substantially higher pellet fragmentation at K2 with nearly double the ratio of broken:intact pellets at 150 and 300 m (mean of 67% and 64%, respectively) than at ALOHA where the proportion of broken pellets remained constant with depth (mean 35%). Variations in zooplankton size and community structure within the mesopelagic zone can thus differentially alter the transfer efficiency of sinking POC.
Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.
Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei
2017-09-01
In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei
2013-02-01
The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.
Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin
2013-11-01
During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.
Crystal structure and texture changes during thermal cycling of TATB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Sven C.; Yeager, John David
2015-02-20
Goals: Understand crystal structure and micro-structure changes during thermal cycling, understand reasons for ratcheting of TATB during thermal cycling, and Support of B61 LEP. Deliverables achieved: Completed in situ thermal cycling of loose powder and pressed pellet TATB on HIPPO, Quantified preferred orientation of pressed pellet, and quantified relative change of each of the six lattic parameters.
Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P
2011-01-01
Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet. PMID:21333159
Basolateral amygdala supports the maintenance of value and effortful choice of a preferred option.
Hart, Evan E; Izquierdo, Alicia
2017-02-01
The basolateral amygdala (BLA) is known to be involved in appetitive behavior, yet its role in cost-benefit choice of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. We assessed the effects of BLA inactivations on effortful choice behavior. Rats were implanted with cannulae in BLA and trained to stable lever pressing for sucrose pellets on a progressive ratio schedule. Rats were then introduced to a choice: chow was concurrently available while they could work for the preferred sucrose pellets. Rats were infused with either vehicle control (aCSF) or baclofen/muscimol prior to test. BLA inactivations produced a significant decrease in lever presses for sucrose pellets compared to vehicle, and chow consumption was unaffected. Inactivation had no effect on sucrose pellet preference when both options were freely available. Critically, when lab chow was not concurrently available, BLA inactivations had no effect on the number of lever presses for sucrose pellets, indicating that primary motivation in the absence of choice remains intact with BLA offline. After a test under specific satiety for sucrose pellets, BLA inactivation rendered animals less sensitive to devaluation relative to control. The effects of BLA inactivations in our task are not mediated by decreased appetite, an inability to perform the task, a change in food preference, or decrements in primary motivation. Taken together, BLA supports the specific value and effortful choice of a preferred option. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P
2011-01-01
Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet.
Plastic phase change material and articles made therefrom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhari, Ramin
The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds aremore » provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.« less
Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei
2015-11-01
First with the qualified rate of granules as the evaluation index, significant influencing factors were firstly screened by Plackett-Burman design. Then, with the qualified rate and moisture content as the evaluation indexes, significant factors that affect one-step pelletization technology were further optimized by Box-Behnken design; experimental data were imitated by multiple regression and second-order polynomial equation; and response surface method was used for predictive analysis of optimal technology. The best conditions were as follows: inlet air temperature of 85 degrees C, sample introduction speed of 33 r x min(-1), density of concrete 1. 10. One-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology was stable and feasible with good predictability, which provided reliable basis for the industrialized production of Biqiu granules.
Melegari, Cecilia; Bertoni, Serena; Genovesi, Alberto; Hughes, Kevin; Rajabi-Siahboomi, Ali R; Passerini, Nadia; Albertini, Beatrice
2016-03-01
The aim of the research was to investigate the complete process of pellet production in a Wurster fluidized bed coater in order to determine the main factors affecting the migration phenomenon of a soluble API through the ethycellulose film coating (Surelease®) and hence the long-term stability of the controlled release pellets. Guaifenesin (GFN), as BCS class I model drug, was layered on sugar spheres using a binder-polymer solution containing the dissolved GFN. The drug loaded pellets were then coated with Surelease®. The influence of drug loading (4.5-20.0% w/w), curing conditions (40-60°C and dynamic-static equipment), coating level (12-20% theoretical weight gain) and composition of the binder-layering solution (hypromellose versus Na alginate) on process efficiency (RSDW%), GFN content uniformity (RSDC%), GFN solid state (DSC and XRD) and pellet release profiles was evaluated. The effectiveness of the Surelease film was strongly affected by the ability of GFN to cross the coating layer and to recrystallize on the pellet surface. Results indicated that this behaviour was dependent on the polymer used in the binder-layering solution. Using hypromellose as polymer, GFN recrystallized on the coated pellet surface at both drug loadings. The curing step was necessary to stabilize the film effectiveness at the higher drug loading. Increasing the coating level delayed but did not prevent the GFN diffusion. Replacing hypromellose with Na alginate, reduced the migration of GFN through the film to a negligible amount even after six months of storage and the curing step was not necessary to achieve stable controlled release profiles over storage. Copyright © 2015 Elsevier B.V. All rights reserved.
Driouch, Habib; Hänsch, Robert; Wucherpfennig, Thomas; Krull, Rainer; Wittmann, Christoph
2012-02-01
The present study describes the design of bio-pellet morphologies of the industrial working horse Aspergillus niger strains in submerged culture. The novel approach recruits the intended addition of titanate microparticles (TiSiO(4), 8 µm) to the growth medium. As tested for two recombinant strains producing fructofuranosidase and glucoamylase, the enzyme titer by the titanate-enhanced cultures in shake flasks was increased 3.7-fold to 150 U/mL (for fructofuranosidase) and 9.5-fold to 190 U/mL (for glucoamylase) as compared to the control. This could be successfully utilized for improved enzyme production in stirred tank reactors. Stimulated by the particles, the achieved final glucoamylase activity of 1,080 U/mL (fed-batch) and 320 U/mL (batch) was sevenfold higher as compared to the conventional processes. The major reason for the enhanced production was the close association between the titanate particles and the fungal cells. Already below 2.5 g/L the micromaterial was found inside the pellets, including single particles embedded as 50-150 µm particle aggregates in the center resulting in core shell pellets. With increasing titanate levels the pellet size decreased from 1,700 µm (control) to 300 µm. Fluorescence based resolution of GFP expression revealed that the large pellets of the control were only active in a 200 µm surface layer. This matches with the critical penetration depth for nutrients and oxygen typically observed for fungal pellets. The biomass within the titanate derived fungal pellets, however, was completely active. This was due a reduced thickness of the biomass layer via smaller pellets as well as the core shell structure. Moreover, also the created loose inner pellet structure enabled a higher mass transfer and penetration depths for up to 500 µm. The creation of core-shell pellets has not been achieved previously by the addition of microparticles, for example, made of talc or alumina. Due to this, the present work opens further possibilities to use microparticles for tailor-made morphology design of filamentous fungi, especially for pellet based processes which have a long and strong industrial relevance for industrial production. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
Kwon, Sae Yun; Blum, Joel D.; Carvan, Michael J.; Basu, Niladri; Head, Jessica A.; Madenjian, Charles P.; David, Solomon R.
2012-01-01
We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ202Hg, 0.07 ‰; Δ199Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.
Kwon, Sae Yun; Blum, Joel D; Carvan, Michael J; Basu, Niladri; Head, Jessica A; Madenjian, Charles P; David, Solomon R
2015-01-01
We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In Experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on un-amended food pellets (0.1 µg/g MeHg), or was switched to food pellets with 1.0 µg/g or 4.0 µg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg were within the analytical uncertainty (δ202Hg; 0.07 ‰, Δ199Hg; 0.06 ‰) indicating no isotope fractionation. In Experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets, and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting re-equilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems. PMID:22681311
Determination of surface energies of hot-melt extruded sugar-starch pellets.
Yeung, Chi-Wah; Rein, Hubert
2018-02-01
Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.
Wang, Wen; Zhuang, Xinshu; Yuan, Zhenhong; Yu, Qiang; Qi, Wei
2015-08-01
In the process of liquid hot water (LHW) pretreatment, there are numbers of pellets formed on the lignocellulosic surface. The characteristics and effect of pellets on the enzymatic hydrolysis of LHW-treated sugarcane bagasse (SCB) were investigated. After SCB was treated with LHW at 180°C, the pellets deposited on the surface of solid residues were extracted gently with 1% sodium hydroxide (NaOH) solution. They were composed of 81.0% lignin, 7.0% glucan, and 3.2% xylan. The LHW pretreatment solution (PS) was sprayed to the filter paper, and the pellets were observed on its surface. Fourier transform infrared spectroscopy (FTIR) data showed that lignin was also the main component of the PS pellets. The effect of the pellets on enzymatic hydrolysis was chiefly attributed to the steric hindrance, not the cellulase adsorption. The structural characteristics of LHW-treated SCB might play a more important role in influencing the enzymatic hydrolysis than the pellets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waste-wood-derived fillers for plastics
Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider
1996-01-01
Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...
NASA Astrophysics Data System (ADS)
Padmos, J.; van Veen, A.
A number of salts of hexakis(pyridine N-oxide)zinc(II) complexes decompose in alkali halide pellets. Initially ion exchange occurs, often followed by the formation of Zn(pyno) 3X 2 (pyno = pyridine N-oxide; X = Br, Cl). The analogous cobalt and nickel compounds are nearly always stable. A mull between alkali halide plates gives greater amounts of the same product Washing this product with toluene gives Zn(pyno) 2X 2. Examples of i.r. and far i.r. spectra are given. Energetical and structural effects are discussed. Far i.r. spectra of M(pyno) 3X 2(M = Co, Zn) confirm the structure [M(pyno) 6][MX 4] for these compounds. New compounds are [Zn(pyno) 2(NO 3) 2], [Zn(pyno- d5) 2[NO 3) 2], [Zn(pyno- d5) 6](NO 3) 2 and [Zn(pyno) 6]I 2.
Bonner, Tony J; Pell, Judith K; Gray, Simon N
2003-03-14
A semi-automated method has been developed for the quantification and measurement of conidia discharged by the aphid pathogen Erynia neoaphidis. This was used to compare conidiation by E. neoaphidis-mycosed pea aphid cadavers, mycelial plugs cut from agar plates, mycelial pellets from shake flasks and by mycelial pellets from different phases of liquid batch fermenter culture. Aphid cadavers discharged significantly more and significantly smaller conidia than plugs or pellets. The volume of conidia discharged was stable over the period of discharge (80 h), but more detailed analysis of the size frequency distribution showed that more very small and very large conidia were discharged after 5 h incubation than after 75 h incubation. Biomass harvested at the end of the exponential growth phase in batch fermenter culture produced significantly more conidia than biomass from any other growth phase. The implications of these findings for the development of production and formulation processes for E. neoaphidis as a biological control agent are discussed.
Ullah, Mujib; Hamouda, Houda; Stich, Stefan; Sittinger, Michael; Ringe, Jochen
2012-12-01
Administration of chondrogenically differentiated mesenchymal stem cells (MSC) is discussed as a promising approach for the regenerative treatment of injured or diseased cartilage. The high-density pellet culture is the standard culture for chondrogenic differentiation, but cells in pellets secrete extracellular matrix (ECM) that they become entrapped in. Protocols for cell isolation from pellets often result in cell damage and dedifferentiation towards less differentiated MSC. Therefore, our aim was to develop a reliable protocol for the isolation of viable, chondrogenically differentiated MSC from high-density pellet cultures. Human bone marrow MSC were chondrogenically stimulated with transforming growth factor-β3, and the cartilaginous structure of the pellets was verified by alcian blue staining of cartilage proteoglycans, antibody staining of cartilage collagen type II, and quantitative real-time reverse-transcription polymerase chain reaction of the marker genes COL2A1 and SOX9. Trypsin and collagenases II and P were tested alone or in combination, and for different concentrations and times, to find a protocol for optimized pellet digestion. Whereas trypsin was not able to release viable cells, 90-min digestion with 300 U of collagenase II, 20 U of collagenase P, and 2 mM CaCl2 worked quite well and resulted in about 2.5×10(5) cells/pellet. The protocol was further optimized for the separation of released cells and ECM from each other. Cells were alcian blue and collagen type II positive and expressed COL2A1 and SOX9, verifying a chondrogenic character. However, they had different morphological shapes. The ECM was also uniformly alcian blue and collagen type II positive but showed different organizational and structural forms. To conclude, our protocol allows the reliable isolation of a defined number of viable, chondrogenically differentiated MSC from high-density pellet cultures. Such cells, as well as the ECM components, are of interest as research tools and for cartilage tissue engineering.
Ultrasound guided removal of an airgun pellet from a patient's right cheek.
Grammatopoulos, E; Murtadha, L; Nair, P; Holmes, S; Makdissi, J
2008-12-01
This case report describes the use of real-time intraoperative ultrasonography to guide the removal of an airgun pellet embedded in the right cheek of a 20-year-old man. This patient had previously undergone two unsuccessful surgical attempts to have this pellet removed via blind exploration. Through the use of ultrasonography, the pellet's positional relationship throughout the procedure was accurately defined with respect to important soft and hard anatomical structures, as well as to the surgical instruments used, enabling its very efficient removal. This technique is safe, easy, cost effective and accurate, and thus minimizes post-operative morbidity and the risk of surgical complications.
Re-usable electrochemical glucose sensors integrated into a smartphone platform.
Bandodkar, Amay J; Imani, Somayeh; Nuñez-Flores, Rogelio; Kumar, Rajan; Wang, Chiyi; Mohan, A M Vinu; Wang, Joseph; Mercier, Patrick P
2018-03-15
This article demonstrates a new smartphone-based reusable glucose meter. The glucose meter includes a custom-built smartphone case that houses a permanent bare sensor strip, a stylus that is loaded with enzyme-carbon composite pellets, and sensor instrumentation circuits. A custom-designed Android-based software application was developed to enable easy and clear display of measured glucose concentration. A typical test involves the user loading the software, using the stylus to dispense an enzymatic pellet on top of the bare sensor strip affixed to the case, and then introducing the sample. The electronic module then acquires and wirelessly transmits the data to the application software to be displayed on the screen. The deployed pellet is then discarded to regain the fresh bare sensor surface. Such a unique working principle allows the system to overcome challenges faced by previously reported reusable sensors, such as enzyme degradation, leaching, and hysteresis effects. Studies reveal that the enzyme loaded in the pellets are stable for up to 8 months at ambient conditions, and generate reproducible sensor signals. The work illustrates the significance of the pellet-based sensing system towards realizing a reusable, point-of-care sensor that snugly fits around a smartphone and which does not face issues usually common to reusable sensors. The versatility of this system allows it to be easily modified to detect other analytes for application in a wide range of healthcare, environmental and defense domains. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian
2009-01-01
This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.
Characterization of fly ash ceramic pellet for phosphorus removal.
Li, Shiyang; Cooke, Richard A; Wang, Li; Ma, Fang; Bhattarai, Rabin
2017-03-15
Phosphorus has been recognized as a leading pollutant for surface water quality deterioration. In the Midwestern USA, subsurface drainage not only provides a pathway for excess water to leave the field but it also drains out nutrients like nitrogen (N) and phosphorus (P). Fly ash has been identified as one of the viable materials for phosphorus removal from contaminated waters. In this study, a ceramic pellet was manufactured using fly ash for P absorption. Three types of pellet with varying lime and clay proportions by weight (type 1: 10% lime + 30% clay, type 2: 20% lime + 20% clay, and type 3: 30% lime + 10% clay) were characterized and evaluated for absorption efficiency. The result showed that type 3 pellet (60% fly ash with 30% lime and 10% clay) had the highest porosity (14%) and absorption efficiency and saturated absorption capacity (1.98 mg P/g pellet) compared to type 1 and 2 pellets. The heavy metal leaching was the least (30 μg/L of chromium after 5 h) for type 3 pellet compared to other two. The microcosmic structure of pellet from scanning electron microscope showed the type 3 pellet had the better distribution of aluminum and iron oxide on the surface compared other two pellets. This result indicates that addition of lime and clay can improve P absorption capacity of fly ash while reducing the potential to reduce chromium leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monolith catalysts for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, Richard K.; Badlani, Ajay
1991-01-01
The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations.
Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping
2016-09-05
The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets
Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu
2016-01-01
Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...
Development of metal hydride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
1992-12-01
Most of current hydride technology at Savannah River Site is based on beds of metal hydride powders; the expansion upon hydridation and the cycling results in continued breakdown into finer particles. Goal is to develop a composite which will contain the fines in a dimensionally stable matrix, for use in processes which require a stable gas flow through a hydride bed. Metal hydride composites would benefit the advanced Thermal Cycling Absorption process (hydrogen isotope separation), and the Replacement Tritium Facility (storage, pumping, compression, purification of hydrogen isotopes). These composites were fabricated by cold compaction of a mixture of metal hydridemore » granules and coarse copper powder; the porosity in the granules was introduced by means of ammonium carbonate. The composite pellets were cycled 138 times in hydrogen with the loss of LANA0.75 (LaNi{sub 4.25}Al{sub 0.75}) limited to the surface. Vacuum sintering can provide additional strength at the edges. Without a coating, the metal hydride particles exposed at the pellet surface can be removed by cycling several times in hydrogen.« less
Pyrolysis of ground pine chip and ground pellet particles
Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...
2016-08-04
In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less
Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment▿
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-01-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m3 of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product. PMID:21148700
Bacterial colonization of pellet softening reactors used during drinking water treatment.
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-02-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m(3) of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product.
Jia, Wei-Tao; Zhang, Xin; Luo, Shi-Hua; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E; Zhang, Chang-Qing; Xie, Zong-Ping; Wang, Jian-Qiang
2010-03-01
Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks' implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.
Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia
2017-07-01
The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wells, Kevin A; Losin, William G
2008-07-01
Difficulty swallowing is a common problem in the clinical setting, particularly in elderly patients, and can significantly affect an individual's ability to maintain a proper level of nutrition. The purpose of this in vitro study was to determine if mixing duloxetine enteric-coated pellets in food substances is an acceptable alternative method for administering this oral formulation to patients with swallowing difficulties. To determine whether administration in food substances with varying pH values (applesauce and apple juice, pH = approximately 3.5; chocolate pudding, pH = approximately 5.5-6.0) affects the enteric coating of the formulation, duloxetine pellets (ie, the contents of a 20-mg duloxetine capsule) were exposed to applesauce, apple juice, and chocolate pudding at room temperature and tested in triplicate for potency and impurities; for dissolution, 6 replicates were tested. To assess product stability and integrity of the enteric coating, potency, impurities, and dissolution tests of the pellets were conducted and compared with pellets not exposed to food. The duloxetine pellets were extracted from the food material using a solution of 0.1 normal (N) hydrochloric acid (HCl) prepared from concentrated HCl (commercially available) and deionized water. For the potency and impurities tests, a 40:60 solution of acetonitrile and pH 8.0 phosphate buffer was used as the sample solvent to extract the active pharmaceutical ingredient from the formulation to prepare the samples for testing. The amount of active pharmaceutical ingredient released (in vitro dissolution) from the pellets after exposure to the food substances was determined using 2 media solutions, 0.1 N HCl followed by pH 6.8 phosphate buffer. Applesauce and chocolate pudding were selected as vehicles for oral administration, while apple juice was intended to be used as a wash for a nasogastric tube. Mean (SD) potency results for the 20-mg capsule strength were 20.256 (0.066), 20.222 (0.163), and 19.961 (0.668) mg/capsule for the comparator not exposed to food, the sample exposed to applesauce, and the sample exposed to apple juice, respectively. However, exposure to chocolate pudding altered the integrity of the pellet's enteric coating (mean [SD] potency results, 17.780 [1.605] mg/capsule). Results of impurities testing suggested that none of the test foods caused significant degradation of the drug product. Mean dissolution results found that after 2 hours in 0.1 N HCl, < or = 1% of duloxetine was released from the comparator and pellets exposed to applesauce and apple juice. However, the mean dissolution profile of the sample exposed to pudding reported near-total release (90%) after 2 hours in 0.1 N HCl during the gastric challenge portion of the dissolution test. Results from this study found that the enteric coating of duloxetine pellets mixed with applesauce or apple juice was not negatively affected. The pellets were stable at room temperature for < or = 2 hours and should quantitatively allow delivery of the full capsule dose, provided that the pellet integrity is maintained (ie, not crushed, chewed, or otherwise broken). Therefore, mixing duloxetine pellets with applesauce or apple juice appears to be an acceptable vehicle for administration. However, exposing the pellets to chocolate pudding damaged the pellets' enteric coating, suggesting that pudding may be an unacceptable vehicle for administration.
Polyolefin composites containing a phase change material
Salyer, Ival O.
1991-01-01
A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.
NASA Technical Reports Server (NTRS)
1981-01-01
Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.
Gas adsorption capacity of wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim
In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less
Gas adsorption capacity of wood pellets
Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...
2016-02-03
In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less
Grain Size and Phase Purity Characterization of U 3Si 2 Pellet Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoggan, Rita E.; Tolman, Kevin R.; Cappia, Fabiola
Characterization of U 3Si 2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U 3Si 2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm.more » The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U 3Si 2 as the main phase composing about 80 vol. %, Si rich phases (USi and U 5Si 4) composing about 13 vol. %, and UO 2 composing about 5 vol. %. Initial batches from the extended U 3Si 2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO 2: achieving U 3Si 2 phase purity between 95 vol. % and 98 vol. % U 3Si 2. The amount of UO 2 in sintered U 3Si 2 pellets is correlated to the length of time between U 3Si 2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.« less
NASA Astrophysics Data System (ADS)
Tajovský, Karel; Šimek, Miloslav; Háněl, Ladislav; Šantrůčková, Hana; Frouz, Jan
2015-04-01
The millipedes Glomeris hexasticha (Diplopoda, Glomerida) were maintained under laboratory conditions and fed on oak leaf litter collected from a mixed oak forest (Abieto-Quercetum) in South Bohemia, Czech Republic. Every fourth day litter was changed and produced faecal pellets were separated and afterwards analysed. Content of organic carbon and C:N ratio lowered in faecal pellets as compared with consumed litter. Changes in content of chemical elements (P, K, Ca, Mg, Na) were recognised as those characteristic for the first stage of degradation of plant material. Samples of faecal pellets and oak leaf litter were then exposed in mesh bags between the F and H layers of forest soil for up to one year, subsequently harvested and analysed. A higher rate of decomposition of exposed litter than that of faecal pellets was found during the first two weeks. After 1-year exposure, the weight of litter was reduced to 51%, while that of pellets to 58% only, although the observed activity of present biotic components (algae, protozoans, nematodes; CO2 production, nitrogenase activity) in faecal pellets was higher as compared with litter. Different micro-morphological changes were observed in exposed litter and in pellets although these materials originated from the same initial sources. Comparing to intact leaf litter, another structural and functional processes occurred in pellets due to the fragmentation of plant material by millipedes. Both laboratory and field experiments showed that the millipede faecal pellets are not only a focal point of biodegradation activity in upper soil layers, but also confirmed that millipede feces undergo a slower decomposition than original leaf litter.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Shijimaya, Chiko; Takahashi, Mari; Miyata, Masanobu; Mott, Derrick; Koyano, Mikio; Ohta, Michihiro; Akatsuka, Takeo; Ono, Hironobu; Maenosono, Shinya
2017-12-01
Uniform Cu2Sn1-xZnxS3 (x = 0-0.2) nanoparticles (NPs) with a characteristic size of about 40 nm were chemically synthesized. The primary crystal phase of the NPs was wurtzite (WZ) with a mean crystalline size of about 20 nm. The NPs were sintered to form nanostructured pellets with different compositions preserving the composition and grain size of the original NPs by the pulse electric current sintering technique. The pellets had a zinc blende (ZB) structure with a residual WZ phase, and the mean crystalline size was found to remain virtually unchanged for all pellets. Among all samples, the pellets of Cu2Sn0.95Zn0.05S3 and Cu2Sn0.85Zn0.15S3 exhibited the highest ZT value (0.37 at 670 K) which is 10 times higher than that of a non-nanostructured Cu2SnS3 bulk crystal thanks to effective phonon scattering by nanograins, the phase-pure ZB crystal structure, and the increase in hole carrier density by Zn doping.
Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.
Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin
2011-01-30
Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Laser-assisted ignition and combustion characteristics of consolidated aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Saceleanu, Florin; Wen, John Z.; Idir, Mahmoud; Chaumeix, Nabiha
2016-11-01
Aluminum (Al) nanoparticles have drawn much attention due to their high energy density and tunable ignition properties. In comparison with their micronscale counterpart, Al nanoparticles possess large specific surface area and low apparent activation energy of combustion, which reduce ignition delay significantly. In this paper, ignition and subsequently burning of consolidated Al nanoparticle pellets are performed via a continuous wave (CW) argon laser in a closed spherical chamber filled with oxygen. Pellets are fabricated using two types of nanoparticle sizes of 40-60 and 60-80 nm, respectively. A photodiode is used to measure the ignition delay, while a digital camera captures the location of the flame front. It is found that for the 40-60-nm nanoparticle pellets, ignition delay reduces with increasing the oxygen pressure or using the higher laser power. Analysis of the flame propagation rate suggests that oxygen diffusion is an important mechanism during burning of these porous nanoparticle pellets. The combustion characteristics of the Al pellets are compared to a simplified model of the diffusion-controlled oxidation mechanism. While experimental measurements of pellets of 40-60 nm Al particles agree with the computed diffusion-limiting mechanism, a shifted behavior is observed from the pellets of 60-80 nm Al particles, largely due to the inhomogeneity of their porous structures.
Densification of LSGM electrolytes using activated microwave sintering
NASA Astrophysics Data System (ADS)
Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.
Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).
Flying-plate detonator using a high-density high explosive
Stroud, John R.; Ornellas, Donald L.
1988-01-01
A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).
Poinern, Gérrard Eddy Jai; Brundavanam, Ravi Krishna; Thi Le, Xuan; Nicholls, Philip K.; Cake, Martin A.; Fawcett, Derek
2014-01-01
Hydroxyapatite (HAP) is a biocompatible ceramic that is currently used in a number of current biomedical applications. Recently, nanometre scale forms of HAP have attracted considerable interest due to their close similarity to the inorganic mineral component of the bone matrix found in humans. In this study ultrafine nanometre scale HAP powders were prepared via a wet precipitation method under the influence of ultrasonic irradiation. The resulting powders were compacted and sintered to form a series of ceramic pellets with a sponge-like structure with varying density and porosity. The crystalline structure, size and morphology of the powders and the porous ceramic pellets were investigated using advanced characterization techniques. The pellets demonstrated good biocompatibility, including mixed cell colonisation and matrix deposition, in vivo following surgical implantation into sheep M. latissimus dorsi. PMID:25168046
Li, Chen; Zeitler, J Axel; Dong, Yue; Shen, Yao-Chun
2014-01-01
Full-field optical coherence tomography (FF-OCT) using a conventional light-emitting diode and a complementary metal-oxide semiconductor camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700 × 700 μm(2) was taken over a depth range of 166 μm. The three-dimensional structural information, such as the coating thickness and uniformity, was subsequently obtained by analysis of the recorded en-face images. Drug-loaded pharmaceutical sustained-release pellets with two coating layers and of a sub-millimetre diameter were studied to demonstrate the usefulness of the developed system. We have shown that both coatings can be clearly resolved and the thickness was determined to be 40 and 50 μm for the outer and inner coating layers, respectively. It was also found that the outer coating layer is relatively uniform, whereas the inner coating layer has many particle-like features. X-ray computed microtomography measurements carried out on the same pellet sample confirmed all these findings. The presented FF-OCT approach is inexpensive and has better spatial resolution compared with other non-destructive analysis techniques such as terahertz pulsed imaging, and is thus considered advantageous for the quantitative analysis of thin coatings on small pellet samples. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Stahl, Jessica; Zessel, Katrin; Schulz, Jochen; Finke, Jan Henrik; Müller-Goymann, Christel Charlotte; Kietzmann, Manfred
2016-04-01
Due to antibiotic treatment of humans and animals, the prevalence of bacterial resistances increases worldwide. Especially in livestock farming, large quantities of faeces contaminated with antibiotics pose a risk of the carryover of the active ingredient to the environment. Accordingly, the aim of the present study was the evaluation of the benefit of different oral dosage forms (powder, pellets, granula) in pigs concerning the environmental pollution of sulfadiazine. Two subtherapeutic dosages were evaluated in powder mixtures to gain information about their potential to pollute the pig barn. Furthermore, a new group of pigs was kept in the stable after powder feeding of another pig group to determine the possible absorption of environmentally distributed antibiotics. Pigs were orally treated with three dosage forms. Simultaneously, sedimentation and airborne dust were collected and plasma and urine levels were determined. All formulations result in comparable plasma and urine levels, but massive differences in environmental pollution (powder > pellets, granula). Pigs housing in a contaminated barn exhibit traces of sulfadiazine in plasma and urine. Using pharmaceutical formulations like pellets or granula, the environmental pollution of sulfonamides can significantly be diminished due to massive dust reduction during feeding.
Pathogenesis of lead shot poisoning in the mallard duck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, E.T.; Krook, L.; Aronson, A.L.
1975-04-01
Adult mallard ducks were administered steel pellets to determine the rate of excretion from the gastrointestinal tract. In separate studies the ducks were administered 5 number 6 lead pellets. Birds were examined for clinical signs and sacrificed at given intervals over a 20 day period to assess changes in tissue structure and concentrations of lead with time. The rate of steel pellet excretion on birds on a low fiber diet decreased with an increase in pellet size. Pellet excretion was greatly reduced in birds fed a high fiber diet. Administration of lead shot resulted in the development of green diarrhea,more » anorexia and weakness. It also produced high concentrations of lead in the blood, kidney, liver and bone with lower concentrations in skeletal muscle. The major lesions were destruction of the mitotically active proventricular epithelium and medullary osteocytes, destruction of pectoral muscle cells and the presence of intranuclear inclusion bodies in the proximal tubular epithelium of the kidney. Birds on the high fiber diet demonstrated more severe clinical signs and higher concentrations of lead in the tissues.« less
Shock implosion of a small homogeneous pellet
NASA Astrophysics Data System (ADS)
Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos
1985-10-01
A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.
Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study
NASA Astrophysics Data System (ADS)
Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie
2013-02-01
SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.
Development of inert density mock materials for HMX
Yeager, John D.; Higginbotham Duque, Amanda L.; Shorty, Marvin; ...
2017-09-22
Inert surrogates or mocks for high explosives are commonly used in place of the real material for complex experiments or in situations where safety is a concern. We tested several materials as potential mocks for HMX in terms of density, thermal stability, and processability. Selection criteria were developed and a literature search was conducted primarily using the Cambridge Structural Database. Moreover, out of over 200 potentially acceptable materials, six were chosen for crystallization experiments and a suite of analytical characterization. Of these six, 5-iodo-2'-deoxyuridine, N,N'-bis(2,3,4,5,6-pentafluorophenyl)oxamide, and 2,3,4,5,6-pentafluorobenzamide all were found to be thermally stable at 150°C, matched HMX density asmore » a pressed pellet, and could be crystallized to appropriate particle sizes. These three materials are considered suitable inert density mocks for HMX and will be the subject of future testing.« less
Pediatric air gun shot injury.
Khan, Ubaid U; Kamal, Naglaa M; Mirza, Shazia J; Sherief, Laila M
2014-12-01
Air guns (AGs) use air or another compressed gas to propel a projectile. Different injuries may occur in children due to their body structure, which is less-resistant with thin soft tissue coverage that can be easily penetrated by an AG shot. We present 3 cases of pediatric AG shot injury. The first-case had right lumber deep tissue penetration of AG pallet without internal damage, the second-case had a complex course of pellet into the perineum, and the third-case was shot in the left shoulder. All cases were accidentally shot. The shooters were all children, and relatives of the victims. All patients were generally stable on arrival. Two cases were operated, and one received conservative management. On follow up, no complications were noted. At first sight, AGs and air rifles may appear relatively harmless, but they are potentially lethal and children should not be allowed to play with them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, John D.; Higginbotham Duque, Amanda L.; Shorty, Marvin
Inert surrogates or mocks for high explosives are commonly used in place of the real material for complex experiments or in situations where safety is a concern. We tested several materials as potential mocks for HMX in terms of density, thermal stability, and processability. Selection criteria were developed and a literature search was conducted primarily using the Cambridge Structural Database. Moreover, out of over 200 potentially acceptable materials, six were chosen for crystallization experiments and a suite of analytical characterization. Of these six, 5-iodo-2'-deoxyuridine, N,N'-bis(2,3,4,5,6-pentafluorophenyl)oxamide, and 2,3,4,5,6-pentafluorobenzamide all were found to be thermally stable at 150°C, matched HMX density asmore » a pressed pellet, and could be crystallized to appropriate particle sizes. These three materials are considered suitable inert density mocks for HMX and will be the subject of future testing.« less
A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.
Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus
2010-06-01
A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.
Hammons, Joshua A; Wang, Wei; Ilavsky, Jan; Pantoya, Michelle L; Weeks, Brandon L; Vaughn, Mark W
2008-01-07
Nanothermites composed of aluminum and molybdenum trioxide (MoO(3)) have a high energy density and are attractive energetic materials. To enhance the surface contact between the spherical Al nanoparticles and the sheet-like MoO(3) particles, the mixture can be cold-pressed into a pelleted composite. However, it was found that the burn rate of the pellets decreased as the density of the pellets increased, contrary to expectation. Ultra-small angle X-ray scattering (USAXS) data and scanning electron microscopy (SEM) were used to elucidate the internal structure of the Al nanoparticles, and nanoparticle aggregate in the composite. Results from both SEM imaging and USAXS analysis indicate that as the density of the pellet increased, a fraction of the Al nanoparticles are compressed into sintered aggregates. The sintered Al nanoparticles lost contrast after forming the larger aggregates and no longer scattered X-rays as individual particles. The sintered aggregates hinder the burn rate, since the Al nanoparticles that make them up can no longer diffuse freely as individual particles during combustion. Results suggest a qualitative relationship for the probability that nanoparticles will sinter, based on the particle sizes and the initial structure of their respective agglomerates, as characterized by the mass fractal dimension.
Swalve, Natashia; Smethells, John R.; Carroll, Marilyn E.
2016-01-01
Impulsivity, or a tendency to act without anticipation of future consequences, is associated with drug abuse. Impulsivity is typically separated into two main measures, impulsive action and impulsive choice. Given the association of impulsivity and drug abuse, treatments that reduce impulsivity have been proposed as an effective method for countering drug addiction. Progesterone has emerged as a promising treatment, as it is associated with decreased addiction-related behaviors and impulsive action. The goal of the present study was to determine the effects of progesterone (PRO) on impulsive action for food: a Go/No-Go task. Female and male rats responded for sucrose pellets during a Go component when lever pressing was reinforced on a variable-interval 30-s schedule. During the alternate No-Go component, withholding a lever press was reinforced on a differential reinforcement of other (DRO) behavior 30-s schedule, where a lever press reset the DRO timer. Impulsive action was operationally defined as the inability to withhold a response during the No-Go component (i.e. the number of DRO resets). Once Go/No-Go behavior was stable, responding between rats treated with PRO (0.5 mg/kg) or vehicle was examined. Progesterone significantly decreased the total number of DRO resets in both males and females, but it did not affect VI responding for sucrose pellets. This suggests that PRO decreases motor impulsivity for sucrose pellets without affecting motivation for food. Thus, PRO may reduce motor impulsivity, a behavior underlying drug addiction. PMID:27497836
NASA Astrophysics Data System (ADS)
Hiebel, P.; Tixador, P.; Chaud, X.
1995-06-01
Since their discovery in the years 1986/87, the high critical temperature superconductors have reached nowadays performances interesting enough to conceive passive magnetic bearings and suspensions which would combined permanent magnets and naturally stable superconducting pellets. After underlining the principal factors that affect the superconductormagnet interaction, different experimental results are given about vertical and axial forces with some stiffness values. The magnetization curve of a superconductor help to understand the hysteretic behavior of the force as a function of the distance between superconductor and magnet. So called simple and hybrid structures of superconducting magnetic suspension are presented. Finally simple numerical simulations allow to draw some interesting conclusions about both geometry and best fitting structure of permanent magnets. Depuis leur découverte dans les années 1986/87, les supraconducteurs à haute température critique ont désormais atteint des performances intéressantes et rendent envisageables des paliers et suspensions magnétiques passives associant aimants permanents et pastilles supraconductrices naturellement stables. Après avoir indiqué les termes importants influençant l'interaction supraconducteur - aimant, différents relevés expérimentaux sont donnés pour les forces verticales et transversales avec quelques valeurs de raideurs. La courbe d'aimantation d'un supraconducteur permet de comprendre le comportement hystérétique de la force en fonction de la distance supraconducteur-aimant. Les structures dites simple et hybride des suspensions magnétiques supraconductrices sont présentées. Enfin quelques simulations numériques simples permettent de dégager quelques conclusions intéressantes quant aux géométries respectives et aux structures d'aimants permanents les mieux adaptées.
Carbothermal Reduction of Quartz with Carbon from Natural Gas
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
2017-04-01
Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.
Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T
2016-09-01
In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds. Copyright © 2016. Published by Elsevier Ltd.
Time-resolved characterization of primary emissions from residential wood combustion appliances.
Heringa, M F; DeCarlo, P F; Chirico, R; Lauber, A; Doberer, A; Good, J; Nussbaumer, T; Keller, A; Burtscher, H; Richard, A; Miljevic, B; Prevot, A S H; Baltensperger, U
2012-10-16
Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.
The Design and Performance of a Twenty Barrel Hydrogen Pellet Injector for Alcator C-Mod
NASA Astrophysics Data System (ADS)
Urbahn, John A.
A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have led to a single stage, pipe gun design with twenty barrels. Pellets are formed by in-situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extensively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius. Line averaged density increases of up to 300 percent were recorded with peak densities of just under 1 times 10^ {21} / m^3, the highest achieved on C-Mod to date. A comparison is made between the ablation source function derived from tracker data with that predicted by four different variations of the neutral shield model. Results suggest rapid heat flow from the interior of the plasma maintains temperatures on the ablation flux surface. Localized density perturbations with a specific m = 1,n = 1 structure and location on the q = 1 flux surface were observed following injection. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming
NASA Astrophysics Data System (ADS)
Kramer, Michelle; McKelvie, Millie; Watson, Matthew
2018-01-01
Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Zhang, Yan; Zhong, Qiang; Jiang, Tao; Li, Qian; Xu, Bin
The occurrence of different ringing behaviors in oxidized pellet kiln for two kinds of coal (A and B) with similar properties, is difficult to explain based on the relationship between kiln ringing and coal properties. In this paper, the interaction of coal ash with pellet scrap powder was considered by studying the cohering behavior of powders consisting of them. The results showed that the cohering briquette strength of pellet scrap powder increased considerably when mixed with a small amount of coal ash; a maximum could be reached when the mass percent ratio of coal ash was 1.5%; the strength of powder mixed with coal B ash was always higher in same firing system. This obviously illustrated that coal B caused a more serious ringing problem. The relevant mechanism was that the stronger reactivity of coal B ash made cohering briquette have a more perfect crystallization and a more compact structure.
Shot Peening Numerical Simulation of Aircraft Aluminum Alloy Structure
NASA Astrophysics Data System (ADS)
Liu, Yong; Lv, Sheng-Li; Zhang, Wei
2018-03-01
After shot peening, the 7050 aluminum alloy has good anti-fatigue and anti-stress corrosion properties. In the shot peening process, the pellet collides with target material randomly, and generated residual stress distribution on the target material surface, which has great significance to improve material property. In this paper, a simplified numerical simulation model of shot peening was established. The influence of pellet collision velocity, pellet collision position and pellet collision time interval on the residual stress of shot peening was studied, which is simulated by the ANSYS/LS-DYNA software. The analysis results show that different velocity, different positions and different time intervals have great influence on the residual stress after shot peening. Comparing with the numerical simulation results based on Kriging model, the accuracy of the simulation results in this paper was verified. This study provides a reference for the optimization of the shot peening process, and makes an effective exploration for the precise shot peening numerical simulation.
Steam torrefaction of Eucalyptus globulus for producing black pellets: A pilot-scale experience.
Arteaga-Pérez, Luis E; Grandón, Héctor; Flores, Mauricio; Segura, Cristina; Kelley, Stephen S
2017-08-01
Steam torrefaction of Eucalyptus globulus was performed at temperatures between 245°C and 265°C in a 100kg/h pilot plant. Torrefied biomass was then pelletized in a 300kg/h unit and the pellets were subject to durability, density and combustion tests. The structural changes measured with FTIR were studied along with the combustion behavior of the materials. Compositional analysis showed that increasing the torrefaction temperature reduced both hemicellulose fraction and overall mass yield (MY). Furthermore, there was a linear relationship between the energy yield (EY) and mass yield (EY=[1.04-0.9(1-MY)]) for these samples. The ignition and comprehensive indexes confirmed that the stability of the torrefied biomass in a combustion environment was higher than for untreated biomass. Finally, pellets showed high durability (98%), and had an energy density (13-14GJ/m 3 ), which is comparable to low-rank coals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vo, Anh Q; Feng, Xin; Pimparade, Manjeet; Ye, Xinyou; Kim, Dong Wuk; Martin, Scott T; Repka, Michael A
2017-05-01
In the present study, we aimed to prepare a gastroretentive drug delivery system that would be both highly resistant to gastric emptying via multiple mechanisms and would also potentially induce in situ supersaturation. The bioadhesive floating pellets, loaded with an amorphous solid dispersion, were prepared in a single step of hot-melt extrusion technology. Hydroxypropyl cellulose (Klucel™ MF) and hypromellose (Benecel™ K15M) were used as matrix-forming polymers, and felodipine was used as the model drug. The foam pellets were fabricated based on the expansion of CO 2 , which was generated from sodium bicarbonate during the melt-extrusion process. A 2 n full factorial experimental design was utilized to investigate the effects of formulation compositions to the pellet properties. The melt-extrusion process transformed the crystalline felodipine into an amorphous state that was dispersed and "frozen" in the polymer matrix. All formulations showed high porosity and were able to float immediately, without lag time, on top of gastric fluid, and maintained their buoyancy over 12h. The pellet-specific floating force, which could be as high as 4800μN/g, increased significantly during the first hour, and was relatively stable until 9h. The sodium bicarbonate percentage was found to be most significantly effect to the floating force. The ex vivo bioadhesion force of the pellets to porcine stomach mucosa was approximately 5mN/pellet, which was more than five times higher than the gravitation force of the pellet saturated with water. Drug release was well controlled up to 12h in the sink condition of 0.5% sodium lauryl sulphate in 0.1N HCl. The dissolution at 1, 3, 5, and 8h were 5-12%, 25-45%, 55-80%, and ≥75% respectively for all 11 formulations. In biorelevant dissolution medium, a supersaturated solution was formed, and the concentration was maintained at around 2μg/mL, approximately 10-folds higher than that of the pure felodipine. All input factors significantly affected dissolution in the first 3h, but afterwards, only drug load and hypromellose (HPMC) content had significant effects. The prepared drug delivery system has great potential in overcoming low and fluctuating bioavailability of poorly soluble drugs. Felodipine (PubChem CID: 3333); hypromellose (PubChem CID: 57503849), hydroxypropyl cellulose (PubChem CID: 71306830), sodium bicarbonate (PubChem CID: 516892); sodium carbonate (PubChem CID: 10340). Copyright © 2017 Elsevier B.V. All rights reserved.
Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS
Frattolillo, Antonio; Baylor, Larry R.; Bombarda, Francesca; ...
2018-04-17
Pellet injection represents to date the most realistic candidate technology for core fueling of a demonstration fusion power reactor tokamak fusion reactor. Modeling of both pellet penetration and fuel deposition profiles, for different injection locations, indicates that effective core fuelling can be achieved launching pellets from the inboard high field side at speeds not less than ~ 1 km/s. Inboard pellet fueling is commonly achieved in present tokamaks, using curved guide tubes; however, this technology might be hampered at velocities ≥ 1 km/s. An innovative approach, aimed at identifying suitable inboard "direct line'' paths, to inject high-speed pellets (in themore » 3 to 4 km/s range), has recently been proposed as a potential complementary solution. The fuel deposition profiles achievable by this approach have been explored using the HPI2 simulation code. The results presented here show that there are possible geometrical schemes providing good fueling performance. The problem of neutron flux in a direct line-of-sight injection path is being investigated, though preliminary analyses indicate that, perhaps, this is not a serious problem. The identification and integration of straight injection paths suitably tilted may be a rather difficult task due to the many constraints and to interference with existing structures. The suitability of straight guide tubes to reduce the scatter cone of high-speed pellets is, therefore, of main interest. A preliminary investigation, aimed at addressing these technological issues, has recently been started. As a result, a possible implementation plan, using an existing Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Oak Ridge National Laboratory facility is shortly outlined.« less
Core Fueling of DEMO by Direct Line Injection of High-Speed Pellets From the HFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frattolillo, Antonio; Baylor, Larry R.; Bombarda, Francesca
Pellet injection represents to date the most realistic candidate technology for core fueling of a demonstration fusion power reactor tokamak fusion reactor. Modeling of both pellet penetration and fuel deposition profiles, for different injection locations, indicates that effective core fuelling can be achieved launching pellets from the inboard high field side at speeds not less than ~ 1 km/s. Inboard pellet fueling is commonly achieved in present tokamaks, using curved guide tubes; however, this technology might be hampered at velocities ≥ 1 km/s. An innovative approach, aimed at identifying suitable inboard "direct line'' paths, to inject high-speed pellets (in themore » 3 to 4 km/s range), has recently been proposed as a potential complementary solution. The fuel deposition profiles achievable by this approach have been explored using the HPI2 simulation code. The results presented here show that there are possible geometrical schemes providing good fueling performance. The problem of neutron flux in a direct line-of-sight injection path is being investigated, though preliminary analyses indicate that, perhaps, this is not a serious problem. The identification and integration of straight injection paths suitably tilted may be a rather difficult task due to the many constraints and to interference with existing structures. The suitability of straight guide tubes to reduce the scatter cone of high-speed pellets is, therefore, of main interest. A preliminary investigation, aimed at addressing these technological issues, has recently been started. As a result, a possible implementation plan, using an existing Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Oak Ridge National Laboratory facility is shortly outlined.« less
Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon
Salyer, Ival O.
1987-01-01
A composite useful in thermal energy storage, said composite being formed of a polyethylene matrix having a straight chain alkyl hydrocarbon incorporated therein, said polyethylene being crosslinked to such a degree that said polyethylene matrix is form stable and said polyethylene matrix is capable of absorbing at least 10% by weight of said straight chain alkyl hydrocarbon; the composite is useful in forming pellets or sheets having thermal energy storage characteristics.
Improvement and validation of the method to determine neutral detergent fiber in feed.
Hiraoka, Hisaaki; Fukunaka, Rie; Ishikuro, Eiichi; Enishi, Osamu; Goto, Tetsuhisa
2012-10-01
To improve the performance of the analytical method for neutral detergent fiber in feed with heat-stable α-amylase treatment (aNDFom), the process of adding heat-stable α-amylase, as well as other analytical conditions, were examined. In this new process, the starch in the samples was removed by adding amylase to neutral detergent (ND) solution twice, just after the start of heating and immediately after refluxing. We also examined the effects of the use of sodium sulfite, and drying and ashing conditions for aNDFom analysis by this modified amylase addition method. A collaborative study to validate this new method was carried out with 15 laboratories. These laboratories analyzed two samples, alfalfa pellet and dairy mixed feed, with blind duplicates. Ten laboratories used a conventional apparatus and five used a Fibertec(®) type apparatus. There were no significant differences in aNDFom values between these two refluxing apparatuses. The aNDFom values in alfalfa pellet and dairy mixed feed were 388 g/kg and 145 g/kg, the coefficients of variation for the repeatability and reproducibility (CV(r) and CV(R) ) were 1.3% and 2.9%, and the HorRat values were 0.8 and 1.1, respectively. This new method was validated with 5.8% uncertainty (k = 2) from the collaborative study. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Use of proteins to minimize the physical aging of EUDRAGIT sustained release films.
Kucera, Shawn A; McGinity, James W; Zheng, Weijia; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H
2007-07-01
The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40 degrees C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT films and those containing EUDRAGIT and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40 degrees C/75% RH and 25 degrees C/60% RH.
Preparation and optimization of glyceryl behenate-based highly porous pellets containing cilostazol.
Hwang, Kyu-Mok; Byun, Woojin; Cho, Cheol-Hee; Park, Eun-Seok
2018-06-01
The aim of this study was to prepare a highly porous multiparticulate dosage form containing cilostazol for gastroretentive drug delivery. The floating pellets were prepared with glyceryl behenate as a matrix former and camphor as a sublimating agent by extrusion/spheronization and sublimation under vacuum. Granules prepared with sublimation at 60 °C displayed a slower dissolution rate and smoother surface morphology than those prepared at lower temperatures. This was unexpected as the reported melting point of glyceryl behenate is higher than 69 °C. The DSC study revealed that melting began at a lower temperature owing to the multicomponent property of glyceryl behenate, which led to a sintering effect. The prepared pellets were spherical with unimodal size distribution. They also had porous structures with increased porosity, which led to immediate buoyancy. As cilostazol is a hydrophobic drug that has an erosion-based release mechanism, drug release profile was highly correlated with the percentage of disintegrated pellets. Various excipients were added to the glyceryl behenate-based formulation to increase the floating duration. When hydroxyethyl cellulose was added to the glyceryl behenate-based pellets, acceptable dissolution rate and buoyancy were acquired. This system could potentially be used for gastroretentive delivery of various hydrophobic drugs, which was generally considered difficult.
Development of LWR Fuels with Enhanced Accident Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoda, Edward J.; Boylan, Frank A.
2015-10-30
Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U 15N and U 3Si 2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U 3Si 2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U 3Si 2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pelletsmore » for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U 3Si 2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO 2 pellets. Pellets and powders of UO 2, UN, and U 3Si 2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO 2. Cold spray application of either the amorphous steel or the Ti 2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing has been carried out for the SiC/SiC composite/SiC monolith structures. A structure with the monolith on the outside and composite on the inside was developed which is the current baseline structure and a SiC to SiC tube closure approach. Permeability tests and mechanical tests were developed to verify the operation of the SiC cladding. Steam autoclave (420°C), high temperature (1200°C) flowing steam tests and quench tests were carried out with minimal corrosion, mechanical or hermeticity degradation effect on the SiC cladding or end plug closure. However, in-reactor loop tests carried out in the MIT reactor indicated an unacceptable degree of corrosion, likely due to the corrosive effect of radiolysis products which attacked the SiC.« less
Polycation-induced assembly of purified tubulin.
Erickson, H P; Voter, W A
1976-01-01
Several different polycations have been found that can substitute for the microtubule-associated proteins, or tau factor, in facilitating assembly of tubulin that has been purified by ion exchange chromatography. In low concentrations of the polycation diethylaminoethyl-dextran, 7 mg of tubulin is pelleted per 1 mg of polycation added. Under conditions favorable to microtubule assembly the entire pellet is seen by electron microscopy to consist of "double wall microtubules", which are essentially identical to normal microtubules in subunit structure and arrangement. When assembly is inhibited approximately the same amount of tubulin is pelleted, but it is in the form of clusters of curved sheets or filaments apparently related to tubulin rings. When conditions are changed to favor assembly, the tubulin within these clusters appears to reassemble to form the double wall microtubules. Images PMID:1066692
NASA Technical Reports Server (NTRS)
Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.
Response-food delay gradients for lever pressing and schedule-induced licking in rats.
Pellón, Ricardo; Pérez-Padilla, Angeles
2013-06-01
Eight food-deprived Wistar rats developed stable patterns of lever pressing and licking when exposed to a fixed-time 30-s schedule of food pellet presentation. The rats were trained to lever press by presenting the lever 10 s before the programmed food delivery, with the food pellet being delivered immediately upon a lever press. The operant contingency was then removed and the lever was inserted through the entire interfood interval, being withdrawn with food delivery and reinserted 2 s later. On successive phases of the study, a protective contingency postponed food delivery if responses (lever presses or licks) occurred within the last 1, 2, 5, 10, 20, or 25 s of the interfood interval. Lever pressing was reduced at much shorter response-food delays than those that reduced licking. These results demonstrate that reinforcement contributes to the maintenance of different response patterns on periodic schedules, and that different responses are differentially sensitive to delays.
Schieffer, K M; Tan, K E; Stamper, P D; Somogyi, A; Andrea, S B; Wakefield, T; Romagnoli, M; Chapin, K C; Wolk, D M; Carroll, K C
2014-04-01
(i) Evaluation of delayed time to blood culture extraction by the Sepsityper kit and impact of shipping pellets off-site for MALDI-TOF MS analysis. (ii) Comparison of Sepsityper and laboratory-developed extraction methods from a literature review. Using two blood culture systems (BD BACTEC and VersaTREK), we extracted 411 positive blood cultures using the Sepsityper kit to mimic a potential protocol for institutions without a MALDI-TOF MS. Extracted pellets were shipped and analysed on the Bruker UltraflexIII. Successful extraction of 358 (87·1%) samples was determined by the presence of detectable proteins. MALDI-TOF MS correctly identified 332 (80·8%) samples. Delayed time to extraction did not affect Sepsityper extraction or MALDI-TOF MS accuracy. The extracted pellets remain stable and provide accurate results by MALDI-TOF MS when shipped at room temperature to off-site reference laboratories. This is the first study to show that institutions without a MALDI-TOF MS can take advantage of this innovative technology by shipping a volume of blood to an off-site laboratory for extraction and MALDI-TOF MS analysis. We also performed a literature review to compare various extraction methods. © 2014 The Society for Applied Microbiology.
Miljevic, B; Heringa, M F; Keller, A; Meyer, N K; Good, J; Lauber, A; Decarlo, P F; Fairfull-Smith, K E; Nussbaumer, T; Burtscher, H; Prevot, A S H; Baltensperger, U; Bottle, S E; Ristovski, Z D
2010-09-01
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Thermally stable ohmic contacts to n-type GaAs. VII. Addition of Ge or Si to NiInW ohmic contacts
NASA Astrophysics Data System (ADS)
Murakami, Masanori; Price, W. H.; Norcott, M.; Hallali, P.-E.
1990-09-01
The effects of Si or Ge addition to NiInW ohmic contacts on their electrical behavior were studied, where the samples were prepared by evaporating Ni(Si) or Ni(Ge) pellets with In and W and annealed by a rapid thermal annealing method. An addition of Si affected the contact resistances of NiInW contacts: the resistances decreased with increasing the Si concentrations in the Ni(Si) pellets and the lowest value of ˜0.1 Ω mm was obtained in the contact prepared with the Ni-5 at. % Si pellets after annealing at temperatures around 800 °C. The contact resistances did not deteriorate during isothermal annealing at 400 °C for more than 100 h, far exceeding process requirements for self-aligned GaAs metal-semiconductor field-effect-transistor devices. In addition, the contacts were compatible with TiAlCu interconnects which have been widely used in the current Si process. Furthermore, the addition of Si to the NiInW contacts eliminated an annealing step for activation of implanted dopants and low resistance (˜0.2 Ω mm) contacts were fabricated for the first time by a ``one-step'' anneal. In contrast, an addition of Ge to the NiInW contacts did not significantly reduce the contact resistances.
Volova, Tatiana; Zhila, Natalia; Vinogradova, Olga; Shumilova, Anna; Prudnikova, Svetlana; Shishatskaya, Ekaterina
2016-03-01
Biodegradable polymer poly(3-hydroxybutyrate) (P3HB) has been used as a matrix to construct slow-release formulations of the fungicide tebuconazole (TEB). P3HB/TEB systems constructed as films and pellets have been studied using differential scanning calorimetry, X-ray structure analysis, and Fourier transform infrared spectroscopy. TEB release from the experimental formulations has been studied in aqueous and soil laboratory systems. In the soil with known composition of microbial community, polymer was degraded, and TEB release after 35 days reached 60 and 36 % from films and pellets, respectively. That was 1.23 and 1.8 times more than the amount released to the water after 60 days in a sterile aqueous system. Incubation of P3HB/TEB films and pellets in the soil stimulated development of P3HB-degrading microorganisms of the genera Pseudomonas, Stenotrophomonas, Variovorax, and Streptomyces. Experiments with phytopathogenic fungi F. moniliforme and F. solani showed that the experimental P3HB/TEB formulations had antifungal activity comparable with that of free TEB.
Removal of humic substances by biosorption.
Vuković, Marija; Domanovac, Tomislav; Briski, Felicita
2008-01-01
Fungal pellets of Aspergillus niger 405, Aspergillus ustus 326, and Stachybotrys sp. 1103 were used for the removal of humic substances from aqueous solutions. Batchwise biosorption, carried out at pH 6 and 25 degrees C, was monitored spectrophotometrically and the process described with Freundlich's model. Calculated sorption coefficients K(f) and n showed that A. niger exhibited the highest efficiency. A good match between the model and experimental data and a high correlation coefficient (R2) pointed out to judicious choice of the mechanism for removal of humic substances from the reaction medium. The sorption rate constants (k) for A. ustus and Stachybotrys sp. were almost equal, however higher than that for A. niger. Comparison of test results with the simulated ones demonstrated the applicability of the designed kinetic model for removal of humic substances from natural water by biosorption with fungal pellets. Different morphological structure of the examined fungal pellets showed that faster sorption does not imply the most efficient removal of humic substances. Desorption of humic substances from fungal pellets was complete, rapid, and yielded uniform results.
Energy-technological complex with reactor for torrefaction
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Zaichenko, V. M.
2016-11-01
To eliminate shortcomings of raw plant materials pelletizing process with thermal treatment (low-temperature pyrolysis or torrefaction) can be applied. This paper presents a mathematical model of energy-technological complex (ETC) for combined production of heat, electricity and solid biofuels torrefied pellets. According to the structure the mathematical model consists of mathematical models of main units of ETC and the relationships between them and equations of energy and material balances. The equations describe exhaust gas straining action through a porous medium formed by pellets. Decomposition rate of biomass was calculated by using the gross-reaction diagram, which is responsible for the disintegration of raw material. A mathematical model has been tested according to bench experiments on one reactor module. From nomographs, designed for a particular configuration of ETC it is possible to determine the basic characteristics of torrefied pellets (rate of weight loss, heating value and heat content) specifying only two parameters (temperature and torrefaction time). It is shown that the addition of reactor for torrefaction to gas piston engine can improve the energy efficiency of power plant.
Relationship between gaseous N dynamics and the hydraulic state of hierarchically structured soils
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Dörsch, Peter; Vogel, Hans-Jörg
2017-04-01
The inherent spatial heterogeneity of soil generates spatially distributed micro-sites with different local N gas (NO, N2O, N2) production and release rates. Moreover, local micro-site conditions and the pathways between them depend on soil moisture which itself is highly dynamic close to the soil surface. These relationships need to be taken into account for a quantitative understanding of soil denitrification and associated N gas dynamics. Soil structure has been recognized as a key factor to understand the high spatial variability of N gas emissions. In particular gaseous N release from soils depends on: i) the total denitrification rate, which is related to the spatial extent and distribution of anaerobic sites and ii) the probability of N2O to escape from the soil without being further reduced to N2. This impact of soil structure is typically ignored in studies with soil slurries or repacked soil. In this project we run well-defined mesocosm experiments on N gas dynamics with hierarchically structured, artificial soils in which the spatial distribution of substrate and denitrifiers is known exactly. Sintered, porous glass pellets are inoculated with strains of Paracoccus denitrificans and/or Agrobacterium tumefaciens and amended with nutrient solution. These pellets are embedded in coarse-grained sand within gas-tight columns under O2/He atmosphere. The pellets are either places in layers or randomly to create different patterns of N gas production sites and diffusion pathways. Denitrification occurs in the anaerobic centers of the porous pellets, while the partially saturated sand matrix controls the diffusive transport of N gases towards the headspace, where all relevant gas concentrations are monitored with gas chromatography. Water saturations are adjusted such that the diffusive pathways are either fully continuous or partially discontinuous. Preliminary results indicate that the water content exert a major control on the magnitude of denitrification, whereas the onset and dynamics are mainly controlled by the position of the substrate and the denitrifiers.
Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V
2013-06-01
1. The influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers given wheat-based diets was examined from 10 to 42 d of age. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two pellet diameters (3 and 4.76 mm) and two pellet lengths (3 and 6 mm). From 0 to 9 d of age, all birds were offered a common starter diet pelleted with a 3-mm diameter die and 3-mm length. Broiler grower (d 10 to 21) and finisher (d 22 to 42) diets, based on wheat, were formulated and then subjected to the 4 different treatments. 2. In grower diets, increasing pellet diameter and pellet length reduced the gelatinised starch (GS) content of the diets. In finisher diets, GS content of 3-mm diameter pellets did not change with increasing pellet length but decreased in 4.76-mm diameter pellets. 3. In grower and finisher diets, increments in intact pellet weight, pellet durability index and pellet hardness with increasing pellet length were greater in 3-mm diameter pellets than those with 4.76-mm diameter. 4. Increasing pellet length from 3 to 6 mm increased apparent metabolisable energy values. Neither the interaction nor main effects were significant for the ileal digestibility of nitrogen and starch. 5. During the grower period (d 10 to 21), birds given pellets of 6-mm length had greater body-weight gain than those given 3-mm length pellets. Feeding 6-mm length pellets decreased feed per body-weight gain compared to 3-mm length pellets. During the finisher (d 22 to 42) and whole grow-out (d 10 to 42) periods, while different pellet lengths had no effect on feed per body-weight gain values at 3-mm pellet diameter, increasing the pellet length decreased feed per body-weight gain at 4.76-mm pellet diameter. 6. Increasing pellet diameter and pellet length reduced the relative length of duodenum. Birds given 3-mm diameter pellets had heavier proventriculus compared to those given 4.76-mm diameter pellets. 7. Overall, the data suggest that increasing the pellet length from 3 to 6 mm improved the body-weight gain and feed per body-weight gain during the grower period (d 10 to 21). While the positive effect on body-weight gain disappeared as the birds grew older, improvements in feed per body-weight gain were maintained over the finisher and whole grow-out periods only in 4.76-mm diameter pellets. Small diameter die holes and longer pellet lengths may be considered as potential manipulations to manufacture high-quality pellets under low conditioning temperatures.
Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics
NASA Astrophysics Data System (ADS)
Jagadeesha Angadi, V.; Anupama, A. V.; Choudhary, Harish K.; Kumar, R.; Somashekarappa, H. M.; Mallappa, M.; Rudraswamy, B.; Sahoo, B.
2017-02-01
The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe2O3 and ZnFe2O4 phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications.
Starlight: A stationary inertial-confinement-fusion reactor with nonvaporizing walls
NASA Astrophysics Data System (ADS)
Pitts, John H.
1989-09-01
The Starlight concept for an inertial-confinement-fusion (ICF) reactor utilizes a softball-sized solid-lithium x ray and debris shield that surrounds each fuel pellet as it is injected into the reactor. The shield is sacrificial and vaporizes as it absorbs x ray and ion-debris energy emanating from the fusion reactions in the fuel pellets. However, the energy deposition time at the surface if the first wall is lengthened by four orders of magnitude (to greater than 100 microns) which allows the energy to be conducted into the wall fast enough to prevent vaporization. Starlight operates at 5 Hz with 300-MJ-yield fuel pellets. It features a stationary, nonvaporizing first wall that eliminates erosion and shock waves which can destroy the wall; also, it allows arbitrary fuel pellet illumination geometries so that efficient coupling of either laser or heavy ion beam driver energy to the fuel pellet can be achieved. When neutrons penetrate the shield, the wall experiences neutron damage that limits its lifetime. Hence, we must choose wall materials that have ab economic lifetime. We describe the general concept and a specific design for laser drivers using a 6-m-radius, 2 1/4 Cr 1 Mo steel first wall. We include heat transfer calculations used to establish the radius and structural analysis that shows stresses are within allowable limits. A wall lifetime of over six years is predicted.
Vukmirović, D; Fišteš, A; Lević, J; Čolović, R; Rakić, D; Brlek, T; Banjac, V
2017-10-01
Poultry diets are mainly used in pelleted form because pellets have many advantages compared to mash feed. On the other hand, pelleting causes reduction of feed particle size. The aim of this research was to investigate the possibility of increasing the content of coarse particles in pellets, and, at the same time, to produce pellets with satisfactory quality. In this research, the three grinding treatments of corn were applied using hammer mill with three sieve openings diameter: 3 mm (HM-3), 6 mm (HM-6) and 9 mm (HM-9). These grinding treatments were combined in pelleting process with three gaps between rollers and the die of pellet press (roller-die gap, RDG) (0.30, 1.15 and 2.00 mm) and three moisture contents of the pelleted material (14.5, 16.0 and 17.5%). The increased coarseness of grinding by the hammer mill resulted in the increased amount of coarse particles in pellets, especially when the smallest RDG was applied (0.30 mm), but pellet quality was greatly reduced. Increasing of RDG improved the quality of pellets produced from coarsely ground corn, but reduced the content of coarse particles in pellets and increased specific energy consumption of the pellet press. Increasing the moisture content of material to be pelleted (MC) significantly reduced energy consumption of the pellet press, but there was no significant influence of MC on particle size after pelleting and on the pellet quality. The optimal values of the pelleting process parameters were determined using desirability function method. The results of optimization process showed that to achieve the highest possible quantity of coarse particles in the pellets, and to produce pellets of satisfactory quality, with the lowest possible energy consumption of the pellet press, the coarsest grinding on hammer mill (HM-9), the largest RDG (2 mm) and the highest MC (17.5%) should be applied. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.
2016-01-01
Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary pellets, suggesting them to be the result of a particular granulometry and fast-acting selective aggregation processes. For such aggregates to survive deposition and be preserved in the deposits of eruption plumes and pyroclastic density currents likely requires a significant pre-existing salt load on ash surfaces, and rapid aggregate drying prior to deposition or interaction with a more energetic environment. Our results carry clear benefits for future efforts to parameterize models of ash transport and deposition in the field.
NASA Astrophysics Data System (ADS)
Kafa, C. A.; Triyono, D.; Laysandra, H.
2017-07-01
LaFeO3 is a material with Perovskite structure which electrical properties got investigated a lot, because as a p-type semiconductor it showed good gas sensing behavior through resistivity comparison. Sr doping on LaFeO3 is able to improve the electrical conductivity through structural modification. Using the Sr atoms doping concentration (x) from 0.1 to 0.4, La1-xSrxFeO3 nanocrystal pellets were synthesized using sol-gel method, followed by gradual heat treatment and uniaxial compaction. Structural analysis from XRD characterization shows that the structure of the materials is Orthorhombic Perovskite. The topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of frequency, were measured by Impedance Spectroscopy method using RLC meter. Through the Nyquist plot and Bode plot, the electrical conductivity of La1-xSrxFeO3 is contributed by grain and grain boundaries. It is reported that La0.6Sr0.4FeO3 sample has the most superior electrical conductivity of all samples, and the electrical permittivity of both La0.8Sr0.2FeO3 and La0.7Sr0.3FeO3 are the most stable.
Development of a Feedstock-to-Product Chain Model for Densified Biomass Pellets
NASA Astrophysics Data System (ADS)
McPherrin, Daniel
The Q’Pellet is a spherical, torrefied biomass pellet currently under development. It aims to improve on the shortcomings of commercially available cylindrical white and torrefied pellets. A spreadsheet-based model was developed to allow for techno-economic analysis and simplified life cycle analysis of Q’Pellets, torrefied pellets and white pellets. A case study was developed to compare the production of white, torrefied and Q’Pellet production based on their internal rates of return and life cycle greenhouse gas emissions. The case study was based on a commercial scale plant built in Williams Lake BC with product delivery in Rotterdam, Netherlands. Q’Pellets had the highest modelled internal rate of return, at 12.7%, with white pellets at 11.1% and torrefied pellets at 8.0%. The simplified life cycle analysis showed that Q’Pellets had the lowest life cycle greenhouse gas emissions of the three products, 6.96 kgCO2eq/GJ, compared to 21.50 kgCO2eq/GJ for white pellets and 10.08 kgCO2eq/GJ for torrefied pellets. At these levels of life cycle greenhouse gas emissions, white pellets are above the maximum life cycle emissions to be considered sustainable under EU regulations. Sensitivity analysis was performed on the model by modifying input variables, and showed that white pellets are more sensitive to uncontrollable market variables, especially pellet sale prices, raw biomass prices and transportation costs. Monte Carlo analysis was also performed, which showed that white pellet production is less predictable and more likely to lead to a negative internal rate of return compared to Q’Pellet production.
Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Sato, K. N.; Sakakita, H.; Fujita, H.
2003-06-01
Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.
46 CFR 148.04-21 - Coconut meal pellets (also known as copra pellets).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Coconut meal pellets (also known as copra pellets). 148.04-21 Section 148.04-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... § 148.04-21 Coconut meal pellets (also known as copra pellets). (a) Coconut meal pellets; (1) Must...
46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...
46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...
46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...
46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...
Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk
The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localizedmore » mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri
Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating ormore » a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.« less
27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.
2018-02-01
The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.
NASA Astrophysics Data System (ADS)
Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie
2017-03-01
High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.
NASA Astrophysics Data System (ADS)
McCarthy, K. J.; Tamura, N.; Combs, S. K.; Panadero, N.; Ascabíbar, E.; Estrada, T.; García, R.; Hernández Sánchez, J.; López Fraguas, A.; Navarro, M.; Pastor, I.; Soleto, A.; TJ-II Team
2017-10-01
A cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun-type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection compared with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.
Mercury exposure and source tracking in distinct marine-caged fish farm in southern China.
Xu, Xiaoyu; Wang, Wen-Xiong
2017-01-01
Coasts of South China have experienced an unprecedented growth in its marine-caged fish industry. We analyzed mercury concentrations and stable mercury isotope ratios in fourteen fish species from two cage-cultured farms in Southern China. Total mercury concentrations of all species were lower than the human health screening values, but the human exposures through consumption of several carnivorous fish exceeded the USEPA's reference dose. Isotopic compositions in the sediment (δ 202 Hg: -1.45‰ to -1.23‰; Δ 199 Hg: -0.04‰ to -0.01‰) suggested that mercury in these farms were from coal combustion and industrial inputs. Commercial food pellets and fresh fish viscera provided the major sources of methylmercury to the farmed fish and dominated their mercury isotopic signatures. Non-carnivorous fish presented lower δ 202 Hg and Δ 199 Hg values than the carnivorous fish. Using a mixing model, we demonstrated that the majority of mercury in non-carnivorous species came from pellets and in carnivorous fish came from combined diets of pellets and viscera. Meanwhile, methylmercury concentrations and % methylmercury in the fish were positively correlated with δ 202 Hg values but not with Δ 199 Hg values, mainly because fish eating similar feeds maintained similar Δ 199 Hg values. Environmental influences of cage farming such as fish feces and uneaten viscera that continuously provide organic mercury to the environments need to be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blood lead concentration after a shotgun accident.
Gerhardsson, Lars; Dahlin, Lars; Knebel, Richard; Schütz, Andrejs
2002-01-01
In an accidental shooting, a man in his late forties was hit in his left shoulder region by about 60 lead pellets from a shotgun. He had injuries to the vessels, the clavicle, muscles, and nerves, with total paralysis of the left arm due to axonal injury. After several surgical revisions and temporary cover with split skin, reconstructive surgery was carried out 54 days after the accident. The brachial plexus was swollen, but the continuity of the nerve trunks was not broken (no neuroma present). We determined the blood lead (BPb) concentration during a follow-up period of 12 months. The BPb concentration increased considerably during the first months. Although 30 lead pellets were removed during the reconstructive surgery, the BPb concentration continued to rise, and reached a peak of 62 microg/dL (3.0 micromol/L) on day 81. Thereafter it started to decline. Twelve months after the accident, BPb had leveled off at about 30 microg/dL. At that time, muscle and sensory functions had partially recovered. The BPb concentration exceeded 30 microg/dL for 9 months, which may have influenced the recovery rate of nerve function. Subjects with a large number of lead pellets or fragments embedded in the body after shooting accidents should be followed for many years by regular determinations of BPb. To obtain a more stable basis for risk assessment, the BPb concentrations should be corrected for variations in the subject's hemoglobin concentration or erythrocyte volume fraction.
Blood lead concentration after a shotgun accident.
Gerhardsson, Lars; Dahlin, Lars; Knebel, Richard; Schütz, Andrejs
2002-01-01
In an accidental shooting, a man in his late forties was hit in his left shoulder region by about 60 lead pellets from a shotgun. He had injuries to the vessels, the clavicle, muscles, and nerves, with total paralysis of the left arm due to axonal injury. After several surgical revisions and temporary cover with split skin, reconstructive surgery was carried out 54 days after the accident. The brachial plexus was swollen, but the continuity of the nerve trunks was not broken (no neuroma present). We determined the blood lead (BPb) concentration during a follow-up period of 12 months. The BPb concentration increased considerably during the first months. Although 30 lead pellets were removed during the reconstructive surgery, the BPb concentration continued to rise, and reached a peak of 62 microg/dL (3.0 micromol/L) on day 81. Thereafter it started to decline. Twelve months after the accident, BPb had leveled off at about 30 microg/dL. At that time, muscle and sensory functions had partially recovered. The BPb concentration exceeded 30 microg/dL for 9 months, which may have influenced the recovery rate of nerve function. Subjects with a large number of lead pellets or fragments embedded in the body after shooting accidents should be followed for many years by regular determinations of BPb. To obtain a more stable basis for risk assessment, the BPb concentrations should be corrected for variations in the subject's hemoglobin concentration or erythrocyte volume fraction. PMID:11781173
Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries.
Li, Yutao; Chen, Xi; Dolocan, Andrei; Cui, Zhiming; Xin, Sen; Xue, Leigang; Xu, Henghui; Park, Kyusung; Goodenough, John B
2018-05-23
Garnet-structured Li 7 La 3 Zr 2 O 12 is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick Li 2 CO 3 layer and the Li-Al-O glass phase on the surface of garnet materials. Here we introduce a simple method to remove Li 2 CO 3 and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li-Al-O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of Li 2 CO 3 and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm 2 at Li/garnet, garnet/LiFePO 4 , and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO 4 , and a hybrid Li-S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.
NASA Astrophysics Data System (ADS)
Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.
2011-02-01
A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii Rc = 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.
Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun; Song, Kun-Woo
2015-07-01
As one of accident tolerant fuel pellets which should have features of good thermal conductivity and high fission product retention, a micro-cell UO2-Mo pellet has been studied in the aspect of fabrication and thermal property. It was intended to develop the compatible process with conventional UO2 pellet fabrication process. The effects of processing parameters such as the size and density of UO2 granule and the size of Mo powder have been studied to produce sound and dense pellet with completely connected uniform Mo cell-walls. The micro-cell UO2-Mo pellet consists of many Mo micro-cells and UO2 in them. The thermal conductivity of the micro-cell UO2-Mo pellet was measured and compared to those of the UO2 pellet and the UO2-Mo pellet with dispersed form of Mo particles. The thermal conductivity of the micro-cell UO2-Mo pellet was much enhanced and was found to be influenced by the Mo volumetric fraction and pellet integrity. A continuous Mo micro-cell works as a heat conducting channel in the pellet, greatly enhancing the thermal conductivity of the micro cell UO2-Mo pellet.
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-01-01
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875
Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N
2016-06-15
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.
McCarthy, K. J.; Tamura, N.; Combs, S. K.; ...
2018-01-05
Here, a cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun–type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection comparedmore » with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, K. J.; Tamura, N.; Combs, S. K.
Here, a cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun–type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection comparedmore » with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.« less
Lignite pellets and methods of agglomerating or pelletizing
Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.
1981-01-01
The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.
Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets.
Agrawal, Sarika; Sharma, Isha; Prajapati, Bhanu Pratap; Suryawanshi, Rahul Kumar; Kango, Naveen
2018-07-15
l-asparaginase from Escherichia coli (l-ASNase) was covalently immobilized on aluminum oxide pellets (AlOPs) using a cross-linking agent, glutaraldehyde. Maximum immobilization yield (85.0%) was obtained after optimizing immobilization parameters using response surface methodology (RSM). Both free and immobilized l-ASNase (AlOP-ASNase) were optimally active at 37°C and pH7.5. However, the bioconjugate exhibited enhanced activity and stability at different pH and temperatures. It had higher affinity (low K m ) and was comparatively more stable in presence of some solvents (ethyl acetate, acetone, acetonitrile), metal ions (Ag + , Zn 2+ ) and β-mercaptoethanol. AlOP-ASNase was reused in a glass column reactor for l-asparagine hydrolysis upto nine successive cycles without any loss in activity. The AlOP-ASNase was effective in lowering l-asparagine level in blanched potato chips indicating its potential use in mitigating acrylamide formation in starchy foods. This cost-effective enzyme preparation had shelf-life of more than 30days and can be effectively used in starch based food industries. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Joseph A. Roos; Allen Brackley
2012-01-01
This study examines the three major wood pellet markets in Asia: China, Japan, and South Korea. In contrast to the United States, where most wood pellets are used for residential heating with pellet stoves, a majority of the wood pellets in Asia are used for co-firing at coal-fired power plants. Our analysis indicated that Japan is the largest importer of wood pellets...
Production and characterization of pellets using Avicel CL611 as spheronization aid.
Puah, Sin Yee; Yap, Hsiu Ni; Chaw, Cheng Shu
2014-03-01
The study looked into the feasibility of producing pellet using Avicel CL611 as spheronization aid by the extrusion/spheronization technique. Pellets were formulated to contain either 20% or 40% Avicel CL611 and lactose monohydrate as the other sole ingredient. Water is used as liquid binder. Quality of pellets and extrudates were analyzed for size distribution, shape, surface tensile strength and disintegration profile. More water was needed when higher Avicel CL611 fraction was used during the production of pellets. The pellets of larger size were obtained by increasing the water content. Pellets with aspect ratios of ∼1.1 were produced with high spheronization speed at short residence time. Higher tensile strength was achieved when increasing the water content and the fraction of Avicel CL611 during pellet production. These pellets also took longer time to disintegrate, nonetheless all the pellets disintegrated within 15 min. A positive linear relationship was obtained between the tensile strength and time for pellets to disintegrate. Strong but round pellets that disintegrate rapidly could be produced with Avicel CL611 as spheronization aid using moderately soluble compounds such as lactose.
Probing RFP Density Limits and the Interaction of Pellet Fueling and NBI Heating on MST
NASA Astrophysics Data System (ADS)
Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.
2013-10-01
Pellet fueling on MST has previously achieved Greenwald fractions of up to 1.5 in 200 kA improved confinement discharges. Additionally, pellet fueling to densities above the Greenwald limit in 200 kA standard discharges resulted in early termination of the plasma, but pellet size was insufficient to exceed the limit for higher current discharges. To this end, the pellet injector on MST has been upgraded to increase the maximum fueling capability by increasing the size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, to accommodate pellets of up to 4.0 mm in diameter. These 4.0 mm pellets are capable of triggering density limit terminations for MST's peak current of 600 kA. An unexpected improvement in the pellet speed and mass control was also observed compared to the smaller diameter pellets. Exploring the effect of increased density on NBI particle and heat deposition shows that for MST's 1 MW tangential NBI, core deposition of 25 keV neutrals is optimized for densities of 2-3 × 1019 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. An observed toroidal deflection of pellets injected into NBI heated discharges is consistent with asymmetric ablation due to the fast ion population. In 200 kA improved confinement plasmas with NBI heating, pellet fueling has achieved a Greenwald fraction of 2.0. Work supported by US DoE.
ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER
Baylor, Larry R.; Lang, P. T.; Allen, Steve L.; ...
2014-10-05
The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components. Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected.more » Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation. A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.« less
ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylor, Larry R.; Lang, P.; Allen, S. L.
2015-08-01
The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components (PFCs). Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet ismore » injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation.A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.« less
Fleming, K; Hessel, E F; Van den Weghe, H F A
2009-11-01
The aim of this study was to compare different types of bedding and mucking regimens used in horse stables on the generation of airborne particulate matter <10 microm (PM10) and 3 biogenic gases (carbon dioxide, nitrous oxide, and especially ammonia). Three separate experiments were undertaken. The experiments were carried out in an enclosed stable (9.7 m long, 8.7 m wide, and 3.5 m high) that had 5 single boxes housing 4 horses. The measuring instruments were set up in the middle of one side of the stable. In Exp. 1, 3 types of bedding material (wheat straw, straw pellets, and wood shavings) used for horses were assessed according to their ammonia generation. Each type of bedding was used for 2 wk, with 3 repetitions. The mean ammonia concentrations within the stable were 3.07 +/- 0.23 mg/m(3) for wheat straw, 4.79 +/- 0.23 mg/m(3) for straw pellets, and 4.27 +/- 0.17 mg/m(3) for wood shavings. In Exp. 2, the effects of the mucking regimen on the generation of ammonia and PM10 from wheat straw (the bedding with the least ammonia generation in the previous experiment) were examined using 3 different daily regimens: 1) no mucking out, 2) complete mucking out, and 3) partial mucking out (removing only feces). The mean ammonia concentrations in the stable differed significantly among all 3 mucking regimens (P < 0.05). The greatest values were recorded when the stalls were mucked out completely every day [least squares means (LSM) = 2.25 +/- 0.1 mg/m(3)]. No mucking out resulted in an LSM of 1.92 +/- 0.1 mg of ammonia/m(3), whereas an LSM of 1.54 +/- 0.1 mg of ammonia/m(3) was found when the partial mucking out method was used. No mucking out also resulted in significantly less average PM10 (124.4 +/- 13.4 microg/m(3)) than in the other 2 regimens (P < 0.05). In Exp. 3, a 6-wk bedding regimen without mucking out was evaluated with regard to gas and airborne particle generation. The ammonia values were found not to increase constantly during the course of the 6-wk period. The average weekly values for PM10 also did not increase constantly but varied between approximately 90 and 140 microg/m. It can be concluded from the particle and gas generation patterns found in the results of all 3 experiments that wheat straw was the most suitable bedding of the 3 types investigated and that mucking out completely on a daily basis should not be undertaken in horse stables.
Controlling Properties of Agglomerates for Chemical Processes
NASA Astrophysics Data System (ADS)
Halt, Joseph A.
Iron ore pellets are hard spheres made from powdered ore and binders. Pellets are used to make iron, mainly in blast furnaces. Around the time that the pelletizing process was developed, starch was proposed as a binder because it's viscous, adheres well to iron oxides, does not contaminate pellets and is relatively cheap. In practice, however, starch leads to weak pellets with rough surfaces - these increase the amount of dust generated within process equipment and during pellet shipping and handling. Thus, even though the usual binder (bentonite clay) contaminates pellets, pelletizers prefer it to starch or other organics. This dissertation describes three ways to make good starch-based binders for pellets. Importantly, they solve the usual problems of weak rough pellets and lots of dust. The three approaches are: (1) Addition of clay to starch. This is not a novel idea. In fact, it is the standard method used for their improvement. However, it has not been tested extensively with starch. This approach was expected to be - and indeed was - successful. (2) Addition of a clay-rich layer to green ball surfaces. This approach is a novel idea. The coating's purpose was to mimic the good surface properties of standard bentonite-clay bonded pellets; as a benefit, clay consumption was significantly reduced. This approach was successful. (3) Addition of dispersants to starch. This approach was a novel idea. The intent of the dispersants was to enable pelletization to occur at lower moisture contents, thus leading to denser particle packing and lower porosity. The dispersants resulted in significantly stronger, smoother pellets without contaminating them with silica. Using approaches 1 and 3, starch can be used directly in traditional pelletizing operations, and importantly, in new pelletizing processes for new iron making operations. For approach 2, new application methods must be developed. Future engineering work is suggested as follows: design better dispersants for magnetic magnetite ores; incorporate the dispersing agent and starch into bead form for easy use; design a simple way to add coatings in existing drum-based pelletizing circuits; and optimize the coating composition to decrease both abrasion losses and pellet clustering (for new Direct Reduction pellets).
Reuse potential of low-calcium bottom ash as aggregate through pelletization.
Geetha, S; Ramamurthy, K
2010-01-01
Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.
Wood chewing by stabled horses: diurnal pattern and effects of exercise.
Krzak, W E; Gonyou, H W; Lawrence, L M
1991-03-01
Nine yearling horses, stabled in individual stalls, were used in a trial to determine the diurnal pattern of wood chewing and the effects of exercise on this behavior. The trial was a Latin square design conducted over three 2-wk periods during which each horse was exposed to each of the three following treatments: 1) no exercise (NE), 2) exercise after the morning feeding (AM), and 3) exercise in the afternoon (PM). Horses were fed a complete pelleted feed in the morning and both pelleted feed and long-stemmed hay in the afternoon. Exercise consisted of 45 min on a mechanical walker followed by 45 min in a paddock with bare soil. Each stall was equipped with two untreated spruce boards during each period for wood chewing. Wood chewing was evaluated by videotaping each horse for 22 h during each period, determining the weight and volume of the boards before and after each period, and by visual appraisal of the boards. Intake of trace mineralized salt was also measured. Wood chewing occurred primarily between 2200 and 1200. All measures of wood chewing were correlated when totals for the entire 6 wk were analyzed. When analysis was performed on 2-wk values, videotape results were not correlated with volume or weight loss of boards. Horses chewed more when on the NE treatment (511 s/d) than when on AM or PM (57 and 136 s/d, respectively; P less than .05). Salt intake tended to be greater for NE than for the other treatments (P less than .10).(ABSTRACT TRUNCATED AT 250 WORDS)
High-rate behaviour of iron ore pellet
NASA Astrophysics Data System (ADS)
Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro
2015-09-01
Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less
Biofiltration for control of volatile organic compounds (VOCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, D.F.; Govind, R.
1995-10-01
Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less
Microwave sensing of moisture in flowing biomass pellets
USDA-ARS?s Scientific Manuscript database
Production of pelleted biomass is a significant emerging industry in the United States. A primary quality attribute of pelleted biomass is moisture content. This parameter is critical in pricing, binding, combustion, and storage of pelleted biomass. In order to produce pellets of a high quality mois...
Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor
2010-03-15
A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Modeling pellet impact drilling process
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.
2016-03-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.
Formation of particulate matter monitoring during combustion of wood pellete with additives
NASA Astrophysics Data System (ADS)
Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef
2016-06-01
Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.
Techno-economic assessment of pellets produced from steam pretreated biomass feedstock
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2016-03-10
Minimum production cost and optimum plant size are determined for pellet plants for three types of biomass feedstock e forest residue, agricultural residue, and energy crops. The life cycle cost from harvesting to the delivery of the pellets to the co-firing facility is evaluated. The cost varies from 95 to 105 t -1 for regular pellets and 146–156 t -1 for steam pretreated pellets. The difference in the cost of producing regular and steam pretreated pellets per unit energy is in the range of 2e3 GJ -1. The economic optimum plant size (i.e., the size at which pellet production costmore » is minimum) is found to be 190 kt for regular pellet production and 250 kt for steam pretreated pellet. Furthermore, sensitivity and uncertainty analyses were carried out to identify sensitivity parameters and effects of model error.« less
Compacted Multiparticulate Systems for Colon-Specific Delivery of Ketoprofen.
de Alencar, Rodrigo Gomes; de Oliveira, Aline Carlos; Lima, Eliana Martins; da Cunha-Filho, Marcílio Sérgio Soares; Taveira, Stephânia Fleury; Marreto, Ricardo Neves
2017-08-01
Pellet-containing tablets for colon-specific drug delivery present higher targeting efficiency and lower costs when compared with monolithic tablets and pellet-filled capsules, respectively. In this study, pellets containing ketoprofen were coated with different acrylic polymers and submitted to compaction. The influence of formulation and process factors on film integrity was then evaluated. Pellets were prepared via extrusion-spheronization and coated using two acrylic polymers (Eudragit® FS 30 D and Opadry® 94 k28327, PMMA and PMA, respectively). The resulting pellets were mixed with placebo granules and compressed in a hydraulic press. Multiple regression showed that ketoprofen release from pellet-containing tablets is predominantly influenced by pellet content, hardness, friability, and disintegration time. PMA-containing tablets prepared under low compaction force or with low pellet content showed rapid disintegration (<1 min) and ketoprofen release similar to those of uncompressed coated pellets (∼30% at 360 min of experiment). On the other hand, PMMA-containing tablets showed a higher rupture level, and those prepared with higher pellet content gave rise to a non-disintegrating matrix. Coated pellets were shown to be able to target ketoprofen to the colonic region. Targeting capacity was dependent on the physicochemical characteristics of the tablets.
Cryogenic pellet production developments for long-pulse plasma operation
NASA Astrophysics Data System (ADS)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.
2014-01-01
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.
Cryogenic pellet production developments for long-pulse plasma operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at amore » rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.« less
Volume measurement of cryogenic deuterium pellets by Bayesian analysis of single shadowgraphy images
NASA Astrophysics Data System (ADS)
Szepesi, T.; Kálvin, S.; Kocsis, G.; Lang, P. T.; Wittmann, C.
2008-03-01
In situ commissioning of the Blower-gun injector for launching cryogenic deuterium pellets at ASDEX Upgrade tokamak was performed. This injector is designed for high repetitive launch of small pellets for edge localised modes pacing experiments. During the investigation the final injection geometry was simulated with pellets passing to the torus through a 5.5m long guiding tube. For investigation of pellet quality at launch and after tube passage laser flash camera shadowgraphy diagnostic units before and after the tube were installed. As indicator of pellet quality we adopted the pellet mass represented by the volume of the main remaining pellet fragment. Since only two-dimensional (2D) shadow images were obtained, a reconstruction of the full three-dimensional pellet body had to be performed. For this the image was first converted into a 1-bit version prescribing an exact 2D contour. From this contour the expected value of the volume was calculated by Bayesian analysis taking into account the likely cylindrical shape of the pellet. Under appropriate injection conditions sound pellets with more than half of their nominal mass are detected after acceleration; the passage causes in average an additional loss of about 40% to the launched mass. Analyzing pellets arriving at tube exit allowed for deriving the injector's optimized operational conditions. For these more than 90% of the pellets were arriving with sound quality when operating in the frequency range 5-50Hz.
Particle fueling experiments with a series of pellets in LHD
NASA Astrophysics Data System (ADS)
Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team
2018-03-01
Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...
2018-01-01
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less
NASA Astrophysics Data System (ADS)
Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan
2018-01-01
For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.
NASA Astrophysics Data System (ADS)
Iversen, Morten H.; Pakhomov, Evgeny A.; Hunt, Brian P. V.; van der Jagt, Helga; Wolf-Gladrow, Dieter; Klaas, Christine
2017-04-01
Salp fecal pellets are rich in organic matter and have been shown to sink at very high velocities. In recent years, salp abundances have been increasing in the Southern Ocean where they seem to be replacing krill as the dominant grazers on phytoplankton. As salps can form large swarms with high pellet production rates, it has been suggested that they will become increasingly important for the vertical export of particulate organic matter in the Southern Ocean. However, detailed studies combining both investigations of pellet production rates, turnover, and export are still needed in order to determine whether salp pellets are important for export ('sinkers') or recycling ('floaters') of organic matter. Our results suggest that pellets are produced at high rates in the upper few hundred meters of the water column. Although we observed high sinking velocities and low microbial degradation rates of the produced salp pellets, only about one third of the produced pellets were captured in sediment traps placed at 100 m and about 13% of the produced pellets were exported to sediment traps placed at 300 m. The high retention of these fast-settling pellets seems to be caused by break-up and loosening of the pellets, possibly by zooplankton and salps themselves. We measured 3-fold lower size-specific sinking velocities in loosened and fragmented compared to freshly produced intact pellets-. This enhanced the residence times (>1 day) of both small and large pellets in the upper water column. We postulate that the fragile nature of salp pellets make them more important for recycling of organic matter in the upper mesopelagic layer rather than as a conduit for export of particulate organic matter to the seafloor.
NASA Astrophysics Data System (ADS)
Hiezl, Z.; Hambley, D. I.; Padovani, C.; Lee, W. E.
2015-01-01
Preparation and characterisation of a Simulated Spent Nuclear Fuel (SIMFuel), which replicates the chemical state and microstructure of Spent Nuclear Fuel (SNF) discharged from a UK Advanced Gas-cooled Reactor (AGR) after a cooling time of 100 years is described. Given the relatively small differences in radionuclide inventory expected over longer time periods, the SIMFuel studied in this work is expected to be also representative of spent fuel after significantly longer periods (e.g. 1000 years). Thirteen stable elements were added to depleted UO2 and sintered to simulate the composition of fuel pellets after burn-ups of 25 and 43 GWd/tU and, as a reference, pure UO2 pellets were also investigated. The fission product distribution was calculated using the FISPIN code provided by the UK National Nuclear Laboratory. SIMFuel pellets were up to 92% dense and during the sintering process in H2 atmosphere Mo-Ru-Rh-Pd metallic precipitates and grey-phase ((Ba, Sr)(Zr, RE) O3 oxide precipitates) formed within the UO2 matrix. These secondary phases are present in real PWR and AGR SNF. Metallic precipitates are generally spherical and have submicron particle size (0.8 ± 0.7 μm). Spherical oxide precipitates in SIMFuel measured up to 30 μm in diameter, but no data were available in the public domain to compare this to AGR SNF. The grain size of actual AGR SNF (∼ 3-30 μm) is larger than that measured in AGR SIMFuel (∼ 2-5 μm).
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
Holladay, Jeremy P; Nisanian, Mandy; Williams, Susan; Tuckfield, R Cary; Kerr, Richard; Jarrett, Timothy; Tannenbaum, Lawrence; Holladay, Steven D; Sharma, Ajay; Gogal, Robert M
2012-11-01
Avian wildlife species commonly ingest lead (Pb) spent shot or bullet fragments as grit or mistakenly as food. In previous studies in our laboratory and others, the toxicity varied based on the diet as well as type and quantity of Pb ingested. In the current study, domestic pigeons were gavaged with 1, 2, or 3 Pb pellets and then followed with weekly radiographs and blood physiologic endpoints for 28 days. Pellet retention decreased by roughly 50 % per week as pellets were either absorbed or excreted, except for week 4 where pellet number no longer was diminished. Size of retained pellets visually decreased over retention time. Birds dosed with a single #9 pellet showed mean blood Pb levels over 80 times higher than those of the controls, verifying Pb pellet absorption from the gut. A single Pb pellet also reduced plasma δ-aminolevulinic acid dehydratase (δ-ALAD) activity by over 80 % compared to controls, suggesting the potential for population injury in Pb pellet-exposed pigeons.
Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (Pseudotsuga menziesii)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Bi, X.T.; Lim, C. Jim
Ground softwood Douglas fir (Pseudotsuga menziesii) was treated with pressurized saturated steam at 200-220 C (1.6-2.4 MPa) for 5-10 min in a sealed container. The contents of the container were released to the atmosphere for a sudden decompression. The steam-exploded wood particles were dried to 10% moisture content and pelletized in a single-piston-cylinder system. The pellets were characterized for their mechanical strength, chemical composition, and moisture sorption. The steamtreated wood required 12-81% more energy to compact into pellets than the untreated wood. Pellets made from steam-treated wood had a breaking strength 1.4-3.3 times the strength of pellets made from untreatedmore » wood. Steam-treated pellets had a reduced equilibrium moisture content of 2-4% and a reduced expansion after pelletization. There was a slight increase in the high heating value from 18.94 to 20.09 MJ/kg for the treated samples. Steam-treated pellets exhibited a higher lengthwise rigidity compared to untreated pellets.« less
NASA Astrophysics Data System (ADS)
Takada, H.; Heskett, M.; Yamashita, R.; Yuyama, M.; Itoh, M.; Geok, Y. B.; Ogata, Y.
2011-12-01
Plastic resin pellets collected from remote islands in open oceans (Canary, St. Helena, Cocos, Hawaii, Maui Islands and Barbados) were sorted and yellowing polyethylene (PE) pellets were measured for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and the degradation products (DDTs), and hexachlorocyclohexanes (HCHs) by gas chromatograph equipped with mass spectrometer (GC-MS) and with electron capture detector (GC-ECD). PCBs were detected from all the pellet samples, confirming the global dispersion of PCBs. Median concentrations of PCBs (sum of 13 congeners : CB-66, CB-101, CB-110, CB-118, CB-105, CB-149, CB-153, CB-138, CB-128, CB-187, CB-180, CB-170, CB-206) in the remote island pellets ranged from 0.1 to 10 ng/g-pellet. These were one to three orders of magnitude lower than those observed for pellets from industrialized coastal zones (hundreds ng/g in Los Angeles, Boston, Tokyo; Ogata et al., 2009). Because these remote islands are far (>100 km) from industrialized zones, these concentrations (i.e., 0.1 to 10 ng/g-pellet) can be regarded as global "baseline" level of PCB pollution. Concentrations of DDTs in the remote island pellets ranged from 0.2 to 5.5 ng/g-pellet. At some locations, DDT was dominant over the degradation products (DDE and DDD), suggesting current usage of the pesticides in the islands. HCHs concentrations were 0.4 - 1.8 ng/g-pellet and lower than PCBs and DDTs, except for St. Helena Island at 18.8 ng/g-pellet where the current usage of the pesticides are of concern. The analyses of pellets from the remote islands provided "baseline" level of POPs (PCBs < 10 ng/g-pellet, DDTs < 6 ng/g-pellet, HCHs < 2 ng/g-pellet). However, the present samples were from tropical and subtropical areas. To establish global baseline, especially to understand the effects of global distillation, pellet samples from remote islands in higher latitude regions are necessary. From the eco-toxicological point of view, the fact that sporadic high concentrations of POPs were detected in some pellet samples from the remote islands is underscored. Some plastic debris which were contaminated in industrialized coastal zones may have rapidly transported to the remote islands before they would reach equilibrium (i.e., desorption completed). Because POPs concentrations in the other media are at trace levels in these remote environments, the sporadic high concentrations of POPs in the plastic debris may pose threat to the ecosystem in the remote islands.
Critical Science Issues for Direct Drive Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Dahlburg, Jill P.; Gardner, John H.; Schmitt, Andrew J.; Obenschain, S. P.
1998-09-01
There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF]: a pellet that produces high gain; a pellet fabrication system that cost-effectively and rapidly manufactures these pellets; a sufficiently uniform and durable high repetition-rate laser pellet driver; a practical target injection system that provides accurate pellet aiming; and, a target chamber that will survive the debris and radiation of repeated high-gain pellet implosions. In this summary we describe the science issues and opportunities that are involved in the design of a successful high gain direct drive Inertial Confinement Fusion [ICF] pellet.
Influence of apple pomace inclusion on the process of animal feed pelleting.
Maslovarić, Marijana D; Vukmirović, Đuro; Pezo, Lato; Čolović, Radmilo; Jovanović, Rade; Spasevski, Nedeljka; Tolimir, Nataša
2017-08-01
Apple pomace (AP) is the main by-product of apple juice production. Large amounts of this material disposed into landfills can cause serious environmental problems. One of the solutions is to utilise AP as animal feed. The aim of this study was to investigate the impact of dried AP inclusion into model mixtures made from conventional feedstuffs on pellet quality and pellet press performance. Three model mixtures, with different ratios of maize, sunflower meal and AP, were pelleted. Response surface methodology (RSM) was applied when designing the experiment. The simultaneous and interactive effects of apple pomace share (APS) in the mixtures, die thickness (DT) of the pellet press and initial moisture content of the mixtures (M), on pellet quality and production parameters were investigated. Principal component analysis (PCA) and standard score (SS) analysis were applied for comprehensive analysis of the experimental data. The increase in APS led to an improvement of pellet quality parameters: pellet durability index (PDI), hardness (H) and proportion of fines in pellets. The increase in DT and M resulted in pellet quality improvement. The increase in DT and APS resulted in higher energy consumption of the pellet press. APS was the most influential variable for PDI and H calculation, while APS and DT were the most influential variables in the calculation of pellet press energy consumption. PCA showed that the first two principal components could be considered sufficient for data representation. In conclusion, addition of dried AP to feed model mixtures significantly improved the quality of the pellets.
A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.
Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang
2018-06-07
In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.
Dimensionally stable metallic hydride composition
Heung, Leung K.
1994-01-01
A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.
PELLETS AND PELLETIZATION: EMERGING TRENDS IN THE PHARMA INDUSTRY.
Zaman, Muhammad; Saeed-Ul-Hassan, Syed; Sarfraz, Rai Muhammad; Batool, Nighat; Qureshi, Muhammad Junaid; Akram, Muhammad Abdullah; Munir, Saiqa; Danish, Zeeshan
2016-11-01
The present time is considered as an era of advancements in drug delivery systems. Different novel approaches are under investigation that range from uniparticulate to multi particulate system, macro to micro and nano particulate systems. Pelletization is one of the novel drug delivery technique that provides an effective way to deliver the drug in modified pattern. It is advantageous in providing site specific delivery of the drug. Drugs with unpleasant taste, poor bioavailability and short biological half-life can be delivered efficiently through pellets. Their reduced size makes them more valuable as compared to the conventional drug deliv- ery system. Different techniques are used to fabricate the pellets such as extrusion and spheronization, hot melt extrusion, powder layering, suspension or solution layering, freeze pelletization and pelletization by direct compression method. Various natural polymers including xanthan gum, guar gum, tragacanth and gum acacia, semisynthetic polymers like cellulose derivatives, synthetic polymers like derivatives of acrylamides, can be used in pellets formulation. Information provided in this review is collected from various national and intemational research articles, review articles and literature available in the books. The purpose of the current review is to discuss pellets, their characterizations, different techniques of pelletization and the polymers with potential of being suitable for pellets formulation.
Comparative Properties of Bamboo and Rice Straw Pellets
Xianmiao Liu; Zhijia Liu; Benhua Fei; Zhiyong Cai; Zehui Jiang; Xing' e Liu
2013-01-01
Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw...
Encapsulation of thermal energy storage media
Dhau, Jaspreet; Goswami, Dharendra; Jotshi, Chand K.; Stefanakos, Elias K.
2017-09-19
In one embodiment, a phase change material is encapsulated by forming a phase change material pellet, coating the pellet with flexible material, heating the coated pellet to melt the phase change material, wherein the phase change materials expands and air within the pellet diffuses out through the flexible material, and cooling the coated pellet to solidify the phase change material.
Nobre, C R; Santana, M F M; Maluf, A; Cortez, F S; Cesar, A; Pereira, C D S; Turra, A
2015-03-15
Apart from the physiological impacts on marine organisms caused by ingesting microplastics, the toxicity caused by substances leaching from these particles into the environment requires investigation. To understand this potential risk, we evaluated the toxicity of virgin (raw) and beach-stranded plastic pellets to the development of embryos of Lytechinus variegatus, simulating transfers of chemical compounds to interstitial water and water column by assays of pellet-water interface and elutriate, respectively. Both assays showed that virgin pellets had toxic effects, increasing anomalous embryonic development by 58.1% and 66.5%, respectively. The toxicity of stranded pellets was lower than virgin pellets, and was observed only for pellet-water interface assay. These results show that (i) plastic pellets act as a vector of pollutants, especially for plastic additives found on virgin particles; and that (ii) the toxicity of leached chemicals from pellets depends on the exposure pathway and on the environmental compartment in which pellets accumulate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxidizing Roasting Performances of Coke Fines Bearing Brazilian Specularite Pellets
NASA Astrophysics Data System (ADS)
Chun, Tiejun; Zhu, Deqing
2016-06-01
Oxidized pellets, consisting of Brazilian specularite fines and coke fines, were prepared by disc pelletizer using bentonite as binder. The roasting process of pellets includes preheating stage and firing stage. The compressive strength of preheated pellets and fired pellets reached the peak value at 1.5% coke fines dosage. During the initial stage of preheating, some original Fe2O3 was reduced to Fe3O4 because of partial reduction atmosphere in pellet. During the later stage of preheating and firing stage, coke fines were burnt out, and the secondary Fe2O3 (new generation Fe2O3) was generated due to the re-oxidization of Fe3O4, which improved the recrystallization of Fe2O3. Compared with the fired pellets without adding coke fines, fired pellets with 1.5% coke fines exhibited the comparable RSI (reduction swelling index) and RDI+3.15 mm (reduction degradation index), and slightly lower RI (reducibility index).
Guo, Feihong; Zhong, Zhaoping
2018-08-01
This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.
A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.
Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy
2015-06-20
The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.
A curious pellet from a great horned owl (Bubo virginianus)
Woodman, N.; Dove, C.J.; Peurach, S.C.
2005-01-01
One of the traditional methods of determining the dietary preferences of owls relies upon the identification of bony remains of prey contained in regurgitated pellets. Discovery of a pellet containing a large, complete primary feather from an adult, male Ring-necked Pheasant (Phasianus colchicus) prompted us to examine in detail a small sample of pellets from a Great Horned Owl (Bubo virginianus). Our analyses of feather and hair remains in these pellets documented the presence of three species of birds and two species of mammals, whereas bones in the pellets represented only mammals. This finding indicates an important bias that challenges the reliability of owl pellet studies making use of only osteological remains.
NASA Astrophysics Data System (ADS)
Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.
2012-01-01
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.
Wang, Hongjuan; Shen, Shaobo; Liu, Longhui; Ji, Yilong; Wang, Fuming
2015-01-01
In order to remove phosphate from wastewater, a large plastic adsorption column filled with big phosphate-adsorbing pellets with diameters of 10 mm, heated by electromagnetic induction coils, was conceived. It was found that the prepared big pellets, which were made of reduced steel slag and iron ore concentrate, contain magnetic Fe and Fe3O4. The thermodynamics and kinetics of adsorption of phosphate from synthetic wastewaters on the pellets were studied in this work. The phosphate adsorption on the pellets followed three models of Freundlich, Langmuir and Dubinin-Kaganer-Radushkevick. The maximum phosphate adsorption capacity Qmax of the pellets were 2.46, 2.74 and 2.77 mg/g for the three temperatures of 20°C, 30°C and 40°C, respectively, based on the Langmuir model. The apparent adsorption energies were -12.9 kJ/mol for the three temperatures. It implied that ion exchange was the main mechanism involved in the adsorption processes. The adsorbed phosphate existed on the pellet surface mainly in the form of Fe3(PO4)2. A reduction pre-treatment of the pellet precursor with H2 greatly enhanced pellet adsorption for phosphate. The adsorption kinetics is better represented by a pseudo-first-order model. The adsorbed phosphate amounts were similar for both real and synthetic wastewaters under similar adsorption conditions. The percentage of adsorbed phosphate for a real wastewater increased with increasing pellet concentration and reached 99.2% at a pellet concentration of 64 (g/L). Some specific phosphate adsorption mechanisms for the pellets were revealed and the pellets showed the potential to efficiently adsorb phosphate from a huge amount of real wastewaters in an industrial scale.
Floristic diversity, stand structure, and composition 11 years after herbicide site preparation
James H. Miller; Robert S. Boyd; M. Boyd Edwards
1999-01-01
This study tested for effects of site preparation herbicides applied at high labeled rates 11 years earlier on plant species richness, diversity, and stand structure and composition. Four study sites in three physiographic provinces were established in central Georgia in 1984. Six herbicide treatments were included on each site: hexazinone liquid, hexazinone pellets,...
Adiabatic Shear - An Annotated Bibliography
1974-07-01
A. Deformation Hardening/Softening B. Cryogenic Deformation C. Ductaity D. Plasticity !•-. Fracture F, Structure and Phase Transformation ...Structural changes and phase transformations are also noted. The Hiidden release of elastic stored energy, the high hydrostatic pressure, and the...crackintr increased with increasing pellet velocity. Slip without transformation was oliservcd in both the aluminum alloy and stainless steel plates
Pellet imaging techniques in the ASDEX tokamak
NASA Astrophysics Data System (ADS)
Wurden, G. A.; Büchl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W.
1990-11-01
As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow in situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 μs, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened Dα, Dβ, and Dγ spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2×1017 cm-3 or higher in the regions of strongest light emission. A spatially resolved array of Dα detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q surfaces, but instead are a result of dynamic, nonstationary, ablation process.
Pellet imaging techniques in the ASDEX tokamak (abstract)
NASA Astrophysics Data System (ADS)
Wurden, G. A.; Büchl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W.
1990-10-01
As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow in situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 μs, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened Dα, Dβ, and Dγ spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2×1017 cm-3 or higher in the regions of strongest light emission. A spatially resolved array of Dα detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q surfaces, but instead are a result of dynamic, nonstationary, ablation process.
Influences on particle shape in underwater pelletizing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
2014-05-15
Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die openingmore » were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.« less
Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia.
Nair, Ramkumar B; Lennartsson, Patrik R; Taherzadeh, Mohammad J
2016-12-01
Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus, Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0-10.0), agitation rate (100-150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0-4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast-fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L).
Kim, Min-Soo; Kim, Jeong-Soo; Hwang, Sung-Joo
2007-11-01
The aim of this study was to investigate the effect of sodium alginate on the physical and dissolution properties of Surelease-matrix pellets prepared by a novel pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The mean values of the shape factor (e(R)) and the aspect ratio of Surelease-matrix pellets were 0.615-0.625 and 1.06-1.070, respectively, indicating good sphericity of the pellets. The drug release rate increased as the amount of sodium alginate increased due to hydration, swelling, and erosion within the Surelease-matrix pellets. In addition, the porosity of pellets also increased with increasing sodium alginate content. The results of this study show that sodium alginate has a greater effect on the drug release rate than the drug release mechanism within the Surelease-matrix for sparingly water-soluble drug, such as tamsulosin hydrochloride.
Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production
NASA Astrophysics Data System (ADS)
Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan
2017-07-01
In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.
Kaminuma, T; Ohtake, C; Kabuyama, N
2000-01-01
Plastic debris are important marine pollutants. Plastic debris consist of resin pellets and waste plastics. We are particularly interested in resin pellets. We made field survey of resin pellets at nearly 400 sites in 200 beaches in Japan and neighboring countries. The pellets were found at all most all Japan coasts we surveyed and at some beaches of Macao, Hong Kong, Xiamen, the north of Taipei, and Cheju Island in Korea. The number of pellets was more than 1000 pieces per m2 on the most abundant beach in Japan. Through further analysis using GC/ECD, endocrine disrupting chemicals, PCBs, DDTs, HCHs and Nonylphenol were detected in selected samples. Biota such as Bryozoa were observed on the surface of pellets washed up on the beaches in subtropical areas. Pellets has been suspected to affect wildlife and human health, but we have no report on affection to human.
Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...
2016-06-28
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less
Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott
2016-09-01
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won
2015-06-24
The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016
NASA Technical Reports Server (NTRS)
Knox, James C.; Cmarik, Gregory E.; Watson, David
2016-01-01
Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; ...
2017-01-01
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Resurgence and alternative-reinforcer magnitude.
Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A
2017-03-01
Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. © 2017 Society for the Experimental Analysis of Behavior.
Resurgence and Alternative-Reinforcer Magnitude
Craig, Andrew R.; Browning, Kaitlyn O.; Nall, Rusty W.; Marshall, Ciara M.; Shahan, Timothy A.
2017-01-01
Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. PMID:28194793
Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.
1982-01-01
Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.
[Effects of different excipients on properties of Tongsaimai mixture and pellet molding].
Wang, Jin; Lv, Zhiyang; Wu, Xiaoyan; Di, Liuqing; Dong, Yu; Cai, Baochang
2011-01-01
To study preliminarily on the relationship between properties of the mixture composed of Tongsaimai extract and different excipients and pellet molding. The multivariate regression analysis was used to investigate the correlation of different mixture and pellet molding by measuring the cohesion, liquid-plastic limit of mixture, and the powder properties of pellets. The weighted coefficients of the powder properties were determined by analytic hierarchy process combined with criteria importance through intercriteria correlation. The results showed that liquid-plastic limit seemed to be a major factor, which had positive correlation with pellet molding, while cohesion had negative correlation with pellet molding in the measured range. The physical properties of the mixture has marked influence on pellet molding.
Pellets for fusion reactor refueling. Annual progress report, January 1, 1976--December 31, 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnbull, R. J.; Kim, K.
1977-01-01
The purpose of this research is to test the feasibility of refueling fusion reactors using solid pellets composed of fuel elements. A solid hydrogen pellet generator has been constructed and experiments have been done to inject the pellets into the ORMAK Tokamak. A theory has been developed to describe the pellet ablation in the plasma, and an excellent agreement has been found between the theory and the experiment. Techniques for charging the pellets have been developed in order to accelerate and control them. Other works currently under way include the development of techniques for accelerating the pellets for refueling purpose.more » Evaluation of electrostatic acceleration has also been performed.« less
SHEN, Guofeng; TAO, Shu; WEI, Siye; ZHANG, Yanyan; WANG, Rong; WANG, Bin; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Yuanchen; CHEN, Han; YANG, Yifeng; WANG, Wei; WEI, Wen; WANG, Xilong; LIU, Wenxing; WANG, Xuejun; SIMONICH, Staci L. Massey
2012-01-01
Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW) and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EFCO, EFOC, EFEC, EFPM, and EFPAH) were determined. The average EFCO, EFOC, EFEC, and EFPM were 1520±1170, 8.68±11.4, 11.2±8.7, and 188±87 mg/MJ for corn straw pellets, and 266±137, 5.74±7.17, 2.02±1.57, and 71.0±54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EFPAH for the two pellets were 1.02±0.64 and 0.506±0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EFOC and EFPM for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EFCO, EFOC, EFEC, and EFPM for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EFPAH were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners. PMID:22568759
Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y
2012-06-05
Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EF(PAH) were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.
Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abushagur, S.A.
1986-05-01
The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon withmore » restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.« less
A new tritiated water measurement method with plastic scintillator pellets.
Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke
2016-01-01
A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application.
Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production
NASA Astrophysics Data System (ADS)
Liao, Wei; Liu, Yan; Chen, Shulin
Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.
Drug-beta-cyclodextrin containing pellets prepared with a high-shear mixer.
Gainotti, Alessandro; Bettini, Ruggero; Gazzaniga, Andrea; Colombo, Paolo; Giordano, Ferdinando
2004-01-01
This work was aimed at investigating the preparation of beta-cyclodextrin-microcrystalline cellulose pellets by means of a high-shear mixer, both in the absence or in the presence of ibuprofen as model drug. Drug loading of pellets was accomplished by means of two alternative techniques: 1) solution layering or 2) powder layering. The prepared pellets were characterised in terms of size distribution, shape factor, friability and dissolution rate. The interaction between ibuprofen and beta-cyclodextrin was monitored by Differential Scanning Calorimetry (DSC). Micro Fourier Transform Infrared spectroscopy (MicroFTIR) was applied to determine the distribution of components within each pellet on a micro scale. Pellets with narrow size distribution and containing up to about 90% of BCD were prepared using water as binder. The process yield resulted around 84 and 63% for drug-free and medicate pellets respectively. Drug loaded pellets with favourable technological and biopharmaceutical characteristics can be obtained both by powder or solution layering techniques. The latter proved to be more suitable for producing pellets with high drug contents, reduced friability and high drug dissolution rates.
Itokazu, Maki; Wakitani, Shigeyuki; Mera, Hisashi; Tamamura, Yoshihiro; Sato, Yasushi; Takagi, Mutsumi; Nakamura, Hiroaki
2016-10-01
The object of this study was to determine culture conditions that create stable scaffold-free cartilage-like cell-sheets from human bone marrow-derived mesenchymal stem cells (hBMSCs) and to assess their effects after transplantation into osteochondral defects in nude rats. (Experiment 1) The hBMSCs were harvested from 3 males, the proliferative and chondrogenic capacities were assessed at passage 1, and the cells were expanded in 3 different culture conditions: (1) 5% fetal bovine serum (FBS), (2) 10% FBS, and (3) 5% FBS with fibroblast growth factor 2 (FGF-2). The cells were harvested and made chondrogenic pellet culture. The cell proliferation rate, glycosaminoglycan/DNA ratio, and safranin-O staining intensity of pellets cultured condition 3 were higher than those of conditions 1 and 2. (Experiment 2) The hBMSCs were expanded and passaged 3 times under culture condition 3, and fabricate the cell-sheets in chondrogenic medium either with or without FBS. The cell-sheets fabricated with FBS maintained their size with flat edges. (Experiment 3) The cell-sheets were transplanted into osteochondral defects in nude rats. Histological analysis was performed at 2, 4, and 12 weeks after surgery. The osteochondral repair was better after sheet transplantation than in the control group and significantly improved Wakitani score. Immunostaining with human-specific vimentin antibody showed that the transplanted cells became fewer and disappeared at 12 weeks. These results indicate that culture with FGF-2 may help to quickly generate sufficient numbers of cells to create stable and reliable scaffold-free cartilage-like cell-sheets, which contribute to the regeneration of osteochondral defects.
Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system
H. Clay Smith; Carter B. Gibbs
1970-01-01
In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.
Daniel Reed; Richard Bergman; Jae-Woo Kim; Adam Tayler; David Harper; David Jones; Chris Knowles; Maureen E. Puettmann
2012-01-01
In this article, we present cradle-to-gate life-cycle inventory (LCI) data for wood fuel pellets manufactured in the Southeast United States. We surveyed commercial pellet manufacturers in 2010, collecting annual production data for 2009. Weighted-average inputs to, and emissions from, the pelletization process were determined. The pellet making unit process was...
Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi
2012-01-01
The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...
Jan, Kulsum; Riar, C S; Saxena, D C
2015-12-01
Different agro-industrial wastes were mixed with different plasticizers and extruded to form the pellets to be used further for development of biodegradable molded pots. Bulk density and macro-porosity are the important engineering properties used to determine the functional characteristics of the biodegradable pellets viz., expansion volume, water solubility, product colour, flowability and compactness. Significant differences in the functional properties of pellets with varying bulk densities (loose and tapped) and macro-porosities (loose, tapped) were observed. The observed mean bulk density of biodegradable pellets made from different formulations ranged between 0.213 and 0.560 g/ml for loose fill conditions and 0.248 to 0.604 g/ml for tapped fill conditions. Biodegradable pellets bear a good compaction for both loose and tapped fill methods. The mean macro-porosity of biodegradable pellets ranged between 1.19 and 54.48 % for loose fill condition and 0.29 to 53.35 % for tapped fill condition. Hausner ratio (HR) for biodegradable pellets varied from 1.026 to 1.328, indicating a good flowability of biodegradable pellets. Pearson's correlation between engineering properties and functional properties of biodegradable pellets revealed that from engineering properties functional properties can be predicted.
Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H
2015-01-01
Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research.
In-line monitoring of pellet coating thickness growth by means of visual imaging.
Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan
2014-08-15
Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.
Büsing, Kirsten; Mietke-Hofmann, Henriette; Dibbert, Regina; Donandt, Dietz; Maier, Thomas; Zeyner, Annette
2013-01-01
A new batch of a supplemental feed was fed as pellets (diameter 8 mm) to two Warmblood-type horses. One horse developed watery diarrhoea within two days. Pronounced oedema due to hypalbuminemia was seen about ten days later. The feed was replaced by pellets of identical composition and mixing process, but lower diameter (5 mm). After one week of feeding, oedema regressed and faeces were normally formed. At refeeding the larger sized pellets, the symptoms recurred, but now both horses were affected. After a change to the smaller pellets, the horses recovered soon. Water activity (aw-value) of the larger and the smaller sized pellets was 0.68 and 0.56, respectively. In the larger sized pellets crude fat increased, whereas crude protein and nitrogen-free extracts decreased, giving a hint to microbial activity. Samples of both pellets were examined by VDLUFA methods and the microbial quality was classified in quality step 1. Though the quality parameters complied with recommendations for the product, it contained large numbers of spoilage indicating bacteria. The content of sulfite-reducing clostridia was higher in the 8 mm pellets than in the 5 mm pellets, with 3.3 x 10(2) and 1.1 x 10(2) colony forming units, respectively. The larger sized pellets produced remarkable quantities of gas. Bacillus cereus of non probiotic origin was identified.
Sundaram, Vijay; Muthukumarappan, Kasiviswanathan
2016-05-01
The effects of AFEX™ pretreatment, feedstock moisture content (5,10, and 15 % wb), particle size (screen sizes of 2, 4, and 8 mm), and extrusion temperature (75, 100, and 125 °C) on pellet bulk density, pellet hardness, and sugar recovery from corn stover, prairie cord grass, and switchgrass were investigated. Pellets were produced from untreated and AFEX™ pretreated feedstocks using a laboratory-scale extruder. AFEX™ pretreatment increased subsequent pellet bulk density from 453.0 to 650.6 kg m(-3) for corn stover from 463.2 to 680.1 kg m(-3) for prairie cord grass, and from 433.9 to 627.7 kg m(-3) for switchgrass. Maximum pellet hardness of 2342.8, 2424.3, and 1298.6 N was recorded for AFEX™ pretreated corn stover, prairie cord grass, and switchgrass, respectively. Glucose yields of AFEX™ corn stover pellets, prairie cord grass, and switchgrass pellets varied from 88.9 to 94.9 %, 90.1 to 94.9 %, and 87.0 to 92.9 %, respectively. Glucose and xylose yields of AFEX™ pellets were not affected by the extruder barrel temperature and the hammer mill screen size. The results obtained showed that low temperature and large particle size during the extrusion pelleting process can be employed for AFEX™-treated biomass without compromising sugar yields.
Dielectric response of branched copper phthalocyanine
NASA Astrophysics Data System (ADS)
Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.
2017-09-01
The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.
Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2016-02-01
CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.
Tritium proof-of-principle pellet injector: Phase 2
NASA Astrophysics Data System (ADS)
Fisher, P. W.; Gouge, M. J.
1995-03-01
As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-06-15
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
Pellet injection into H-mode ITER plasma with the presence of internal transport barriers
NASA Astrophysics Data System (ADS)
Leekhaphan, P.; Onjun, T.
2011-04-01
The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.
A centrifuge CO2 pellet cleaning system
NASA Technical Reports Server (NTRS)
Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.
1995-01-01
An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.
Complete reduction of high-density UO2 to metallic U in molten Li2O-LiCl
NASA Astrophysics Data System (ADS)
Choi, Eun-Young; Lee, Jeong
2017-10-01
The large size and high density of spent fuel pellets make it difficult to use the pellets directly in electrolytic reduction (also called as oxide reduction, OR) for pyroprocessing owing to the slow diffusion of molten Li2O-LiCl salt electrolyte into the pellets. In this study, we investigated complete OR of high-density UO2 to metallic U without any remaining UO2. Only partial reductions near the surface of high-density UO2 pellets were observed under operation conditions employing fast electrolysis rate that allowed previously complete reduction of low-density UO2 pellets. Complete reduction of high-density UO2 pellets was observed at fast electrolysis rate when the pellet size was reduced. The complete reduction of high-density UO2 pellets without size reduction was achieved at slow electrolysis rate, which allowed sufficient chemical reduction of UO2 with the lithium metal generated by the cathode reaction.
NASA Astrophysics Data System (ADS)
Morrison, Brandon; Golden, Jay S.
2018-02-01
Given increased policies driving renewable electricity generation and insufficient local production of woody biomass, many countries are reliant upon the importation of wood pellets. Of current wood pellet exports, the vast majority originates from the Southeastern United States (US). In this paper we present results from a cradle-to-gate, attributional process life cycle assessment in which two production scenarios of wood pellets were modelled for the Southeastern US: one utilising roundwood from a silviculture operation and the other utilising sawmill residues. The system boundary includes all steps from harvesting of the wood biomass, through delivery of the finished wood pellets to a US port facility. For each of the impact categories assessed, wood pellets from sawmill residues resulted in higher values, ranging from 5% to 31%. In relation to Global Warming Potential, roundwood pellets resulted in a 13-21% lower value than pellets produced from sawmill residues, depending upon the allocation method.
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John; Wang, Hong
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
Adsorption of trace metals to plastic resin pellets in the marine environment.
Holmes, Luke A; Turner, Andrew; Thompson, Richard C
2012-01-01
Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
Jiang, Hao; Wang, Jy-An John; Wang, Hong
2016-09-26
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
Karapanagioti, H K; Endo, S; Ogata, Y; Takada, H
2011-02-01
Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hexaferrite multiferroics: from bulk to thick films
NASA Astrophysics Data System (ADS)
Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.
2018-03-01
We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.
Fabrication and characterization of magnesium scaffold using different processing parameters
NASA Astrophysics Data System (ADS)
Toghyani, Saeid; Khodaei, Mohammad
2018-03-01
Structural and mechanical properties of scaffolds are important for hard tissue reconstruction. In this study, magnesium scaffolds were fabricated using space holder method for bone tissue reconstruction and the effect of cold compaction pressure and also volume percent of porosity on structural and mechanical properties of scaffolds were investigated using scanning electron microscopy (SEM) and uniaxial compression test. The carbamide spacer agent was also removed after pellet compaction, using NaOH solution and ethanol for the first time and their effect on phases present in scaffold after sintering was investigated using x-ray diffraction (XRD) analysis. Based on the results of mechanical and structural assessments, the optimum cold compaction pressure was selected 350 MPa for pellet compaction. The elastic modulus and strength of magnesium scaffolds including 67 vol.% porosity were in the range of 0.20–0.28 GPa and 4–4.25 MPa, respectively which is comparable to cancellous bone tissue. The mechanical properties of magnesium scaffolds decreased by increasing the porosity. The results also revealed that ethanol is a more suitable liquid for carbamide removal compared to NaOH solution.
NASA Astrophysics Data System (ADS)
Stam, C. N.; Neal, A.; Park, S.; Mielke, R.; Tsapin, A. I.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J. L.
2011-12-01
Microbial interactions with synthetic polymers in open ocean is poorly understood. Plastics are a major and persistent contaminant of ocean waters. Many of these plastics are contaminated with toxic and synthetic chemicals that persist in the environment with minimal degradation. The purpose of this study is to look at the effects that microbial biofilm communities have on both surface and chemical structures of pre-production resin pellets (PRPs). Pseudomonas aeruignosa was grown with PRPs under multiple growth and nutrient conditions. These conditions were combined with varying lengths of UV exposures common to ocean environments. Material degradation of the PRPs and the changing surface and chemical structures of these synthetic polymers was evaluated using a combination of Fourier transform infrared spectroscopy, environmental scanning electron microscopy, scanning transmission electron microscopy, X-ray microtomography, and ArcGIS mapping. This study correlates with previous studies conducted on environmental PRP's , collected on the 2009 Project Kaisei expedition in the Subtropical Convergence Zone of the North Pacific Gyre. Further studies are needed to develop a full understanding of degradation rates of synthetic polymers in oceanic environments.
Goksel, Mehmet A.
1983-11-01
Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.
A microwave cavity for measurement of the mass of hydrogen pellets
NASA Astrophysics Data System (ADS)
Sørensen, H.; Hansen, J. E.; Michelsen, P.; Sass, B.; Weisberg, K.-V.; Knudsen, O.; Michelsen, E.
1990-11-01
A description is given of a nondestructive method utilizing a microwave cavity for measuring the mass of high-speed pellets of solid hydrogen. The cavity is designed for use on a multishot pellet injector, where eight pellets are fired successively with trajectories being parallel and symmetrical around the injector axis. The cavity is cylindrical with the axis coinciding with the injector axis. When a pellet passes through the cavity through holes of 15-16 mm diameter, the change in resonant frequency is proportional to the pellet mass. As a result of the cylindrical symmetry the sensitivity will be identical for all pellets. The frequency shift is measured directly and is converted to a signal proportional to the size of the pellet. The cavity was calibrated with pellets of H2 and D2 containing around 6×1020 atoms and with velocities between 1200 and 1500 m/s. The sensitivity was found to be 300±15 mV/1020 atoms in both cases. This is in fair agreement with estimates made from the dielectric constants of solid H2 and D2. The cavity is built together with two optical detectors for time of flight measurements to form an integrated diagnostic unit.
Tagawa, Shin-Ichi; Yoshida, Norio; Iino, Yukihiro; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Watanabe, Maria; Takemura, Kei; Ito, Syuhei; Mikami, Toyoji
2017-01-01
This study was conducted to determine the effect of pelleting on in situ dry matter degradability of pelleted compound feed containing brown rice for dairy cows. Mash feed of the same composition was used as a control and the in situ study was conducted using three non-lactating Holstein steers fitted with a rumen cannula. The feeds contained 32.3% brown rice, 19.4% rapeseed meal, 11.4% wheat bran and 10.6% soybean meal (fresh weight basis). Except for moisture content, the chemical composition of the feed was not affected by pelleting. In situ dry matter disappearance of the feed increased from 0 to 2 h and after 72 h of incubation with pellet processing. Integration of the dry matter disappearance values over time revealed that degradability parameter a (soluble fraction) increased with pellet processing, whereas parameter b (potentially degradable fraction) decreased. Parameter c (fractional rate of degradation) and effective degradability (5% passage rate) were not affected by pellet processing. We concluded that pellet processing promotes rumen degradability at early incubation hours when the pelleted feed contains brown rice. © 2016 Japanese Society of Animal Science.
Automatic control system for uniformly paving iron ore pellets
NASA Astrophysics Data System (ADS)
Wang, Bowen; Qian, Xiaolong
2014-05-01
In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.
Remarks to SBS PCM based self-navigation of laser drivers
NASA Astrophysics Data System (ADS)
Kalal, M.; Matena, L.; Kong, HJ; Martinkova, M.; Cha, S.
2016-03-01
A novel technology of self-navigation of laser drivers on injected inertial fusion energy pellets employing phase conjugating mirrors based on stimulating Brillouin scattering was recently proposed. Its feasibility as well as various implications were gradually studied and working solutions to potential problems were always suggested. As this technology could help to overcome several burning key issues of inertial fusion (e.g., a sufficiently precise navigation of laser drivers on injected pellets in the case of a direct drive scheme and decreased requirements on high-repetition high-power lasers) it gradually started to attract a carefully measured tentative interest among the major inertial fusion oriented laboratories and projects. In this paper the next step in this research path will be reported. It concerns the resulting phase and amplitude structures created by multiple low energy drivers (glints) illuminating the pellet during the first stage of the process after their reflection and a subsequent superposition on the collecting/focusing final optics. It was demonstrated that with a large number of such drivers acting simultaneously from many angles the situation gets somewhat complicated and requires more detailed studies/suggestions of suitable configurations.
The Nutritional Balancing Act of a Large Herbivore: An Experiment with Captive Moose (Alces alces L)
Felton, Annika M.; Felton, Adam; Raubenheimer, David; Simpson, Stephen J.; Krizsan, Sophie J.; Hedwall, Per-Ola; Stolter, Caroline
2016-01-01
The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose’s self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality. PMID:26986618
Owl Pellet Analysis--A Useful Tool in Field Studies
ERIC Educational Resources Information Center
Medlin, G. C.
1977-01-01
Describes a technique by which the density and hunting habits of owls can be inferred from their pellets. Owl pellets--usually small, cylindrical packages of undigested bone, hair, etc.--are regurgitated by a roosting bird. A series of activities based on owl pellets are provided. (CP)
Rossner, Alan; Jordan, Carolyn E; Wake, Cameron; Soto-Garcia, Lydia
2017-10-01
The interest in biomass fuel is continuing to expand globally and in the northeastern United States as wood pellets are becoming a primary source of fuel for residential and small commercial systems. Wood pellets for boilers are often stored in basement storage rooms or large bag-type containers. Due to the enclosed nature of these storage areas, the atmosphere may exhibit increased levels of carbon monoxide. Serious accidents in Europe have been reported over the last decade in which high concentrations of carbon monoxide (CO) have been found in or near bulk pellet storage containers. The aim of this study was to characterize the CO concentrations in areas with indoor storage of bulk wood pellets. Data was obtained over approximately 7 months (December 2013 to June 2014) at 25 sites in New Hampshire and Massachusetts: 16 homes using wood pellet boilers with indoor pellet storage containers greater than or equal to 3 ton capacity; 4 homes with wood pellet heating systems with outdoor pellet storage; 4 homes using other heating fuels; and a university laboratory site. CO monitors were set up in homes to collect concentrations of CO in the immediate vicinity of wood pellet storage containers, and data were then compared to those of homes using fossil fuel systems. The homes monitored in this study provided a diverse set of housing stock spanning two and a half centuries of construction, with homes built from 1774 to 2013, representing a range of air exchange rates. The CO concentration data from each home was averaged hourly and then compared to a threshold of 9 ppm. While concentrations of CO were generally low for the homes studied, the need to properly design storage locations for pellets is and will remain a necessary component of wood pellet heating systems to minimize the risk of CO exposure. This paper is an assessment of carbon monoxide (CO) exposure from bulk wood pellet storage in homes in New Hampshire and Massachusetts. Understanding the CO concentrations in homes allows for better designs for storage bins and ventilation for storage areas. Hence, uniform policies for stored wood pellets in homes, schools, and businesses can be framed to ensure occupant safety. Currently in New York State rebates for the installation of wood pellet boilers are only provided if the bulk pellet storage is outside of the home, yet states such as New Hampshire, Vermont, and Maine currently do not have these restrictions.
SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems.
Gangradey, R; Mishra, J; Mukherjee, S; Panchal, P; Nayak, P; Agarwal, J; Saxena, Y C
2017-06-01
Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.
Sintering of wax for controlling release from pellets.
Singh, Reena; Poddar, S S; Chivate, Amit
2007-09-14
The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildrum, C.M.
1987-08-18
A fuel rod is described for a nuclear reactor fuel assembly, comprising: (a) a hollow cladding tube; (b) a pair of end plugs connected to and sealing the cladding tube at opposite ends thereof; (c) a plurality of fuel pellets contained on the tube and being composed of fissile material having a single enrichment the value of which is at the level of the maximum enrichment loading of the rod, the pellets having provided in a stack having one end disposed adjacent to one of the end plugs and an opposite end disposed remote from the other of the endmore » plugs; and (d) a plenum spring disposed in the tube between the other end plug and the opposite end of the pellet stack for retaining the pellets in a stack form; (e) at least some of the fuel pellets having an annular configuration and at least other of the fuel pellets having a solid configuration; (f) each of some of the annular fuel pellets having an annulus of a first size; (e) each of other of the annual fuel pellets having an annulus of a second size different from the first size, whereby graduation of axial enrichment loading is provided between the annual fuel pellets of the fuel rod.« less
Novel method to assess gastric emptying in humans: the Pellet Gastric Emptying Test
NASA Technical Reports Server (NTRS)
Choe, S. Y.; Neudeck, B. L.; Welage, L. S.; Amidon, G. E.; Barnett, J. L.; Amidon, G. L.
2001-01-01
To further validate the Pellet Gastric Emptying Test (PGET) as a marker of gastric emptying, a randomized, four-way crossover study was conducted with 12 healthy subjects. The study consisted of oral co-administration of enteric coated caffeine (CAFF) and acetaminophen (APAP) pellets in four treatment phases: Same Size (100 kcal), Fasted, Small Liquid Meal (100 kcal), and Standard Meal (847 kcal). The time of first appearance of measurable drug marker in plasma, t(initial), was taken as the emptying time for the markers. Co-administration of same size enteric coated pellets of CAFF and APAP (0.7 mm in diameter) revealed no statistically significant differences in t(initial) values indicating that emptying was dependent only on size and not on chemical make-up of the pellets. Co-administration of different size pellets indicated that the smaller 0.7-mm diameter (CAFF) pellets were emptied and absorbed significantly earlier than the larger 3.6-mm diameter (APAP) pellets with both the Small Liquid Meal (by 35 min) and the Standard Meal (by 33 min) (P<0.05). The differences in emptying of the pellets were not significant in the Fasted Phase. The results suggest that the pellet gastric emptying test could prove useful in monitoring changes in transit times in the fasted and fed states and their impact on drug absorption.
SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems
NASA Astrophysics Data System (ADS)
Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.
2017-06-01
Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.
Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks
NASA Astrophysics Data System (ADS)
Bosviel, Nicolas; Samulyak, Roman; Parks, Paul
2017-10-01
Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.
Tritium pellet injector for the tokamak fusion test reactor
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Baylor, L. R.; Combs, S. K.; Fisher, P. W.; Foust, C. R.; Milora, S. L.
The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the FY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability.
Carbon savings with transatlantic trade in pellets: accounting for market-driven effects
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu
2015-11-01
Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...
2017-05-10
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
Grondin, G; St-Jean, P; Beaudoin, A R
1992-04-01
The secretory product of the exocrine pancreas contains sedimentable and non-sedimentable materials. Electron microscopy of the pellet obtained after ultracentrifugation reveals two major components: microvesicles (pancreasomes) and a fibrillar network of small mesh size. Negative staining of an unfixed pellet demonstrated that these structures are not fixation artifacts. Cytochemical analysis showed that pancreasomes are reactive to osmication and uranyl acetate staining, whereas the fibrillar network was unreactive thereby indicating that the latter does not contain lipids; however, lead citrate staining reveals the network. Alcian blue, known to bind sulfate groups of mucosubstances, reacted strongly with the fibrillar network. The pellet was also characterized by immunocytochemistry with specific antibodies to amylase and glycoprotein 2 (GP2). Both antibodies were located only on the fibrillar network. Washing of the pellet with 100 mM KCl-250 mM NaBr had little effect on GP2 content, but reduced considerably alpha-amylase associated with the reticular matrix. It appeared that GP2 was the major component of the scaffolding that gives rise to the fibrillar network and that other proteins such as alpha-amylase could reversibly bind to it. When double-labeling immunocytochemistry was carried out on the unwashed pellet, labeling of the first antigen reduced the labeling of the second. Removal of amylase by washing the pellet increased the GP2 signal. These results indicate that amylase is bound on the GP2 network. Although the function of the GP2 network is still not clearly defined several possibilities could be envisaged at the level of the pancreatic duct system: 1) The network could drain off any aggregates or precipitates forming in small ducts. 2) The small mesh of the network would present a physical barrier to infecting bacteria that could enter into the duct system from the intestine, especially in conditions of low flow rates. 3) The network may exert a mechanical pressure on the membranes bordering the acinar lumen and small ducts thereby preventing their collapse in basal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrante, J.G.; Ptak, D.J.
1978-01-01
Heterotrophic microbes decompose most of the calanoid copepod fecal pellets produced in Lake Michigan before they reach the sediment. Rod-shaped nonfermenters isolated from copepod and Mysis relicta fecal pellets were identified as Pseudomonas maltophilia and Pseudomonas fluorescens species. No enterobacteriaceae or fungal hyphae were found on or in any pellets. This investigation suggests that Pseudomonas species are attached to and may degrade Mysis relicta and calanoid copepod fecal pellets in the water column of Lake Michigan.
An automatic pellet dispenser for precise control of feeding topography in granivorous birds
Berkhoudt, H.; Van Der Reijden, D.; Heijmans, M.
1987-01-01
Design and construction of an automatic pellet dispenser for granivorous birds are described. The dispenser permits rapid pneumatic delivery of pellets (five pellets per second maximum) to one controlled position and does not interfere with simultaneous electrophysiological recording. In addition, the device continuously indicates presence or absence of a pellet in the delivery position. This automatic dispenser proved very effective in our studies of stereotyped topographies of feeding in granivorous birds, such as pigeons and chickens. PMID:16812503
Apparatus for producing laser targets
Jarboe, T.R.; Baker, W.R.
1975-09-23
This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection. (auth)
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Milovanov, O. Yu; Sinelshchikov, V. A.; Sytchev, G. A.; Zaichenko, V. M.
2015-11-01
Effect of torrefaction on consumer characteristics of fuel pellets made of low-grade and agricultural waste is shown. Data on the volatile content, ash content, calorific value and hygroscopicity for initial pellets and pellets, heat-treated at various temperatures are presented. The experimental study of the combustion process of initial and heat-treated pellets showed that torrefaction of pellets leads to a decreasing of the ignition temperature and an increasing of the efficiency of boiler plant.
Long-term persistence of spent lead shot in tundra wetlands
Flint, Paul L.; Schamber, Jason L.
2010-01-01
We seeded experimental plots with number 4 lead pellets and sampled these plots for 10 years to assess the settlement rate of pellets in tundra wetland types commonly used by foraging waterfowl. After 10 years, about 10% of pellets remained within 6 cm of the surface, but >50% remained within 10 cm. We predict that spent lead pellets will eventually become unavailable to waterfowl; however, it will likely require >25 years for all pellets to exceed depths at which waterfowl species may forage.
Pellet injection research on the HT-6M and HT-7 tokamaks
NASA Astrophysics Data System (ADS)
Yang, Yu; Bao, Yi; Li, Jiangang; Gu, Xuemao; He, Yexi
1999-11-01
A multishot in situ pellet injection system has been constructed in the Institute of Plasma Physics. Single- and multi-pellet injection experiments were performed on the HT-6M and superconducting HT-7 tokamaks. The system proved to be convenient and reliable to operate. Pellets were fired into ohmically and LHCD and ICRF heated plasmas. Single pellet injection in ohmic discharge was found to increase the central density of HT-7 by about one half, while two pellet injection increased the central density in a step-like fashion by one half with each shot. Peaking of the electron density profile and a hollow electron temperature profile were obtained.
Underwater sympathetic detonation of pellet explosive
NASA Astrophysics Data System (ADS)
Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito
2017-06-01
The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.
Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.
2016-09-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.
Manufacture of Regularly Shaped Sol-Gel Pellets
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Johnston, James C.; Kinder, James D.
2006-01-01
An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.
GLOBAL WOOD PELLET INDUSTRY AND MARKET – CURRENT DEVELOPMENTS AND OUTLOOK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrän, Daniela; Peetz, David; Schaubach, Kay
The wood pellet use in the heating and electricity sector has recorded a steady growth in the last years. IEA bioenergy task 40 carried out an update of the situation on the national pellet markets in the most relevant pellet producing countries and the global development as well. Various country specific data is collected and compiled for more than 30 countries, containing updated information about regulatory framework, production, consumption, price trends, quality standards and trade aspects. The analysis confirmed the positive development in terms of production and consumption of wood pellets in almost all countries. In 2015 more than 26more » Mt of wood pellets have been produced and consumed worldwide. Technologies and markets become more mature. Increased international pellet trade needs to be supported by adequate frame condition not only for commerce, but also with regard to sustainability issues.« less
NASA Astrophysics Data System (ADS)
Hu, Li-Shuang; Hu, Shuang-Qi; Cao, Xiong; Zhang, Jian-Ren
2014-01-01
The insensitive main charge explosive is creating new requirements for the booster pellet of detonation trains. The traditional cylindrical booster pellet has insufficient energy output to reliably initiate the insensitive main charge explosive. In this research, a concave spherical booster pellet was designed. The initiation capacity of the concave spherical booster pellet was studied using varied composition and axial steel dent methods. The initiation process of the concave spherical booster pellet was also simulated by ANSYS/LS-DYNA. The results showed that using a concave spherical booster allows a 42% reduction in the amount of explosive needed to match the initiation capacity of a conventional cylindrical booster of the same dimensions. With the other parameters kept constant, the initiation capacity of the concave spherical booster pellet increases with decreased cone angle and concave radius. The numerical simulation results are in good agreement with the experimental data.
Use of implantable pellets to administer low levels of methyl mercury to fish
Arnold, B.S.; Jagoe, C.H.; Gross, T.S.
1999-01-01
Implantable pellets of methyl mercury chloride were tested in Nile Tilapia (Oreochromis niloticus) to appraise the effectiveness of the method for chronic studies of mercury. Two dosing regimes of 15 and 1.5 grams/CH3HgCl pellet (test 1) and 1 and 0.1 grams/pellet (test 2-3) of methyl mercury chloride were used in three tests. Additional pellets containing only matrix were used as controls. The pellets were inserted into the peritoneal cavity along with a microchip for identification. Three methods of incision closure: sutures and two types of surgical glue, were tested. Pellets used in test one released the dose too fast, resulting in premature death of the fish. Results from test 2 and 3 show blood mercury concentrations over time and tissue levels at necropsy consistent with dose suggesting that this is a viable method of dosing fish.
Microstructure of bentonite in iron ore green pellets.
Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas
2014-02-01
Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.
Biomass Feedstocks | Bioenergy | NREL
publications. Photo of a group of smiling men and women posing in a casual office setting. Thermochemical xylose) from bioconversion of pelleted and non-pelleted corn stover (CS), Switchgrass (SWG), and Hybrid Variety on the x-axis, showing Non-pelleted (yellow) and Pelleted (orange) results for five groups of data
A Review of Pellets from Different Sources
Miranda, Teresa; Montero, Irene; Sepúlveda, Francisco José; Arranz, José Ignacio; Rojas, Carmen Victoria; Nogales, Sergio
2015-01-01
The rise in pellet consumption has resulted in a wider variety of materials for pellet manufacture. Thus, pellet industry has started looking for alternative products, such as wastes from agricultural activities, forestry and related industries, along with the combination thereof, obtaining a broad range of these products. In addition, the entry into force of EN ISO 17225 standard makes wood pellet market (among other types) possible for industry and household purposes. Therefore, wastes that are suitable for biomass use have recently increased. In this study, the main characteristics of ten kinds of laboratory-made pellets from different raw materials were analyzed. Thus, we have focused on the most limiting factors of quality standards that determine the suitability for biomass market, depending on the kind of pellet. The results showed considerable differences among the analyzed pellets, exceeding the limits established by the standard in almost all cases, especially concerning ash content and N and S composition. The requirements of the studied standard, very demanding for certain factors, disable the entry of these densified wastes in greater added value markets. PMID:28788009
Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time
Robbins, Eleanora Iberall; Porter, Karen Glaus; Haberyan, Kurt A.
1985-01-01
Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 × 110 μm and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr. Images PMID:16593599
Steam explosion of oil palm residues for the production of durable pellets
Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; ...
2015-01-03
Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less
Co-pelletization of sewage sludge and agricultural wastes.
Yilmaz, Ersel; Wzorek, Małgorzata; Akçay, Selin
2018-06-15
This paper concerns the process of production and properties of pellets based on biomass wastes. Co-pelletization was performed for sewage sludge from municipal wastewater treatment plant and other biomass material such as animal and olive wastes. The aim of the present study was to identify the key factors affecting on the sewage sludge and agricultural residues co-pelletization processes conditions. The impact of raw material type, pellet length, moisture content and particle size on the physical properties was investigated. The technic and technological aspects of co-pelletization were discussed in detail. The physical parameters of pellets, i.e.: drop strength, absorbability and water resistance were determined. Among others, also energy parameters: low and high heat value, content of ash and volatiles were presented. Results showed the range of raw materials moisture, which is necessary to obtain good quality biofuels and also ratio of sewage sludge in pelletizing materials. The analysis of the energetic properties has indicated that the pellet generated on the basis of the sewage sludge and another biomass materials can be applied in the processes of co-combustion with coal. Those biofuels are characterised with properties making them suitable for use in thermal processes and enabling their transport and storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steam explosion of oil palm residues for the production of durable pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab
Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less
Comparison of arsenic content in pelletized poultry house waste and biosolids fertilizer.
Nachman, Keeve E; Mihalic, Jana N; Burke, Thomas A; Geyh, Alison S
2008-03-01
Managers of human biosolids have been incorporating the practice of waste pelletization for use as fertilizer since the mid 1920s, and waste pelletization has recently been embraced by some poultry producers as a way to move nutrients away from saturated agricultural land. However, the presence of arsenic in pelletized poultry house waste (PPHW) resulting from the use of organoarsenical antimicrobial drugs in poultry production raises concerns regarding additional incremental population exposures. Arsenic concentrations were determined in PPHW and pelletized biosolids fertilizer (PBF) samples. Pellets were processed using strong acid microwave digestion and analyzed by graphite furnace atomic absorption spectroscopy. The mean arsenic concentration in PPHW (20.1 ppm) fell within the lower part of the range of previously report arsenic concentrations in unpelletized poultry house waste. Arsenic concentrations in PBF, the source of which is less clear than for PPHW, were approximately a factor of 5 times lower than those in PPHW, with a mean concentration of 4.1 ppm. The pelletization and sale of these biological waste fertilizers present new pathways of exposure to arsenic in consumer populations who would otherwise not come into contact with these wastes. Arsenic exposures in humans resulting from use of these fertilizer pellets should be quantified to avoid potential unintended negative consequences of managing wastes through pelletization.
da Silva, Patrícia Garcia; Oliveira, Luana Martins Schaly; de Oliveira, Nayanne Rodrigues; de Moura Júnior, Fábio Ataides; Silva, Maura Regina Sousa; Cordeiro, Deibity Alves; Minafra, Cibele Silva; Dos Santos, Fabiana Ramos
2018-01-01
This study aimed to assess the effect of pelleted and expanded sorghum-based feeds prepared with different moisture levels and particle size of ingredients on metabolizable energy, ileal digestibility of amino acids and broiler performance. The experiment was performed with 720 male broiler chicks of the Cobb strain, with treatments of six replications, with 15 birds each; they were arranged in a completely randomized design and 2×2×2 factorial scheme (pelleted or expanded feed processing, 0.8% or 1.6% moisture addition in the mixer, and particle size of 650 or 850 microns). Higher pellet quality (pellets, % and pellet durability index [PDI]) was obtained in expanded diets and inclusion of 1.6% moisture. The particle size of 850 microns increased the PDI of final diet. All studied treatments had no significant effect on weight gain and broiler carcass and cut yields. Lower feed conversion occurred for birds fed pelleted feed at 42 d. The highest apparent metabolizable energy (AME) and apparent metabolizable energy corrected to zero nitrogen balance (AMEn) values of feed in the initial rearing phase (10 to 13 days) were observed in birds fed pelleted feed or for feed prepared with 1.6% moisture. The highest ileal digestibility coefficients of amino acids were obtained with the consumption of pelleted feed prepared with a particle size of 650 microns and 1.6% moisture. Pelleted feed prepared with a milling particle size of 650 microns and 1.6% moisture provided increased ileal digestibility of amino acids and AMEn in the starter period. However, the expanded feed improved pellet quality and feed conversion of broilers at 42 days of age. We conclude that factors such as moisture, particle size and processing affect the pellet quality, and therefore should be considered when attempting to optimize broiler performance.
2018-01-01
Objective This study aimed to assess the effect of pelleted and expanded sorghum-based feeds prepared with different moisture levels and particle size of ingredients on metabolizable energy, ileal digestibility of amino acids and broiler performance. Methods The experiment was performed with 720 male broiler chicks of the Cobb strain, with treatments of six replications, with 15 birds each; they were arranged in a completely randomized design and 2×2×2 factorial scheme (pelleted or expanded feed processing, 0.8% or 1.6% moisture addition in the mixer, and particle size of 650 or 850 microns). Results Higher pellet quality (pellets, % and pellet durability index [PDI]) was obtained in expanded diets and inclusion of 1.6% moisture. The particle size of 850 microns increased the PDI of final diet. All studied treatments had no significant effect on weight gain and broiler carcass and cut yields. Lower feed conversion occurred for birds fed pelleted feed at 42 d. The highest apparent metabolizable energy (AME) and apparent metabolizable energy corrected to zero nitrogen balance (AMEn) values of feed in the initial rearing phase (10 to 13 days) were observed in birds fed pelleted feed or for feed prepared with 1.6% moisture. The highest ileal digestibility coefficients of amino acids were obtained with the consumption of pelleted feed prepared with a particle size of 650 microns and 1.6% moisture. Conclusion Pelleted feed prepared with a milling particle size of 650 microns and 1.6% moisture provided increased ileal digestibility of amino acids and AMEn in the starter period. However, the expanded feed improved pellet quality and feed conversion of broilers at 42 days of age. We conclude that factors such as moisture, particle size and processing affect the pellet quality, and therefore should be considered when attempting to optimize broiler performance. PMID:28920405
NASA Astrophysics Data System (ADS)
Combs, S. K.
1993-07-01
During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures (≂10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of ≂1-2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1-40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice. A few two-stage pneumatic systems (single-shot) have recently been installed on tokamak experiments. This article reviews the equipment and instruments that have been developed for pellet injection with emphasis on recent advances. Prospects for future development are addressed, as are possible applications of this technology to other areas of research.
NASA Astrophysics Data System (ADS)
Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.
2012-01-01
The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter that tend to prevail in sediment traps. We suggest that this is because krill schools are more compact, producing "rain showers" of pellets that exceed the capacity of pelagic scavengers to reprocess them.
Effects of pelleting conditioner retention time on nursery pig growth performance.
Lewis, L L; Stark, C R; Fahrenholz, A C; Goncalves, M A D; DeRouchey, J M; Jones, C K
2015-03-01
A total of 180 nursery pigs (PIC 327 × 1050; initially 12.6 kg) were used in an 18-d study to determine the effects of pellet mill conditioning parameters and feed form on pig performance. All diets were similar, and different feed processing parameters were used to create experimental treatments. Factors considered were conditioning time (15, 30, or 60 s) and feed form (mash or pelleted). To remove the confounding factor of feed form, pelleted samples were reground to a similar particle size as the mash diet. Treatments included: 1) mash diet without thermal processing (negative control), 2) pelleted diet conditioned for 30 s (positive control), 3) pelleted diet conditioned for 15 s and reground, 4) pelleted diet conditioned for 30 s and reground, and 5) pelleted diet conditioned for 60 s and reground. Pigs were weaned and fed a common acclimation diet for 21 d before the start of the experiment. Growth and feed disappearance were then measured for 18 d. All diets had similar levels of percentage total starch, but thermally processed diets had a 1.67 to 1.87-fold increase in percentage gelatinized starch compared to the mash diet. Average daily gain and G:F did not differ between treatments overall, but pigs fed the positive control pelleted diet had decreased ADFI ( < 0.05) compared to pigs fed all other diets. Preplanned contrasts revealed that pigs fed mash diets tended to have greater ADG ( < 0.10) compared to those fed pelleted and reground diets. This suggests that processing may have had a negative influence on feed utilization, which is further supported by the finding that pigs fed mash diets tended to have greater ADG ( < 0.10) compared to those fed diets that were thermally processed, regardless of regrinding. Considering these results, it was not surprising that pigs fed mash diets had greater ADG and ADFI ( < 0.05) than those fed pelleted diets. When directly comparing diets conditioned at 60 rpm, fed either as whole pellets or reground to mash consistency, pigs fed pelleted diets had improved G:F ( < 0.05) due to lower ADFI ( < 0.05) but similar ADG. The expected improvement in G:F from pelleting (6.8%) was observed but lost when diets were reground to near original mash particle size. This may indicate that diet form from the actual pelleting process impacts G:F more than conditioner retention time.
Shlieout, George; Koerner, Andreas; Maffert, Mario; Forssmann, Kristin; Caras, Steven
2011-01-01
In clinical practice, the need sometimes arises to administer pancreatic enzyme replacement therapy via gastrostomy tube (G-tube) by mixing the pellets contained in the capsules with soft food. The objective of this study was to identify G-tubes that allow administration of pancrelipase gastro-resistant pellets without clogging, sticking, pellet damage or loss of enteric coating integrity. In this in vitro study, CREON® (pancrelipase) Delayed-Release Capsules were opened and the pellets sprinkled onto a small amount of baby food of pH <4.5 (applesauce and bananas manufactured by both Gerber and Beech-Nut). The mixture was stirred gently and after 15 minutes poured into a 35 mL syringe and pushed slowly (~15 mL in 10-15 seconds) through a G-tube. Pellets were collected and the tube flushed with water. G-tubes were inspected visually for clogging/sticking and damage to pellets was assessed. If there was none with all four foods, pellet integrity (gastric resistance and lipase activity) was assessed by an in vitro dissolution method with a 2-hour gastric simulation step. The activity required to confirm integrity was ≥80% of actual US Pharmacopeia lipase activity per capsule. G-tubes initially tested were Kimberly-Clark MIC Bolus® size 14 French (Fr) and upwards and Kimberly-Clark MIC-KEY® 14 Fr and upwards. Following successful testing, assessment of Bard® Tri-Funnel 18 Fr and Bard® Button 18 Fr G-tubes was carried out. Based on the absence of clogging, sticking and visible damage to pellets, and the maintenance of pellet integrity, administration of CREON® pancrelipase pellets was feasible through the following G-tubes: Kimberly-Clark MIC Bolus® size 18 Fr, Kimberly-Clark MIC-KEY® 16 Fr, Bard® Tri-Funnel 18 Fr and Bard® Button 18 Fr. Lipase activity met the predetermined specification and was ≥90% for all four tubes and all four foods, with no differences versus untreated pellets (i.e. pellets not mixed with baby food or pushed through a G-tube). These data apply to all CREON® pancrelipase capsule formulations, regardless of their strength in lipase units, as pellet composition, size and quality are identical. CREON® pancrelipase pellets can be mixed with baby food of pH <4.5 and administered via the following G-tubes without clogging, sticking or visible pellet damage, and with no loss of gastric resistance or lipase activity: Kimberly-Clark MIC Bolus® size 18 Fr and larger, Kimberly-Clark MIC-KEY® 16 Fr and larger, Bard® Tri-Funnel 18 Fr and larger and Bard® Button 18 Fr and larger.
Development of a Tritium Extruder for ITER Pellet Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.J. Gouge; P.W. Fisher
As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder andmore » is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. About 38 g of tritium have been utilized in the experiment. The tritium was received in eight batches, six from product containers and two from the Isotope Separation System. Two types of runs were made: those in which the material was only extruded and those in which pellets were produced and fired with deuterium propellant. A total of 36 TZ runs and 28 D-T runs have been made. A total of 36 pure tritium runs and 28 D-T mixture runs were made. Extrusion experiments indicate that both T2 and D-T will require higher extrusion forces than D2 by about a factor of two.« less
Marchesini, Sofia; McGilvery, Catriona M; Bailey, Josh; Petit, Camille
2017-10-24
Production of biocompatible and stable porous materials, e.g., boron nitride, exhibiting tunable and enhanced porosity is a prerequisite if they are to be employed to address challenges such as drug delivery, molecular separations, or catalysis. However, there is currently very limited understanding of the formation mechanisms of porous boron nitride and the parameters controlling its porosity, which ultimately prevents exploiting the material's full potential. Herein, we produce boron nitride with high and tunable surface area and micro/mesoporosity via a facile template-free method using multiple readily available N-containing precursors with different thermal decomposition patterns. The gases are gradually released, creating hierarchical pores, high surface areas (>1900 m 2 /g), and micropore volumes. We use 3D tomography techniques to reconstruct the pore structure, allowing direct visualization of the mesopore network. Additional imaging and analytical tools are employed to characterize the materials from the micro- down to the nanoscale. The CO 2 uptake of the materials rivals or surpasses those of commercial benchmarks or other boron nitride materials reported to date (up to 4 times higher), even after pelletizing. Overall, the approach provides a scalable route to porous boron nitride production as well as fundamental insights into the material's formation, which can be used to design a variety of boron nitride structures.
Recovery of urinary nanovesicles from ultracentrifugation supernatants.
Musante, Luca; Saraswat, Mayank; Ravidà, Alessandra; Byrne, Barry; Holthofer, Harry
2013-06-01
Urinary vesicles represent a newly established source of biological material, widely considered to faithfully represent pathological events in the kidneys and the urogenital epithelium. The majority of currently applied isolation protocols involve cumbersome centrifugation steps to enrich vesicles from urine. To date, the efficiency of these approaches has not been investigated with respect to performing quantitative and qualitative analyses of vesicle populations in the pellet and supernatant (SN) fractions. After the series of differential centrifugations, the final SN was reduced to one-twentieth of the original volume by ammonium sulphate precipitation, with the precipitate pellet subjected to another round of differential centrifugations. Electron microscopy, dynamic light scattering and western blot analysis were used to characterize the vesicles present in individual fractions of interest. Pellets obtained after the second set of centrifugations at 200 000 g revealed the presence of vesicles which share a common marker profile, but with distinct differences from those seen in the initial 200 000 g pellet used as the reference. This suggests an enrichment of previously uncharacterized urinary vesicles still in solution after the initial centrifugation steps. Analysis of protein yields recovered post-ultracentrifugation revealed an additional 40% of vesicles retained from the SN. Moreover, these structures showed a formidable resistance to harsh treatments (e.g. 95% ammonium sulphate saturation, hypotonic dialysis, 0.3 M sodium hydroxide). Methods which employ differential centrifugations of native urine are remarkably ineffective and may lose a substantial population of biologically important vesicle species.
Characterization of Residential Scale Biofuel Boilers and Fuels
NASA Astrophysics Data System (ADS)
Chandrasekaran, Sriraam R.
The objectives of this study were to: 1) characterize commercially available wood pellets and wood chips for basic properties such as calorific, ash, moisture contents; 2) analyze elements and ions and other possible contamination during the pellet manufacturing processes; 3) characterize the chemical and thermo-chemical property of grass pellets for their combustion potential; 4) characterize the emissions from 6 different residential scale boiler/furnace appliances burning grass and wood pellets; 5) characterize the emitted particulate matter for toxic and marker species with respect to combustion appliance and combustion conditions; and 6) determine the effects of the biomass fuel properties of 5 different grass pellets on particulate and gaseous emissions from a single type of boiler. The results from characterization of wood pellets and chips indicated that the wood pellet samples generally meet the quality standards. However, there are some samples that would fail the ash content requirements. Only the German standards have extensive trace element limits. Most of the samples would meet these standards, but some samples failed to meet these standards based on their lead, arsenic, cadmium, and copper concentrations. It is likely that inclusion of extraneous materials such as painted or pressure treated lumber led to the observed high concentrations. Given increasing use of pellets and chips as a renewable fuel, standards for the elemental composition of commercial wood pellets and chips are needed in United States to avoid the inclusion of extraneous materials. Such standards would reduce the environmental impact of toxic species that would be released when the wood is burned. Grass pellets were characterized for chemical and thermochemical properties. Switch grass pellets were studied for it thermal degradation process under inert and oxidizing atmosphere using TGA. The thermal degradation of grass pellet measured the activation energy and pre-exponential factors for switch grass decomposition. Two major losses occurred due to volatilization of cellulose, hemicelluloses, and lignin and burning or slow oxidation of residual char. The parameters were high for oxidative environment indicating high temperature sensitivity of the charcoal formation reaction. There was a substantial effect of heating rate on the mass loss and mass loss rate. The TG curve shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatlization rates increased. Emissions measurements and efficiency estimation were conducted on six commercially available residential scale appliances that utilize different technologies including direct combustion, gasification, lambda control, or fixed air flow rates that were designed to burn low ash wood (less than 1%). The grass has high ash and chlorine content producing more PM and chlorinated hydrocarbons including dioxins and furans. The results also indicated that the air supply and geometry of the furnace, and the type of furnace are also major influencing factors that affect the pollutant formation. To determine the effect of fuel properties on emissions formation, gaseous and particulate characterization was conducted of six fuels that include five different grass pellets types with ash content ranging from 3% to 13% and a premium wood pellet with ash content 0.6% on a boiler. Emissions from grass pellets were found to be higher than wood pellets and the PM; SO2 and NOx emissions were strongly related to the fuel properties such as ash content, sulfur and nitrogen content, respectively. CO emissions that indicate the completeness of reactions were higher for grass pellets and were strongly correlated to PAHs emissions. The PCDD/F emission was clearly a function of chlorine content of the fuel. A strong correlation existed between levoglucosan and PM2.5 concentrations indicated that levoglucosan is also a molecular marker for grass pellet combustion. All of the emissions were found to be higher for grass pellets when compared to the wood pellets and are higher at high loads than at low loads. These results show that the grass pellets cannot be used as a fuel in current generation wood pellet systems. It will be necessary to design systems that effectively deal with the higher ash and chlorine content if grass pellets are to be a significant fuel for home heating. (Abstract shortened by UMI.)
Stable isotopes reveal rail-associated behavior in a threatened carnivore.
Hopkins, John B; Whittington, Jesse; Clevenger, Anthony P; Sawaya, Michael A; St Clair, Colleen Cassady
2014-01-01
Human-wildlife conflict is a leading cause of adult mortality for large carnivores worldwide. Train collision is the primary cause of mortality for threatened grizzly bears (Ursus arctos) in Banff National Park. We investigated the use of stable isotope analysis as a tool for identifying bears that use the railway in Banff. Rail-associated bears had higher δ(15)N and δ(34)S values than bears sampled away from the rail, but similar δ(13)C values. Because elevated δ(15)N values are indicative of higher animal protein consumption, rail-associated bears likely preyed on ungulates that foraged along the rail or scavenged on train-killed animals. The higher δ(34)S values in bear hair could have resulted from bears consuming sulfur pellets spilled on the rail or through the uptake of sulfur in the plants bears or animals consumed. Similar δ(13)C values suggest that the two types of bears had generally similar plant-based diets. Results from this study suggest that stable isotopes analysis could be used as a non-invasive, affordable, and efficient technique to identify and monitor bears that forage on the railway in Banff and potentially other transportation corridors worldwide.
Stable isotopes reveal rail-associated behavior in a threatened carnivore
Hopkins, John B.; Whittington, Jesse; Clevenger, Anthony P.; Sawaya, Michael A.; St. Clair, Colleen Cassady
2014-01-01
Human–wildlife conflict is a leading cause of adult mortality for large carnivores worldwide. Train collision is the primary cause of mortality for threatened grizzly bears (Ursus arctos) in Banff National Park. We investigated the use of stable isotope analysis as a tool for identifying bears that use the railway in Banff. Rail-associated bears had higher δ15N and δ34S values than bears sampled away from the rail, but similar δ13C values. Because elevated δ15N values are indicative of higher animal protein consumption, rail-associated bears likely preyed on ungulates that foraged along the rail or scavenged on train-killed animals. The higher δ34S values in bear hair could have resulted from bears consuming sulfur pellets spilled on the rail or through the uptake of sulfur in the plants bears or animals consumed. Similar δ13C values suggest that the two types of bears had generally similar plant-based diets. Results from this study suggest that stable isotopes analysis could be used as a non-invasive, affordable, and efficient technique to identify and monitor bears that forage on the railway in Banff and potentially other transportation corridors worldwide. PMID:24936982
Influence of the pressure applied to make LATP pellets
NASA Astrophysics Data System (ADS)
Lu, Xiaojuan
2018-02-01
NASICON structured Li1+xAlxTi2-x(PO4)3 (0.1≤x≤0.7) powders were prepared by hydrothermal synthesis method and the pressure applied to press the powders into pellets was investigated in this study. The conductivity was measured by an impedance analyzer and the microstructures were examined by SEM. The variation trend with Al amount was almost identical for LATP pressed at high pressure and low pressure. Both the total conductivities of LATP prepared at high pressures and low pressures peaked at x=0.6. The conductivities of LATP pressed at high pressures were all higher than those at low pressures. The reason was mainly attributed to the denser microstructures achieved at higher pressure.
Effects of carbonization conditions on properties of bamboo pellets
Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Yan Yu; Xing' e Liu
2013-01-01
Bamboo is a biomass material and has great potential as a bio-energy resource of the future in China. Bamboo pellets were successfully manufactured using a laboratory pellet mill in preliminary work. This study was therefore carried out to investigate the effect of carbonization conditions (temperature and time) on properties of bamboo pellets and to evaluate product...
Greenhouse germination trials of pelletized western redcedar and red alder seeds
Nabil Khadduri
2007-01-01
Pelletized western redcedar (Thuja plicata Donn ex D. Don) and red alder (Alnus rubra Bong.) seeds exhibited lower total germination and delayed germination speed (G50 or days to 50% germination) when compared to non-pelletized ârawâ seeds in greenhouse trials. Averaged across two lots of western redcedar, pelletizing decreased...
Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).
Kim, Yul-Min; Kim, Jae-heon
2004-03-01
The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.
Technique for controlling shrinkage distortion in cold-pressed annular pellets
Johnson, R.G.R.; Burke, T.J.
1982-06-28
A process and apparatus are described for the production of annular fuel pellets comprising locating particulate fuel material in a compaction chamber having side walls, a moveable punch located opposite a fixed member and a frustoconical element having a taper of between about 0.010 to 0.015 inches/inch located in about the center of the chamber. The punch is moved toward the fixed surface to compact the particulate material. The compacted pellet is fired to produce sintered pellets having substantially straight inner side walls essentially parallel to the pellet axis.
Summary of Pellet Technology Program Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, III, Gerald E.; Baylor, Larry R.; Bell, Gary L.
This report summarizes the activities and budget information of ORNL’s pellet technology program from the start of FY2014 through FY2017. Cost summaries are broken down by year and spending category. Milestone activities are outlined and described by year and further described in the project narrative. The project narrative outlines the main pellet injection technology advances enabled by the pellet technology program. A list of published research products is included, along with biographies of personnel involved. This document was prepared in support of the April 24, 2018, review of the pellet technology program at ORNL.
Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...
2016-05-26
A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less
Process dependent thermoelectric properties of EDTA assisted bismuth telluride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com; Kargupta, Kajari
2016-04-13
Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodepositedmore » film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.« less
Mancuso, Elena; Bretcanu, Oana; Marshall, Martyn; Dalgarno, Kenneth W
2017-10-15
Three novel glass compositions, identified as NCL2 (SiO 2 -based), NCL4 (B 2 O 3 -based) and NCL7 (SiO 2 -based), along with apatite-wollastonite (AW) were processed to form sintered dense pellets, and subsequently evaluated for their in vitro bioactive potential, resulting physico-chemical properties and degradation rate. Microstructural analysis showed the carbonated hydroxyapatite (HCA) precipitate morphology following SBF testing to be composition-dependent. AW and the NCL7 formulation exhibited greater HCA precursor formation than the NCL2 and NCL4-derived pellets. Moreover, the NCL4 borate-based samples showed the highest biodegradation rate; with silicate-derived structures displaying the lowest weight loss after SBF immersion. The results of this study suggested that glass composition has significant influence on apatite-forming ability and also degradation rate, indicating the possibility to customise the properties of this class of materials towards the bone repair and regeneration process.
Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution.
Shen, Zhengtao; Tian, Da; Zhang, Xinyu; Tang, Lingyi; Su, Mu; Zhang, Li; Li, Zhen; Hu, Shuijin; Hou, Deyi
2018-01-01
Bioapatite (BAp) is regarded as an effective material to immobilize lead (Pb 2+ ) via the formation of stable pyromorphite. However, when applied in contaminated soil, due to its low surface area and low adsorption capacity, BAp might not sufficiently contact and react with Pb 2+ . Biochar, a carbon storage material, typically has high surface area and high adsorption capacity. This study investigated the feasibility of using biochar as a reaction platform to enhance BAp immobilization of Pb 2+ . An alkaline biochar produced from wheat straw pellets (WSP) and a slightly acidic biochar produced from hardwood (SB) were selected. The results of aqueous adsorption showed the combination of biochar (WSP or SB) and BAp effectively removed Pb 2+ from the aqueous solution containing 1000 ppm Pb 2+ . XRD, ATR-IR, and SEM/EDX results revealed the formation of hydroxypyromorphite on both biochars' surfaces. This study demonstrates that biochars could act as an efficient reaction platform for BAp and Pb 2+ in aqueous solution due to their high surface area, porous structure, and high adsorption capacity. Therefore, it is mechanistically feasible to apply biochar to enhance BAp immobilization of Pb 2+ in contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-01-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663
Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria
2016-02-29
Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru
Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, storemore » and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.« less
Data analysis on physical and mechanical properties of cassava pellets.
Oguntunde, Pelumi E; Adejumo, Oluyemisi A; Odetunmibi, Oluwole A; Okagbue, Hilary I; Adejumo, Adebowale O
2018-02-01
In this data article, laboratory experimental investigation results carried out at National Centre for Agricultural Mechanization (NCAM) on moisture content, machine speed, die diameter of the rig, and the outputs (hardness, durability, bulk density, and unit density of the pellets) at different levels of cassava pellets were observed. Analysis of variance using randomized complete block design with factorial was used to perform analysis for each of the outputs: hardness, durability, bulk density, and unit density of the pellets. A clear description on each of these outputs was considered separately using tables and figures. It was observed that for all the output with the exception of unit density, their main factor effects as well as two and three ways interactions is significant at 5% level. This means that the hardness, bulk density and durability of cassava pellets respectively depend on the moisture content of the cassava dough, the machine speed, the die diameter of the extrusion rig and the combinations of these factors in pairs as well as the three altogether. Higher machine speeds produced more quality pellets at lower die diameters while lower machine speed is recommended for higher die diameter. Also the unit density depends on die diameter and the three-way interaction only. Unit density of cassava pellets is neither affected by machine parameters nor moisture content of the cassava dough. Moisture content of cassava dough, speed of the machine and die diameter of the extrusion rig are significant factors to be considered in pelletizing cassava to produce pellets. Increase in moisture content of cassava dough increase the quality of cassava pellets.
Revealing accumulation zones of plastic pellets in sandy beaches.
Moreira, Fabiana T; Balthazar-Silva, Danilo; Barbosa, Lucas; Turra, Alexander
2016-11-01
Microplastics such as pellets are reported worldwide on sandy beaches, and have possible direct and indirect impacts on the biota and physical characteristics of the habitats where they accumulate. Evaluations of their standing stock at different spatial scales generate data on levels of contamination. This information is needed to identify accumulation zones and the specific beach habitats and communities that are likely to be most affected. Standing stocks of plastic pellets were evaluated in 13 sandy beaches in São Paulo state, Brazil. The sampling strategy incorporated across-shore transects from coastal dunes and backshores, and vertical profiles of the accumulated pellets down to 1 m depth below the sediment surface. Accumulation zones were identified at regional (among beaches) and local (between compartments) scales. At the regional scale pellet density tended to increase at beaches on the central and southwestern coast, near ports and factories that produce and transport the largest amounts of pellets in the country. At the local scale coastal dunes showed larger accumulations of pellets than backshores. For both compartments pellets tended to occur deeper in areas where standing stocks were larger. Most of the pellets were concentrated from the surface down to 0.4 m depth, suggesting that organisms inhabiting this part of the sediment column are more exposed to the risks associated with the presence of pellets. Our findings shed light on the local and regional scales of spatial variability of microplastics and their consequences for assessment and monitoring schemes in coastal compartments. Copyright © 2016. Published by Elsevier Ltd.
Novel strategies for capturing health-protective mango phytochemicals in shelf stable food matrices.
Guzman, Ivette; Grace, Mary H; Yousef, Gad G; Raskin, Ilya; Lila, Mary Ann
2015-03-01
Cost-effective methods for concentration and stabilization of otherwise perishable mango fruit phytoactives into shelf stable high protein ingredients were developed to combat stunting (malnutrition) in rural Africa. Mango juices complexed with sunflower oil and protein-rich legume flours yielded carotenoid-enriched oils and pelleted polyphenol-enriched flour matrices. Carotenoids from juices were concentrated 9-10 times in the fortified sunflower oil. Protein-rich soy and peanut flours captured 2.2-3.2 mg/g polyphenols from the juices. Alternatively, mango juice was sorbed and co-dried with flours, which stably bound the polyphenols, carotenoids, and natural sugars in soy or peanut protein-rich matrices. The concentration of provitamin A carotenoids was almost doubled and total polyphenols were enriched 4-5 times higher in the matrices compared to fresh pureed juice. Both strategies require minimal instrumentation, are compatible with rural village dietary practices; and capture the benefits of otherwise perishable seasonal resources by complexing healthful proteins together with phytoactive compounds.
Used Pallets as a Source of Pellet Fuel: Current Industry Status
P.B. Aruna; Jan G. Laarman; Philip A. Araman; Edward Coulter; Frederick Cubbage
1997-01-01
U.S. companies discard approximately 4 billion board feet per year of wood pallets and containers. Manufacturing fuel pellets from this wasted wood may be an alternative to disposal. This study traces the development of biomass energy and the wood pellet industry in the United States and considers the production aspects of making pellets from used pallets. In addition...
USDA-ARS?s Scientific Manuscript database
To determine the effects of feed pellet processing (extrusion and expansion-steam pelleting) and on feed physico-chemical characteristics, fecal stability, water quality, and growth performance in rainbow trout, three types of trout feed pellets (compressed sinking, extruded sinking, and extruded fl...
Size, shape and flow characterization of ground wood chip and ground wood pellet particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, Hamid; Lim, C. Jim; Lau, Anthony
Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2016-04-05
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
NASA Astrophysics Data System (ADS)
Hung, Nguyen Trong; Thuan, Le Ba; Van Tung, Nguyen; Thuy, Nguyen Thanh; Lee, Jin-Young; Jyothi, Rajesh Kumar
2017-12-01
The UO2 nuclear fuel pellet process for light water reactors (LWR) includes the conversion of uranium hexafluoride (UF6) into UO2 powder and the fabrication of UO2 pellets from such UO2 powder. In the paper, studies on UO2 pellet process from ammonium diuranate-derived uranium dioxide powder (UO2 ex-ADU powder) were reported. The UO2 ex-ADU powders were converted from ADU at various temperatures of 973 K, 1023 K and 1073 K and then UO2 pellets prepared from the powders were sintered at temperatures of 1923 K, 1973 K and 2023 K for times of 4 h, 6 h and 8 h. Response surface methodology (RSM) based on quadratic central composite design (CCD) type of face centered (CCF) improved by Box and Hunter was used to model the UO2 pellet process, using MODDE 5.0 software as an assessing tool. On the base of the proposed model, the relationship between the technological parameters and density of the UO2 pellet product was suggested to control the UO2 ex-ADU pellet process as desired levels.
Lead pellet retention time and associated toxicity in northern bobwhite quail (Colinus virginianus).
Kerr, Richard; Holladay, Steven; Jarrett, Timothy; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Tannenbaum, Lawrence; Holladay, Jeremy; Williams, Jamie; Gogal, Robert
2010-12-01
Birds are exposed to Pb by oral ingestion of spent Pb shot as grit. A paucity of data exists for retention and clearance of these particles in the bird gastrointestinal tract. In the current study, northern bobwhite quail (Colinus virginianus) were orally gavaged with 1, 5, or 10 Pb shot pellets, of 2-mm diameter, and radiographically followed over time. Blood Pb levels and other measures of toxicity were collected, to correlate with pellet retention. Quail dosed with either 5 or 10 pellets exhibited morbidity between weeks 1 and 2 and were removed from further study. Most of the Pb pellets were absorbed or excreted within 14 d of gavage, independent of dose. Pellet size in the ventriculus decreased over time in radiographs, suggesting dissolution caused by the acidic pH. Birds dosed with one pellet showed mean blood Pb levels that exceeded 1,300 µg/dl at week 1, further supporting dissolution in the gastrointestinal tract. Limited signs of toxicity were seen in the one-pellet birds; however, plasma δ-aminolevulinic acid dehydratase (d-ALAD) activity was persistently depressed, suggesting possible impaired hematological function. © 2010 SETAC.
Size, shape and flow characterization of ground wood chip and ground wood pellet particles
Rezaei, Hamid; Lim, C. Jim; Lau, Anthony; ...
2016-07-11
Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less
Trivedi, Namrata R; Rajan, Maria Gerald; Johnson, James R; Shukla, Atul J
2007-01-01
Pelletized dosage forms date back to the 1950s, when the first product was introduced to the market. Since then, these dosage forms have gained considerable popularity because of their distinct advantages, such as ease of capsule filling because of better flow properties of the spherical pellets; enhancement of drug dissolution; ease of coating; sustained, controlled, or site-specific delivery of the drug from coated pellets; uniform packing; even distribution in the GI tract; and less GI irritation. Pelletized dosage forms can be prepared by a number of techniques, including drug layering on nonpareil sugar or microcrystalline cellulose beads, spray drying, spray congealing, rotogranulation, hot-melt extrusion, and spheronization of low melting materials or extrusion-spheronization of a wet mass. This review discusses recent developments in the pharmaceutical approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process over the last decade. The review is divided into three parts: the first part discusses the extrusion-spheronization process, the second part discusses the effect of varying formulation and process parameters on the properties of the pellets, and the last part discusses the different approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process.
NASA Astrophysics Data System (ADS)
Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.
2013-02-01
Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.
Mizukawa, Kaoruko; Takada, Hideshige; Ito, Maki; Geok, Yeo Bee; Hosoda, Junki; Yamashita, Rei; Saha, Mahua; Suzuki, Satoru; Miguez, Carlos; Frias, João; Antunes, Joana Cepeda; Sobral, Paula; Santos, Isabelina; Micaelo, Cristina; Ferreira, Ana Maria
2013-05-15
We analyzed polychlorinated biphenyls (PCBs), dichlorodiphenyl dichloroethane and its metabolites, hexachlorocyclohexanes (HCHs), polycyclic aromatic hydrocarbons (PAHs), and hopanes, in plastic resin pellets collected from nine locations along the Portuguese coast. Concentrations of a sum of 13 PCBs were one order of magnitude higher in two major cities (Porto: 307 ng/g-pellet; Lisboa: 273 ng/g-pellet) than in the seven rural sites. Lower chlorinated congeners were more abundant in the rural sites than in the cities, suggesting atmospheric dispersion. At most of the locations, PAH concentrations (sum of 33 PAH species) were ∼100 to ∼300 ng/g-pellet; however, three orders of magnitude higher concentrations of PAHs, with a petrogenic signature, were detected at a small city (Sines). Hopanes were detected in the pellets at all locations. This study demonstrated that multiple sample locations, including locations in both urban and remote areas, are necessary for country-scale pellet watch. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hybrid nuclear reactor grey rod to obtain required reactivity worth
Miller, John V.; Carlson, William R.; Yarbrough, Michael B.
1991-01-01
Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.
Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance
NASA Astrophysics Data System (ADS)
Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip
2016-08-01
Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.
Fisner, Mara; Majer, Alessandra; Taniguchi, Satie; Bícego, Márcia; Turra, Alexander; Gorman, Daniel
2017-09-15
This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Operating experience with 100% pellet burden on Amanda blast furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keaton, D.E.; Minakawa, T.
1993-01-01
A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated thatmore » the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.« less
Carbon Monoxide Off-Gassing From Bags of Wood Pellets.
Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K
2018-02-13
Wood pellets are increasingly used for space heating in the United States and globally. Prior work has shown that stored bulk wood pellets produce sufficient carbon monoxide (CO) to represent a health concern and exceed regulatory standards for occupational exposures. However, most of the pellets used for residential heating are sold in 40-pound (18.1 kg) plastic bags. This study measured CO emission factors from fresh, bagged-wood pellets as a function of temperature and relative humidity. CO concentrations increased with increasing temperature and moisture in the container. CO measurements in a pellet mill warehouse with stored pallets of bagged pellets had 8-h average CO concentrations up to 100 ppm exceeding occupational standards for worker exposure. Thus, manufacturers, distributors, and home owners should be aware of the potential for CO in storage areas and design facilities with appropriate ventilation and CO sensors. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Severino, Patrícia; de Oliveira, George G.G.; Ferraz, Humberto G.; Souto, Eliana B.; Santana, Maria H.A.
2012-01-01
The purpose of this work was to introduce a new concept of coated pellets containing chitosan microspheres loaded with didadosine for oral administration, aiming at reducing the frequency of administration and improving the bioavailability by a suitable release profile. Chitosan microspheres were produced under fluidized bed, followed by extrusion and spheronization to obtain pellets with a mean diameter of about 1 mm. The pellets were then coated with Kollidon® VA64 and Kollicoat® MAE100P in water dispersion to depict a sustained release profile. Conventional hard gelatine capsules were loaded with these pellets and tested in vitro for their release profile of didadosine. Dissolution testing confirmed that chitosan microsphere pellets provides appropriate sustained release up to 2 h behavior for didanosine. PMID:29403741
Johnson, James H.; Ross, Robert M.; McCullough, Russell D.; Mathers, Alastair
2010-01-01
Double-crested cormorant (Phalacrocorax auritus) diets were compared with evidence from the stomachs of shot birds and from regurgitated pellets at High Bluff Island and Little Galloo Island, Lake Ontario. The highest similarity in diets determined by stomach and pellet analyses occurred when both samples were collected on the same day. Diet overlap dropped substantially between the two methods when collection periods were seven to ten days apart, which suggested differences in prey availability between the two periods. Since the average number of fish recovered in pellets was significantly higher than that in stomachs, use of pellets to determine fish consumption of double-crested cormorants may be more valid than stomach analysis because pellet content represent an integrated sampling of food consumed over approximately 24 hours.
Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting
NASA Astrophysics Data System (ADS)
Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.
2016-08-01
The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.
Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby
2014-01-01
The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+ 0.89 Mg0.45 Al0.67 Fe2+ 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875
Looking Northeast Along Hallway between Pellet Plant and Oxide Building, ...
Looking Northeast Along Hallway between Pellet Plant and Oxide Building, including Virgin Hopper Bins - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO
Using DNA to test the utility of pellet-group counts as an index of deer counts
T. J. Brinkman; D. K. Person; W. Smith; F. Stuart Chapin; K. McCoy; M. Leonawicz; K. Hundertmark
2013-01-01
Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the...
Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water
Miyoung Oh; Mandla A. Tshabalala
2007-01-01
Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...
Motivation for hay: effects of a pelleted diet on behavior and physiology of horses.
Elia, Jamie B; Erb, Hollis N; Houpt, Katherine Albro
2010-12-02
The natural diet of free-ranging horses is grass, which is typically high in fiber and calorically dilute, however diets for high performance domestic horses are often low in fiber and calorically dense. The aim of the study was to determine the motivation of horses for hay when fed a low roughage diet. Their motivation could be used to determine if low roughage diets compromise the welfare of horses. Eight mares were fed two different diets in counterbalanced order: ad libitum orchard grass hay; a complete pelleted feed (pellets). Each trial lasted three weeks, with a one-week transition period between diets. To determine the motivation of horses for fiber they were taught to press a panel to obtain a food reward. The fixed ratio (FR) was increased using a progressive ratio ((1,2,4,7,11…) technique. When fed pellets, the horses worked for a median FR of 1 (Range=1-497) to attain pellets, and when fed hay, they worked for a median FR of 25.5 (4-497) to attain pellets. When fed hay, the horses worked for a median FR of 0 (0-0) to attain hay, and when fed pellets, they worked for a FR of 13 (2-79) to attain hay. These results indicate a greater motivation for hay, a high fiber diet, when fed a low fiber diet. The horses spent 10 (5-19.4)% of their time during a 24-hour period eating pellets compared to 61.5 (29-76) % of their time eating hay. Horses spent 58% of their time standing when fed the pellets and only 37% of their time standing when fed hay. Searching behavior (i.e. sifting through wood shaving bedding for food particles) took up 11.5 (1.4-32) % of the horse's day when fed pellets, but only 1.2 (0-3.5) % of the daily time budget when fed hay. Horses chew more times when eating a hay diet (43,476chews/day) than when eating a pellet diet (10,036chews/day). Fecal pH was lower in horses fed the pelleted diet. Copyright © 2010 Elsevier Inc. All rights reserved.
Improved compaction of dried tannery wastewater sludge.
Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P
2015-12-01
We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeo, B. G. M.; Takada, H.; Hosoda, J.
2014-12-01
International Pellet Watch (IPW) is an ongoing global monitoring of persistent organic pollutants (POPs) using preproduction plastic resin pellets. These pellets are easily collected and transported allowing the general public worldwide to get involved. Thus, risk communication toward the pellet collectors is a significant part of IPW to ensure continuous effort and interest. The pellet samples were analyzed for polychlorinated biphenyl (PCBs), dichlorodiphenyltrichloroethane and degradation products (DDTs), and hexachlorocyclohexanes (HCHs). Additional pollutants such as polycyclic aromatic hydrocarbons (PAHs) and Hopanes were also analyzed for some samples. Analytical results showed distinct patterns with high concentrations (< 200ng/g-pellet) of PCBs in urban and industrialized areas mainly in the United States, Japan, and some European countries. These countries are prone to legacy pollution where PCBs were used extensively before the ban in the late 1980's. Pesticide DDTs instead were found to be higher in developing countries such as Brazil and Vietnam (> 500ng/g-pellet). These countries may still be using DDTs as a vector control mostly to combat malaria. High concentrations of DDTs were also found in Greece, China and Australia (> 100ng/g-pellet) suggesting the possibility of illegal usage as pesticide or anti fouling paint. HCHs concentrations were mostly low due to its low retention in the environment. However, high HCHs concentrations were mostly found in the southern hemisphere. Very high concentration of PAHs in pellet samples can be utilized for early identification of recent oil pollution. High PAHs concentration in Tauranga, New Zealand was found to be caused by local oil spill. Hopanes in pellets can be used for source identification of oil pollution. Global mapping and comparison among IPW data can be used to provide better explanations to IPW volunteers by sorting concentrations into pollution categories. Communication reports are tailor written based on the volunteers familiarity to IPW's issues, educational background, occupation and their potential to further spread awareness. Based on feedbacks, the volunteers were grateful to receive reports of their samples felt personally involved in IPW. This was shown to empowered and encouraged efforts from the volunteers.
Solidification and Acceleration of Large Cryogenic Pellets Relevant for Plasma Disruption Mitigation
Combs, Stephen Kirk; Meitner, S. J.; Gebhart, T. E.; ...
2016-01-01
The technology for producing, accelerating, and shattering large pellets (before injection into plasmas) for disruption mitigation has been under development at the Oak Ridge National Laboratory for several years, including a system on DIII-D that has been used to provide some significant experimental results. The original proof-of-principle testing was carried out using a pipe gun injector cooled by a cryogenic refrig- erator (temperatures ~8-20 K) and equipped with a stainless steel tube to produce 16.5-mm pellets composed of either pure D 2, pure Ne, or a dual layer with a thin outer shell of D 2 and core of Ne.more » Recently, significant progress has been made in the laboratory using that same pipe gun and a new injector that is an ITER test apparatus cooled with liquid helium. The new injector operates at ~5-8 K, which is similar to temperatures expected with cooling provided by the flow of supercritical helium on ITER. An alternative technique for producing/solidifying large pellets directly from a premixed gas has now been successfully tested in the laboratory. Also, two additional pellet sizes have been tested recently (nominal 24.4 and 34.0 mm diameters). With larger pellets, the number of injectors required for ITER disruption mitigation can be reduced, resulting in less cost and a smaller footprint for the hardware. An attractive option is longer pellets, and 24.4-mm pellets with a length/diameter ratio of ~3 have been successfully tested. Since pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event, recent tests have concentrated on documenting the speeds with different hardware configurations and operating parameters; speeds of ~100-800 m/s have been recorded. The data and results from laboratory testing are presented and discussed, and a simple model for the pellet solidification process is described.« less
Lewis, L L; Stark, C R; Fahrenholz, A C; Bergstrom, J R; Jones, C K
2015-02-01
Two key feed processing parameters, conditioning temperature and time, were altered to determine their effects on concentration of gelatinized starch and vitamin retention in a pelleted finishing swine diet. Diet formulation (corn–soybean meal based with 30% distillers dried grains with solubles) was held constant. Treatments were arranged in a 2 × 3 factorial design plus a control with 2 conditioning temperatures (77 vs. 88°C) and 3 conditioner retention times (15, 30, and 60 s). In addition, a mash diet not subjected to conditioning served as a control for a total of 7 treatments. Samples were collected after conditioning but before pelleting (hot mash), after pelleting but before cooling (hot pellet), and after pelleting and cooling (cold pellet) and analyzed for percentage total starch, percentage gelatinized starch, and riboflavin, niacin, and vitamin D3 concentrations. Total percentage starch was increased by greater conditioning temperature (P = 0.041) but not time (P > 0.10), whereas higher temperature and longer time both increased (P < 0.05) percentage gelatinized starch, with increasing time resulting in a linear increase in percentage starch gelatinization (P = 0.013). The interaction between conditioning temperature and time increased percentage gelatinized starch (P = 0.003) but not percentage total starch (P > 0.10). Sample location also affected both percentage total starch and gelatinized starch (P < 0.05), with the greatest increase in percentage gelatinized starch occurring between hot mash and hot pellet samples. As expected, the pelleting process increased percentage gelatinized starch (P = 0.035; 7.3 vs. 11.7% gelatinized starch for hot mash vs. hot pellet samples, respectively), but there was no difference in total starch concentrations (P > 0.10). Finally, neither conditioning temperature nor time affected riboflavin, niacin, or vitamin D3 concentrations (P > 0.10). In summary, both increasing conditioningtemperature and time effect percentage gelatinized starch, but not to the extent of forcing the diet through a pelleting die.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanssen, Steef V.; Duden, Anna S.; Junginger, Martin
Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Permore » feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land-uses. This novel approach is relevant for bioenergy derived from low-value feedstocks.« less
Moss, Amy F; Chrystal, Peter V; Truong, Ha H; Selle, Peter H; Liu, Sonia Yun
2017-12-01
1. The objective of this study was to compare the effects of pre- and post-pellet whole grain wheat additions to diets on growth performance, gizzard and pancreas development, nutrient utilisation and starch and protein (N) digestibility coefficients in broiler chickens via an equilateral triangle response surface design. 2. The three apical treatments of the equilateral triangle comprised (1A) a standard diet containing 600 g/kg ground wheat, (2B) the same diet containing 600 g/kg pre-pellet whole wheat and (3C) the same diet containing 300 g/kg ground wheat and 300 g/kg post-pellet whole wheat. Seven blends of the three apical diets were located within the triangle to complete the design and a total of 360 male Ross 308 chicks were offered the ten experimental diets from 7 to 28 d post-hatch. Model prediction and response surface plots were generated with R 3.0.3 software. 3. The most efficient FCR of 1.466 was observed in birds offered an almost equal mixture of the pre- and post-pellet whole grain apical dietary treatments, which corresponded to 172 g/kg ground grain, 256 g/kg pre-pellet whole grain, 172 g/kg post-pellet whole grain in a diet containing 600 g/kg wheat. 4. The most efficient energy utilisation (ME:GE ratio of 0.766) was observed in birds offered a blend of the ground grain and pre-pellet whole grain apical dietary treatments which corresponded to a mixture of 384 g/kg pre-pellet whole grain and 216 g/kg ground grain. 5. Pre-pellet whole grain feeding generated the most pronounced responses in increased relative gizzard contents, reduced gizzard pH and increased relative pancreas weights. Consideration is given to the likely differences between pre- and post-pellet whole grain feeding.
2006-06-01
SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Kim, Min-Soo; Jun, Seoung Wook; Lee, Sibeum; Lee, Tae Wan; Park, Jeong-Sook; Hwang, Sung-Joo
2005-06-01
The objective of this study was to prepare controlled-release pellets containing 0.2 mg tamsulosin hydrochloride using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers with Surelease and sodium alginate. The release of tamsulosin HCl from pellets coated with the commercial aqueous ethylcellulose dispersion (Surelease) was investigated at different coating loads. In addition, the effect of sodium alginate on drug release was investigated by varying the ratio of sodium alginate to microcrystalline cellulose (MCC). Dissolution studies were first performed in 500 mL simulated gastric fluid (pH 1.2) containing 0.003% (w/w) polysorbate 80 and then in simulated intestinal fluids (pH 7.2). The morphology of pellet surfaces and cross sections were examined by scanning electron microscopy (SEM). Apparently, the spherical pellets were prepared using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The release profiles of tamsulosin HCl from Surelease-coated pellets were significantly affected by changing the content of Surelease, the pH of the dissolution medium and the ratio of sodium alginate to MCC. The drug release rates not only decreased with increase in the coating load, but also increased when the pH of the dissolution medium was increased from 1.2 to 7.2 regardless of the sodium alginate-to-MCC ratio. Moreover, the drug release rate at pH 7.2 was gradually increased by increasing the ratio of sodium alginate to MCC. SEM showed smooth surfaces of Surelease-coated pellets. These results suggest that Surelease and sodium alginate would be useful excipients in the preparation of controlled-release pellets with the desired release profiles.
Li, Ying; Zhang, Yun; Zhu, Chun-Yan
2017-02-01
The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins (PNS) with hydroxy propyl methyl cellulose (HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release (IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in pH 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased C max , and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ying; Wen, Zhi; Lou, Guofeng; Li, Zhi; Yong, Haiquan; Feng, Xiaohong
2014-12-01
In a rotary hearth furnace (RHF) the direct reduction of composite pellets and processes of heat and mass transfer as well as combustion in the chamber of RHF influence each other. These mutual interactions should be considered when an accurate model of RHF is established. This paper provides a combined model that incorporates two sub-models to investigate the effects of C/O mole ratio in the feed pellets on the reduction kinetics and heat and mass transfer as well as combustion processes in the chamber of a pilot-scale RHF. One of the sub-models is established to describe the direct reduction process of composite pellets on the hearth of RHF. Heat and mass transfer within the pellet, chemical reactions, and radiative heat transfer from furnace walls and combustion gas to the surface of the pellet are considered in the model. The other sub-model is used to simulate gas flow and combustion process in the chamber of RHF by using commercial CFD software, FLUENT. The two sub-models were linked through boundary conditions and heat, mass sources. Cases for pellets with different C/O mole ratio were calculated by the combined model. The calculation results showed that the degree of metallization, the total amounts of carbon monoxide escaping from the pellet, and heat absorbed by chemical reactions within the pellet as well as CO and CO2 concentrations in the furnace increase with the increase of C/O mole ratio ranging from 0.6 to 1.0, when calculation conditions are the same except for C/O molar ratio. Carbon content in the pellet has little influence on temperature distribution in the furnace under the same calculation conditions except for C/O mole ratio in the feed pellets.
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...
2017-10-25
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.
2014-01-01
The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961
Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E
2014-01-01
The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.
Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai
2010-08-01
The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. Copyright 2010 Elsevier Ltd. All rights reserved.
Pielström, Steffen; Roces, Flavio
2013-01-01
The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spatial organisation of collective digging. Similar to leaf transport, we discovered size matching between soil pellet mass and carrier mass. Workers observed while digging excavated pellets at a rate of 26 per hour. Each excavator deposited its pellets in an individual cluster, independently of the preferred deposition sites of other excavators. Soil pellets were transported sequentially over 2 m, and the transport involved up to 12 workers belonging to three functionally distinct groups: excavators, several short-distance carriers that dropped the collected pellets after a few centimetres, and long-distance, last carriers that reached the final deposition site. When initiating a new excavation, the proportion of long-distance carriers increased from 18% to 45% within the first five hours, and remained unchanged over more than 20 hours. Accumulated, freshly-excavated pellets significantly influenced the workers' decision where to start digging in a choice experiment. Thus, pellets temporarily accumulated as a result of their sequential transport provide cues that spatially organise collective nest excavation.
The effects of storage on the net calorific value of wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jun Sian; Sokhansanj, S.; Lau, A. K.
The wood pellet export from Canada to Europe has been increasing steadily in recent years (roughly 1.8 million ton in 2013). Due to distances involved, wood pellets remain in transit and storage for months before their final consumption. The net calorific value determines the price of wood pellet purchase in Europe. There have been concerns about the changes of net calorific values over time. In this study, the effects of storage time, storage configuration, storage temperature, and wood pellet quality on the net calorific value of wood pellets for a period of 6 months were investigated. Storage configurations were openmore » or closed and storage temperatures were 25 °C, 35 °C and 45 °C. Two types of wood pellets used were whitewood and mixed. The results in closed storage indicated that storage time had a positive effect on the net calorific value where the net calorific value increased by 1% to 2% over the storage period. In open storage, the moisture content had the most significant impact on the net calorific value. The net calorific values of the two types of wood pellets were found to be significantly different at p < 0.001. A multivariable linear regression and analyses of variance performed verified the graphical results. Lastly, the authors postulated that the higher energy potential compounds, such as aldehyde and ketone, produced during pellet storage, caused the increase in net calorific values.« less
Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.
The effects of storage on the net calorific value of wood pellets
Lee, Jun Sian; Sokhansanj, S.; Lau, A. K.; ...
2015-06-30
The wood pellet export from Canada to Europe has been increasing steadily in recent years (roughly 1.8 million ton in 2013). Due to distances involved, wood pellets remain in transit and storage for months before their final consumption. The net calorific value determines the price of wood pellet purchase in Europe. There have been concerns about the changes of net calorific values over time. In this study, the effects of storage time, storage configuration, storage temperature, and wood pellet quality on the net calorific value of wood pellets for a period of 6 months were investigated. Storage configurations were openmore » or closed and storage temperatures were 25 °C, 35 °C and 45 °C. Two types of wood pellets used were whitewood and mixed. The results in closed storage indicated that storage time had a positive effect on the net calorific value where the net calorific value increased by 1% to 2% over the storage period. In open storage, the moisture content had the most significant impact on the net calorific value. The net calorific values of the two types of wood pellets were found to be significantly different at p < 0.001. A multivariable linear regression and analyses of variance performed verified the graphical results. Lastly, the authors postulated that the higher energy potential compounds, such as aldehyde and ketone, produced during pellet storage, caused the increase in net calorific values.« less
MST Pellet Injector Upgrades to Probe Beta and Density Limits and Impurity Particle Transport
NASA Astrophysics Data System (ADS)
Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Kumar, S. T. A.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.
2012-10-01
Upgrades to the pellet injector on MST will allow for significantly increased fueling capability enabling density limit studies for previously unavailable density regimes. Thus far, Greenwald fractions of 1.2 and 1.5 have been achieved in 500 kA and 200 kA improved confinement plasmas, respectively. The size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, was increased to accommodate pellets of up to 4.0 mm in diameter, capable of fueling to Greenwald fractions > 2.0 for MST's peak current of 600 kA. Exploring the effect of increased density on NBI deposition shows that for MST's NBI, core deposition of 25 keV neutrals is optimized for densities of 2 -- 3 x 10^19 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. In addition, a modification to the injector has allowed operation using alternative pellet fuels with triple points significantly higher than that of deuterium (18.7 K). A small flow of helium into the pellet formation vacuum chamber introduces a controllable heat source capable of elevating the operating temperature of the injector. Injection of methane pellets with a triple point of 90.7 K results in a 12-fold increase in the core carbon impurity density. The flow rate is easily adjusted to optimize injector operating temperature for other fuel gases as well. Work supported by US DoE.
Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.
Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang
2017-11-01
The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.
A New Four-Barrel Pellet Injection System for the TJ-II Stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, Stephen Kirk; Foust, Charles R; McGill, James M
2011-01-01
A new pellet injection system for the TJ-II stellarator has been developed/constructed as part of a collaboration between the Oak Ridge National Laboratory (ORNL) and the Centro de Investigaciones Energ ticas, Medioambientales y Tecnol gicas (CIEMAT). ORNL is providing most of the injector hardware and instrumentation, the pellet diagnostics, and the pellet transport tubes; CIEMAT is responsible for the injector stand/interface to the stellarator, cryogenic refrigerator, vacuum pumps/ballast volumes, gas manifolds, remote operations, plasma diagnostics, and data acquisition. The pellet injector design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST).more » It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation and a combined mechanical punch/propellant valve system for pellet acceleration (speeds ~100 to 1000 m/s). On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those typically used for the MST application are required. The system will initially be equipped with four different pellet sizes, with the gun barrel bores ranging between ~0.5 to 1.0 mm. The new system is almost complete and is described briefly here, highlighting the new features added since the original MST injector was constructed. Also, the future installation on TJ-II is reviewed.« less
Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G
2015-10-01
The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.
APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES
Johnstone, H.F.
1960-02-01
An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.
Combinations of Foliar- and Soil-Applied Herbicides For Controlling Hardwood Brush
James D. Haywood
1979-01-01
Triclopyr and 2,4,5-T esters at 1.0 lb a/A; and hexazinone, picloram, and tebuthiuron pellets at 3.0 lb a/A were applied either separately or in liquid and pellet herbicide combinations to l/60-acre plots for mixed hardwood brush control. Only two treatments - triclopyr ester with picloram pellets and 2,4,5-T ester with picloram pellets - gave acceptable topkill of...
Durable zinc ferrite sorbent pellets for hot coal gas desulfurization
Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.
1988-01-01
Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.
Kau, Yi-Chuan; Liao, Chia-Chih; Chen, Ying-Chi; Liu, Shih-Jung
2014-09-16
Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l)-lactide-co-glycolide] (PLGA) was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm) and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release) and reached completion around day 28. Scanning electron microscope (SEM) photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered). In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.
Influence of pellet seating on the external ballistic parameters of spring-piston air guns.
Werner, Ronald; Schultz, Benno; Frank, Matthias
2016-09-01
In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary.
Novikova, Anna; Carstensen, Jens M; Rades, Thomas; Leopold, Prof Dr Claudia S
2016-12-30
In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as pellet distribution, and influence of the coating material and tablet thickness on the predictive model. Different formulations consisting of coated drug pellets with two coating polymers (Aquacoat ® ECD and Eudragit ® NE 30 D) at three coating levels each were compressed to MUPS tablets with various amounts of coated pellets and different tablet thicknesses. The coated drug pellets were clearly distinguishable from the excipients matrix using a partial least squares approach regardless of the coating layer thickness and coating material used. Furthermore, the number of the detected drug pellets on the tablet surface allowed an estimation of the true drug content in the respective MUPS tablet. In addition, the pellet distribution in the MUPS formulations could be estimated by UV image analysis of the tablet surface. In conclusion, this study revealed that UV imaging in combination with multivariate image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.
Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele
2017-02-07
Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.
Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II
NASA Astrophysics Data System (ADS)
Panadero, N.; McCarthy, K. J.; Koechl, F.; Baldzuhn, J.; Velasco, J. L.; Combs, S. K.; de la Cal, E.; García, R.; Hernández Sánchez, J.; Silvagni, D.; Turkin, Y.; TJ-II Team; W7-X Team
2018-02-01
Plasma core fuelling is a key issue for the development of steady-state scenarios in large magnetically-confined fusion devices, in particular for helical-type machines. At present, cryogenic pellet injection is the most promising technique for efficient fuelling. Here, pellet ablation and fuelling efficiency experiments, using a compact pellet injector, are carried out in electron cyclotron resonance and neutral beam injection heated plasmas of the stellarator TJ-II. Ablation profiles are reconstructed from light emissions collected by silicon photodiodes and a fast-frame camera system, under the assumptions that such emissions are loosely related to the ablation rate and that pellet radial acceleration is negligible. In addition, pellet particle deposition and fuelling efficiency are determined using density profiles provided by a Thomson scattering system. Furthermore, experimental results are compared with ablation and deposition profiles provided by the HPI2 pellet code, which is adapted here for the stellarators Wendelstein 7-X (W7-X) and TJ-II. Finally, the HPI2 code is used to simulate ablation and deposition profiles for pellets of different sizes and velocities injected into relevant W7-X plasma scenarios, while estimating the plasmoid drift and the fuelling efficiency of injections made from two W7-X ports.
Use of pellet guns for crowd control in Kashmir: How lethal is "non-lethal"?
David, Siddarth
2017-01-01
The use of pellet guns during the recent unrest in Kashmir as a method of crowd control has been questioned because of several deaths and numerous injuries. Across the world, these rubber pellets have been shown to inflict serious injuries, permanent disability, and death. The volatility of mob violence, inaccuracies in aim of the pellets, over-use of the pellet guns, and the perception of their harmlessness enhances the destructive potential of these so-called non-lethal weapons. There is also the larger ethical question whether any form of pain, however minimal, could be inflicted to control violent crowds.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2013-10-01
The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.
Yang, Yan; Shen, Lian; Li, Juan; Shan, Wei-Guang
2017-06-01
The objective of this study was to prepare and evaluate metoprolol tartrate sustained-release pellets. Cores were prepared by hot melt extrusion and coated pellets were prepared by hot melt coating. Cores were found to exist in a single-phase state and drug in amorphous form. Plasticizers had a significant effect on torque and drug content, while release modifiers and coating level significantly affected the drug-release behavior. The mechanisms of drug release from cores and coated pellets were Fickian diffusion and diffusion-erosion. The coated pellets exhibited sustained-release properties in vitro and in vivo.
Looking Southeast from Second Floor Mezzanine of Pellet Plant to ...
Looking Southeast from Second Floor Mezzanine of Pellet Plant to Erbia Mixing Area and Poreformer and Acrawax Mixing Station - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO
Simulation of reduction of iron-oxide-carbon composite pellets in a rotary hearth furnace
NASA Astrophysics Data System (ADS)
Halder, Sabuj
The primary motivation of this work is to evaluate a new alternative ironmaking process which involves the combination of a Rotary Hearth Furnace (RHF) with an iron bath smelter. This work is concerned primarily, with the productivity of the RHF. It is known that the reduction in the RHF is controlled by chemical kinetics of the carbon oxidation and wustite reduction reactions as well as by heat transfer to the pellet surface and within the pellet. It is heat transfer to the pellet which limits the number of layers of pellets in the pellet bed in the RHF and thus, the overall productivity. Different types of carbon like graphite, coal-char and wood charcoal were examined. Part of the research was to investigate the chemical kinetics by de-coupling it from the influence of heat and mass transfer. This was accomplished by carrying out reduction experiments using small iron-oxide-carbon powder composite mixtures. The reaction rate constants were determined by fitting the experimental mass loss with a mixed reaction model. This model accounts for the carbon oxidation by CO2 and wustite reduction by CO, which are the primary rate controlling surface-chemical reactions in the composite system. The reaction rate constants have been obtained using wustite-coal-char powder mixtures and wustite-wood-charcoal mixtures. The wustite for these mixtures was obtained from two iron-oxide sources: artificial porous analytical hematite (PAH) and hematite ore tailings. In the next phase of this study, larger scale experiments were conducted in a RHF simulator using spherical composite pellets. Measurement of the reaction rates was accomplished using off-gas analysis. Different combinations of raw materials for the pellets were investigated. These included artificial ferric oxide as well as naturally existing hematite and taconite ores. Graphite, coal-char and wood-charcoal were the reductants. Experiments were conducted using a single layer, a double layer and a triple layer of composite pellets to look into the different aspects associated with multi-layer reduction in the RHF. The reduced pellets were examined for morphology and phase distribution using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. Efforts were made to interpret the differences in the observed rates from one kind of pellet to the other on the grounds of chemical kinetics of the carbon oxidation and wustite reduction reactions and the issues of external and internal heat transport to and within the pellets. It was concluded from the experiments that in the ore containing pellets, wood-charcoal appeared to be a faster reductant than coal-char. However, in the PAH containing pellets, the reverse was found to be true. This is because of the internal heat transport limitations imposed by two factors (a) lower thermal conductivity of wood-charcoal in comparison to coal-char and (b) swelling of the PAH-Wood-Charcoal pellets during the initial heat-up stage. For the same type of reductant, hematite containing pellets were observed to reduce faster than taconite containing pellets. This is in accordance with the higher reducibility of hematite because of development of internal porosity due to cracking and fissure formation during the Fe2O3 to Fe 3O4 transformation stage. This is however, absent during the reduction of taconite, which is primarily Fe3O4. The PAH-Wood-Charcoal pellets were found to undergo significant amounts of swelling under low temperature conditions. This behavior of the PAH-Wood-Charcoal pellets of a certain layer impeded the external heat transport to the lower layer and consequently, resulted in a relatively lower reduction rate for a multi-layer bed. The volume change phenomena associated with the reduction of composites were also studied. Volume changes influence the external heat transport, especially to the lower layers of a multi-layer bed. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. Empirical correlations were developed associating the volume shrinkage to the fractional mass loss of the pellets. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multi-layer bed was obtained by conducting heat transport tests using inert low carbon steel spheres. The experimental temperature data for the spheres of different layers was interpreted using a simple mathematical model. It was found through this exercise, that if the spheres of the top layer of the bed shrink by 30%, the external heat transfer to the second layer increases by almost 6 times. This is because of the decrease in the shielded area of the second layer due to the decreasing size of the top layer spheres. If the average degree of reduction targeted in a RHF is reduced from 95% to about 70% by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced by 1.5 to 2 times. The use of a 2 or 3 layer bed was found to be far superior to that of a single layer for higher productivities under the current experimental conditions. Sometimes, a 2 layer bed is more advantageous than a 3 layer bed, as was found to be the case with hematite-wood-charcoal pellets. The choice of the optimal number of layers depends upon several factors like pellet size, kind of pellet and shrinking characteristics of the pellet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, P. Y.; Lim, P. S.; Ng, M. C.
2011-03-30
Cu and Fly Ash (FA) mixtures with different weight percentages were prepared. Pellets of the mixture powder were produced with the dimension of 17.7 mm in diameter and 10-15 mm in height. These different composites were compacted at a constant pressure of 280 MPa. One of the selected weight percentages was then compacted to form into pellet and sintered at different temperatures which were at 900, 950 and 1000 deg. C respectively for 2 hours. Density of green pellet was measured before sintered in furnace. After sintering, all the pellets with different temperatures were re-weighed and sintered density were calculated.more » The densification of the green and sintered pellets was required to be measured as one of the parameter in selection of the best material properties. Porosity of the pellet shall not be ignored in order to analyze the close-packed particles stacking in the pellet. SEM micrograph had been captured to observe the presence of pores and agglomeration of particles in the sample produced.« less
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John
2016-10-01
Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.
The impact of chewing gum resistance on immediate free recall.
Rickman, Sarah; Johnson, Andrew; Miles, Christopher
2013-08-01
Although the facilitative effects of chewing gum on free recall have proved contentious (e.g., Tucha, Mecklinger, Maier, Hammerl, & Lange, 2004; Wilkinson, Scholey, & Wesnes, 2002), there are strong physiological grounds, for example, increased cerebral activity and blood flow following the act of mastication, to suppose facilitation. The present study manipulated resistance to mastication, that is, chewing four pellets versus one pellet of gum, with the assumption that increased resistance will accentuate cerebral activity and blood flow. Additionally, chewing rate was recorded for all participants. In a within-participants design, participants performed a series of immediate free recall tasks while chewing gum at learning (one or four pellets) and recall (one or four pellets). Increased chewing resistance was not associated with increased memory performance, despite consistent chewing rates for both the one and four pellet conditions at both learning and recall. However, a pattern of recall consistent with context-dependent memory was observed. Here, participants who chewed the equivalent number of gum pellets at both learning and recall experienced significantly superior word recall compared to those conditions where the number of gum pellets differed. ©2012 The British Psychological Society.
Wang, Hong; Wang, Jy-An John
2016-07-20
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
The Cassini project: Lessons learned through operations
NASA Astrophysics Data System (ADS)
McCormick, Egan D.
1998-01-01
The Cassini space probe requires 180 238Pu Light-weight Radioisotopic Heater Units (LWRHU) and 216 238Pu General Purpose Heat Source (GPHS) pellets. Additional LWRHU and GPHS pellets required for non-destructive (NDA) and destructive assay purposes were fabricated bringing the original pellet requirement to 224 LWRHU and 252 GPHS. Due to rejection of pellets resulting from chemical impurities in the fuel and/or failure to meet dimensional specifications a total of 320 GPHS pellets were fabricated for the mission. Initial plans called for LANL to process a total of 30 kg of oxide powder for pressing into monolithic ceramic pellets. The original 30 kg commitment was processed within the time frame allotted; an additional 8 kg were required to replace fuel lost due to failure to meet Quality Assurance specifications for impurities and dimensions. During the time frame allotted for pellet production, operations were impacted by equipment failure, unacceptable fuel impurities levels, and periods of extended down time, >30 working days during which little or no processing occurred. Throughout the production process, the reality of operations requirements varied from the theory upon which production schedules were based.
Thermally generated magnetic fields in laser-driven compressions and explosions
NASA Technical Reports Server (NTRS)
Tidman, D. A.
1975-01-01
The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.
Phase study and surface morphology of beta-alumina
NASA Astrophysics Data System (ADS)
Tak, S. K.
2018-05-01
Beta alumina ceramic is well known as a polycrystalline ceramic material. The characteristic crystal structure of beta-alumina makes it useful as a separator in sodium sulphur batteries and other electrochemical devices requiring the passage of sodium ions. β"-alumina powders for this study were prepared by zeta process. The pellets were sintered at different microwave power levels and power schedule to optimize the sintering conditions to obtain preferred β" phase with improved microstructure. Phase identification was studied by X-ray diffraction (XRD). XRD analysis shows increase in β'' phase as the sintering temperature was increased from 1400°C to 1600°C. Surface morphology of the pellets was carried out by Scanning Electron microscopy (SEM). SEM studies revealed the formation and growth of platelet grains with interconnected porosity.
Isolation of a matrix that binds medial Golgi enzymes
1994-01-01
Rat liver Golgi stacks were extracted with Triton X-100 at neutral pH. After centrifugation the low speed pellet contained two medial-Golgi enzymes, N-acetylglucosaminyltransferase I and mannosidase II, but no enzymes or markers from other parts of the Golgi apparatus. Both were present in the same structures which appeared, by electron microscopy, to be small remnants of cisternal membranes. The enzymes could be removed by treatment with low salt, leaving behind a salt pellet, which we term the matrix. Removal of salt caused specific re-binding of both enzymes to the matrix, with an apparent dissociation constant of 3 nM for mannosidase II. Re-binding was abolished by pretreatment of intact Golgi stacks with proteinase K, suggesting that the matrix was present between the cisternae. PMID:8106542
Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions
NASA Astrophysics Data System (ADS)
Silva Mojica, Ernesto
Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Producing intricate IPMC shapes by means of spray-painting and printing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Trabia, Sarah; Olsen, Zakai; Hwang, Taeseon; Kim, Kwang Jin
2017-04-01
Ionic Polymer-Metal Composites (IPMC) are common soft actuators that are Nafion® based and plated with a conductive metal, such as platinum, gold, or palladium. Nafion® is available in three forms: sheets, pellets, and water dispersion. Nafion® sheets can be cut to the desired dimensions and are best for rectangular IPMCs. However, the user is not able to change the thickness of these sheets by stacking and melting because Nafion® does not melt. A solution to this is Nafion® pellets, which can melt. These can be used for extrusion and injection molding. Though Nafion® pellets can be melted, they are difficult to work with, making the process quite challenging to master. The last form is Nafion® Water Dispersion, which can be used for casting. Casting can produce the desired thickness, but it does not solve the problem of achieving complex contours. The current methods of fabrication do not allow for complex shapes and structures. To solve this problem, two methods are presented: painting and printing. The painting method uses Nafion® Water Dispersion, an airbrush, and vinyl stencils. The stencils can be made into any shape with detailed edges. The printing method uses Nafion® pellets that are extruded into filaments and a commercially available 3D printer. The models are drawn in a Computer-Aided Drawing (CAD) program, such as SolidWorks. The produced Nafion® membranes will be compared with a commercial Nafion® membrane through a variety of tests, including Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Thermogravimetric Analysis, Dynamic Mechanical Analysis, and Optical Microscope.
Effects of diet form and feeder adjustment on growth performance of nursery and finishing pigs.
Nemechek, J E; Tokach, M D; Dritz, S S; Fruge, E D; Hansen, E L; Goodband, R D; DeRouchey, J M; Woodworth, J C
2015-08-01
Three experiments were conducted to determine the effects of feeder adjustment and diet form on growth performance of nursery (Exp. 1 and 2) and finishing (Exp. 3) pigs. Treatments were arranged as a 2 × 3 factorial with the main effects of feeder adjustment and diet form. The 2 feeder adjustments were a narrow and wide feeder adjustment (minimum gap opening of 1.27 and 2.54 cm, respectively). The 3 diet forms were meal, poor-quality pellets (70% pellets and 30% fines for Exp. 1 and 2 and 50% pellets and 50% fines for Exp. 3), and screened pellets with minimal fines (3 to 10%). In Exp. 1, 210 pigs (initially 11.9 kg BW) were used in a 21-d trial with 7 pigs per pen and 5 pens per treatment. No feeder adjustment × diet form interactions were observed. There were no differences in ADG, ADFI, or G:F due to feeder adjustment. Pigs fed the meal diet had increased ( < 0.05) ADG and ADFI compared with pigs fed the poor-quality or screened pellets. Pigs fed meal or poor-quality pellets had decreased ( < 0.05) G:F compared with pigs fed screened pellets. In Exp. 2, 1,005 nursery pigs (initially 14.1 kg BW) were used in a 28-d trial with 26 to 28 pigs per pen and 6 pens per treatment. Pigs fed from the narrow feeder adjustment had decreased ( < 0.05) ADG and ADFI compared with pigs fed from the wide adjustment with no differences in G:F. Pigs fed the meal diet had decreased ( < 0.05) ADG compared with pigs fed poor-quality or screened pellets. Pigs fed meal or poor-quality pellets had decreased ( < 0.05) G:F compared with pigs fed screened pellets. In Exp. 3, 246 pigs (initially 56.8 kg BW) were used in a 69-d trial with 5 pens per treatment and 6 or 7 pigs per pen. Overall, ADFI decreased ( < 0.05) and G:F increased ( < 0.05) for pigs fed from the narrow adjusted feeders compared with the wide adjustment with no differences in ADG. Overall, pigs fed meal diets tended to have decreased ( < 0.10) ADG and had decreased ( < 0.05) G:F compared with pigs fed screened pellets; ADG and G:F in those fed poor-quality pellets were intermediate. Feeding meal or poor-quality pellets increased ( < 0.05) ADFI compared with pigs fed screened pellets. In conclusion, feeding nursery pigs from a wide feeder gap may increase ADG and ADFI with no negative effects on G:F. For finishing pigs, reducing feeder gap reduced feed disappearance and improved G:F. In all experiments, the greatest G:F improvements from pelleting were observed when the percentage of fines was minimized.
Bhargav, K K; Ram, S; Majumder, S B
2012-04-01
Nanocrystallites La0.8Pb0.2(Fe0.8Co0.2)O3 (LPFC) when bonded through a surface layer (carbon) in small ensembles display surface sensitive magnetism useful for biological probes, electrodes, and toxic gas sensors. A simple dispersion and hydrolysis of the salts in ethylene glycol (EG) in water is explored to form ensembles of the nanocrystallites (NCs) by combustion of a liquid precursor gel slowly in microwave at 70-80 dgrees C (apparent) in a closed container in air. In a dilute sample, the EG molecules mediate hydrolyzed species to configure in small groups in process to form a gel. Proposed models describe how a residual carbon bridges a stable bonded layer of a graphene-oxide-like hybrid structure on the LPFC-NCs in attenuating the magnetic structure. SEM images, measured from a pelletized sample which was used to study the gas sensing features in terms of the electrical resistance, describe plate shaped NCs, typically 30-60 nm widths, 60-180 nm lengths and -50 m2/g surface area (after heating at -750 degrees C). These NCs are arranged in ensembles (200-900 nm size). As per the X-ray diffraction, the plates (a Pnma orthorhombic structure) bear only small strain -0.0023 N/m2 and oxygen vacancies. The phonon and electronic bands from a bonded surface layer disappear when it is etched out slowly by heating above 550 degrees C in air. The surface layer actively promotes selective H2 gas sensor properties.
Zocher, Roy W.
1991-01-01
A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.
Mathematical model of the direct reduction of dust composite pellets containing zinc and iron
NASA Astrophysics Data System (ADS)
An, Xiu-wei; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo
2013-07-01
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage.
Rioland, Guillaume; Dutournié, Patrick; Faye, Delphine; Daou, T Jean; Patarin, Joël
2016-01-01
Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10-23 mm, a height of 1-3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.
The Self-Reducing Pellet Production from Organic Household Waste
NASA Astrophysics Data System (ADS)
Nogueira, Alberto; Takano, Cyro; Mourão, Marcelo; Pillihuaman, Adolfo
The organic household waste has a growing disposal problem, requiring costly disposal systems. It is necessary to find new applications for these materials; one could be the steelmaking raw material production. In this paper is studied the development of self-reducing pellets from the organic waste pyrolysis, where is generated carbon and condensable and non-condensable volatiles. Non-condensable volatiles were burned and condensable volatiles were recovered. The resulting tar was mixed with iron ore, coal powder and flux (CaO), to then be pelletized together. Compression, falls and tumbler tests were conducted to characterize the pellets before and after heat treatment and reduction processes. The reduction curve and their physical and morphological characterization were measured. The results were as was expected, the fluidized coal create sufficient adhesion that pellets earned resistance with an equivalent resistance of common pellets, showing a good feasibility of this process.
Nicholson, Tristan M.; Uchtmann, Kristen S.; Valdez, Conrad D.; Theberge, Ashleigh B.; Miralem, Tihomir; Ricke, William A.
2013-01-01
New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways. PMID:24022657
Turner, Andrew; Holmes, Luke
2011-02-01
The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.
["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].
Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta
2014-01-01
Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear.
Rojas, O J; Vinyeta, E; Stein, H H
2016-05-01
An experiment was conducted to determine effects of pelleting, extrusion, and extrusion and pelleting on energy and nutrient digestibility in diets containing low, medium, or high concentrations of fiber. Three diets were formulated: 1) the low-fiber diet contained corn and soybean meal; 2) the medium-fiber diet contained corn, soybean meal, and 25% distillers dried grains with solubles (DDGS); and 3) the high-fiber diet contained corn, soybean meal, 25% DDGS, and 20% soybean hulls. Each diet was divided into 4 batches after mixing. One batch was not further processed and was fed in a meal form, one batch was pelleted at 85°C, one batch was extruded at 115°C using a single-screw extruder, and one batch was extruded at 115°C and then pelleted at 85°C. Thus, 12 different diets were produced. Twenty-four growing pigs (26.5 ± 1.5 kg initial BW) had a T-cannula installed in the distal ileum and were allotted to the 12 diets in a split-plot design with 8 pigs allotted to the low-fiber diets, the medium-fiber diets, and the high-fiber diets, respectively. Diets were fed to the pigs during four 14-d periods. Within each type of diet, the 8 pigs were fed the diets produced using the 4 processing technologies. Therefore, there were 8 replicate pigs per diet. Pigs were adjusted to their diets for 14 d before the experiment was initiated. Each of the four 14-d periods consisted of 5 d for adaptation, 5 d of fecal collection according to the marker to marker approach, and ileal digesta were collected on d 13 and 14. Results indicated that pelleting, extrusion, or extrusion and pelleting improved ( < 0.05) the apparent ileal digestibility of starch and most indispensable AA. In most cases, there were no differences between the pelleted, the extruded, and the extruded and pelleted diets. The apparent total tract digestibility of GE was also improved ( < 0.05) by pelleting and by the combination of extrusion and pelleting. The ME of pelleted diets was greater ( < 0.05) than that of meal diets for the low- and medium-fiber diets, but this was not the case for high-fiber diets (interaction, < 0.05). Medium- and high-fiber diets that were extruded had greater ME ( < 0.05) than meal diets, but that was not the case for low-fiber diets. These data indicate that energy utilization may be improved by pelleting or extrusion or by a combination of the 2 technologies, but the response seems to be greater for extrusion in diets that are relatively high in fiber.
QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, J.S.; Sokhansanj, Shahabaddine; Lim, C. Jim
2010-11-01
Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. Themore » sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.« less
Quality of Wood Pellets Produced in British Columbia for Export
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. Tumuluru; S. Sokhansanj; C. J. Lim
2010-11-01
Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. Themore » sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.« less
HEREDIA, DANTE J.; DICKSON, EAMONN J.; BAYGUINOV, PETER O.; HENNIG, GRANT W.; SMITH, TERENCE K.
2009-01-01
Background & Aims The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter, through a rhythmic sequence of electrical activity and/or contractions, along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity. Methods Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet. Transducers were placed along the colon to record muscle tension and propulsive force on the pellet and microelectrodes were used to record electrical activity from circular muscle cells anal and oral of a pellet and in colons without the mucosa. Results Spontaneous CMMCs propagated in both an oral or anal direction. When a pellet was inserted, CMMCs increased in frequency and propagated anally, exerting propulsive force on the pellet. The amplitude of slow waves increased during the CMMC. Localized mucosal stimulation/circumferential stretch evoked a CMMC, regardless of stimulus strength. The serotonin (5-hydroxytryptamine-3) antagonist ondansetron reduced the amplitude of the CMMC, the propulsive force on the pellet, and the response to mucosal stroking, but increased the apparent conduction velocity of the CMMC. Removing the mucosa abolished spontaneous CMMCs, which still could be evoked by electrical stimulation. Conclusions The fecal pellet activates local mucosal reflexes, which release serotonin (5-hydroxytryptamine) from enterochromaffin cells, and stretch reflexes that determine the site of origin and propagation of the CMMC, facilitating propulsion. PMID:19138686
Zeeshan, Farrukh; Bukhari, Nadeem Irfan
2010-06-01
Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion-spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.
Despland, Laure M; Clark, Malcolm W; Aragno, Michel; Vancov, Tony
2010-03-15
Bauxsol reagents (powder, slurry, or pellet forms) are powerful tools in environmental remediation and water and sewage treatment However, when used in circum-neutral water treatments, cement-bound Bauxsol pellets produce a sustained pH and alkalinity spike due to the presence of unreacted CaO in the cement binder. This study developed a pellet treatment system to minimize the alkalinity/pH spike. The recipe for pelletization consisted of Bauxsol powder, ordinary Portland cement (OPC), hydrophilic fumed silica, aluminum powder, a viscosity modifier, and water. Several batches (including different ratios and sizes) were run using modified makeup waters (H(2)0 + CO(2) or NaHCO(3)) or curing brines (CO(2), NaHCO(3), or Mg/CaCl(2)). Alkalinity, pH stability, and slake durability tests were performed on pellets before and/or after curing. The best result for reducing the alkalinity/pH spike was obtained from a MgCl(2), CaCl(2) bath treatment using a Bauxsol:cement ratio of 2.8:1 (pH 8.28; alkalinity 75.1 mg/L) for a 100 g batch or 245:1 (pH 8.05; alkalinity 35.4 mg/L) for a 1 kg batch. Although brine curing does provide a control on pH/alkalinity release, the pellets may still contain unreacted CaO. Therefore, a freshwater rinse of pellets before treating circum-neutral waters is recommended as is the continued investigation of alternative pellet binders.
Plasma fuelling with cryogenic pellets in the stellarator TJ-II
NASA Astrophysics Data System (ADS)
McCarthy, K. J.; Panadero, N.; Velasco, J. L.; Combs, S. K.; Caughman, J. B. O.; Fontdecaba, J. M.; Foust, C.; García, R.; Hernández Sánchez, J.; Navarro, M.; Pastor, I.; Soleto, A.; the TJ-II Team
2017-05-01
Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3 × 1018 and 4 × 1019 atoms, are injected at velocities between 800 and 1200 m s-1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4 × 1018- ~2 × 1019 m-3). These range from ~20%- ~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined.
Occupational exposure of aldehydes resulting from the storage of wood pellets.
Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K
2017-06-01
An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.
Kim, C.K.
1974-02-26
This invention relates in general to thermoelectric units and more particularly to a tubular thermoelectric unit which includes an array of tandemly arranged radially tapered annular thermoelectric pellets having insulation material of a lower density than the thermoelectric pellets positioned between each pellet. (Official Gazette)
Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump
NASA Astrophysics Data System (ADS)
Turner, Jefferson T.
2015-01-01
The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of phytodetritus, phytodetritus from Phaeocystis spp., picoplankton in phytodetritus, the summer export pulse (SEP) of phytodetritus in the subtropical North Pacific, benthic community responses to phytodetritus; (5) other components of the biological pump, including fish fecal pellets and fish-mediated export, sinking carcasses of animals and macrophytes, feces from marine mammals, transparent exopolymer particles (TEP); (6) the biological pump and climate, including origins of the biological pump, the biological pump and glacial/interglacial cycles, the biological pump and contemporary climate variations, and the biological pump and anthropogenic climate change. The review concludes with potential future modifications in the biological pump due to climate change.
Pellet fuelling requirements to allow self-burning on a helical-type fusion reactor
NASA Astrophysics Data System (ADS)
Sakamoto, R.; Miyazawa, J.; Yamada, H.; Masuzaki, S.; Sagara, A.; the FFHR Design Group
2012-08-01
Pellet refuelling conditions to sustain a self-burning plasma have been investigated by extrapolating the confinement property of the LHD plasma, which appears to be governed by a gyro-Bohm-type confinement property. The power balance of the burning plasma is calculated taking into account the profile change with pellet deposition and subsequent density relaxation. A self-burning plasma is achieved within the scope of conventional pellet injection technology. However, a very small burn-up rate of 0.18% is predicted. Higher velocity pellet injection is effective in improving the burn-up rate by deepening particle deposition, whereas deep fuelling leads to undesirable fluctuation of the fusion output.
Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang
2018-04-21
The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.
M112 Demolition Block Pack-Out Line Modernization
2010-03-01
downstream. If a failure is detected, the top and bottom heater elements will open up away from the process conveyor and a fan designed to cool the...accumulate on the belt conveyor and references are made to gates to stop C4 pellets or chutes to slide the pellets into position on the conveyor belt... conveyor belt and pellet damage during automated pellet gripping and transfer . The initial portion of this effort should be completed within 16 weeks
Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul A. Lessing; W.R. Cannon; Gerald W. Egeland
The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less
Specifics of phytomass combustion in small experimental device
NASA Astrophysics Data System (ADS)
Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav
2015-05-01
A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.
Delgado-Andrade, Cristina; Rufián-Henares, José A; Nieto, Rosa; Aguilera, José F; Navarro, M Pilar; Seiquer, Isabel
2010-04-15
The effects of pelleting on the extent of the Maillard reaction (MR) and on calcium, magnesium and zinc solubility and absorption were analysed in a conventional pre-starter diet for suckling piglets. Development was tested measuring colour, absorbance (280/420 nm), fluorescence, residual free lysine, furosine, hydroxymethylfurfural (HMF) and furfural contents before and after pelleting. Fluorescence, absorbance and mineral solubility were also measured after in vitro digestion of diets. The effects on mineral absorption were tested using Caco-2 cells. MR indexes confirmed the development of the reaction during the pelleting of this particular diet compared with the meal diet. The CIE-Lab colour parameters showed a decrease in luminosity (L*) and progress of the colour to the red zone (a*) in the pelleted diet. A 36% decrease in free lysine content was observed. Significant correlations were observed between fluorescence intensity and furosine levels, HMF and furfural. The pelleting process did not modify calcium and magnesium solubility after in vitro digestion, but soluble zinc increased. The efficiency of calcium and zinc transport across Caco-2 cell monolayers was greater in the pelleted diet. Evidence of MR development is shown, resulting in various nutritional consequences. Optimisation of pelleting could result in a better formulation of diets for feedstuffs. (c) 2010 Society of Chemical Industry.
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2015-07-05
Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Beltrame, María Ornela; Fernández, Fernando Julián; Sardella, Norma Haydeé
2015-07-01
Paleoparasitology is the study of parasite remains from archaeological and paleontological sites. Raptor pellets can be used as source for paleoparasitological information in archaeological sites. However, this zooarchaeological material has been scarcely studied. Epullán Chica (ECh) is an archaeological site in northwestern Patagonia. This cave yielded remains from more than 2000 years before present. The aim of this paper was to study the parasite remains found in owl pellets from the archaeological site ECh, and to discuss the paleoparasitological findings in an archaeological context. Twenty two raptor pellets were examined for parasites. The pellets were whole processed by rehydration in a 0.5% water solution of trisodium phosphate, followed by homogenization, filtered and processed by spontaneous sedimentation. Eight out of 22 bird pellets examined were positive for parasites from reptiles and rodents. Representatives of 12 parasite taxa were recorded; nine of this parasitic species were reported for the first time from ancient samples from Patagonia. This is the first time that pellets give evidences of ancient reptile parasites from archaeological contexts. It is noteworthy that Late Holocene hunter-gatherers of the upper Limay River basin, could have been exposed to some of these zoonotic parasites. Future paleoparasitological studies on owl pellets may reflect even more the parasitological diversity of all micromammal and reptile species presents in ancient times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J. R.; Carmichael, J. R.; Gebhart, T. E.
Injection of multiple large (~10 to 30 mm diameter) shattered pellets into ITER plasmas is presently part of the scheme planned to mitigate the deleterious effects of disruptions on the vessel components. To help in the design and optimize performance of the pellet injectors for this application, a model referred to as “the gas gun simulator” has been developed and benchmarked against experimental data. The computer code simulator is a Java program that models the gas-dynamics characteristics of a single-stage gas gun. Following a stepwise approach, the code utilizes a variety of input parameters to incrementally simulate and analyze themore » dynamics of the gun as the projectile is launched down the barrel. Using input data, the model can calculate gun performance based on physical characteristics, such as propellant-gas and fast-valve properties, barrel geometry, and pellet mass. Although the model is fundamentally generic, the present version is configured to accommodate cryogenic pellets composed of H2, D2, Ne, Ar, and mixtures of them and light propellant gases (H2, D2, and He). The pellets are solidified in situ in pipe guns that consist of stainless steel tubes and fast-acting valves that provide the propellant gas for pellet acceleration (to speeds ~200 to 700 m/s). The pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event. The calculated speeds from the code simulations of experiments were typically in excellent agreement with the measured values. With the gas gun simulator validated for many test shots and over a wide range of physical and operating parameters, it is a valuable tool for optimization of the injector design, including the fast valve design (orifice size and volume) for any operating pressure (~40 bar expected for the ITER application) and barrel length for any pellet size (mass, diameter, and length). Key design parameters and proposed values for the pellet injectors for the ITER disruption mitigation systems are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S. K.; Reed, J. R.; Lyttle, M. S.
2016-01-01
Injection of multiple large (~10 to 30 mm diameter) shattered pellets into ITER plasmas is presently part of the scheme planned to mitigate the deleterious effects of disruptions on the vessel components. To help in the design and optimize performance of the pellet injectors for this application, a model referred to as “the gas gun simulator” has been developed and benchmarked against experimental data. The computer code simulator is a Java program that models the gas-dynamics characteristics of a single-stage gas gun. Following a stepwise approach, the code utilizes a variety of input parameters to incrementally simulate and analyze themore » dynamics of the gun as the projectile is launched down the barrel. Using input data, the model can calculate gun performance based on physical characteristics, such as propellant-gas and fast-valve properties, barrel geometry, and pellet mass. Although the model is fundamentally generic, the present version is configured to accommodate cryogenic pellets composed of H2, D2, Ne, Ar, and mixtures of them and light propellant gases (H2, D2, and He). The pellets are solidified in situ in pipe guns that consist of stainless steel tubes and fast-acting valves that provide the propellant gas for pellet acceleration (to speeds ~200 to 700 m/s). The pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event. The calculated speeds from the code simulations of experiments were typically in excellent agreement with the measured values. With the gas gun simulator validated for many test shots and over a wide range of physical and operating parameters, it is a valuable tool for optimization of the injector design, including the fast valve design (orifice size and volume) for any operating pressure (~40 bar expected for the ITER application) and barrel length for any pellet size (mass, diameter, and length). Key design parameters and proposed values for the pellet injectors for the ITER disruption mitigation systems are discussed.« less
MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-Tesla.
Dedini, Russell D; Karacozoff, Alexandra M; Shellock, Frank G; Xu, Duan; McClellan, R Trigg; Pekmezci, Murat
2013-07-01
Few studies exist for magnetic resonance imaging (MRI) issues and ballistics, and there are no studies addressing movement, heating, and artifacts associated with ballistics at 3-tesla (T). Movement because of magnetic field interactions and radiofrequency (RF)-induced heating of retained bullets may injure nearby critical structures. Artifacts may also interfere with the diagnostic use of MRI. To investigate these potential hazards of MRI on a sample of bullets and shotgun pellets. Laboratory investigation, ex vivo. Thirty-two different bullets and seven different shotgun pellets, commonly encountered in criminal trauma, were assessed relative to 1.5-, 3-, and 7-T magnetic resonance systems. Magnetic field interactions, including translational attraction and torque, were measured. A representative sample of five bullets were then tested for magnetic field interactions, RF-induced heating, and the generation of artifacts at 3-T. At all static magnetic field strengths, non-steel-containing bullets and pellets exhibited no movement, whereas one steel core bullet and two steel pellets exhibited movement in excess of what might be considered safe for patients in MRI at 1.5-, 3- and 7-Tesla. At 3-T, the maximum temperature increase of five bullets tested was 1.7°C versus background heating of 1.5°C. Of five bullets tested for artifacts, those without a steel core exhibited small signal voids, whereas a single steel core bullet exhibited a very large signal void. Ballistics made of lead with copper or alloy jackets appear to be safe with respect to MRI-related movement at 1.5-, 3-, and 7-T static magnetic fields, whereas ballistics containing steel may pose a danger if near critical body structures because of strong magnetic field interactions. Temperature increases of selected ballistics during 3-T MRI was not clinically significant, even for the ferromagnetic projectiles. Finally, ballistics containing steel generated larger artifacts when compared with ballistics made of lead with copper and alloy jackets and may impair the diagnostic use of MRI. Copyright © 2013 Elsevier Inc. All rights reserved.
Fuel pins with both target and fuel pellets in an isotope-production reactor
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.
Jones, Charles W.
1981-04-07
A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.
Potential of pelleted wheat straw as an alternative bedding material for broilers.
Kheravii, S K; Swick, R A; Choct, M; Wu, S-B
2017-06-01
Broiler chickens are commonly placed on wood shavings as litter, but alternative litter sources are required due to the scarcity of wood shavings in many parts of the world. This study aimed to compare pelleted straw, chopped wheat straw, wood shavings, rice hulls, and shredded paper as litter candidates. Three-hundred-sixty Ross 308 one-day-old male chicks were used in this study. There were 5 litter treatments with 6 replicate pens, each with 12 birds. The feed conversion ratio (FCR) of birds reared on pelleted straw was improved compared (P < 0.05) to that of birds raised on rice hulls, whereas it did not differ for birds placed on wood shavings, rice hulls, chopped straw, or shredded paper. It was observed that the birds reared on wood shavings had higher relative gizzard weight at d 24 compared to those reared on pelleted straw (P < 0.05). Gizzard pH and measured cecal bacterial groups were not affected by the type of bedding material. Cecal bacterial groups measured at d 10 were not affected by bedding material. Birds reared on pelleted wheat straw had a lower incidence of footpad lesions than those on chopped straw and shredded paper on d 24 (P < 0.001) and 29 (P < 0.01). Litter source did not affect the occurrence of breast blisters at d 24, 29, or 35. On d 24, 29, and 35, pelleted straw litter was less caked than chopped straw and shredded paper (P < 0.001) whereas no significant differences were observed among pelleted straw, wood shavings, and rice hulls. The study demonstrated the potential benefits to using pelleted wheat straw as a bedding material. Further assessment of pelleting of wheat straw and other materials on broiler health, performance, and welfare are needed to determine the economic benefits of pelleted litter. © 2017 Poultry Science Association Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1982-10-01
Commercial calcium silicate bearing Portland cement type III (PC III), in the form of agglomerated cement sorbent (ACS) pellets, is being investigated for in-situ desulfurization of fuel gases and for improved coal gasification. The preparation procedure and conditions for pelletizing agglomerated cement sorbent (ACS) by a low energy, low cost agglomeration technique have been modified using a two-stage pelletization procedure, which yields ACS pellets of greater mechanical strength. A 40 mm ID bench scale fluidized bed gasifier (FBG) was used to determine sulfur removal efficiency of ACS pellets as well as their attrition resistance, using a simulated gas mixture. Thesemore » tests show that 90% or more of the sulfur removal from the gas is achieved until 35% of the ACS pellet is sulfidated and that it has excellent attrition resistance (less than 0.1% wt loss) during cyclic tests excluding the first conditioning cycle. The gasification of coal by partial oxidation with air to low Btu gas was conducted in a 1-inch bench scale FBG unit by our collaborator, the Foster Wheeler Corporation (FWC). At temperatures between 800/sup 0/C and 950/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets. The test on sulfur fixation characteristics of the sorbent in the 1-inch FBG unit using a simulated gas also shows that the ACS pellet is much more reactive toward H/sub 2/S than Greer limestone. The ability of ACS pellets to simultaneously desulfurize and improve the gasification efficiency of coal in FBG justifies further investigation.« less
Effect of differently pelletized digestate on the plant growth of spring wheat
NASA Astrophysics Data System (ADS)
Dietrich, Nils; Knoop, Christine; Raab, Thomas
2017-04-01
In Germany, biowaste is used in more than 100 biogas plants and has increasing potential as a fermentation substrate. To optimise waste cycle management organic digestates should be redistributed and innovative products for soil amendment of agricultural areas could be developed. The BMBF-funded VeNGA project seeks to find answers on how to improve the properties of soil amendments produced from fermentation residues. Here, we report findings from our study that focuses on plant growth and soil development. Within a three-month rhizotron experiment, the influence of differently prepared fermentation residues on the root development of summer wheat was investigated. The four variants of the prepared digestate (rolled pellet, pressed pellet, shredded, loose) were tested under constant conditions in the greenhouse on two soils with different textures (sandy and loamy-sand). All fermentation residues originated from the same batch and were composted before the preparation to ensure adequate hygienisation. Depending on preparation type and soil substrate significant differences in root growth and root development have been observed. Plant growth was most intense in the rhizotron experiment with the loose digestate, indicating high nutrient availability due to the large surface area of the organic matter. Plant growth in the substrate with the rolled and pressed pellets was less pronounced, indicating a more persistent stability of the pellets. In rhizotrons applied with rolled and pressed pellets root growth into the mineral fabric was significantly lower in sandy substrate than in the loamy-sand. However, in the sandy substrate root growth within the rolled pellets was more intense than in the substrate with the pressed pellets. Obviously, the different production techniques of the pellets seem to have an influence on the rooting of the pellets and facilitate the long term stability of soil organic carbon. Furthermore, the comparison of the two different textures indicate, that sandy substrates benefit more from the positive effects of soil amendments on increased water retention than loamy substrates.
Reddy, P. B.; Reddy, T. J.; Reddy, Y. R.
2012-01-01
A growth and digestibility study was conducted using Osmanabadi goat male kids by feeding complete diets in the form of mash or expander extruded pellets containing different levels of red gram (Cajanus cajan) straw (RGS). Two iso-nitrogenous complete diets were prepared by incorporating RGS at 35% and 50% levels. Half the quantity of each complete mash feed was then converted into pellets through expander extruder processing. Thirty two kids of 4 to 5 months age were divided into four groups of eight each and were fed for 150 d with four experimental diets (T1: mash with 35% RGS, T2: mash with 50% RGS, T3: pellets with 35% RGS and T4: pellets with 50% RGS). Pelleting of complete diets significantly (p<0.001) increased the voluntary feed intake (671.45 vs 426.28 g/d) at both levels of RGS in the feeds. Average daily gain (ADG, g/d) also increased significantly (p<0.001) from 48.79 in kids fed mash diet to 71.29 in those fed with pelleted diets. Feed conversion efficiency (dry matter (DM) intake: weight gain) was comparable among all the treatment groups. Digestibility of nutrients was not affected by pelleting of the feeds whereas, increasing the level of inclusion of RGS in feeds from 35% to 50% decreased (p<0.05) the digestibility of DM and crude protein (CP) resulting in lower (p<0.001) metabolizable energy (ME) content (MJ/kg DM) in feeds with 50% RGS (7.93 vs 8.75). Daily intake (MJ/kg BW−0.75) of ME decreased (p<0.05) in feeds containing 50% RGS while pelleting of feeds increased (p<0.05) the intake of DM, CP, digestible crude protein (DCP) and ME. It is inferred that expander extruder pelleting can efficiently utilize RGS up to 50% level in complete diets for growing goat kids. PMID:25049537
Reddy, P B; Reddy, T J; Reddy, Y R
2012-12-01
A growth and digestibility study was conducted using Osmanabadi goat male kids by feeding complete diets in the form of mash or expander extruded pellets containing different levels of red gram (Cajanus cajan) straw (RGS). Two iso-nitrogenous complete diets were prepared by incorporating RGS at 35% and 50% levels. Half the quantity of each complete mash feed was then converted into pellets through expander extruder processing. Thirty two kids of 4 to 5 months age were divided into four groups of eight each and were fed for 150 d with four experimental diets (T1: mash with 35% RGS, T2: mash with 50% RGS, T3: pellets with 35% RGS and T4: pellets with 50% RGS). Pelleting of complete diets significantly (p<0.001) increased the voluntary feed intake (671.45 vs 426.28 g/d) at both levels of RGS in the feeds. Average daily gain (ADG, g/d) also increased significantly (p<0.001) from 48.79 in kids fed mash diet to 71.29 in those fed with pelleted diets. Feed conversion efficiency (dry matter (DM) intake: weight gain) was comparable among all the treatment groups. Digestibility of nutrients was not affected by pelleting of the feeds whereas, increasing the level of inclusion of RGS in feeds from 35% to 50% decreased (p<0.05) the digestibility of DM and crude protein (CP) resulting in lower (p<0.001) metabolizable energy (ME) content (MJ/kg DM) in feeds with 50% RGS (7.93 vs 8.75). Daily intake (MJ/kg BW(-0.75)) of ME decreased (p<0.05) in feeds containing 50% RGS while pelleting of feeds increased (p<0.05) the intake of DM, CP, digestible crude protein (DCP) and ME. It is inferred that expander extruder pelleting can efficiently utilize RGS up to 50% level in complete diets for growing goat kids.
[Selective feeding in fish: Effect of feeding and defensive motivations evoked by natural odors].
Kasumyan, A O; Marusov, E A
2015-01-01
The effect of feeding and defensive motivations evoked by natural olfactory signals (the food odor, the alarm pheromone) on choice and consumption of food items different in color and taste, and the manifestation of foraging behavior were examined in fish (koi Cyprinus carpio, roach Rutilus rutilus). The agar-agar pellets of red and green color having one of the amino acids (glycine, L-proline, L-alanine; all in concentration of 0.1 M) were simultaneously offered to single fishes in pure water, and in water extract of Chironomidae larvae or in water extract of fish skin. It was found out that odors used have different effects on fish foraging activity and on pellet selection for both pellet choice and consumption. On background of food odor, fish grasped pellets more often than in pure water. The equal choice of red and green pellets in pure water shifted to the preference of red ones in the presence of food odor. Despite the increase in the absolute number of pellets grasped, the relative consumption reduced and was replaced by selective consumption of pellets with glycine regardless of their color. Increasing demand for the food quality, due to the increased feeding motivation in response to food odor, is an important adaptation enhancing selection and consumption of food with more appropriate sensory qualities for fish. Defensive motivation caused by alarm pheromone suppressed predisposition. of fish to feed. Fish grasped pellets several times less often than in pure water and refused most of them. Any changes in the color or taste preferences were absent. Feeding behavior of fish of both species was characterized by repeated intraoral pellet testing, but in koi handling was less typical than in roach. In both species, handling activity was higher in those cases when the pellet was finally rejected. This activity was enhanced also on the background of food odor.
Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.
Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2017-05-01
Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.
Gauthier, Saskia; Grass, Hildegard; Lory, Martin; Krämer, Thomas; Thali, Michael; Bartsch, Christine
2012-08-01
The installation of wood pellet heating as a cost-effective and climatically neutral source of energy for private households has increased steadily in recent years. We report two deaths that occurred within the space of about a year in wood pellet storerooms of private households in German-speaking countries and were investigated by forensic medical teams. This is the first report of fatalities in this special context as is shown in the literature review. Both victims died of carbon monoxide (CO) poisoning; one of the victims was a woman who was 4 months pregnant. Measurements at the scene detected life-threatening CO concentrations (7500 ppm, >500 ppm), which were not significantly reduced after ventilation of the storerooms as required by regulations. We carried out a series of experiments in order to confirm CO production by wood pellets. Thirty kilograms of freshly produced pellets from two different manufacturers were stored for 16 days in airtight containers at 26°C with different relative humidities. CO concentrations between 3100 and 4700 ppm were measured in all containers. There were no notable differences between the wood pellet products or storage at different humidities. Emission of CO from wood pellets has already been described, but fatal accidents have previously been reported only in association with pellet transport on cargo ships or storage in silos. It is therefore a new finding that fatal accidents may also occur in the wood pellet storerooms of private households. We show that significant CO concentrations can build up even when these rooms are ventilated in accordance with the regulations and that such levels may cause the death of healthy persons, as described in the following. As the safety recommendations from the wood pellet industry are inadequate, we consider that further fatal accidents are likely to occur and recommend urgent revision of the safety regulations.
Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine
2015-06-21
In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less
Characteristics of pellet injuries to the orbit.
Kükner, A Sahap; Yilmaz, Turgut; Celebi, Serdal; Karslioğlu, Safak; Alagöz, Gürsoy; Serin, Didem; Acar, M Akif; Ozveren, M Faik
2009-01-01
To investigate the features of orbital injuries by pellets fired from the front. Retrospective, 4 cases of pellet injuries. Five orbits of 4 patients who sustained pellet injuries received from the front were reviewed retrospectively. The course of injury and results were assessed. Radiological examinations were reviewed. The patients were evaluated between December 1996 and June 2004. Five orbits of 4 patients sustained injuries caused by pellets fired from an anterior direction. The globe in the injured orbit was intact in 2 cases. Severe loss of vision was also present in these 2 globes due to optic nerve involvement. Final visual acuity was down to no light perception in 4 eyes and limited to light perception in 1 eye. The prognosis of orbital pellet injuries is, unfortunately, poor. A pellet passing through the floor of the orbit often causes double perforation of the globe and, once in the orbital aperture, it travels towards the apex as a result of the conical shape of the orbit and lodges in the optic canal or its entrance, severely damaging the optic nerve. Surgery or other treatments are usually unsuccessful. Even if the globe is intact, vision is usually severely impaired. Copyright 2009 S. Karger AG, Basel.
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
Wilfong, Walter Christopher; Kail, Brian W.; Howard, Bret H.; ...
2016-08-04
Pelletization of ca. 50 wt % amine/silica carbon dioxide sorbents was achieved with the novel combination of fly ash (FA) as a strength additive and hydrophobic poly(chloroprene) (PC) as a binder. The PC content and overall synthesis procedure of these materials were optimized to produce pellets, labeled as FA/E100-S_(20/80)_12.2, with the highest ball-mill attrition resistance (<0.5 wt % by fines, 24 h) and maximum CO 2 capture capacity of 1.78 mmol CO 2 g -1. The strength of the pellets was attributed to hydrogen-bonding of the relatively homogeneous PC network with the interlocked FA and BIAS particles (DRIFTS, SEM-EDS). Themore » low degradation of 3–4 % in the pellet's CO 2 capture capacity under both dry TGA (7.5 h) and practical fixed-bed (6.5 h dry; 4.5 h humid,≈5 vol % H 2O) CO 2 adsorption–desorption conditions highlights the pellet's excellent cyclic stability. These robust pellet characteristics make PC/FA/sorbent materials promising for commercial scale, point-source CO 2 capture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine
In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less
NASA Astrophysics Data System (ADS)
Neumeier, Urs; Friend, Patrick L.; Gangelhof, Uffe; Lunding, Jens; Lundkvist, Morten; Bergamasco, Alessandro; Amos, Carl L.; Flindt, Mogens
2007-11-01
Superfluous fish food settling below fish farms can have a negative impact on the seabed. To aid in the assessment of this impact a series of flume experiments, designed to mimic seabed conditions below a fish farm, was conducted with the aim of examining the effects of fish pellets on the stability of fine sediments. Artificial beds, with varying quantities of fish pellets incorporated both within the sediment matrix and lying on the sediment surface, were allowed to consolidate for different periods of time ranging from 1 to 10 days, and then subjected to erosion experiments. In flume experiments containing fish pellets, a bacterial biofilm developed at the sediment-water interface after a few days. In the control experiments (no fish pellets), a diatom biofilm caused extensive stabilisation of the surface sediment. The erosion experiments showed that the addition of fish pellets reduced the surface erosion threshold by more than 50%. The stability decrease was more pronounced in the experiments with greater amounts of pellets. Evidence of drag reduction due to high suspended sediment concentration was also observed. This phenomenon is discussed and a correction formula is proposed for the effective shear stress experienced by the bed.
Pellet Injection in ITER with ∇B-induced Drift Effect using TASK/TR and HPI2 Codes
NASA Astrophysics Data System (ADS)
Kongkurd, R.; Wisitsorasak, A.
2017-09-01
The impact of pellet injection in International Thermonuclear Experimental Reactor (ITER) are investigated using integrated predictive modeling codes TASK/TR and HPI2 . In the core, the plasma profiles are predicted by the TASK/TR code in which the core transport models consist of a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport. The pellet ablation in the plasma is described using neutral gas shielding (NGS) model with inclusion of the ∇B-induced \\overrightarrow{E}× \\overrightarrow{B} drift of the ionized ablated pellet particles. It is found that the high-field-side injection can deposit the pellet mass deeper than the injection from the low-field-side due to the advantage of the ∇B-induced drift. When pellets with deuterium-tritium mixing ratio of unity are launched with speed of 200 m/s, radius of 3 mm and injected at frequency of 2 Hz, the line average density and the plasma stored energy are increased by 80% and 25% respectively. The pellet material is mostly deposited at the normalized minor radius of 0.5 from the edge.
Brutcher, Robert E; Nader, Susan H; Nader, Michael A
2016-02-01
There are several case reports of nonmedicinal quetiapine abuse, yet there are very limited preclinical studies investigating quetiapine self-administration. The goal of this study was to investigate the reinforcing effects of quetiapine alone and in combination with intravenous cocaine in monkeys. In experiment 1, cocaine-experienced female monkeys (N = 4) responded under a fixed-ratio (FR) 30 schedule of food reinforcement (1.0-g banana-flavored pellets), and when responding was stable, quetiapine (0.003-0.1 mg/kg per injection) or saline was substituted for a minimum of five sessions; there was a return to food-maintained responding between doses. Next, monkeys were treated with quetiapine (25 mg, by mouth, twice a day) for approximately 30 days, and then the quetiapine self-administration dose-response curve was redetermined. In experiment 2, male monkeys (N = 6) self-administered cocaine under a concurrent FR schedule with food reinforcement (three food pellets) as the alternative to cocaine (0.003-0.3 mg/kg per injection) presentation. Once choice responding was stable, the effects of adding quetiapine (0.03 or 0.1 mg/kg per injection) to the cocaine solution were examined. In experiment 1, quetiapine did not function as a reinforcer, and chronic quetiapine treatment did not alter these effects. In experiment 2, cocaine choice increased in a dose-dependent fashion. The addition of quetiapine to cocaine resulted in increases in low-dose cocaine choice and number of cocaine injections in four monkeys, while not affecting high-dose cocaine preference. Thus, although quetiapine alone does not have abuse potential, there was evidence of enhancement of the reinforcing potency of cocaine. These results suggest that the use of quetiapine in cocaine-addicted patients should be monitored. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
ERIC Educational Resources Information Center
Thompson, Craig D.
1987-01-01
Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…
Tracer-Encapsulated Solid Pellet (TESPEL) Injection System for the TJ-II Stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, N.; McCarthy, K. J.; Hayashi, H.
2016-01-01
A tracer-encapsulated solid pellet (TESPEL) injection system for the TJ-II stellarator was recently developed. In order to reduce the time and cost for the development, we combined a TESPEL injector provided by National Institute for Fusion Science with an existing TJ-II cryogenic pellet injection system. Consequently, the TESPEL injection into the TJ-II plasma was successfully achieved, which was confirmed by several pellet diagnostics including a normal-incidence spectrometer for monitoring a tracer impurity behavior.
Durable zinc oxide-containing sorbents for coal gas desulfurization
Siriwardane, Ranjani V.
1996-01-01
Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.
Zhang, Wei; Tong, Yindong; Wang, Huanhuan; Chen, Long; Ou, Langbo; Wang, Xuejun; Liu, Guohua; Zhu, Yan
2014-01-01
Effort of reducing CO2 emissions in developing countries may require an increasing utilization of biomass fuels. Biomass pellets seem well-suited for residential biomass markets. However, there is limited quantitative information on pollutant emissions from biomass pellets burning, especially those measured in real applications. In this study, biomass pellets and raw biomass fuels were burned in a pellet burner and a conventional stove respectively, in rural households, and metal emissions were determined. Results showed that the emission factors (EFs) ranged 3.20–5.57 (Pb), 5.20–7.58 (Cu), 0.11–0.23 (Cd), 12.67–39.00 (As), 0.59–1.31 mg/kg (Ni) for pellets, and 0.73–1.34 (Pb), 0.92–4.48 (Cu), 0.08–0.14 (Cd), 7.29–13.22 (As), 0.28–0.62 (Ni) mg/kg for raw biomass. For unit energy delivered to cooking vessels, the EFs ranged 0.42–0.77 (Pb), 0.79–1.16 (Cu), 0.01–0.03 (Cd), 1.93–5.09 (As), 0.08–0.19 mg/MJ (Ni) for pellets, and 0.30–0.56 (Pb), 0.41–1.86 (Cu), 0.04–0.06 (Cd), 3.25–5.49 (As), 0.12–0.26 (Ni) mg/MJ for raw biomass. This study found that moisture, volatile matter and modified combustion efficiency were the important factors affecting metal emissions. Comparisons of the mass-based and task-based EFs found that biomass pellets produced higher metal emissions than the same amount of raw biomass. However, metal emissions from pellets were not higher in terms of unit energy delivered. PMID:25002204
Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1985-04-01
Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less
VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air
Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan
2016-01-01
Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2015-01-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2–5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents. PMID:25678836
NASA Astrophysics Data System (ADS)
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2012-12-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Tong, Yindong; Wang, Huanhuan; Chen, Long; Ou, Langbo; Wang, Xuejun; Liu, Guohua; Zhu, Yan
2014-07-01
Effort of reducing CO2 emissions in developing countries may require an increasing utilization of biomass fuels. Biomass pellets seem well-suited for residential biomass markets. However, there is limited quantitative information on pollutant emissions from biomass pellets burning, especially those measured in real applications. In this study, biomass pellets and raw biomass fuels were burned in a pellet burner and a conventional stove respectively, in rural households, and metal emissions were determined. Results showed that the emission factors (EFs) ranged 3.20-5.57 (Pb), 5.20-7.58 (Cu), 0.11-0.23 (Cd), 12.67-39.00 (As), 0.59-1.31 mg/kg (Ni) for pellets, and 0.73-1.34 (Pb), 0.92-4.48 (Cu), 0.08-0.14 (Cd), 7.29-13.22 (As), 0.28-0.62 (Ni) mg/kg for raw biomass. For unit energy delivered to cooking vessels, the EFs ranged 0.42-0.77 (Pb), 0.79-1.16 (Cu), 0.01-0.03 (Cd), 1.93-5.09 (As), 0.08-0.19 mg/MJ (Ni) for pellets, and 0.30-0.56 (Pb), 0.41-1.86 (Cu), 0.04-0.06 (Cd), 3.25-5.49 (As), 0.12-0.26 (Ni) mg/MJ for raw biomass. This study found that moisture, volatile matter and modified combustion efficiency were the important factors affecting metal emissions. Comparisons of the mass-based and task-based EFs found that biomass pellets produced higher metal emissions than the same amount of raw biomass. However, metal emissions from pellets were not higher in terms of unit energy delivered.
Zhang, Wei; Tong, Yindong; Wang, Huanhuan; Chen, Long; Ou, Langbo; Wang, Xuejun; Liu, Guohua; Zhu, Yan
2014-07-08
Effort of reducing CO₂ emissions in developing countries may require an increasing utilization of biomass fuels. Biomass pellets seem well-suited for residential biomass markets. However, there is limited quantitative information on pollutant emissions from biomass pellets burning, especially those measured in real applications. In this study, biomass pellets and raw biomass fuels were burned in a pellet burner and a conventional stove respectively, in rural households, and metal emissions were determined. Results showed that the emission factors (EFs) ranged 3.20-5.57 (Pb), 5.20-7.58 (Cu), 0.11-0.23 (Cd), 12.67-39.00 (As), 0.59-1.31 mg/kg (Ni) for pellets, and 0.73-1.34 (Pb), 0.92-4.48 (Cu), 0.08-0.14 (Cd), 7.29-13.22 (As), 0.28-0.62 (Ni) mg/kg for raw biomass. For unit energy delivered to cooking vessels, the EFs ranged 0.42-0.77 (Pb), 0.79-1.16 (Cu), 0.01-0.03 (Cd), 1.93-5.09 (As), 0.08-0.19 mg/MJ (Ni) for pellets, and 0.30-0.56 (Pb), 0.41-1.86 (Cu), 0.04-0.06 (Cd), 3.25-5.49 (As), 0.12-0.26 (Ni) mg/MJ for raw biomass. This study found that moisture, volatile matter and modified combustion efficiency were the important factors affecting metal emissions. Comparisons of the mass-based and task-based EFs found that biomass pellets produced higher metal emissions than the same amount of raw biomass. However, metal emissions from pellets were not higher in terms of unit energy delivered.
Kang, Sungchhang; Wanapat, Metha; Viennasay, Bounnaxay
2016-12-01
The objective of this study was to evaluate the effects of banana flower power pellet (BAFLOP-pellet) and plant oil source on in vitro gas production, fermentation efficiency, and methane (CH 4 ) production. Rumen fluid was collected from two rumen-fistulated dairy steers fed on rice straw-based diet with concentrate supplement to maintain normal rumen ecology. All supplemented feed were added to respective treatments in the 30:70 roughage to concentrate-based substrate. The treatments were arranged according to a 3 × 3 factorial arrangement in a completely randomized design. First factor was different levels of BAFLOP-pellet supplementation (0, 30, and 60 g/kg of dietary substrate) and second factor was plant oil source supplementation [non-supplemented, 20 g/kg krabok seed oil (KSO), and 20 g/kg coconut oil (CO) of dietary substrate, respectively]. Under this investigation, BAFLOP-pellet supplementation increased gas production kinetics and in vitro digestibility (P < 0.05). Ruminal pH was dropped post incubation time in the non-supplemented group but was enhanced in BAFLOP-pellet-supplemented treatments. On the other hand, supplementation of KSO and CO depressed gas production and digestibility, but did not influence ruminal pH. In addition, protozoal population and CH 4 production were decreased by BAFLOP-pellet and plant oil addition (P < 0.05). Based on this study, it could be concluded that supplementation of BAFLOP-pellet and plant oil source could enhance the in vitro fermentation efficiency while reduced protozoal population and CH 4 production. It is suggested that BAFLOP-pellet (60 g/kg of dietary substrate) and KSO/CO (20 g/kg of dietary substrate) could be used to manipulate rumen fermentation characteristics fed on high-concentrate diet.
Räber, R; Kaufmann, T; Regula, G; von Rotz, A; Stoffel, H M; Posthaus, H; Rérat, M; Morel, I; Kirchhofer, M; Steiner, A; Bähler, C
2013-05-01
The objective of this study was to identify a suitable alternative to the current practice of complementing the feeding of whole milk with straw. The influence of 3 different solid supplements on the health and performance of Swiss veal calves was investigated during 3 production cycles of 90 veal calves each with a mean initial age of 42 days and a mean initial weight of 68.7 kg. The calves were housed in groups of 30 in stalls strewn with wheat straw without outside pen. Liquid feeding consisted of whole milk combined with an additional skim milk powder ad libitum. Groups were assigned to one of the three following experimental solid feeds provided ad libitum: Pellet mix (composition: oat hulls, corn [whole plant], barley, sunflower seeds, squeezed grains of corn, molasses and a pellet binder), whole plant corn pellets, and wheat straw as control. Calves of the straw group showed significantly more abomasal lesions in the fundic part as compared to the pellet mix and corn pellets groups (P < 0.001), the prevalence of insufficient papillae was highest (P < 0.05), and ruminating behavior was unsatisfactory. In contrast to the pellet mix and straw groups, performance of calves in the corn pellets group was good. Additionally, prevalence of abomasal fundic lesions was lowest (P < 0.001), and rumen development was best in calves of the corn pellets group (P < 0.01). As in part I, the results reveal that whole-plant corn pellets are most consistent with an optimal result combining the calves' health and fattening performance. Therefore, it can be recommended as a solid supplement for veal calves basically fed whole milk under Swiss conditions.
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu
2012-12-01
Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EF oPAHs ) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EF oPAHs for raw fuels combusted in a traditional cooking stove were also measured. EF oPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EF oPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EF oPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EF oPAHs for the pellets in mode I were significantly lower ( p < 0.05 ), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
NASA Astrophysics Data System (ADS)
Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan
2016-09-01
Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.
Bendas, Ehab R; Christensen, J Mark; Ayres, James W
2010-04-01
The basic objective of this study was to develop a novel technique that aids in compaction of coated pellets into tablets and obtain a release pattern from compressed pellets resembling the same pattern before compression. Multi-unit dosage forms of mesalamine targeted to the colon were formulated by extrusion-spheronization, and then coated with Eudragit S (30%). These pellets were filled into gelatin capsules or further formulated and compressed into tablets. Tablets for colonic delivery of mesalamine were prepared by mixing the coated beads with cushioning agents like stearic acid and Explotab, or by applying an additional coat of gelatin (4% weight gain) onto the Eudragit S coated pellets, and then compressing into tablets (tableted reservoir-type pellets). Then additional coating of the tablets prepared by the coating technique was applied utilizing Eudragit L 100-55 (5% weight gain). This technique provides additive protection for the coated beads to withstand the compression force during tableting. Excellent in vitro dissolution results were obtained, which were comparable to the results of the release of mesalamine from uncompressed beads filled in capsules. Mesalamine release from the capsules was 0.3% after 2 hours in gastric pH, 0.37% was released after an additional 1 hour in pH 6, and 89% was released after 1.5 hours in colonic pH 7.2. Various formulation and process parameters have to be optimized in order to obtain tableted reservoir-type pellets having the same release properties as the uncompressed pellets. The coating technique delays the release of mesalamine until the beads reach the terminal ileum and colon. Once released in the colon, mesalamine is minimally absorbed and can act locally to treat ulcerative colitis.
Kilor, Vaishali A; Sapkal, Nidhi P; Awari, Jasmine G; Shewale, Bharti D
2010-03-01
In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion-spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like beta-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% kappa-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of kappa-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract.
Internal impacted screw-locking pellet
NASA Technical Reports Server (NTRS)
MacMartin, Malcolm J. (Inventor)
1994-01-01
An elongate fastener having an engaging surface engageable with an engaging surface of a fastener's mate includes a hole extending through a portion of the fastener and having a top opening and a bottom floor, a locking pellet disposed near the bottom floor, a discharge channel communicating between the pellet and through the engaging surface of the fastener and opening out toward the engaging surface of the fastener's mate, and an impact pin in the hole having a top portion protruding through the top opening and a bottom portion near the locking pellet, whereby the pin drives the locking pellet through the discharge channel against the engaging surfaces of the fastener and the fastener's mate whereby to lock the fastener against the fastener's mate.
Pellet starters in layering technique using concentrated drug solution.
Gryczová, Eva; Rabisková, Miloslava; Vetchý, David; Krejcová, Katerina
2008-12-01
Characteristics of inert starters in drug solution layering are important for successful active pellet formation. Four types of starters composed of sucrose or microcrystalline cellulose (MCC) or lactose and MCC were compared in our study. The active pellets were prepared using Wurster type apparatus. Yield and pellet quality parameters were determined. The highest yield (85.66-89.41%) was obtained for cores composed of MCC due to their insolubility in water (the drug solvent) and good mechanical properties. On the contrary, soluble and brittle sucrose cores dissolved partially during the process forming undesirable agglomerates and giving lower yield (76.2%). All pellet samples showed good flow properties and drug content from 82.4 to 94.5% of the theoretical drug amount.
Has pellet production affected SE US forests?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.
Wood pellet export volumes from the Southeastern United States (SE US) to Europe have been growing since 2009, leading to concerns about potential environmental effects. Biomass pellets are intended to reduce carbon emissions and slow global warming by replacing coal in European power plants. Yet, stakeholders on both sides of the Atlantic Ocean worry that increased pellet production might lead to changes in SE US forests that harm water and soil quality, or endanger sensitive species—such as birds, tortoises, and snakes—and their habitats. Stakeholders have also expressed concern that increasing pellet demand might accelerate a fifty-year trend in which naturallymore » regenerating mixed hardwood and pine forests native to the SE US are being replaced by plantation pine forests.« less
Has pellet production affected SE US forests?
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.
2017-10-01
Wood pellet export volumes from the Southeastern United States (SE US) to Europe have been growing since 2009, leading to concerns about potential environmental effects. Biomass pellets are intended to reduce carbon emissions and slow global warming by replacing coal in European power plants. Yet, stakeholders on both sides of the Atlantic Ocean worry that increased pellet production might lead to changes in SE US forests that harm water and soil quality, or endanger sensitive species—such as birds, tortoises, and snakes—and their habitats. Stakeholders have also expressed concern that increasing pellet demand might accelerate a fifty-year trend in which naturallymore » regenerating mixed hardwood and pine forests native to the SE US are being replaced by plantation pine forests.« less
Observation and analysis of pellet material del B drift on MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzotti, L.; Baylor, Larry R; Kochi, F.
2010-01-01
Pellet material deposited in a tokamak plasma experiences a drift towards the low field side of the torus induced by the magnetic field gradient. Plasma fuelling in ITER relies on the beneficial effect of this drift to increase the pellet deposition depth and fuelling efficiency. It is therefore important to analyse this phenomenon in present machines to improve the understanding of the del B induced drift and the accuracy of the predictions for ITER. This paper presents a detailed analysis of pellet material drift in MAST pellet injection experiments based on the unique diagnostic capabilities available on this machine andmore » compares the observations with predictions of state-of-the-art ablation and deposition codes.« less
32 CFR 552.102 - Requirements for possession and use.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-defined and privately-owned firearms, ammunition, BB and pellet guns, knives, bows and arrows, and crossbows under the following conditions: (a) Privately-owned firearms, crossbows, BB and pellet guns..., registered crossbows, registered BB and pellet guns and registered firearms within their quarters. (c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
Technoeconomic analysis of wheat straw densification in the Canadian Prairie Province of Manitoba.
Mupondwa, Edmund; Li, Xue; Tabil, Lope; Phani, Adapa; Sokhansanj, Shahab; Stumborg, Mark; Gruber, Margie; Laberge, Serge
2012-04-01
This study presents a technoeconomic analysis of wheat straw densification in Canada's prairie province of Manitoba as an integral part of biomass-to-cellulosic-ethanol infrastructure. Costs of wheat straw bale and pellet transportation and densification are analysed, including densification plant profitability. Wheat straw collection radius increases nonlinearly with pellet plant capacity, from 9.2 to 37km for a 2-35tonnesh(-1) plant. Bales are cheaper under 250km, beyond which the cheapest feedstocks are pellets from the largest pellet plant that can be built to exploit economies of scale. Feedstocks account for the largest percentage of variable costs. Marginal and average cost curves suggest Manitoba could support a pellet plant up to 35tonnesh(-1). Operating below capacity (75-50%) significantly erodes a plant's net present value (NPV). Smaller plants require higher NPV break-even prices. Very large plants have considerable risk under low pellet prices and increased processing costs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Frank, A.M.; Lee, R.S.
1998-05-26
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.
Association of metals with plastic production pellets in the marine environment.
Ashton, Karen; Holmes, Luke; Turner, Andrew
2010-11-01
Plastic production pellets sampled from four beaches along a stretch of coastline (south Devon, SW England) and accompanying, loosely adhered and entrapped material removed ultrasonically have been analysed for major metals (Al, Fe, Mn) and trace metals (Cu, Zn, Pb, Ag, Cd, Co, Cr, Mo, Sb, Sn, U) following acid digestion. In most cases, metal concentrations in composite pellet samples from each site were less than but within an order of magnitude of corresponding concentrations in the pooled extraneous materials. However, normalisation of data with respect to Al revealed enrichment of Cd and Pb in plastic pellets at two sites. These observations are not wholly due to the association of pellets with fine material that is resistant to ultrasonication since new polyethylene pellets suspended in a harbour for 8 weeks accumulated metals from sea water through adsorption and precipitation. The environmental implications and potential applications of these findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Co-combustion of pellets from Soma lignite and waste dusts of furniture works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, N.D.; Yilgin, M.; Pehlivan, D.
2008-07-01
In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a promptmore » effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.« less
Nuclear fuel pellet sintering boat unloading apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huggins, T.B.; Widener, W.H.; Klapper, K.K.
1990-05-22
This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engagingmore » the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site.« less
Reduction Behavior of Dolomite-Fluxed Magnetite: Coke Composite Pellets at 1573 K (1300 °C)
NASA Astrophysics Data System (ADS)
Park, Hyunsik; Sohn, Il; Tsalapatis, John; Sahajwalla, Veena
2018-06-01
High-temperature behavior of magnetite—coke composite pellet fluxed with dolomite was investigated by customized thermogravimetric analyzer (TGA) at 1573 K (1300 °C). The overall reaction was influenced by C/O ratio and dolomite content. The reduction was accelerated by increased amount of dolomite, while the samples with higher C/O ratio showed the improved reduction degree. X-ray diffraction (XRD) pattern of reduced pellet showed the phase changes of the iron oxides. Noticeable iron peaks were observed when the sample reached the final stage of reduction. CO and CO2 gases released from the reaction were measured by Infrared (IR) gas analyzer. Relation between enhanced reducibility of pellets and larger CO gas evolution from the Boudouard reaction was confirmed from the analysis. Compressive strengths were studied for the practical assessment of reduced pellets. Samples with low-reduction degree showed better physical property. Excessive amount of dolomite also deteriorated the integrity of pellets.
Frank, Alan M.; Lee, Ronald S.
1998-01-01
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.
Kommuru, D S; Barker, T; Desai, S; Burke, J M; Ramsay, A; Mueller-Harvey, I; Miller, J E; Mosjidis, J A; Kamisetti, N; Terrill, T H
2014-08-29
Infection with Eimeria spp. (coccidia) can be devastating in goats, particularly for young, recently-weaned kids, resulting in diarrhea, dehydration, and even death. Feeding dried sericea lespedeza [SL; Lespedeza cuneata (Dum.-Cours.) G. Don.] to young goats has been reported to reduce the effects of internal parasites, including gastrointestinal nematodes (GIN) but there have been no reports of the effects of feeding this forage on Eimeria spp. in goats. Two confinement feeding experiments were completed on recently-weaned intact bucks (24 Kiko-cross, Exp. 1; 20 Spanish, Exp. 2) to determine effects of SL pellets on an established infection of GIN and coccidia. The bucks were assigned to 1 of 2 (Exp. 1) or 3 (Exp. 2) treatment groups based upon the number of Eimeria spp. oocysts per gram (OPG) of feces. In Exp. 1, the kids were fed 1 of 2 pelleted rations ad libitum; 90% SL leaf meal+10% of a liquid molasses/lignin binder mix and a commercial pellet with 12% crude protein (CP) and 24% acid detergent fiber (n=12/treatment group, 2 animals/pen). For Exp. 2, treatment groups were fed (1) 90% SL leaf meal pellets from leaves stored 3 years (n=7), (2) 90% SL pellets from leaf meal stored less than 6 months, (n=7), and the commercial pellets (n=6) ad libitum. For both trials, fecal and blood samples were taken from individual animals every 7 days for 28 days to determine OPG and GIN eggs per gram (EPG) and packed cell volume (PCV), respectively. In Exp. 2, feces were scored for consistency (1=solid pellets, 5=slurry) as an indicator of coccidiosis. In Exp. 1, EPG (P<0.001) and OPG (P<0.01) were reduced by 78.7% and 96.9%, respectively, 7 days after initiation of feeding in goats on the SL pellet diet compared with animals fed the control pellets. The OPG and EPG remained lower in treatment than control animals until the end of the trial. In Exp. 2, goats fed new and old SL leaf meal pellets had 66.2% and 79.2% lower (P<0.05) EPG and 92.2% and 91.2% lower (P<0.05) OPG, respectively, than control animals within 7 days, and these differences were maintained or increased throughout the trial. After 4 weeks of pellet feeding in Exp. 2, fecal scores were lower (P<0.01) in both SL-fed groups compared with control animals, indicating fewer signs of coccidiosis. There was no effect of diet on PCV values throughout either experiment. Dried, pelleted SL has excellent potential as a natural anti-coccidial feed for weaned goats. Copyright © 2014 Elsevier B.V. All rights reserved.
Nano and micro U1-xThxO2 solid solutions: From powders to pellets
NASA Astrophysics Data System (ADS)
Balice, Luca; Bouëxière, Daniel; Cologna, Marco; Cambriani, Andrea; Vigier, Jean-François; De Bona, Emanuele; Sorarù, Gian Domenico; Kübel, Christian; Walter, Olaf; Popa, Karin
2018-01-01
Nuclear fuels production, structural materials, separation techniques, and waste management, all may benefit from an extensive knowledge in the nano-nuclear technology. In this line, we present here the production of U1-xThxO2 (x = 0 to 1) mixed oxides nanocrystals (NC's) through the hydrothermal decomposition of the oxalates in hot compressed water at 250 °C. Particles of spherical shape and size of about 5.5-6 nm are obtained during the hydrothermal decomposition process. The powdery nanocrystalline products were consolidated by spark plasma sintering into homogeneous mixed oxides pellets with grain sizes in the 0.4 to 5.5 μm range. Grain growth and mechanical properties were studied as a function of composition and size. No grain size effect was observed on the hardness or elastic modulus.
Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza
2016-12-01
In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Gouge, M.J.
1990-05-01
Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The pipe gun'' technique for freezing hydrogen isotopes {ital in} {ital situ} in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds inmore » the range 1--2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them from the high peak pressures will be required to reliably attain intact pellets at speeds of {approx}3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at {approx}0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Gouge, M.J.
1989-01-01
Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The pipe gun'' technique for freezing hydrogen isotopes in situ in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds in the rangemore » 1-2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them for the high peak pressures will be required to reliably attain intact pellets at speeds of {approx}3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds of up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at {approx}0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented. 17 refs., 6 figs., 2 tabs.« less
Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.
Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed
2017-04-15
The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
Dependency between removal characteristics and defined measurement categories of pellets
NASA Astrophysics Data System (ADS)
Vogt, C.; Rohrbacher, M.; Rascher, R.; Sinzinger, S.
2015-09-01
Optical surfaces are usually machined by grinding and polishing. To achieve short polishing times it is necessary to grind with best possible form accuracy and with low sub surface damages. This is possible by using very fine grained grinding tools for the finishing process. These however often show time dependent properties regarding cutting ability in conjunction with tool wear. Fine grinding tools in the optics are often pellet-tools. For a successful grinding process the tools must show a constant self-sharpening performance. A constant, at least predictable wear and cutting behavior is crucial for a deterministic machining. This work describes a method to determine the characteristics of pellet grinding tools by tests conducted with a single pellet. We investigate the determination of the effective material removal rate and the derivation of the G-ratio. Especially the change from the newly dressed via the quasi-stationary to the worn status of the tool is described. By recording the achieved roughness with the single pellet it is possible to derive the roughness expect from a series pellet tool made of pellets with the same specification. From the results of these tests the usability of a pellet grinding tool for a specific grinding task can be determined without testing a comparably expensive serial tool. The results are verified by a production test with a serial tool under series conditions. The collected data can be stored and used in an appropriate data base for tool characteristics and be combined with useful applications.
Simulation of the ELMs triggering by lithium pellet on EAST tokamak using BOUT + +
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, X. Q.; Wang, Z.; Sun, Z.; Hu, J. S.; Gao, X.
2017-10-01
A new lithium granule injector (LGI) was developed on EAST. Using the LGI, lithium granules can be efficiently injected into EAST tokamak with the granule radius 0.2-1 mm and the granules velocity 30-110 m/s. ELM pacing was realized during EAST shot #70123 at time window from 4.4-4.7s, the average velocity of the pellet was 75 m/s and the average injection rate is at 99Hz. The BOUT + + 6-field electromagnetic turbulence code has been used to simulate the ELM pacing process. A neutral gas shielding (NGS) model has been implemented during the pellet ablation process. The neutral transport code is used to evaluate the ionized electron and Li ion densities with the charge exchange as a dominant factor in the neutral cloud diffusion process. The snapshot plasma profiles during the pellet ablation and toroidal symmetrization process are used in the 6-field turbulence code to evaluate the impact of the pellets on ELMs. Destabilizing effects of the peeling-ballooning modes are found with lithium pellet injection, which is consistent with the experimental results. A scan of the pellet size, shape and the injection velocity will be conducted, which will benefit the pellet injection design in both the present and future devices. Prepared by LLNL under Contract DE-AC52-07NA27344 and this work is supported by the National Natural Science Fonudation of China (Grant No. 11505221) and China Scholarship Council (Grant No. 201504910132).
NASA Astrophysics Data System (ADS)
Hasler, David Johann Ludwig
The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.
Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets
NASA Astrophysics Data System (ADS)
Lopes, Denise Adorno; Benarosch, Anna; Middleburgh, Simon; Johnson, Kyle D.
2017-12-01
U3Si2 has been considered as an alternative fuel for Light Water Reactors (LWRs) within the Accident Tolerant Fuels (ATF) initiative, begun after the Fukushima-Daiichi Nuclear accidents. Its main advantages are high thermal conductivity and high heavy metal density. Despite these benefits, U3Si2 presents an anisotropic crystallographic structure and low solubility of fission products, which can result in undesirable effects under irradiation conditions. In this paper, spark plasma sintering (SPS) of U3Si2 pellets is studied, with evaluation of the resulting microstructure. Additionally, exploiting the short sintering time in SPS, a molybdenum doped pellet was produced to investigate the early stages of the Mo-U3Si2 interaction, and analyze how this fission product is accommodated in the fuel matrix. The results show that pellets of U3Si2 with high density (>95% TD) can be obtained with SPS in the temperature range of 1200°C-1300 °C. Moreover, the short time employed in this technique was found to generate a unique microstructure for this fuel, composed mainly of closed nano-pores (<1 μm) and small average grain size (∼4.5 μm). The addition of Mo (1.5 at%) demonstrated no solubility of Mo in the U3Si2 matrix. The interaction of this fission product with the fuel matrix at 1200 °C formed, in the early stages, the stoichiometric U2Mo3Si4 ternary as well as precipitates of free uranium with small quantities of dissolved Si and Mo at the front of the reaction.
Synthesis of BaTiO3 and Ba(ZrxTi1-X)O3 by using the soft combustion method
NASA Astrophysics Data System (ADS)
Ahmad, Atiqah; Razak, Khairunisak Abdul
2017-07-01
In this work, barium titanate, BaTiO3 (BT) and Zr doped BT, BaZrxTi1-xO3 (BZT) with powders were successfully produced using the soft combustion method. Barium nitrate and titanium (IV) isopropoxide were used as the starting materials while zirconium (IV) oxynitrate hydrate as the doping precursors, and glycine as the combustion agent. The produced powders were pressed into 12 mm diameter pellets by using 150 MPa cold press. The effect of Zr dopant in BT was studied with molar ratio of x = 0.00, 0.03, 0.05, 0.08 and 0.10. The phase presence was identified using X-ray diffractometer. Morphology of powders and sintered pellets was observed using a scanning electron microscope. Density of the sintered pellets was measured by using Archimedes' principle, while dielectric properties were analysed by using an LCR meter. Pure perovskite BT and BZT structure were obtained after sintering at 1400 °C for 5 h. BZT with x = 0.03 has grain size of 3.9 µm and shows the highest dielectric constant of 525, compared to undoped BT that has the average grain size of 4.2 µm with dielectric constant 223. The results is in agreement with microstructure observation and density of the sample.
Techno-economic analysis of wood biomass boilers for the greenhouse industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine
2009-01-01
The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespanmore » of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.« less
Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen
2014-01-20
As further application investigations on fixed abrasive diamond pellets (FADPs), this work exhibits their potential capability for diminishing mid-spatial frequency errors (MSFEs, i.e., periodic small structure) of optical surfaces. Benefitting from its high surficial rigidness, the FADPs tool has a natural smoothing effect to periodic small errors. Compared with the previous design, this proposed new tool employs more compliance to aspherical surfaces due to the pellets being mutually separated and bonded on a steel plate with elastic back of silica rubber adhesive. Moreover, a unicursal Peano-like path is presented for improving MSFEs, which can enhance the multidirectionality and uniformity of the tool's motion. Experiments were conducted to validate the effectiveness of FADPs for diminishing MSFEs. In the lapping of a Φ=420 mm Zerodur paraboloid workpiece, the grinding ripples were quickly diminished (210 min) by both visual inspection and profile metrology, as well as the power spectrum density (PSD) analysis, RMS was reduced from 4.35 to 0.55 μm. In the smoothing of a Φ=101 mm fused silica workpiece, MSFEs were obviously improved from the inspection of surface form maps, interferometric fringe patterns, and PSD analysis. The mid-spatial frequency RMS was diminished from 0.017λ to 0.014λ (λ=632.8 nm).
Pelletizing properties of torrefied spruce
Wolfgang Stelte; Craig Clemons; Jens K. Holm; Anand R. Sanadi; Jesper Ahrenfeldt; Lei Shang; Ulrik B. Henriksen
2011-01-01
Torrefaction is a thermo-chemical conversion process improving the handling, storage and combustion properties of wood. To save storage space and transportation costs, it can be compressed into fuel pellets of high physical and energetic density. The resulting pellets are relatively resistant to moisture uptake, microbiological decay and easy to comminute into small...
32 CFR 552.128 - Requirements for possession and use.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., ammunition, pellet and BB guns, knives, bows and arrows, and crossbows under the following conditions: (a) Privately-owned firearms, crossbows, pellet and BB guns possessed or stored on the installation must be... pellet and BB guns, and registered firearms within their quarters. (c) Personnel residing in troop...
Physical and chemical properties of biobased plastic resins containing chicken feather fibers
USDA-ARS?s Scientific Manuscript database
This study was conducted to (a) characterize bioplastic pellets containing feather fibers (pellets) by low temperature-scanning electron microscopy and X-Ray diffraction analysis, (b) evaluate growth and flowering of Begonia boliviensis A. DC. ‘Bonfire’ when grown in medium amended with pellets, and...
Preference by horses for bedding pellets made from switchgrass (Panicum virgatum) straw
USDA-ARS?s Scientific Manuscript database
The bedding system used for stalled horses can impact their health and well-being. This study examined the saponin concentration in switchgrass (Panicum virgatum) straw, and bedding pellets made from switchgrass straw. Further, this study determined the palatability of bedding pellets made from sw...
Food habits of nesting prairie falcons in Campbell County
John R. Squires; Stanley H. Anderson; Robert Oakleaf
1989-01-01
Fifteen species of prey were utilized by nesting Prairie Falcons (Falco mexicanus) as determined through pellet analysis. Thirteen-lined Ground Squirrels (Spermophilus tridecemlineatus), the most common prey, were present in 91% of the pellets, followed by Western Meadowlarks (Sturnella neglecta) which were present in 56% of pellets. Horned Larks (Eremophila...
Owl Pellets and Crisis Management.
ERIC Educational Resources Information Center
Anderson, Tom
2002-01-01
Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…
Effects of temperature and material on dielectric properties of pelleted wood-based biomass
USDA-ARS?s Scientific Manuscript database
The production of pelleted biomass represents a significant emerging industry in the United States. Solid biomass can be formed from the waste products of many different products. In this study, the effects of temperature and pellet material type on the dielectric properties were investigated. Tempe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodaira, S., E-mail: koda@nirs.go.jp; Kurano, M.; Hosogane, T.
A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.