NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
Nano-displacement sensor based on photonic crystal fiber modal interferometer.
Dash, Jitendra Narayan; Jha, Rajan; Villatoro, Joel; Dass, Sumit
2015-02-15
A stable nano-displacement sensor based on large mode area photonic crystal fiber (PCF) modal interferometer is presented. The compact setup requires simple splicing of a small piece of PCF with a single mode fiber (SMF). The excitation and recombination of modes is carried out in a single splice. The use of a reflecting target creates an extra cavity that discretizes the interference pattern of the mode interferometer, boosting the displacement resolution to nanometer level. The proposed modal interferometric based displacement sensor is highly stable and shows sensitivity of 32 pm/nm.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
Okhrimchuk, Andrey G; Obraztsov, Petr A
2015-06-08
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene
Okhrimchuk, Andrey G.; Obraztsov, Petr A.
2015-01-01
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678
Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.
2012-12-18
Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierściński, K., E-mail: kamil.pierscinski@ite.waw.pl; Pierścińska, D.; Pluska, M.
2015-10-07
Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
NASA Astrophysics Data System (ADS)
Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico
2018-02-01
Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
NASA Astrophysics Data System (ADS)
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng
2009-06-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
Environmentally stable all-PM all-fiber giant chirp oscillator.
Erkintalo, Miro; Aguergaray, Claude; Runge, Antoine; Broderick, Neil G R
2012-09-24
We report on an environmentally stable giant chirp oscillator operating at 1030 nm. Thanks to the use of a nonlinear amplifying loop mirror as the mode-locker, we are able to extract pulse energies in excess of 10 nJ from a robust all-PM cavity with no free-space elements. Extensive numerical simulations reveal that the output oscillator energy and duration can simply be up-scaled through the lengthening of the cavity with suitably positioned single-mode fiber. Experimentally, using different cavity lengths we have achieved environmentally stable mode-locking at 10, 3.7 and 1.7 MHz with corresponding pulse energies of 2.3, 10 and 16 nJ. In all cases external grating-pair compression below 400 fs has been demonstrated.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Passively mode-locked Raman fiber laser with 100 GHz repetition rate
NASA Astrophysics Data System (ADS)
Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut
2006-12-01
We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
Mode Behavior in Ultralarge Ring Lasers
NASA Astrophysics Data System (ADS)
Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.
2004-04-01
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.
Mode behavior in ultralarge ring lasers.
Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K
2004-04-10
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.
Single-pulse observations of the Galactic centre magnetar PSR J1745-2900 at 3.1 GHz
NASA Astrophysics Data System (ADS)
Yan, W. M.; Wang, N.; Manchester, R. N.; Wen, Z. G.; Yuan, J. P.
2018-05-01
We report on single-pulse observations of the Galactic centre magnetar PSR J1745-2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the integrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short-term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about 10 min. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emissions of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745-2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber
NASA Astrophysics Data System (ADS)
Burdin, V.; Bourdine, A.
2018-04-01
This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng
2009-08-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.
Opto-electronic oscillator and its applications
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute
1997-04-01
We review the properties of a new class of microwave oscillators called opto-electronic oscillators (OEO). We present theoretical and experimental results of a multi-loop technique for single mode selection. We then describe a new development called coupled OEO (COEO) in which the electrical oscillation is directly coupled with the optical oscillation, producing an OEO that generates stable optical pulses and single mode microwave oscillation simultaneously. Finally we discuss various applications of OEO.
Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey
2012-11-19
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.
Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.
Huang, Cheng-Sheng; Wang, Wei-Chih
2008-09-01
This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.
Nine-channel wavelength tunable single mode laser array based on slots.
Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F
2013-04-22
A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.
Hwang Fu, Yu-Hsien; Huang, William Y C; Shen, Kuang; Groves, Jay T; Miller, Thomas; Shan, Shu-Ou
2017-07-28
The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.
Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin
2018-06-01
We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.
High-power diode lasers for optical communications applications
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Channin, D. J.
1985-01-01
High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
Turing patterns and a stochastic individual-based model for predator-prey systems
NASA Astrophysics Data System (ADS)
Nagano, Seido
2012-02-01
Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate
NASA Astrophysics Data System (ADS)
Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin
2011-12-01
We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Circular array of stable atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.
2010-12-01
A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.
NASA Astrophysics Data System (ADS)
Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin
2018-05-01
In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.
High-temperature measurement by using a PCF-based Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng
2012-10-01
A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
Parity-time–symmetric optoelectronic oscillator
2018-01-01
An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Martel, G.; Chédot, C.; Réglier, V.; Hideur, A.; Ortaç, B.; Grelu, Ph.
2007-02-01
On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.
Carbon nanotube mode-locked vertical external-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.
2014-03-01
Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.
High stability wavefront reference source
Feldman, M.; Mockler, D.J.
1994-05-03
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.
High stability wavefront reference source
Feldman, Mark; Mockler, Daniel J.
1994-01-01
A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.
NASA Astrophysics Data System (ADS)
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Monolithic single mode interband cascade lasers with wide wavelength tunability
NASA Astrophysics Data System (ADS)
von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.
2016-11-01
Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
NASA Astrophysics Data System (ADS)
Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
2018-01-01
Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
NASA Technical Reports Server (NTRS)
Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.
2004-01-01
This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.
High pressure gas laser technology for atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Javan, A.
1980-01-01
The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber
NASA Astrophysics Data System (ADS)
Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.
1990-01-01
Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.
Coupled opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor); Maleki, Lute (Inventor)
1999-01-01
A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Influence of mode-beating pulse on laser-induced plasma
NASA Astrophysics Data System (ADS)
Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.
2018-04-01
This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.
Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides
NASA Astrophysics Data System (ADS)
Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.
2018-02-01
We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.
Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit
2015-12-28
An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.
Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao
2013-09-20
A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.
High power infrared super-Gaussian beams: generation, propagation, and application
NASA Astrophysics Data System (ADS)
du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.
2008-10-01
In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.
1.6 μm dissipative soliton fiber laser mode-locked by cesium lead halide perovskite quantum dots.
Liu, Bang; Gao, Lei; Cheng, Wei Wei; Tang, Xiao Sheng; Gao, Chao; Cao, Yu Long; Li, Yu Jia; Zhu, Tao
2018-03-19
We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr 3 -QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows that it has a modulation depth of 2.5% and a saturation power of 17.29 MW/cm 2 . After incorporating the fabricated device into an Er 3+ -doped fiber ring cavity with a net normal dispersion of 0.238 ps 2 , we obtain stable dissipative soliton with a pulse duration of 14.4 ps and a center wavelength at 1600 nm together with an edge-to-dege bandwidth of 4.5 nm. The linear chirped phase can be compensated by 25 m single mode fiber, resulting into a compressed pulse duration of 1.046 ps. This experimental works proves that such CsPbBr3-QDs materials are effective choice for ultrafast laser operating with devious mode-locking states.
Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk
NASA Astrophysics Data System (ADS)
Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua
2018-07-01
We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.
Coupling of damped and growing modes in unstable shear flow
Fraser, A. E.; Terry, P. W.; Zweibel, E. G.; ...
2017-06-14
Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less
Coupling of damped and growing modes in unstable shear flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, A. E.; Terry, P. W.; Zweibel, E. G.
Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less
Highly versatile in-reflection photonic crystal fibre interferometer
NASA Astrophysics Data System (ADS)
Jha, Rajan; Villatoro, Joel; Kreuzer, Mark; Finazzi, Vittoria; Pruneri, Valerio
2009-10-01
We report a simple and highly versatile photonic crystal fiber (PCF) interferometer that operates in reflection mode. The device consists of a short section of PCF fusion spliced at the distal end of a standard single mode fiber. The air-holes of the PCF are intentionally collapsed over a microscopic region around the splice. The collapsed region broadens the propagating mode because of diffraction. This allows the coupling and recombination of two PCF modes. Depending on the PCF structure two core modes or a core and a cladding mode can be excited. In either case the devices exhibit sinusoidal interference patterns with fringe spacing depending on the PCF length. The interferometers are highly stable over time and can operate at high temperatures with minimal degradation. The interferometers are suitable for highresolution sensing of strain, refractive index (biosensing), gases, volatile organic compounds, etc.
NASA Astrophysics Data System (ADS)
Jasim, A. A.; Ahmad, H.
2017-12-01
The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil, E-mail: Anil.Shukla@pnnl.gov; Bogdanov, Bogdan
2015-02-14
Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations ofmore » singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less
Tree-ring characteristics including stable isotope composition are commonly used to reconstruct climate variables and establish mechanisms that underlie oscillations in modes of climate variability. However, divergence from the assumption of a single, primary biophysical control ...
Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu
2018-03-15
We demonstrate a polarization-maintaining (PM) dual-wavelength (DW) single-frequency Er-doped distributed Bragg reflection (DBR) fiber laser with 28 GHz stable frequency difference. A homemade PM low-reflectivity superimposed fiber Bragg grating (SFBG) is employed as the output port of the DBR fiber laser. The SFBG has two reflection wavelengths located in the same grating region. The reflectivity of both DWs is around 85%. The achieved linear polarization extinction ratio is more than 20 dB. The DWs of the laser output are located at 1552.2 nm and 1552.43 nm, respectively. The optical signal-to-noise ratio (SNR) is above 60 dB. For each wavelength, only one longitudinal mode exists. The beat frequency of the two longitudinal modes is measured to be 28.4474 GHz, with the SNR of more than 65 dB and the linewidth less than 300 Hz. During a 60-min-long measurement, the standard deviation of the frequency fluctuation is 58.592 kHz.
NASA Astrophysics Data System (ADS)
Zhang, Hu; Zhang, Xiaoguang; Li, Hui; Deng, Yifan; Zhang, Xia; Xi, Lixia; Tang, Xianfeng; Zhang, Wenbo
2017-08-01
Based on 5 requirements which are essential for stable OAM mode transmission, we propose an OAM fiber family based on a structure of circular photonic crystal fiber (C-PCF). The proposed C-PCF in the family is made of pure silica, with a big round air hole at the center, several rings of air-hole array as the cladding, and a ring shaped silica area in between as the core where the OAM modes propagate. We also provide a design strategy with which the optimized C-PCF can be obtained with optimum number of high quality OAM modes (up to 42 OAM modes), large effective index separation for corresponding vector modes over a wide bandwidth, relative small and flat dispersion, and low nonlinear coefficient compared with a conventional single mode fiber. The designed fiber can be used in MDM communications and other OAM applications in fibers.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.
2010-10-01
A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
760 nm high-performance VCSEL growth and characterization
NASA Astrophysics Data System (ADS)
Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer
2006-04-01
High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.
NASA Astrophysics Data System (ADS)
Abdul, M.; Farooq, U.; Akbar, Jehan; Saif, F.
2018-06-01
We transform the semi-classical laser equation for single mode homogeneously broadened lasers to a one-dimensional nonlinear map by using the discrete dynamical approach. The obtained mapping, referred to as laser logistic mapping (LLM), characteristically exhibits convergent, cyclic and chaotic behavior depending on the control parameter. Thus, the so obtained LLM explains stable, bistable, multi-stable, and chaotic solutions for output field intensity. The onset of bistability takes place at a critical value of the effective gain coefficient. The obtained analytical results are confirmed through numerical calculations.
Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror.
Diaz, Silvia; Socorro, Abian Bentor; Martínez Manuel, Rodolfo; Fernandez, Ruben; Monasterio, Ioseba
2016-10-10
In this work, two novel stable multi-wavelength fiber laser configurations are proposed and demonstrated by using a spool of a single-mode fiber as an optical loop mirror and one or two fiber ring cavities, respectively. The lasers are comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The influence of the length of the spool of fiber on the laser stability both in terms of wavelength and laser output power was investigated. An application for temperature measurement is also shown.
Evolution of the bi-stable wake of a square-back automotive shape
NASA Astrophysics Data System (ADS)
Pavia, Giancarlo; Passmore, Martin; Sardu, Costantino
2018-01-01
Square-back shapes are popular in the automotive market for their high level of practicality. These geometries, however, are usually characterised by high drag and their wake dynamics present aspects, such as the coexistence of a long-time bi-stable behaviour and short-time global fluctuating modes that are not fully understood. In the present paper, the unsteady behaviour of the wake of a generic square-back car geometry is characterised with an emphasis on identifying the causal relationship between the different dynamic modes in the wake. The study is experimental, consisting of balance, pressure, and stereoscopic PIV measurements. Applying wavelet and cross-wavelet transforms to the balance data, a quasi-steady correlation is demonstrated between the forces and bi-stable modes. This is investigated by applying proper orthogonal decomposition to the pressure and velocity data sets and a new structure is proposed for each bi-stable state, consisting of a hairpin vortex that originates from one of the two model's vertical trailing edges and bends towards the opposite side as it merges into a single streamwise vortex downstream. The wake pumping motion is also identified and for the first time linked with the motion of the bi-stable vortical structure in the streamwise direction, resulting in out-of-phase pressure variations between the two vertical halves of the model base. A phase-averaged low-order model is also proposed that provides a comprehensive description of the mechanisms of the switch between the bi-stable states. It is demonstrated that, during the switch, the wake becomes laterally symmetric and, at this point, the level of interaction between the recirculating structures and the base reaches a minimum, yielding, for this geometry, a 7% reduction of the base drag compared to the time-averaged result.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
NASA Astrophysics Data System (ADS)
Gu, W.; Heil, P. E.; Choi, H.; Kim, K.
2010-12-01
The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.
NASA Technical Reports Server (NTRS)
Ladany, I.; Hammer, J. M.
1980-01-01
A module developed for the generation of a stable single wavelength to be used for a fiber optic multiplexing scheme is described. The laser is driven with RZ pulses, and the temperature is stabilized thermoelectrically. The unit is capable of maintaining a fixed wavelength within about 6 A as the pulse duty cycle is changed between 0 and 100 percent. This is considered the most severe case, and much tighter tolerances are obtainable for constant input power coding schemes. Using a constricted double heterostructure laser, a wavelength shift of 0.083 A mA is obtained due to laser self-heating by a dc driving current. The thermoelectric unit is capable of maintaining a constant laser heat-sink temperature within 0.02 C. In addition, miniature lenses and couplers are described which allow efficient coupling of single wavelength modes of junction lasers to thin film optical waveguides. The design of the miniature cylinder lenses and the prism coupling techniques allow 2 mW of single wavelength mode junction laser light to b coupled into thin film waveguides using compact assemblies. Selective grating couplers are also studied.
Stability of miscible core?annular flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.
The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.
Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams
NASA Astrophysics Data System (ADS)
Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton
2012-02-01
The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.
Experimental circular quantum secret sharing over telecom fiber network.
Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui
2013-07-15
We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, J.D.
1997-05-06
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, Jeffrey D.
1997-01-01
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.
10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE
NASA Astrophysics Data System (ADS)
Sobon, G.; Sliwinska, D.; Abramski, K. M.; Kaczmarek, P.
2014-02-01
In this work we demonstrate a single-frequency, single-mode all-fiber master oscillator power amplifier (MOPA) source, based on erbium-ytterbium co-doped double-clad fiber emitting 10 W of continuous wave power at 1565 nm. In the power amplifier stage, the amplified spontaneous emission from Yb3+ ions (Yb-ASE) is forced to recirculate in a loop resonator in order to provide stable lasing at 1060 nm. The generated signal acts as an additional pump source for the amplifier and is reabsorbed by the Yb3+ ions in the active fiber, allowing an increase in the efficiency and boosting the output power. The feedback loop also protects the amplifier from parasitic lasing or self-pulsing at a wavelength of 1 μm. This allows one to significantly scale the output power in comparison to a conventional setup without any Yb-ASE control.
Stability and modal analysis of shock/boundary layer interactions
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng
2010-03-01
The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.
Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang
2014-01-01
We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
Electron teleportation and statistical transmutation in multiterminal Majorana islands
NASA Astrophysics Data System (ADS)
Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang
2017-11-01
We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.
NASA Astrophysics Data System (ADS)
Soto-Crespo, J. M.; Akhmediev, Nail
2002-12-01
The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite solitons of this equation are generally stable and have a wider range of existence than for those of the complex quintic Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In particular, there are three types of stable soliton pairs with π and π/2 phase difference and three different fixed separations between the pulses. Different types of soliton pairs can be generated by changing the parameter corresponding to the nonlinear gain (ɛ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya
2016-08-15
The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less
Diode-laser-based RIMS measurements of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1998-12-01
Double- and triple-resonance excitation schemes for the ionization of strontium are presented. Use of single-mode diode lasers for the resonance excitations provides a high degree of optical isotopic selectivity: with double-resonance, selectivity of >104 for 90Sr against the stable Sr isotopes has been demonstrated. Measurement of lineshapes and stable isotope shifts in the triple-resonance process indicate that optical selectivity should increase to ˜109. When combined with mass spectrometer selectivity this is sufficient for measurement of 90Sr at background environmental levels. Additionally, autoionizing resonances have been investigated for improving ionization efficiency with lower power lasers.
Soliton structure in crystalline acetanilide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-10-15
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Soliton structure in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.
1984-10-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers
NASA Astrophysics Data System (ADS)
Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory
2018-02-01
Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Jasim, A. A.
2017-07-01
A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.
Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser
NASA Astrophysics Data System (ADS)
Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi
2017-04-01
A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires-Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt-opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
Strongly interacting Sarma superfluid near orbital Feshbach resonances
NASA Astrophysics Data System (ADS)
Zou, Peng; He, Lianyi; Liu, Xia-Ji; Hu, Hui
2018-04-01
We investigate the nature of superfluid pairing in a strongly interacting Fermi gas near orbital Feshbach resonances with spin-population imbalance in three dimensions, which can be well described by a two-band or two-channel model. We show that a Sarma superfluid with gapless single-particle excitations is favored in the closed channel at large imbalance. It is thermodynamically stable against the formation of an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov superfluid and features a well-defined Goldstone-Anderson-Bogoliubov phonon mode and a massive Leggett mode as collective excitations at low momentum. At large momentum, the Leggett mode disappears and the phonon mode becomes damped at zero temperature, due to the coupling to the particle-hole excitations. We discuss possible experimental observation of a strongly interacting Sarma superfluid with ultracold alkaline-earth-metal Fermi gases.
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
NASA Astrophysics Data System (ADS)
Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao
2018-01-01
Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.
NASA Astrophysics Data System (ADS)
Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.
2012-05-01
We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Kumar, Ashish
2018-07-01
A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.
Inline microring reflector for photonic applications
NASA Astrophysics Data System (ADS)
Kang, Young Mo
The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation---and show that the prediction agrees very well with the measurement result.
NASA Astrophysics Data System (ADS)
Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.
2016-11-01
Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.
New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Gris-Sanchez, Itandehui; Ehrlich, Katjana; Birks, Tim A.; Giannone, Domenico; Haynes, Roger
2014-07-01
We present a new type of multicore fiber (MCF) and photonic lantern that consists of 511 individual cores designed to operate over a broadband visible wavelength range (380-860nm). It combines the coupling efficiency of a multimode fiber with modal stability intrinsic to a single mode fibre. It is designed to provide phase and amplitude scrambling to achieve a stable near field and far field illumination pattern during input coupling variations; it also has low modal noise for increased photometric stability. Preliminary results are presented for the new MCF as well as current state of the art octagonal fiber for comparison.
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R
2006-02-01
We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.
Smart architecture for stable multipoint fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung
2017-12-01
In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.
30-W Yb3+-pulsed fiber laser with wavelength tuning
NASA Astrophysics Data System (ADS)
Davydov, B. L.; Krylov, A. A.
2007-12-01
We have investigated various pulsed operation regimes of a diode-pumped Yb3+-doped fiber laser with both an acoustooptic filter and a shutter inside the resonator. To imbed the polarization-sensitive acoustooptic-tunable spectral filter into the polarization-nonmaintaining resonator, based on an “isotropic” single-mode fiber without “polarization’ losses, we have used a CaCO3 single-crystal nondispersive thermostable polarization splitter. Stable smooth bell-shaped laser pulses were obtained in the Q-switch generation regime across the entire wavelength tuning band. Their duration depended on the resonator travel time and their repetition rate was determined exclusively by the outer high-frequency generator controlling the acoustooptic shutter. A pulsed laser radiation tuning bandwidth of more than 20-nm at a repetition rate band of 10-100 kHz was observed in the amplification band of the Yb3+-doped fiber. A stable average power of 30 W of the pulsed 70-ns 100-kHz laser radiation in a near Gaussian beam was reached by means of the two-stage amplifier based on Yb3+-doped fibers with an enlarged mode field diameter (14 μm). The amplifier was pumped by λ = 975 nm CW multimode laser diodes with a maximum average power of 42 W.
Dynamic binding of replication protein a is required for DNA repair
Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.
2016-01-01
Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
Linear laser diode arrays for improvement in optical disk recording
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.
Self-mode-locked AlGaInP-VECSEL
NASA Astrophysics Data System (ADS)
Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.
2017-10-01
We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.
Mode Selection for a Single-Frequency Fiber Laser
NASA Technical Reports Server (NTRS)
Liu, Jian
2010-01-01
A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.
Kristensen, Jesper T; Houmann, Andreas; Liu, Xiaomin; Turchinovich, Dmitry
2008-06-23
We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 +/- 0.24 dB, and polarization extinction ratio of 19 +/- 0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 +/- 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.
Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang
2018-05-15
A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113 dBc/Hz at 10 kHz, and the side mode noise is below -95 dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.
Akbari, Fahimeh; Foroutan, Masumeh
2018-02-14
In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more accessible for use in microarrays to detect target single strands.
NASA Astrophysics Data System (ADS)
Hennig, D.
1997-09-01
We study the dynamics of excitation energy transfer along a lattice chain modeled by the discrete nonlinear Schrödinger (DNLS) equation. We prove that a segment carrying resonant motion can be decoupled from the remainder of the chain supporting quasiperiodic dynamics. The resonant segment from the extended chain is taken to be a four-site element, viz., a tetramer. First, we focus interest on the energy exchange dynamics along the tetramer viewed as two weakly coupled DNLS dimers. Hamiltonian methods are used to investigate the phase-space dynamics. We pay special attention to the role of the diffusion of the action variables inside resonance layers for the energy migration. When distributing the energy initially equally between the two dimers one observes a directed irreversible flow of energy from one dimer into the other assisted by action diffusion. Eventually on one dimer a stable self-trapped excitation of large amplitude forms at a single site while the other dimer exhibits equal energy partition over its two sites. Finally, we study the formation of localized structure on an extended DNLS lattice chain. In particular we explore the stability of the so-called even-parity and odd-parity localized modes, respectively, and explain their different stability properties by means of phase-space dynamics. The global instability of the even-parity mode is shown. For the excited even-parity mode a symmetry-breaking perturbation of the pattern leads to an intrinsic collapse of the even-parity mode to the odd-parity one. The latter remains stable with respect to symmetry-breaking perturbations. In this way we demonstrate that the favored stable localized states for the DNLS lattice chain correspond to one-site localized excitations.
Rashba effect in single-layer antimony telluroiodide SbTeI
Zhuang, Houlong L.; Cooper, Valentino R.; Xu, Haixuan; ...
2015-09-04
Exploring spin-orbit coupling (SOC) in single-layer materials is important for potential spintronics applications. In this paper, using first-principles calculations, we show that single-layer antimony telluroiodide SbTeI behaves as a two-dimensional semiconductor exhibiting a G 0W 0 band gap of 1.82 eV. More importantly, we observe the Rashba spin splitting in the SOC band structure of single-layer SbTeI with a sizable Rashba coupling parameter of 1.39 eV Å, which is significantly larger than that of a number of two-dimensional systems including surfaces and interfaces. The low formation energy and real phonon modes of single-layer SbTeI imply that it is stable. Finally,more » our study suggests that single-layer SbTeI is a candidate single-layer material for applications in spintronics devices.« less
Modal gating of muscle nicotinic acetylcholine receptors
NASA Astrophysics Data System (ADS)
Vij, Ridhima
Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that modes were reduced. Based on our results, we propose that WT loop C has an important role in determining resting affinity, in part by making stable interactions with the complementary surface of the alphadelta binding pocket. We suggest a possible structural basis for the fluctuations caused by loop C perturbations and propose that at the alphadelta agonist binding site, both loop C and the complementary subunit surface can adopt alternative conformations and interact with each other with respect to the aromatic core, to cause the variations in affinity.
Arc fusion splicing of photonic crystal fibers to standard single mode fibers
NASA Astrophysics Data System (ADS)
Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan
2010-04-01
Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.
NASA Astrophysics Data System (ADS)
Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie
2017-08-01
We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.
Multifrequency Gap Solitons in Nonlinear Photonic Crystals
NASA Astrophysics Data System (ADS)
Xie, Ping; Zhang, Zhao-Qing
2003-11-01
We predict the existence of multifrequency gap solitons (MFGSs) in both one- and two-dimensional nonlinear photonic crystals. A MFGS is a single intrinsic mode possessing multiple frequencies inside the gap. Its existence is a result of synergic nonlinear coupling among solitons or soliton trains at different frequencies. Its formation can either lower the threshold fields of the respective frequency components or stabilize their excitations. These MFGSs form a new class of stable gap solitons.
15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm.
Yang, Changsheng; Guan, Xianchao; Zhao, Qilai; Lin, Wei; Li, Can; Gan, Jiulin; Qian, Qi; Feng, Zhouming; Yang, Zhongmin; Xu, Shanhui
2018-05-14
A 1603 nm high optical signal-to-noise ratio (OSNR) kHz-linewidth linearly-polarized all-fiber single-frequency master-oscillator power amplifier (MOPA) is demonstrated. To suppress the amplified spontaneous emission from Yb 3+ /Er 3+ ions with the customized filters and optimize the length of the double cladding active fiber, an over 15 W stable single-longitudinal-mode laser is achieved with an OSNR of >70 dB. A measured laser linewidth of 4.5 kHz and a polarization-extinction ratio of >23 dB are obtained at the full output power. This L-band high-power single-frequency MOPA is promising for high-resolution molecular spectroscopy and pumping of Tm 3+ -doped or Tm 3+ /Ho 3+ co-doped laser.
Brillouin Optomechanics in Coupled Silicon Microcavities
NASA Astrophysics Data System (ADS)
Espinel, Y. A. V.; Santos, F. G. S.; Luiz, G. O.; Alegre, T. P. Mayer; Wiederhecker, G. S.
2017-03-01
The simultaneous control of optical and mechanical waves has enabled a range of fundamental and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices, to the exploration of the quantum-classical boundaries in optomechanical laser-cooling experiments. More recently, such an optomechanical interaction has been observed in integrated nano-waveguides and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatter light at several GHz. Here we engineer coupled optical microcavities to enable a low threshold excitation of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring the backward scattering we propose silicon microcavity designs based on laterally coupled single and double-layer cavities, the proposed structures enable optomechanical coupling with very high frequency modes (11 to 25 GHz) and large optomechanical coupling rates (g0/2π) from 50 kHz to 90 kHz.
A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology
NASA Astrophysics Data System (ADS)
Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen
2017-01-01
A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.
Nonlinear Modeling of Radial Stellar Pulsations
NASA Astrophysics Data System (ADS)
Smolec, R.
2009-09-01
In this thesis, I present the results of my work concerning the nonlinear modeling of radial stellar pulsations. I will focus on classical Cepheids, particularly on the double-mode phenomenon. History of nonlinear modeling of radial stellar pulsations begins in the sixties of the previous century. At the beginning convection was disregarded in model equations. Qualitatively, almost all features of the radial pulsators were successfully modeled with purely radiative hydrocodes. Among problems that remained, the most disturbing was modeling of the double-mode phenomenon. This long-standing problem seemed to be finally solved with the inclusion of turbulent convection into the model equations (Kollath et al. 1998, Feuchtinger 1998). Although dynamical aspects of the double-mode behaviour were extensively studied, its origin, particularly the specific role played by convection, remained obscure. To study this and other problems of radial stellar pulsations, I implemented the convection into pulsation hydrocodes. The codes adopt the Kuhfuss (1986) convection model. In other codes, particularly in the Florida-Budapest hydrocode (e.g. Kollath et al. 2002), used in comput! ation of most of the published double-mode models, different approximations concerning e.g. eddy-viscous terms or treatment of convectively stable regions are adopted. Particularly the neglect of negative buoyancy effects in the Florida-Budapest code and its consequences, were never discussed in the literature. These consequences are severe. Concerning the single-mode pulsators, neglect of negative buoyancy leads to smaller pulsation amplitudes, in comparison to amplitudes computed with code including these effects. Particularly, neglect of negative buoyancy reduces the amplitude of the fundamental mode very strong. This property of the Florida-Budapest models is crucial in bringing up the stable non-resonant double-mode Cepheid pulsation involving fundamental and first overtone modes (F/1O). Such pulsation is not observed in models computed including negative buoyancy. As the neglect of negative buoyancy is physically not correct, so are the double-mode Cepheid models computed with the Florida-Budapest hydrocode. Extensive search for F/1O double-mode Cepheid pulsation with the codes including negative buoyancy effects yielded null result. Some resonant double-mode F/1O Cepheid models were found, but their occurrence was restricted to a very narrow domain in the Hertzsprung-Russel diagram. Model computations intended to model the double-overtone (1O/2O) Cepheids in the Large Magellanic Cloud, also revealed some stable double-mode pulsations, however, restricted to a narrow period range. Resonances are most likely conductive in bringing up the double-mode behaviour observed in these models. However, majority of the double-overtone LMC Cepheids cannot be reproduced with our codes. Hence, the modeling of double-overtone Cepheids with convective hydrocodes is not satisfactory, either. Double-mode pulsation still lacks satisfactory explanation, and problem of its modeling remains open.
Simulations of High Speed Fragment Trajectories
NASA Astrophysics Data System (ADS)
Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis
2017-11-01
Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-01-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459
NASA Astrophysics Data System (ADS)
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-12-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.
NASA Astrophysics Data System (ADS)
Garnache, Arnaud; Myara, Mikhaël.; Laurain, A.; Bouchier, Aude; Perez, J. P.; Signoret, P.; Sagnes, I.; Romanini, D.
2017-11-01
We present a highly coherent semiconductor laser device formed by a ½-VCSEL structure and an external concave mirror in a millimetre high finesse stable cavity. The quantum well structure is diode-pumped by a commercial single mode GaAs laser diode system. This free running low noise tunable single-frequency laser exhibits >50mW output power in a low divergent circular TEM00 beam with a spectral linewidth below 1kHz and a relative intensity noise close to the quantum limit. This approach ensures, with a compact design, homogeneous gain behaviour and a sufficiently long photon lifetime to reach the oscillation-relaxation-free class-A regime, with a cut off frequency around 10MHz.
Deep Broad-Band Infrared Nulling Using A Single-Mode Fiber Beam Combiner and Baseline Rotation
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Haguenauer, P.; Serabyn, E.; Liewer, K.
2006-01-01
The basic advantage of single-mode fibers for deep nulling applications resides in their spatial filtering ability, and has now long been known. However, and as suggested more recently, a single-mode fiber can also be used for direct coherent recombination of spatially separated beams, i.e. in a 'multi-axial' nulling scheme. After the first successful demonstration of deep (<2e-6) visible LASER nulls using this technique (Haguenauer & Serabyn, Applied Optics 2006), we decided to work on an infrared extension for ground based astronomical observations, e.g. using two or more off-axis sub-apertures of a large ground based telescope. In preparation for such a system, we built and tested a laboratory infrared fiber nuller working in a wavelength regime where atmospheric turbulence can be efficiently corrected, over a pass band (approx.1.5 to 1.8 micron) broad enough to provide reasonable sensitivity. In addition, since no snapshot images are readily accessible with a (single) fiber nuller, we also tested baseline rotation as an approach to detect off-axis companions while keeping a central null. This modulation technique is identical to the baseline rotation envisioned for the TPF-I space mission. Within this context, we report here on early laboratory results showing deep stable broad-band dual polarization infrared nulls <5e-4 (currently limited by detector noise), and visible LASER nulls better than 3e-4 over a 360 degree rotation of the baseline. While further work will take place in the laboratory to achieve deeper stable broad-band nulls and test off-axis sources detection through rotation, the emphasis will be put on bringing such a system to a telescope as soon as possible. Detection capability at the 500:1 contrast ratio in the K band (2.2 microns) seem readily accessible within 50-100 mas of the optical axis, even with a first generation system mounted on a >5m AO equipped telescope such as the Palomar Hale 200 inch, the Keck, Subaru or Gemini telescopes.
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
Intermode Breather Solitons in Optical Microresonators
NASA Astrophysics Data System (ADS)
Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.
2017-10-01
Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
Sapsis, Themistoklis P; Majda, Andrew J
2013-08-20
A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.
Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs
2012-04-01
49 Figure 48. A side view of the elevated pressure-opposed flow rig on the test stand. The IR cutoff filter is shown in front of the...turbulent flows of mixed gasses in excited states. To perform this measurement, we have built and characterized a sensitive, selective infrared ( IR ...tool for TDLAS (Kosterev and Tittel, 2002). The QCL operates near room temperature and provides a powerful (~10 mW), stable, single-mode, mid- IR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil; Bogdanov, Bogdan
2015-02-14
Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case ofmore » positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less
NASA Astrophysics Data System (ADS)
Sakakibara, Youichi; Rozhin, Aleksey G.; Kataura, Hiromichi; Achiba, Yohji; Tokumoto, Madoka
2005-04-01
We fabricated single-wall carbon nanotube (SWNT)/poly(vinylalcohol) (PVA) nanocomposite freestanding films and examined their application in devices in which the saturable absorption of SWNTs at near-infrared optical telecommunication wavelengths can be utilized. In a passively mode-locked fiber laser, we integrated a 30-μm-thick SWNT/PVA film into a fiber connection adaptor with the film sandwiched by a pair of fiber ferrules. A ring fiber laser with a SWNT/PVA saturable absorber was operated very easily in the mode-locked short-pulse mode with a pulse width of about 500 fs. Reproducible stable device performance was confirmed. In examining noise suppression for optical amplifiers, mixed light of semiconductor amplified spontaneous emission (ASE) source and 370 fs laser pulses was passed through a 100-μm-thick SWNT/PVA film. The transmission loss of the femtosecond pulse light was smaller than that of the ASE light. This proved that the SWNT/PVA film has the ability to suppress ASE noise.
Advances in understanding quiescent H-mode plasmas in DIII-Da)
NASA Astrophysics Data System (ADS)
Burrell, K. H.; West, W. P.; Doyle, E. J.; Austin, M. E.; Casper, T. A.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jayakumar, R. J.; Kaplan, D. H.; Lao, L. L.; Leonard, A. W.; Makowski, M. A.; McKee, G. R.; Osborne, T. H.; Snyder, P. B.; Solomon, W. M.; Thomas, D. M.; Rhodes, T. L.; Strait, E. J.; Wade, M. R.; Wang, G.; Zeng, L.
2005-05-01
Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of ν* and βT bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.
Advances in understanding quiescent H-mode plasmas in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, K.H.; West, W.P.; Gohil, P.
2005-05-15
Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasingmore » power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of {nu}{sub *} and {beta}{sub T} bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.« less
Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser
NASA Astrophysics Data System (ADS)
Liu, Dongfeng; Wang, Chinhua
2010-01-01
We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
High efficiency single transverse mode photonic band crystal lasers with low vertical divergence
NASA Astrophysics Data System (ADS)
Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua
2016-10-01
High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.
A wavelength-tunable fiber laser using a novel filter based on a compound interference effect
NASA Astrophysics Data System (ADS)
Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao
2015-01-01
A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2 × 2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.
Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides
NASA Astrophysics Data System (ADS)
Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus
2017-02-01
A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.
Sigma- versus Pi-Dimerization Modes of Triangulene.
Mou, Zhongyu; Kertesz, Miklos
2018-04-20
We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, M.; Huang, Y. J.; Ruan, S. C.
2018-04-01
In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.
Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun
2015-01-12
We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.
Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito
2015-03-16
We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.
2011-11-29
as an active region of mid - infrared LEDs. It should be noted that active region based on interband transition is equally useful for both laser and...IR LED technology for infrared scene projectors”, Dr. E. Golden, Air Force Research Laboratory, Eglin Air Force Base . “A stable mid -IR, GaSb...multimode lasers. Single spatial mode 3-3.2 J.lm diode lasers were developed. LEDs operate at wavelength above 4 J.lm at RT. Dual color mid - infrared
Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications
2006-08-18
investigated for communications applications. Using AlGaAs lasers, Kobayashi et al. demonstrated stable single-mode operation of Fabry - Perot (F-P...modulation (AM) efficiency is obtained at the expense of linearity. Furthermore, the previous gain-lever devices were Fabry - Perot (F-P) lasers operating in...coating of ~ 0.2-μm Zirconium dioxide (ZrO2) layer with a reflectivity of less than 0.1% is deposited on one facet to suppress the Fabry - Perot (F-P
Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo
2018-06-15
We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.
Two kinds of novel tunable Thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong
2014-11-01
Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.
Study of Second Stability for Global ITG Modes in MHD-stable Equilibria
NASA Astrophysics Data System (ADS)
Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan
1997-11-01
We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
NASA Astrophysics Data System (ADS)
Burger, Liesl; Forbes, Andrew
2007-09-01
A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the "petal" mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest-order modes of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented.
Park, Jaeyoung; Henins, Ivars
2005-06-21
The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
Design and characterization of an integrated surface ion trap and micromirror optical cavity.
Van Rynbach, Andre; Schwartz, George; Spivey, Robert F; Joseph, James; Vrijsen, Geert; Kim, Jungsang
2017-08-10
We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm. We have designed and tested a mechanical setup for dampening vibrations and stabilizing the cavity length, and explore applications for these cavities as efficient single-photon sources when combined with trapped Yb171 + ions.
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Kirthi
Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial cavitation thresholds. Stable and inertial cavitation thresholds of ELIP were found to have a weak dependence on pulse duration. However, the stable cavitation threshold of ELIP had no dependence on PRF. The inertial cavitation threshold of ELIP had a weak dependence on PRF. Cavitation thresholds ascertained using a PCI agreed with the thresholds ascertained using a single-element PCD. The azimuthal beamwidth of the cavitation emissions detected by the PCI system agreed with the calibrated beamwidth of the insonation Doppler pressure exceeding the cavitation threshold. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. ELIP lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation emissions were detected in the physiologic flow phantom. These results indicate that 80% loss of echogenicity may be used as a qualitative metric to gauge the onset of stable and inertial cavitation from ELIP.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
NASA Astrophysics Data System (ADS)
Yan, Li; Liao, Lei; Huang, Wei; Li, Lang-quan
2018-04-01
The analysis of nonlinear characteristics and control of mode transition process is the crucial issue to enhance the stability and reliability of the dual-mode scramjet engine. In the current study, the mode transition processes in both strut-based combustor and cavity-strut based combustor are numerically studied, and the influence of the cavity on the transition process is analyzed in detail. The simulations are conducted by means of the Reynolds averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism, and this numerical approach is proved to be valid by comparing the predicted results with the available experimental shadowgraphs in the open literature. During the mode transition process, an obvious nonlinear property is observed, namely the unevenly variations of pressure along the combustor. The hysteresis phenomenon is more obvious upstream of the flow field. For the cavity-strut configuration, the whole flow field is more inclined to the supersonic state during the transition process, and it is uneasy to convert to the ramjet mode. In the scram-to-ram transition process, the process would be more stable, and the hysteresis effect would be reduced in the ram-to-scram transition process.
First charge breeding results at CARIBU EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S., E-mail: kondrashev@anl.gov; Barcikowski, A., E-mail: kondrashev@anl.gov; Dickerson, C., E-mail: kondrashev@anl.gov
The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.
NASA Astrophysics Data System (ADS)
Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning
2018-05-01
In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.
Self-consistent large- N analytical solutions of inhomogeneous condensates in quantum ℂP N - 1 model
NASA Astrophysics Data System (ADS)
Nitta, Muneto; Yoshii, Ryosuke
2017-12-01
We give, for the first time, self-consistent large- N analytical solutions of inhomogeneous condensates in the quantum ℂP N - 1 model in the large- N limit. We find a map from a set of gap equations of the ℂP N - 1 model to those of the Gross-Neveu (GN) model (or the gap equation and the Bogoliubov-de Gennes equation), which enables us to find the self-consistent solutions. We find that the Higgs field of the ℂP N - 1 model is given as a zero mode of solutions of the GN model, and consequently only topologically non-trivial solutions of the GN model yield nontrivial solutions of the ℂP N - 1 model. A stable single soliton is constructed from an anti-kink of the GN model and has a broken (Higgs) phase inside its core, in which ℂP N - 1 modes are localized, with a symmetric (confining) phase outside. We further find a stable periodic soliton lattice constructed from a real kink crystal in the GN model, while the Ablowitz-Kaup-Newell-Segur hierarchy yields multiple solitons at arbitrary separations.
Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.
2013-01-01
Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977
Instability of the m=1 self-shielded mode in finite-length nonneutral plasmas
NASA Astrophysics Data System (ADS)
Spencer, R. L.; Mason, G. W.; Powell, M.
2006-10-01
The m=1 self-shielded mode in a Malmberg-Penning trap is stable for a hollowed density profile in the infinite-length theory, but has been observed to be unstable in experiments. Earlier work by us and others showed theory and simulations to be a persistent factor of about 2 or more lower than experiment for the growth rate when applied to a single experimental point from measurements of Kabantsev and Driscoll (UCSD). Recently Shi, Chang, and Mitchell (University of Delaware) have measured the growth rates of the mode for a series of hollowed plasmas. We have done drift-kinetic particle-in- cell simulations of several of these experimental equilibria and have found the simulated growth rates also to be lower than experiment. We describe numerical experiments to vary the shape of the plasma ends, to vary the velocity distribution as it might result from the hollowing procedure, and to introduce resistive energy losses from the sectored confining ring to explain the discrepancy.
Entanglement enhancement in multimode integrated circuits
NASA Astrophysics Data System (ADS)
Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.
2018-06-01
The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-08-01
The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Theoretical studies of urea adsorption on single wall boron-nitride nanotubes
NASA Astrophysics Data System (ADS)
Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein
2014-11-01
Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.
NASA Astrophysics Data System (ADS)
Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu
2002-05-01
High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.
Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan
2016-01-28
The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.
Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
NASA Technical Reports Server (NTRS)
Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.
1991-01-01
Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.
Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines
NASA Astrophysics Data System (ADS)
Kurochkin, Vladimir L.; Kurochkin, Yuriy V.; Miller, Alexander V.; Sokolov, Alexander S.; Kanapin, Alan A.
2016-12-01
Quantum key distribution (QKD) as a technology is being actively implemented into existing urban telecommunication networks. QKD devices are commercially available products. While sending single photons through optical fiber, adjacent fibers, which are used to transfer classical information, might influence the amount of registrations of single photon detectors. This influence is registered, since it directly introduces a higher quantum bit error rate (QBER) into the final key [1-3]. Our report presents the results of the first tests of the QKD device, developed in the Russian Quantum Center. These tests were conducted in Moscow, and are the first of such a device in Russia in urban optical fiber telecommunication networks. The device in question is based on a two-pass auto-compensating optical scheme, which provides stable single photon transfer through urban optical fiber telecommunication networks [4,5]. The single photon detectors ID230 by ID Quantique were used. They operate in free-running mode, and with a quantum effectiveness of 10 % have a dark count 10 Hz. The background signal level in the dedicated fiber was no less than 5.6•10-14 W, which corresponds to 4.4•104 detector clicks per second. The single mode fiber length in Moscow was 30.6 km, the total attenuation equal to 11.7 dB. The sifted quantum key bit rate reached values of 1.9 kbit/s with the QBER level equal to 5.1 %. Methods of lowering the influence of crosstalk on the QBER are considered.
NASA Astrophysics Data System (ADS)
Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.
2010-04-01
We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.
Topological view of quantum tunneling coherent destruction
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; Chinaglia, Mariana
2017-08-01
Quantum tunneling of the ground and first excited states in a quantum superposition driven by a novel analytical configuration of a double-well (DW) potential is investigated. Symmetric and asymmetric potentials are considered as to support quantum mechanical zero mode and first excited state analytical solutions. Reporting about a symmetry breaking that supports the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state, two inequivalent topological scenarios are supposed to drive stable tunneling and coherent tunneling destruction respectively. A complete prospect of the Wigner function dynamics, vector field fluxes and the time dependence of stagnation points is obtained for the analytical potentials that support stable and tachyonic modes.
NASA Astrophysics Data System (ADS)
Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.
2015-06-01
We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.
Homogeneous dielectric barrier discharges in atmospheric air and its influencing factor
NASA Astrophysics Data System (ADS)
Ran, Junxia; Li, Caixia; Ma, Dong; Luo, Haiyun; Li, Xiaowei
2018-03-01
The stable homogeneous dielectric barrier discharge (DBD) is obtained in atmospheric 2-3 mm air gap. It is generated using center frequency 1 kHz high voltage power supply between two plane parallel electrodes with specific alumina ceramic plates as the dielectric barriers. The discharge characteristics are studied by a measurement of its electrical discharge parameters and observation of its light emission phenomena. The results show that a large single current pulse of about 200 μs duration appearing in each voltage pulse, and its light emission is radially homogeneous and covers the entire surface of the two electrodes. The homogeneous discharge generated is a Townsend discharge during discharge. The influences of applied barrier, its thickness, and surface roughness on the transition of discharge modes are studied. The results show that it is difficult to produce a homogeneous discharge using smooth plates or alumina plate surface roughness Ra < 100 nm even at a 1 mm air gap. If the alumina plate is too thin, the discharge also transits to filamentary discharge. If it is too thick, the discharge is too weak to observe. With the increase of air gap distance and applied voltage, the discharge can also transit from a homogeneous mode to a filamentary mode. In order to generate stable and homogeneous DBD at a larger air gap, proper dielectric material, dielectric thickness, and dielectric surface roughness should be used, and proper applied voltage amplitude and frequency should also be used.
Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering
NASA Astrophysics Data System (ADS)
Kubeček, V.; Hamal, K.; Procházka, I.; Buzelis, R.; Girdauskas, V.; Dementiev, A.
1991-08-01
There is a continuous effort to generate stable, powerful picosecond laser pulses for application in spectroscopy, nonlinear optics and parametric light generation, as well. One of the possible methods is the compression of longer nanosecond laser pulses by stimulated Brillouin and stimulated Raman scattering. The advantages of such a technique, in comparison to the used mode locked picosecond lasers, are as follows: the absence of the active and/or passive mode lockers used to generate a train of picosecond pulses, and the absence of a fast electrooptical shutter used to select a single pulse from a train of pulses. The application of stimulated Brillouin and stimulated Raman scattering permits to generate picosecond pulses in the wavelength regions not covered by mode locked lasers. Of special interest is the wavelength region of 0·8 μm, which may be amplified by the attractive Titanium Sapphire lasers. In this paper we are summarizing our results in theoretical modelling and in real generation of picosecond pulses by means of cascaded stimulated Brillouin and Raman scattering. The models of scattering processes have been investigated. The stable generation of 5, 7, 3 picosecond pulses have been optimized for the wavelengths of 0·8, 0·64 and 0·54 μm, respectively. In all these cases, the pulses exhibited the far field pattern close to Gaussian, with the pulse energy ranging from 0·2 to 1 mJ.
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics
NASA Astrophysics Data System (ADS)
Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.
2017-10-01
We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the
Analysis of dark matter axion clumps with spherical symmetry
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
On the asymptotic stability of nonlinear mechanical switched systems
NASA Astrophysics Data System (ADS)
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Generalised ballooning theory of two-dimensional tokamak modes
NASA Astrophysics Data System (ADS)
Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.
2018-02-01
In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.
Stable donutlike vortex beam generation from lasers with controlled Ince-Gaussian modes
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun; Otsuka, Kenju
2007-11-01
This study proposes a three-lens configuration for generating a stable donutlike vortex laser beam with controlled Ince-Gaussian mode (IGM) operation in the model of laser-diode (LD)-pumped solid-state lasers. Simply controlling the lateral off-axis position of the pump beam's focus on the laser crystal can generate a desired donutlike vortex beam from the proposed simple and easily made three-lens configuration, a proposed astigmatic mode converter assembled into one body with a concave-convex laser cavity.
NASA Astrophysics Data System (ADS)
Trimarchi, Giancarlo; Zhang, Xiuwen; DeVries Vermeer, Michael J.; Cantwell, Jacqueline; Poeppelmeier, Kenneth R.; Zunger, Alex
2015-10-01
Theoretical sorting of stable and synthesizable "missing compounds" from those that are unstable is a crucial step in the discovery of previously unknown functional materials. This active research area often involves high-throughput (HT) examination of the total energy of a given compound in a list of candidate formal structure types (FSTs), searching for those with the lowest energy within that list. While it is well appreciated that local relaxation methods based on a fixed list of structure types can lead to inaccurate geometries, this approach is widely used in HT studies because it produces answers faster than global optimization methods (that vary lattice vectors and atomic positions without local restrictions). We find, however, a different failure mode of the HT protocol: specific crystallographic classes of formal structure types each correspond to a series of chemically distinct "daughter structure types" (DSTs) that have the same space group but possess totally different local bonding configurations, including coordination types. Failure to include such DSTs in the fixed list of examined candidate structures used in contemporary high-throughput approaches can lead to qualitative misidentification of the stable bonding pattern, not just quantitative inaccuracies. In this work, we (i) clarify the understanding of the general DST-FST relationship, thus improving current discovery HT approaches, (ii) illustrate this failure mode for RbCuS and RbCuSe (the latter being a yet unreported compound and is predicted here) by developing a synthesis method and accelerated crystal-structure determination, and (iii) apply the genetic-algorithm-based global space-group optimization (GSGO) approach which is not vulnerable to the failure mode of HT searches of fixed lists, demonstrating a correct identification of the stable DST. The broad impact of items (i)-(iii) lies in the demonstrated predictive ability of a more comprehensive search strategy than what is currently used—use HT calculations as the preliminary broad screening followed by unbiased GSGO of the final candidates.
Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin
2017-06-27
Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.
1990-01-01
Ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well lasers exhibiting record high quantum efficiencies and high output power densities (105 mW per facet from a 6 micron wide stripe) at a lasing wavelength of 980 nm are discussed that were fabricated from a graded index separate confinement heterostructure grown by molecular beam epitaxy. Life testing at an output power of 30 mW per uncoated facet reveals a slow gradual degradation during the initial 500 h of operation after which the operating characteristics of the lasers become stable. The emission wavelength, the high output power, and the fundamental lateral mode operation render these lasers suitable for pumping Er3+-doped fiber amplifiers.
Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber
NASA Astrophysics Data System (ADS)
Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.
2011-05-01
A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.
Keaveney, James; Hamlyn, William J; Adams, Charles S; Hughes, Ifan G
2016-09-01
We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
ELM Suppression and Pedestal Structure in I-Mode Plasmas
NASA Astrophysics Data System (ADS)
Walk, John
2013-10-01
The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.
Search for Long Period Solar Normal Modes in Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Caton, R.; Pavlis, G. L.
2016-12-01
We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.
Logan, Nikolas C.; Paz-Soldan, Carlos; Park, Jong-Kyu; ...
2016-05-03
Using the plasma reluctance, the Ideal Perturbed Equilibrium Code is able to efficiently identify the structure of multi-modal magnetic plasma response measurements and the corresponding impact on plasma performance in the DIII-D tokamak. Recent experiments demonstrated that multiple kink modes of comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n = 2. This multi-modal response is in good agreement with ideal magnetohydrodynamic models, but detailed decompositions presented here show that the mode structures are not fully described by either the least stable modes or the resonant plasma response. This paper identifies the measured response fieldsmore » as the first eigenmodes of the plasma reluctance, enabling clear diagnosis of the plasma modes and their impact on performance from external sensors. The reluctance shows, for example, how very stable modes compose a significant portion of the multi-modal plasma response field and that these stable modes drive significant resonant current. Finally, this work is an overview of the first experimental applications using the reluctance to interpret the measured response and relate it to multifaceted physics, aimed towards providing the foundation of understanding needed to optimize nonaxisymmetric fields for independent control of stability and transport.« less
Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin
2013-03-01
Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.
Onset of chaos in a single-phase power electronic inverter.
Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura
2015-04-01
Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.
2014-02-24
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
NASA Astrophysics Data System (ADS)
Logan, Nikolas
2015-11-01
Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.
Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer
NASA Astrophysics Data System (ADS)
Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.
Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K
2013-02-11
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
High-wafer-yield, high-performance vertical cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Li, Gabriel S.; Yuen, Wupen; Lim, Sui F.; Chang-Hasnain, Constance J.
1996-04-01
Vertical cavity surface emitting lasers (VCSELs) with very low threshold current and voltage of 340 (mu) A and 1.5 V is achieved. The molecular beam epitaxially grown wafers are grown with a highly accurate, low cost and versatile pre-growth calibration technique. One- hundred percent VCSEL wafer yield is obtained. Low threshold current is achieved with a native oxide confined structure with excellent current confinement. Single transverse mode with stable, predetermined polarization direction up to 18 times threshold is also achieved, due to stable index guiding provided by the structure. This is the highest value reported to data for VCSELs. We have established that p-contact annealing in these devices is crucial for low voltage operation, contrary to the general belief. Uniform doping in the mirrors also appears not to be inferior to complicated doping engineering. With these design rules, very low threshold voltage VCSELs are achieved with very simple growth and fabrication steps.
Heterogeneous Silicon III-V Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Davenport, Michael Loehrlein
Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.
On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, P. W.; Hall, P.
1988-01-01
Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub 0. At values of the radius above a sub 0 all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.
On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows
NASA Technical Reports Server (NTRS)
Duck, P. W.; Hall, P.
1989-01-01
Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub O. At values of the radius above a sub O all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.
STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Truong; Wood, Kent S.; Wolff, Michael T.
2016-03-10
Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode withmore » zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.« less
Theory of excess noise in unstable resonator lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamprecht, C.; Ritsch, H.
2002-11-01
We theoretically investigate the quantum dynamics of an unstable resonator laser. Compared to a stable cavity laser of equal gain and loss it exhibits a K-fold enhanced linewidth. This excess noise factor K is a measure of the nonorthogonality of the resonator eigenmodes and amounts to an enlargement of the quantum vacuum fluctuations. Using a quantum treatment starting from first principles based on the nonorthogonal eigenmodes, we put previous theoretical predictions onto a more firm ground. While we find a position-dependent enhancement of the spontaneous emission rate into an empty mode of only {radical}(K), the constructive quantum interference of themore » spontaneous emission with a single oscillating mode lets the Petermann excess noise factor K reappear in the phase diffusion (laser linewidth). Hence locally enhanced spontaneous emission as well as noise enhanced by interference (amplified spontaneous emission) play an equal role in the origin of excess noise.« less
Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D
2016-05-20
We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.
Jammed Humans in High-Density Crowd Disasters
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Sumpter, David; Silverberg, Jesse
When people gather in large groups like those found at Black Friday sales events, pilgrimages, heavy metal concerts, and parades, crowd density often becomes exceptionally high. As a consequence, these events can produce tragic outcomes such as stampedes and ''crowd crushes''. While human collective motion has been studied with active particle simulations, the underlying mechanisms for emergent behavior are less well understood. Here, we use techniques developed to study jammed granular materials to analyze an active matter model inspired by large groups of people gathering at a point of common interest. In the model, a single behavioral rule combined with body-contact interactions are sufficient for the emergence of a self-confined steady state, where particles fluctuate around a stable position. Applying mode analysis to this system, we find evidence for Goldstone modes, soft spots, and stochastic resonance, which may be the preferential mechanisms for dangerous emergent collective motions in crowds.
NASA Astrophysics Data System (ADS)
Larsson, Anders; Gustavsson, Johan S.
The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.
Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Betti, R.; Gopalaswamy, V.
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less
Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers
Zhang, H.; Betti, R.; Gopalaswamy, V.; ...
2018-01-16
Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2D and 3D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations and linearly stable ARTI modes are more easily destabilized in 3D than in 2D. In conclusion, it is shown that for conditions found in laser fusion targets, short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble densitymore » increases with the wave number and small scale bubbles carry a larger mass flux of mixed material.« less
980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier
NASA Astrophysics Data System (ADS)
Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju
2014-12-01
We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.
Numerical solution for linear cyclotron and diocotron modes in a nonneutral plasma column
NASA Astrophysics Data System (ADS)
Walsh, Daniel; Dubin, Daniel H. E.
2014-10-01
This poster presents numerical methods for solution of the linearized Vlasov-Poisson (LVP) equation applied to a cylindrical single-species plasma in a uniform magnetic field. The code is used to study z-independent cyclotron and diocotron modes of these plasmas, including kinetic effects. We transform to polar coordinates in both position and velocity space and Fourier expand in both polar angles (i.e. the cyclotron gyro angle and θ). In one approach, we then discretize in the remaining variables r and v (where v is the magnitude of the perpendicular velocity). However, using centered differences the method is unstable to unphysical eigenmodes with rapid variation on the scale of the grid. We remedy this problem by averaging particular terms in the discretized LVP operator over neighboring gridpoints. We also present a stable Galerkin method that expands the r and v dependence in basis functions. We compare the numerical results from both methods to exact analytic results for various modes. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
NASA Astrophysics Data System (ADS)
Scholle, K.; Schäfer, M.; Lamrini, S.; Wysmolek, M.; Steinke, M.; Neumann, J.; Fuhrberg, P.
2018-02-01
In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level. A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.
Molecular structure and vibrational assignment of dimethyl oxaloacetate
NASA Astrophysics Data System (ADS)
Tayyari, Sayyed Faramarz; Salemi, Sirous; Tabrizi, Mansoureh Zahedi; Behforouz, Mohammad
2004-06-01
A complete conformational analysis of the keto and chelated enol forms of dimethyl oxaloacetate (DMOA), a β-dicarbonyl compound, was carried out by ab initio calculations, at the density functional theory (DFT) level. In addition to nine stable enol conformers, which are stabilized by intramolecular hydrogen bonds, twelve stable keto conformers were also obtained. The considerably higher energy of the keto compared to that of the most stable enol conformer makes the presence of keto form, at least in the gas phase, unlikely. Theoretical calculations in the solution, using the Onsager Method, suggest two coexisting enol conformers in the solution. This finding is in agreement with the experimental data. The hydrogen bond strength of the most stable conformer of DMOA is compared with that of acetylacetone (AA). Harmonic vibrational frequencies of this stable enol form and its deuterated analog were also calculated and compared with the experimental data. According to the theoretical calculations, the enolated proton in dimethyl oxaloacetate moves in an asymmetric single minimum potential with a hydrogen bond strength of 31.1 kJ/mol, 35.3 kJ/mol less than that of AA. This weakening of hydrogen bond is consistent with the frequency shifts for OH/OD stretching, OH/OD out-of-plane bending and O⋯O stretching modes. The calculated O ⋯O distance is about 0.07-0.08 Å longer than that of its parent AA.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.
Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan
2016-02-22
We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
Mode coupling in hybrid square-rectangular lasers for single mode operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De
Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practicalmore » applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.« less
Fiber cavities with integrated mode matching optics.
Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias
2017-07-17
In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.
Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model
Ehrens, Daniel; Sritharan, Duluxan; Sarma, Sridevi V.
2015-01-01
It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Closed-loop therapy could therefore entail detecting when the network goes unstable, and then stimulating with an exogenous current to stabilize the network. In this study, a non-linear stochastic model of a neuronal network was used to simulate both seizure and non-seizure activity. In particular, synaptic weights between neurons were chosen such that the network's fixed point is stable during non-seizure periods, and a subset of these connections (the most fragile) were perturbed to make the same fixed point unstable to model seizure events; and, the model randomly transitions between these two modes. The goal of this study was to measure spike train observations from this epileptic network and then apply a feedback controller that (i) detects when the network goes unstable, and then (ii) applies a state-feedback gain control input to the network to stabilize it. The stability detector is based on a 2-state (stable, unstable) hidden Markov model (HMM) of the network, and detects the transition from the stable mode to the unstable mode from using the firing rate of the most fragile node in the network (which is the output of the HMM). When the unstable mode is detected, a state-feedback gain is applied to generate a control input to the fragile node bringing the network back to the stable mode. Finally, when the network is detected as stable again, the feedback control input is switched off. High performance was achieved for the stability detector, and feedback control suppressed seizures within 2 s after onset. PMID:25784851
Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber
Cheng, Yujie; Hill, Cary; Liu, Bo; ...
2016-06-01
We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.
Modeling of mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Shaulov, Gary
This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.
Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats
NASA Technical Reports Server (NTRS)
Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew
2016-01-01
The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.
Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P
2006-02-03
Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations
NASA Astrophysics Data System (ADS)
Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren
1995-02-01
The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications
NASA Astrophysics Data System (ADS)
Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad
2017-03-01
A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.
780nm-range VCSEL array for laser printer system and other applications at Ricoh
NASA Astrophysics Data System (ADS)
Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi
2016-03-01
A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.
Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fucheng, E-mail: hdlfc@hbu.cn; He, Yafeng; Dong, Lifang
2014-12-15
Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage,more » and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.« less
NASA Astrophysics Data System (ADS)
Ma, Guolong; Li, Liqun; Chen, Yanbin
2017-06-01
Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.
Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.
Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I
2018-02-12
Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.
Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra
2018-02-01
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Three-color Sagnac source of polarization-entangled photon pairs.
Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton
2009-12-07
We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N; Pan, Ying; Tiwari, Manish K; Poulikakos, Dimos
2015-06-07
Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
NASA Astrophysics Data System (ADS)
Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2017-11-01
In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.
NASA Astrophysics Data System (ADS)
Tomar, Dharmendra S.; Sharma, Gaurav
2018-01-01
We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate that for cases when the stabilizing contribution of surfactant is not sufficient for suppressing GL mode instability, a deformable solid coating could be employed to suppress free surface instability without triggering Marangoni or liquid-solid interfacial modes. Specifically, we have shown that for a given solid thickness, as the shear modulus of the solid layer decreases (i.e., the solid becomes more deformable) the GL mode instability is suppressed. With further decrease in shear modulus, the Marangoni and liquid-solid interfacial modes become unstable. Thus, there exists a stability window in terms of shear modulus where the surfactant-laden film flow remains stable even when the Marangoni number is below the critical value required for free surface instability suppression. Further, when the Marangoni number is greater than the critical value so that the GL mode remains stable in the rigid limit or with the deformable wall, the increase in wall deformability or solid thickness triggers Marangoni mode instability and, thus, renders a stable flow configuration into an unstable one. Thus, we show that the soft solid layer can be used to manipulate and control the stability of surfactant-laden film flows.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
Unstable domains of tearing and Kelvin-Helmholtz instabilities in a rotating cylindrical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D. M.; Wei, L.; Wang, Z. X., E-mail: zxwang@dlut.edu.cn
2014-09-15
Effects of poloidal rotation profile on tearing and Kelvin-Helmholtz (KH) instabilities in a cylindrical plasma are investigated by using a reduced magnetohydrodynamic model. Since the poloidal rotation has different effects on the tearing and KH modes in different rotation regimes, four unstable domains are numerically identified, i.e., the destabilized tearing mode domain, stabilized tearing mode domain, stable-window domain, and unstable KH mode domain. It is also found that when the rotation layer is in the outer region of the rational surface, the stabilizing role of the rotation can be enhanced so significantly that the stable window domain is enlarged. Moreover,more » Alfvén resonances can be induced by the tearing and KH modes in such rotating plasmas. Radially wide profiles of current and vorticity perturbations can be formed when multiple current sheets on different resonance positions are coupled together.« less
Nonlinear dynamics of drops and bubbles and chaotic phenomena
NASA Technical Reports Server (NTRS)
Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.
1994-01-01
Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.
Nonlinear dynamics of drops and bubbles and chaotic phenomena
NASA Astrophysics Data System (ADS)
Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.
1994-08-01
Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.
NASA Astrophysics Data System (ADS)
Chen, Jianyong; Ge, Yanfeng; Zhou, Wenzhe; Peng, Mengqi; Pan, Jiangling; Ouyang, Fangping
2018-06-01
Using first-principles calculations, we find Li-intercalated bilayer arsenene with AB stacking is dynamically stable, which is different from pristine bilayer with AA stacking. Electron–phonon coupling of the stable Li-intercalated bilayer arsenene are dominated by the low frequency vibrational modes (E″(1), (1), E‧(1) and acoustic modes) and lead to an superconductivity with T c = 8.68 K with isotropical Eliashberg function. Small biaxial tensile strain (2%) can improve T c to 11.22 K due to the increase of DOS and phonon softening. By considering the fully anisotropic Migdal–Eliashberg theory, T c are found to be enhanced by 50% and exhibits a single anisotropic gap nature. In addition, considering its nearly flat top valence band which is favorable for high temperature superconductivity, we also explore the superconducting properties of hole-doped monolayer arsenene under different strains. the unstrained monolayer arsenene superconducts at T c = 0.22 K with 0.1 hole/cell doping. By applying 3% biaxial strain, T c can be lifted up strikingly to 6.69 K due to a strong Fermi nesting of the nearly flat band. Then T c decreases slowly with strain. Our findings provide another insight to realize 2D superconductivity and suggest that the strain is crucial to further enhance the transition temperature.
Long distance transmission in few-mode fibers.
Yaman, Fatih; Bai, Neng; Zhu, Benyuan; Wang, Ting; Li, Guifang
2010-06-07
Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonlinearity and at the same time they can have the same performance as single-mode fibers in terms of dispersion and loss. In the absence of mode coupling it is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber. It is shown experimentally that the single-mode operation is achieved simply by splicing single-mode fibers to both ends of a 35-km-long dual-mode fiber at 1310 nm. After 35 km of transmission, no modal dispersion or excess loss was observed. Finally the same fiber is placed in a recirculating loop and 3 WDM channels each carrying 6 Gb/s BPSK data were transmitted through 1050 km of the few-mode fiber without modal dispersion.
NASA Technical Reports Server (NTRS)
Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.
1996-01-01
In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.
NASA Astrophysics Data System (ADS)
He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei
2018-04-01
This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2 × 2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.
Raman spectra and optical trapping of highly refractive and nontransparent particles
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing
2002-08-01
We measured the Raman spectra of single optically trapped highly refractive and nontransparent microscopic particles suspended in a liquid using an inverted confocal laser-tweezers-Raman-spectroscopy system. A low-power diode-laser beam of TEM00 mode was used both for optical trapping and Raman excitation of refractive, absorptive, and reflective metal particles. To form a stable trap for a nontransparent particle, the beam focus was located near the top of the particle and the particle was pushed against a glass plate by the axial repulsive force. Raman spectra from single micron-sized crystals with high index of refraction including silicon, germanium, and KNbO3, and from absorptive particles of black and color paints were recorded. Surface-enhanced Raman scattering of R6G and phenylalanine molecules absorbed on the surface of a trapped cluster of silver particles was also demonstrated.
Can tokamaks PFC survive a single event of any plasma instabilities?
NASA Astrophysics Data System (ADS)
Hassanein, A.; Sizyuk, V.; Miloshevsky, G.; Sizyuk, T.
2013-07-01
Plasma instability events such as disruptions, edge-localized modes (ELMs), runaway electrons (REs), and vertical displacement events (VDEs) are continued to be serious events and most limiting factors for successful tokamak reactor concept. The plasma-facing components (PFCs), e.g., wall, divertor, and limited surfaces of a tokamak as well as coolant structure materials are subjected to intense particle and heat loads and must maintain a clean and stable surface environment among them and the core/edge plasma. Typical ITER transient events parameters are used for assessing the damage from these four different instability events. HEIGHTS simulation showed that a single event of a disruption, giant ELM, VDE, or RE can cause significant surface erosion (melting and vaporization) damage to PFC, nearby components, and/or structural materials (VDE, RE) melting and possible burnout of coolant tubes that could result in shut down of reactor for extended repair time.
Overcoming nanoscale friction barriers in transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Polcar, Tomas
2017-08-01
We study the atomic contributions to the nanoscale friction in layered M X2 (M =Mo , W; X =S , Se, Te) transition metal dichalcogenides by combining ab initio techniques with group-theoretical analysis. Starting from stable atomic configurations, we propose a computational method, named normal-modes transition approximation (NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry. The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting M X2 sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of M X2 layers. We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied to any solid state system, irrespective of the chemical composition and structural topology.
Hayashino, Yuji; Sugita, Masatake; Arima, Hidetoshi; Irie, Tetsumi; Kikuchi, Takeshi; Hirata, Fumio
2018-03-19
It has been found that a cyclodextrin derivative, 2-hydroxypropyl-β-cyclodextrin (HPβCD), has reasonable therapeutic effect on Niemann-Pick disease type C, which is caused by abnormal accumulation of unesterified cholesterol and glycolipids in the lysosomes and shortage of esterified cholesterol in other cellular compartments. We study the binding affinity and mode of HPβCD with cholesterol to elucidate the possible mechanism of HPβCD for removing cholesterol from the lysosomes. The dominant binding mode of HPβCD with cholesterol is found based on the molecular dynamics simulation and a statistical mechanics theory of liquids, or the three-dimensional reference interaction site model theory with Kovalenko-Hirata closure relation. We examine the two types of complexes between HPβCD and cholesterol, namely, one-to-one (1:1) and two-to-one (2:1). It is predicted that the 1:1 complex makes two or three types of stable binding mode in solution, in which the βCD ring tends to be located at the edge of the steroid skeleton. For the 2:1 complex, there are four different types of the complex conceivable, depending on the orientation between the two HPβCDs: head-to-head (HH), head-to-tail (HT), tail-to-head (TH), and tail-to-tail (TT). The HT and HH cyclodextrin dimers show higher affinity to cholesterol compared to the other dimers and to all the binding modes of 1:1 complexes. The physical reason why the HT and HH dimers have higher affinity compared to the other complexes is discussed based on the consistency with the 1:1 complex. On the one hand, in case of the HT and HH dimers, the position of each CD in the dimer along the cholesterol chain comes right on or close to one of the positions where a single CD makes a stable complex. On the other hand, one of the CD molecules is located on unstable region along the cholesterol chain, for the case of TH and TT dimers.
On the theory of multi-pulse vibro-impact mechanisms
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Metrikin, V. S.; Nikiforova, I. V.; Ipatov, A. A.
2017-11-01
This paper presents a mathematical model of a new multi-striker eccentric shock-vibration mechanism with a crank-sliding bar vibration exciter and an arbitrary number of pistons. Analytical solutions for the parameters of the model are obtained to determine the regions of existence of stable periodic motions. Under the assumption of an absolutely inelastic collision of the piston, we derive equations that single out a bifurcational unattainable boundary in the parameter space, which has a countable number of arbitrarily complex stable periodic motions in its neighbourhood. We present results of numerical simulations, which illustrate the existence of periodic and stochastic motions. The methods proposed in this paper for investigating the dynamical characteristics of the new crank-type conrod mechanisms allow practitioners to indicate regions in the parameter space, which allow tuning these mechanisms into the most efficient periodic mode of operation, and to effectively analyze the main changes in their operational regimes when the system parameters are changed.
Single-mode fiber systems for deep space communication network
NASA Technical Reports Server (NTRS)
Lutes, G.
1982-01-01
The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.
Inversed Vernier effect based single-mode laser emission in coupled microdisks
Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai
2015-01-01
Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser. PMID:26330218
Farajzadeh, Mirali; Hatami, Mehdi
2002-11-01
This work describes the application of the previously presented solid phase microextraction (SPME) fiber in direct mode for sampling of C10-C20 n-alkanes from aqueous solution. The fiber has simple composition and is constructed from activated charcoal:PVC suspension in tetrahydrofuran. When the composition of the fiber was optimized that the optimum composition was 90:10 (activated charcoal:PVC) for direct mode, whereas it was 75:25 for sampling from the headspace of aqueous samples. This fiber is completely stable in contact with water. The extraction efficiency is improved in the presence of 0.1 M NaCl. The value is between 17.8-38.5% for the first extraction, which better than the efficiency of similar commercial fibers. After seven extractions, all analytes are removed from the aqueous samples nearly 100%. Single fiber repeatability and fiber-to-fiber reproducibility are good and both are less than 13% for all studied alkanes. Finally, direct mode SPME was used in the determination of n-alkanes in the range of sub microg L(-1) without any additional preconcentration procedure. Gas chromatography along with flame ionization detection were used for separation and detection of the studied analytes.
Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators
Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann; ...
2018-05-11
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less
Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes amore » direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less
Reactive sputter deposition of piezoelectric Sc 0.12Al 0.88N for contour mode resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Young, Travis Ryan; Douglas, Erica Ann
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationshipmore » between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Furthermore, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.« less
Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Zhang, Yu; Du, Qiaoling; Wang, Yiding; Tittel, Frank K
2017-09-27
A multi-gas sensor system was developed that uses a single broadband light source and multiple carbon monoxide (CO), carbon dioxide (CO₂) and methane (CH₄) pyroelectric detectors by use of the time division multiplexing (TDM) technique. A stepper motor-based rotating system and a single-reflection spherical optical mirror were designed and adopted to realize and enhance multi-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) were performed to study the performance of the sensor system for the three gas species. Effects of the motor rotating period on sensor performances were also investigated and a rotation speed of 0.4π rad/s was required to obtain a stable sensing performance, corresponding to a detection period of ~10 s to realize one round of detection. Based on an Allan deviation analysis, the 1 σ detection limits under static operation are 2.96, 4.54 and 2.84 parts per million in volume (ppmv) for CO, CO₂ and CH₄, respectively and the 1 σ detection limits under dynamic operations are 8.83, 8.69 and 10.29 ppmv for the three gas species, respectively. The reported sensor has potential applications in various fields requiring CO, CO₂ and CH₄ detection such as in coal mines.
Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser.
Liu, Zhengzheng; Yang, Jie; Du, Juan; Hu, Zhiping; Shi, Tongchao; Zhang, Zeyu; Liu, Yanqi; Tang, Xiaosheng; Leng, Yuxin; Li, Ruxin
2018-05-14
On-chip photonic information processing systems require great research efforts toward miniaturization of the optical components. However, when approaching the classical diffraction limit, conventional dielectric lasers with all dimensions in nanoscale are difficult to realize due to the ultimate miniaturization limit of the cavity length and the extremely high requirement of optical gain to overcome the cavity loss. Herein, we have succeeded in reducing the laser size to subwavelength scale in three dimensions using an individual CsPbBr 3 perovskite nanocuboid. Even though the side length of the nanocuboid laser is only ∼400 nm, single-mode Fabry-Pérot lasing at room temperature with laser thresholds of 40.2 and 374 μJ/cm 2 for one- and two-photon excitation has been achieved, respectively, with the corresponding quality factors of 2075 and 1859. In addition, temperature-insensitive properties from 180 to 380 K have been demonstrated. The physical volume of a CsPbBr 3 nanocuboid laser is only ∼0.49λ 3 (where λ is the lasing wavelength in air). Its three-dimensional subwavelength size, excellent stable lasing performance at room temperature, frequency up-conversion ability, and temperature-insensitive properties may lead to a miniaturized platform for nanolasers and integrated on-chip photonic devices in nanoscale.
An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing
NASA Astrophysics Data System (ADS)
Waluyo, T. B.; Bayuwati, D.
2017-04-01
We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.
Sampling of the telescope image plane using single- and few-mode fibre arrays
NASA Astrophysics Data System (ADS)
Corbett, Jason C.
2009-02-01
The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes. This work is of direct relevance to the coupling of celestial light into photonic instrumentation and the removal of image scrambling and reduction of focal ratio degradation (FRD) using multi-mode fibre to single-mode fibre array converters.
Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2012-01-01
Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.
NASA Astrophysics Data System (ADS)
Fu, Pan; Feng, Xiao-qiang; Lu, Baole; Qi, Xin-yuan; Chen, Haowei; Sun, Bo; Jiang, Man; Wang, Kaile; Bai, Jintao
2018-01-01
We demonstrate a stable switchable dual-wavelength single longitudinal mode (SLM) narrow linewidth ytterbium-doped fiber (YDF) laser using a nonlinear amplifying fiber loop mirror (NALM) at 1064 nm. The NALM of intensity-dependent transmission acts as a saturable absorber filter and an amplitude equalizer to suppress mode competition and the fiber Bragg grating (FBG) pair is used as one wavelength selection component. By properly adjusting the polarization controllers (PCs), the switchable dual-wavelength SLM fiber laser can be operated steadily at room temperature. The optical signal-to-noise ratio (OSNR) is better than 50 dB for both lasing wavelengths. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 17.07 kHz and 18.64 kHz with a 20 dB linewidth, which means the laser linewidth is approximate 853 Hz and 932 Hz FWHM. Correspondingly, the measured relative intensity noise (RIN) is less than -120 dB/Hz at frequencies over 5.0 MHz.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
NASA Astrophysics Data System (ADS)
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
LQ optimal and reaching law-based sliding modes for inventory management systems
NASA Astrophysics Data System (ADS)
Ignaciuk, Przemysław; Bartoszewicz, Andrzej
2012-01-01
In this article, the theory of discrete sliding-mode control is used to design new supply strategies for periodic-review inventory systems. In the considered systems, the stock used to fulfil an unknown, time-varying demand can be replenished from a single supply source or from multiple suppliers procuring orders with different delays. The proposed strategies guarantee that demand is always entirely satisfied from the on-hand stock (yielding the maximum service level), and the warehouse capacity is not exceeded (which eliminates the cost of emergency storage). In contrast to the classical, stochastic approaches, in this article, we focus on optimising the inventory system dynamics. The parameters of the first control strategy are selected by minimising a quadratic cost functional. Next, it is shown how the system dynamical performance can be improved by applying the concept of a reaching law with the appropriately adjusted reaching phase. The stable, nonoscillatory behaviour of the closed-loop system is demonstrated and the properties of the designed controllers are discussed and strictly proved.
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...
2015-07-01
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less
Manufacturing and testing of wavefront filters for DARWIN
NASA Astrophysics Data System (ADS)
Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao
2017-11-01
Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre's lateral surface and by adding an oversized output aperture in front of fibre ends. Several fibres were exposed to gamma radiation of total dose of 25, 50, and even 500 krad. No deterioration was found on AR-coated fibre ends and on fibre material. Five fibres were irradiated by proton radiation of 10MeV energy and 1010 p/cm2 equivalent fluence. Several fibres were cooled down to 10 K by plunging them in a dipstick into liquid Helium. Silver halide fibres survived that test when cables were properly assembled. The brittle chalcogenide glass fibres were much more sensitive to thermal gradients and the related cables did not survive the thermal shock. Critical issues have been revealed in multiple drawings of chalcogenide glass fibres where core and cladding composition were not stable at some fabrication stages - resulting in a poor single mode guiding. Much better results have been achieved with polycrystalline fibres from silver halides made with a small core and low NA and enabling single mode guiding in the mid infrared.
Single-mode glass waveguide technology for optical interchip communication on board level
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning
2012-01-01
The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.
Tran, C; Yazdanpanah, M; Kyriakopoulou, L; Levandovskiy, V; Zahid, H; Naufer, A; Isbrandt, D; Schulze, A
2014-09-25
To develop an accurate stable isotope dilution assay for simultaneous quantification of creatine metabolites ornithine, arginine, creatine, creatinine, and guanidinoacetate in very small blood sample volumes to study creatine metabolism in mice. Liquid-chromatography (C18) tandem mass spectrometry with butylation was performed in positive ionization mode. Stable isotope dilution assay with external calibration was applied to three different specimen types, plasma, whole blood and dried blood spot (DBS). Analytical separation, sensitivity, accuracy, and linearity of the assay were adequate. The stable isotope dilution assay in plasma revealed no significant bias to gold standard methods for the respective analytes. Compared to plasma, we observed an overestimate of creatine and creatinine (2- to 5-fold and 1.2- to 2-fold, respectively) in whole-blood and DBS, and an underestimate of arginine (2.5-fold) in DBS. Validation of the assay in mouse models of creatine deficiency revealed plasma creatine metabolite pattern in good accordance with those observed in human GAMT and AGAT deficiency. Single dose intraperitoneal application of ornithine in wild-type mice lead to fast ornithine uptake (Tmax ≤ 10 min) and elimination (T1/2=24 min), and a decline of guanidinoacetate. The assay is fast and reliable to study creatine metabolism and pharmacokinetics in mouse models of creatine deficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Jang, Hee Won; Chun, Seung Hyun; Park, Hae Chul; Ryu, Hwa Jung; Kim, Il-Hwan
2017-04-01
Recently dual-pulsed low-fluence 1064-nm Q-switched Nd:YAG (QSNY) laser has been developed for reducing complication during melasma treatment. Comparison of the efficacy and safety between dual-pulsed mode and single-pulsed mode for the treatment of melasma. In preclinical study, adult zebrafish were irradiated with dual-pulsed and single-pulsed mode. Changes of melanophore and cell death were assessed. In split-face clinical study, dual-pulsed and single-pulsed mode were irradiated on the left and right side of the face, respectively. L* value, clinical digital photos, modified Melasma Area and Severity Index (MASI) scores, and side effects were measured. As compared to single-pulsed mode and dual-pulsed mode with longer intervals, zebrafish melanophore was cleared quickly at dual-pulsed mode with 80-μsec interval and 0.3 J/cm 2 fluence. Dual-pulsed mode showed the least regeneration of melanophore at 4 weeks after irradiation and no cell death was observed with 80-μsec interval. Both pulse modes improved melasma significantly but modified MASI score and L* value were not significantly different between each other. Lesser pain and shorter duration of post-laser erythema were observed with dual-pulsed mode. Dual-pulsed mode was as effective as single-pulsed mode for the treatment of melasma and revealed less side effects.
Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas
2014-11-15
Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less
NASA Astrophysics Data System (ADS)
Jafri, S. H. M.; Löfås, H.; Fransson, J.; Blom, T.; Grigoriev, A.; Wallner, A.; Ahuja, R.; Ottosson, H.; Leifer, K.
2013-05-01
Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra. Electronic supplementary information (ESI) available: Methods and materials. Details of the ab initio calculation of molecular vibrations and inelastic spectra of ODT between two Au electrodes. A model of carrier transport through the molecular junctions. See DOI: 10.1039/c3nr00505d
Adaptation to the edge of chaos in a self-starting Kerr-lens mode-locked laser
NASA Astrophysics Data System (ADS)
Hsu, C. C.; Lin, J. H.; Hsieh, W. F.
2009-08-01
We experimentally and numerically demonstrated that self-focusing acts as a slow-varying control parameter that suppresses the transient chaos to reach a stable mode-locking (ML) state in a self-starting Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback control. Based on Fox-Li’s approach, including the self-focusing effect, the theoretical simulation reveals that the self-focusing effect is responsible for the self-adaptation. The self-adaptation occurs at the boundary between the chaotic and continuous output regions in which the laser system begins with a transient chaotic state with fractal correlation dimension, and then evolves with reducing dimension into the stable ML state.
Sequential dynamics in the motif of excitatory coupled elements
NASA Astrophysics Data System (ADS)
Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.
2015-11-01
In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.
Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa
NASA Astrophysics Data System (ADS)
Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen
2016-09-01
Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.
Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun
2017-07-19
RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.
Tobias, B.; Chen, M.; Classen, I. G. J.; ...
2016-04-15
The electromagnetic coupling of helical modes, including those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. Furthermore, with increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lockmore » to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. Additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B.; Grierson, B. A.; Okabayashi, M.
2016-05-15
The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less
Magnetohydrodynamic stability at a separatrix. I. Toroidal peeling modes and the energy principle
NASA Astrophysics Data System (ADS)
Webster, A. J.; Gimblett, C. G.
2009-08-01
A potentially serious impediment to the production of energy by nuclear fusion in large tokamaks, such as ITER [R. Aymar, V. A. Chuyanov, M. Huguet, Y. Shimomura, ITER Joint Central Team, and ITER Home Teams, Nucl. Fusion 41, 1301 (2001)] and DEMO [D. Maisonner, I. Cook, S. Pierre, B. Lorenzo, D. Luigi, G. Luciano, N. Prachai, and P. Aldo, Fusion Eng. Des. 81, 1123 (2006)], is the potential for rapid deposition of energy onto plasma facing components by edge localized modes (ELMs). The trigger for ELMs is believed to be the ideal magnetohydrodynamic peeling-ballooning instability, but recent numerical calculations have suggested that a plasma equilibrium with an X-point—as is found in all ITER-like tokamaks, is stable to the peeling mode. This contrasts with analytical calculations [G. Laval, R. Pellat, and J. S. Soule, Phys. Fluids 17, 835 (1974)] that found the peeling mode to be unstable in cylindrical plasmas with arbitrary cross-sectional shape. Here, we re-examine the assumptions made in cylindrical geometry calculations and generalize the calculation to an arbitrary tokamak geometry at marginal stability. The resulting equations solely describe the peeling mode and are not complicated by coupling to the ballooning mode, for example. We find that stability is determined by the value of a single parameter Δ' that is the poloidal average of the normalized jump in the radial derivative of the perturbed magnetic field's normal component. We also find that near a separatrix it is possible for the energy principle's δW to be negative (that is usually taken to indicate that the mode is unstable, as in the cylindrical theory), but the growth rate to be arbitrarily small.
Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharyash, V F; Kashirsky, A V; Klementyev, V M
We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)
High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices
NASA Astrophysics Data System (ADS)
Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.
1989-02-01
A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.
Naturally stable Sagnac–Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-11-16
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less
NASA Astrophysics Data System (ADS)
Yamasue, Kohei; Cho, Yasuo
2018-06-01
We demonstrate that scanning nonlinear dielectric microscopy (SNDM) can be used for the nanoscale characterization of dominant carrier distribution on atomically thin MoS2 mechanically exfoliated on SiO2. For stable imaging without damaging microscopy tips and samples, SNDM was combined with peak-force tapping mode atomic force microscopy. The identification of dominant carriers and their spatial distribution becomes possible even for single and few-layer MoS2 on SiO2 using the proposed method allowing differential capacitance (dC/dV) imaging. We can expect that SNDM can also be applied to the evaluation of other two-dimensional semiconductors and devices.
Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers
NASA Astrophysics Data System (ADS)
Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.
Solar Power Satellite (SPS) fiber optic link assessment
NASA Technical Reports Server (NTRS)
1980-01-01
A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.
Modelling, design and stability analysis of an improved SEPIC converter for renewable energy systems
NASA Astrophysics Data System (ADS)
G, Dileep; Singh, S. N.; Singh, G. K.
2017-09-01
In this paper, a detailed modelling and analysis of a switched inductor (SI)-based improved single-ended primary inductor converter (SEPIC) has been presented. To increase the gain of conventional SEPIC converter, input and output side inductors are replaced with SI structures. Design and stability analysis for continuous conduction mode operation of the proposed SI-SEPIC converter has also been presented in this paper. State space averaging technique is used to model the converter and carry out the stability analysis. Performance and stability analysis of closed loop configuration is predicted by observing the open loop behaviour using Nyquist diagram and Nichols chart. System was found to stable and critically damped.
Mode selection and tuning of single-frequency short-cavity VECSELs
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; ...
2018-03-05
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
Stability branching induced by collective atomic recoil in an optomechanical ring cavity
NASA Astrophysics Data System (ADS)
Ian, Hou
2017-02-01
In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.
Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.
2009-01-01
Despite widespread interest in combining lab-on-a-chip technologies with mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact for the stable cone-jet electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of a small Taylor cone at the channel exit ensures sub-nL post-column dead volumes. Cone-jet mode electrospray was demonstrated for up to 90% aqueous solutions and for extended durations. Comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, but stable cone-jet mode electrosprays could be established over a far broader range of flow rates (from 50-1000 nL/min) and applied potentials using the microchip emitters. This attribute of the microchip emitter should simplify electrospray optimization and make the stable electrospray more resistant to external perturbations. PMID:18419138
Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers
NASA Astrophysics Data System (ADS)
Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.
2017-10-01
Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.
High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite
NASA Astrophysics Data System (ADS)
Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III
2015-12-01
Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data collected indicates that this phase is stable at 300 K to 10 GPa. The anisotropic compaction of this alkali-rich carbonate appears to be governed by the orientation of the sodium sites, thus the behavior of alkali-rich carbonates within the kimberlitic systems is likely dependent on the bonding and local geometry of alkali cations.
Long-pulse stability limits of the ITER baseline scenario
Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...
2015-01-14
DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and I p/aB T, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, B N≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, f GW 0.42 – 0.70 (the ITER design is f GW ≈ 0.8).more » The evolution of the current profile, using internal inductance (l i) as an indicator, is found to produce a smaller fraction of stable pulses when l i is increased above ≈ 1.1 at the beginning of β N flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
NASA Astrophysics Data System (ADS)
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Alcohol sensor based on single-mode-multimode-single-mode fiber structure
NASA Astrophysics Data System (ADS)
Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo
2016-11-01
Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.
NASA Technical Reports Server (NTRS)
Linden, K. J.
1985-01-01
Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.
The 30 GHz solid state amplifier for low cost low data rate ground terminals
NASA Technical Reports Server (NTRS)
Ngan, Y. C.; Quijije, M. A.
1984-01-01
This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.
NASA Astrophysics Data System (ADS)
Shemis, M. A.; Khan, M. T. A.; Alkhazraji, E.; Ragheb, A. M.; Esmail, M. A.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.
2018-03-01
The next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
NASA Astrophysics Data System (ADS)
Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.
2016-02-01
Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Bistable synchronization modes in hydrodynamically coupled micro-rotors
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanale, Anup; Fuerthauer, Sebastian; Kanso, Eva
2017-11-01
Cilia often beat in synchrony, and they may transition between different synchronization modes in the same cell type. For example, cilia in the mammalian brain ventricles are reported to periodically change their collective beat orientation, providing a cilia-based switch for redirecting the transport of cerebrospinal fluid. Experimental and theoretical evidences suggest that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms responsible for transitioning between various synchronization modes remain illusive. Here, we use a theoretical model where each cilium is represented by a bead moving along a closed trajectory close to a no-slip surface. We investigate the emergent synchronization modes and their stability for various cilia-inspired force profiles. We observe distinct stable synchronization modes between two rotors, including a bistable regime where both in-phase and anti-phase synchronizations are stable. We then extend this analysis to an array of rotors where we demonstrate the dynamical formations of metachronal waves. These findings may help us to understand the origin of synchrony in biological and bio-inspired systems, and the mechanisms underlying transitions between different synchronization modes.
Demonstration of a stable ultrafast laser based on a nonlinear microcavity
Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R.
2012-01-01
Ultrashort pulsed lasers, operating through the phenomenon of mode-locking, have had a significant role in many facets of our society for 50 years, for example, in the way we exchange information, measure and diagnose diseases, process materials, and in many other applications. Recently, high-quality resonators have been exploited to demonstrate optical combs. The ability to phase-lock their modes would allow mode-locked lasers to benefit from their high optical spectral quality, helping to realize novel sources such as precision optical clocks for applications in metrology, telecommunication, microchip-computing, and many other areas. Here we demonstrate the first mode-locked laser based on a microcavity resonator. It operates via a new mode-locking method, which we term filter-driven four-wave mixing, and is based on a CMOS-compatible high quality factor microring resonator. It achieves stable self-starting oscillation with negligible amplitude noise at ultrahigh repetition rates, and spectral linewidths well below 130 kHz. PMID:22473009
Mode selection in square resonator microlasers for widely tunable single mode lasing.
Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen
2015-10-19
Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.
NASA Astrophysics Data System (ADS)
Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.
2017-05-01
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.
Resistive instabilities in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much moremore » efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.« less
NASA Technical Reports Server (NTRS)
Sturman, J.
1968-01-01
Stable input stage was designed for the use with a integrated circuit operational amplifier to provide improved performance as an instrumentation-type amplifier. The circuit provides high input impedance, stable gain, good common mode rejection, very low drift, and low output impedance.
High power and single mode quantum cascade lasers.
Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome
2016-05-16
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...
2015-05-26
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.
Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Classification of topological phonons in linear mechanical metamaterials
Süsstrunk, Roman
2016-01-01
Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105
NASA Astrophysics Data System (ADS)
Udovydchenkov, Ilya A.
2017-07-01
Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.
NASA Astrophysics Data System (ADS)
Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan
2016-11-01
Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.
Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.
Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng
2012-04-23
An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Curran, Scott; Daw, C Stuart
2013-01-01
In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and loadmore » fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.« less
Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure.
Chai, Quan; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Chen, Yujin; Yuan, Libo; Peng, Gang-Ding
2015-05-04
We give a comprehensive theoretical analysis and simulation of a FBG in single-multi-single mode fiber structure (FBG-in-SMS), based on the coupled mode analysis and the mode interference analysis. This enables us to explain the experimental observations, its asymmetric transmission and reflection spectra with the similar temperature responses near the spectral range of Bragg wavelengths. The transmission spectrum shift during FBG written-in process is observed and discussed. The analysis results are useful in the design of the SMS structure based sensors and filters.
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Hunter, William W., Jr.
1989-01-01
The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
Efficient coupling of starlight into single mode photonics using Adaptive Injection (AI)
NASA Astrophysics Data System (ADS)
Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Arriola, Alexander; Tuthill, Peter; Lawrence, Jon; Richards, Samuel; Goodwin, Michael; Zheng, Jessica
2016-08-01
Using single-mode fibres in astronomy enables revolutionary techniques including single-mode interferometry and spectroscopy. However, injection of seeing-limited starlight into single mode photonics is extremely difficult. One solution is Adaptive Injection (AI). The telescope pupil is segmented into a number of smaller subapertures each with size r0, such that seeing can be approximated as a single tip / tilt / piston term for each subaperture, and then injected into a separate fibre via a facet of a segmented MEMS deformable mirror. The injection problem is then reduced to a set of individual tip tilt loops, resulting in high overall coupling efficiency.
Chiral photonic crystal fibers with single mode and single polarization
NASA Astrophysics Data System (ADS)
Li, She; Li, Junqing
2015-12-01
Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
Responses of horses offered a choice between stables containing single or multiple forages.
Goodwin, D; Davidson, H P B; Harris, P
2007-04-21
To investigate the choices of foraging location of horses, 10 to 12 horses were introduced for five minutes into each of two similar stables containing a single forage or six forages, in four replicated trials. The horses were then removed and released into the gangway between the stables, and allowed five minutes to choose between the stables. Their initial and final choices, mean duration in each stable and proportional frequency of change of location were compared. Most of the horses initially entered the closest stable on release (P<0.05); if the closest stable contained a single hay, most horses transferred to the stable containing multiple forages (P<0.001). The length of time spent by the horses in the two stables suggested that they preferred multiple forages in multiple locations (P<0.001). Eleven horses moved from one stable to the other on one or more occasions during trials when hay or a preferred forage was available in both stables, possibly indicating a motivation to move between foraging locations regardless of the palatability of the forages offered or the horses' preference for a forage.
Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes
NASA Astrophysics Data System (ADS)
Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin
2018-03-01
We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.
NASA Astrophysics Data System (ADS)
Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.
2017-01-01
The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter
2017-06-01
The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.
A macroscopic non-destructive testing system based on the cantilever-sample contact resonance
NASA Astrophysics Data System (ADS)
Fu, Ji; Lin, Lizhi; Zhou, Xilong; Li, Yingwei; Li, Faxin
2012-12-01
Detecting the inside or buried defects in materials and structures is always a challenge in the field of nondestructive testing (NDT). In this paper, enlightened by the operation principle of the contact resonance force microscopy or atomic force acoustic microscopy (AFAM), we proposed a macroscopic NDT system based on contact resonance of the cantilever-sample surface to detect the local stiffness variations in materials or structures. We fabricated a piezoelectric unimorph with the dimension typically of 150 mm × 8 mm × 2 mm to act as a macroscopic cantilever, whose flexural mode vibration was driven by a wideband power amplifier together with a signal generator. The vibration signal of the macroscopic cantilever is detected by a high sensitive strain gauge bonded on the cantilever surface which is much more stable than the laser diode sensor in AFAM, thus making it very suitable for outdoor operations. Scanning is realized by a three-dimensional motorized stage with the Z axis for pressing force setting. The whole system is controlled by a LabVIEW-based homemade software. Like the AFAM, this NDT system can also work in two modes, i.e., the single-frequency mode and the resonance-tracking mode. In the latter mode, the contact stiffness at each pixel of the sample can be obtained by using the measured contact resonance frequency and a beam dynamics model. Testing results of this NDT system on a grid structure with an opaque panel show that in both modes the prefabricated defect beneath the panel can be detected and the grid structures can be clearly "seen," which indicates the validity of this NDT system. The sensitivity of this NDT system was also examined.
Transition of lasing modes in polymeric opal photonic crystal resonating cavity.
Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming
2016-06-10
We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81 μJ/pulse for single mode lasing emission and 2.25 μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
Deeth, Robert J
2008-08-04
A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
An updated version of NPIDB includes new classifications of DNA–protein complexes and their families
Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey
2016-01-01
The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949
Zhang, Xinxin; Li, Jing; Ito, Yoichiro; Sun, Wenji
2014-01-01
A simple, reliable and sensitive high-performance liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) was established for simultaneous analyses of the following 5 steroid saponins in rat plasma after the single dose administration of total steroid saponins extracted from the rhizome of Dioscorea zingiberensis C.H.Wright for the first time. Protodioscin, huangjiangsu A, zingiberensis new saponin, dioscin, and gracillin were quantified using ginsenoside Rb1 as the internal standard (IS). The plasma samples were pretreated by a single step acetonitrile-mediated protein precipitation. The chromatographic separation was performed on an Inersil ODS-3 C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase composed of acetonitrile and water containing 0.1% formic acid under a gradient elution mode at 0.2 mL min−1 using a microsplit after the eluent from the HPLC apparatus. The quantification was accomplished on a triple quadrupole tandem mass spectrometer using the multiple reaction monitoring (MRM) in the positive ionization mode. The above five analytes were stable under sample storage and preparation conditions applied in the present study. The linearity, precision, accuracy, and recoveries of the analysis confirmed the requirements for quality-control purposes. After validation, this proposed method was successfully adopted to investigate the pharmacokinetic parameters of these five analytes. PMID:25201262
NASA Astrophysics Data System (ADS)
Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme
2017-02-01
Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.
Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection
Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Zhang, Yu; Du, Qiaoling; Wang, Yiding
2017-01-01
A multi-gas sensor system was developed that uses a single broadband light source and multiple carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) pyroelectric detectors by use of the time division multiplexing (TDM) technique. A stepper motor-based rotating system and a single-reflection spherical optical mirror were designed and adopted to realize and enhance multi-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) were performed to study the performance of the sensor system for the three gas species. Effects of the motor rotating period on sensor performances were also investigated and a rotation speed of 0.4π rad/s was required to obtain a stable sensing performance, corresponding to a detection period of ~10 s to realize one round of detection. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 2.96, 4.54 and 2.84 parts per million in volume (ppmv) for CO, CO2 and CH4, respectively and the 1σ detection limits under dynamic operations are 8.83, 8.69 and 10.29 ppmv for the three gas species, respectively. The reported sensor has potential applications in various fields requiring CO, CO2 and CH4 detection such as in coal mines. PMID:28953260
MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy
NASA Astrophysics Data System (ADS)
Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Spangler, Sophia
2016-06-01
MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a project to measure precise spectroscopic radial velocities. The cost of telescopes are a strong function of diameter, and light gathering power as opposed to angular resolution is the fundamental driver for telescope design for many spectroscopic science applications. By sacrificing angular resolution, many multiple smaller fiber-fed telescopes can be combined to synthesize the light gathering power of a larger diameter telescope at a lower effective cost. For our MICRONERVA prototype, based upon the larger MINERVA project, we will attempt to demonstrate that an array of four 8-inch CPC Celestron telescopes can be automated with sufficient active guiding precision for robust nightly robotic operations. The light from each telescope is coupled into single mode fibers, which are conveniently matched to the point spread function of 8-inch telescopes, which can be diffraction limited at red wavelengths in typical seeing at good observing sites. Additionally, the output from an array of single mode fibers provides stable output illumination of a spectrograph, which is a critical requirement of future precise radial velocity instrumentation. All of the hardware from the system is automated using Python programs and ASCOM and MaxIm DL software drivers. We will present an overview of the current status of the project and plans for future work. The detection of exoplanets using the techniques of MICRONERVA could potentially enable cost reductions for many types of spectroscopic research.
Martens-Lobenhoffer, J
1999-08-01
A gas chromatographic-mass spectrometric (GC-MS) assay for the determination of thiopental and its main metabolite pentobarbital in human plasma is presented in this study. The sample preparation consists only in the addition of the internal standard barbital and an acidic extraction with ethyl acetate. Analytical separation is accomplished on a RTX-1 15 m x 0.25 mm capillary column with a film thickness of 0.5 micron. The effluent is observed by a mass selective detector operating in the single ion monitoring mode. The limits of detection are 5 ng/ml for pentobarbital and 10 ng/ml for thiopental, the intra-day variabilities are 2.2% and 4.0% and the inter-day variabilities are 3.3% and 7.1% at concentrations of 5 micrograms/ml, respectively. Applying this assay, the stability of thiopental and pentobarbital in human plasma was tested at concentrations of 5 micrograms/ml each. Thiopental is stable in human plasma at least over 41 days stored at -20 degrees C and 5 degrees C, respectively. A decay of about 2%/day is observed under storage at ambient temperature (19-20 degrees C). Pentobarbital is stable under all storage conditions. Methanolic solutions of thiopental are stable for 83 days under storage at 5 degrees C. Aqueous solutions of thiopental-sodium are stable for at least 23 days under storage at 5 degrees C or ambient temperature.
The AlGaAs single-mode stability
NASA Technical Reports Server (NTRS)
Botez, D.; Ladany, I.
1983-01-01
Single-mode spectral behavior with aging in constricted double heterojunction (CDH) lasers was studied. The CDH lasers demonstrated excellent reliability ( or = 1 million years extrapolated room-temperature MTTF) and single-mode operation after 10,000 hours of 70 C aging. The deleterious effects of laser-fiber coupling on the spectra of the diodes were eliminated through the use of wedge-shaped fibers. A novel high-power large optical cavity (LOC)-type laser was developed: the terraced-heterostructure (TH)-LOC laser, which provides the highest power into a single-mode (i.e., 50 mW CW) ever reported.
New Mode For Single-Event Upsets
NASA Technical Reports Server (NTRS)
Zoutendyk, John A.; Smith, Lawrence S.; Soli, George A.; Lo, Roger Y.
1988-01-01
Report presents theory and experimental data regarding newly discovered mode for single-event upsets, (SEU's) in complementary metal-oxide/semiconductor, static random-access memories, CMOS SRAM's. SEU cross sections larger than those expected from previously known modes given rise to speculation regarding additional mode, and subsequent cross-section measurements appear to confirm speculation.
Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A
2007-08-01
We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Acoustic vibration sensor based on nonadiabatic tapered fibers.
Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong
2012-11-15
A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.
Secular instabilities of Keplerian stellar discs
NASA Astrophysics Data System (ADS)
Kaur, Karamveer; Kazandjian, Mher V.; Sridhar, S.; Touma, Jihad R.
2018-05-01
We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase-space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags that include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates, and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly, and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.
NASA Astrophysics Data System (ADS)
Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
2017-05-01
The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device.
Sakamoto, Ryuichi; Motojima, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi
2013-08-01
A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing mode and real-time control mode, allows the build-up and sustainment of high density plasma around the density limit. The pellet injector has demonstrated stable operation characteristics during the past three years of LHD experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Effect of a crystal-melt interface on Taylor-vortex flow
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Murray, B. T.; Glicksman, M. E.; Selleck, M. E.
1990-01-01
The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case that the stationary outer cylinder is a crystal-melt interface rather than a rigid surface. A radial temperature difference is maintained across the liquid gap, and equations for heat transport in the crystal and melt phases are included to extend the ordinary formulation of this problem. The stability of this two-phase system depends on the Prandtl number. For small Prandtl number the linear stability of the two-phase system is given by the classical results for a rigid-walled system. For increasing values of the Prandtl number, convective heat transport becomes significant and the system becomes increasingly less stable. Previous results in a narrow-gap approximation are extended to the case of a finite gap, and both axisymmetric and nonaxisymmetric disturbance modes are considered. The two-phase system becomes less stable as the finite gap tends to the narrow-gap limit. The two-phase system is more stable to nonaxisymmetric modes with azimuthal wavenumber n = 1; the stability of these n = 1 modes is sensitive to the latent heat of fusion.
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1988-01-01
Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.
Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang
2016-06-15
We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.
Exploring the nonlinear cloud and rain equation
NASA Astrophysics Data System (ADS)
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
Single frequency stable VCSEL as a compact source for interferometry and vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudzik, Grzegorz; Rzepka, Janusz
2010-05-28
Developing an innovative PS-DAVLL (Polarization Switching DAVLL) method of frequency stabilization, which used a ferroelectric liquid crystal cell as quarter wave plate, rubidium cell and developed ultra-stable current source, allowed to obtain a frequency stability of 10{sup -9}(frequency reproducibility of 1,2centre dot10{sup -8}) and reductions in external dimensions of laser source. The total power consumption is only 1,5 Watt. Because stabilization method used in the frequency standard is insensitive to vibration, the semiconductor laser interferometer was built for measuring range over one meter, which can also be used in industry for the accurate measurement of displacements with an accuracy ofmore » 1[mum/m]. Measurements of the VCSEL laser parameters are important from the standpoint of its use in laser interferometry or vibrometry, like narrow emission line DELTAnu{sub FWHM} = 70[MHz] equivalent of this laser type and stability of linear polarization of VCSEL laser. The undoubted advantage of the constructed laser source is the lack of mode-hopping effect during continuous work of VCSEL.« less
Jafri, S H M; Löfås, H; Fransson, J; Blom, T; Grigoriev, A; Wallner, A; Ahuja, R; Ottosson, H; Leifer, K
2013-06-07
Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.
A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance
NASA Astrophysics Data System (ADS)
Zhang, Shuhuan; Li, Jianshe; Li, Shuguang; Liu, Qiang; Liu, Yingchao; Zhang, Zhen; Wang, Yujun
2018-06-01
A tunable single polarizing filter is proposed by selectively coating gold film on the air holes of photonic crystal fiber (PCF). The polarization properties of the PCF filter are evaluated by the finite-element method. Simulation results show that the loss of y-polarized core mode at 1250 and 1550 nm is 136.23 and 839.73 dB/cm, respectively. Furthermore, we innovatively combine stable modulation with flexible modulation. To be specific, the resonance wavelengths are slowly controlled in a small wavelength range by altering the diameter of the air-hole-coated gold film, while the resonance wavelengths are flexibly controlled in a wide wavelength range by altering the thickness of the gold film or the diameter of the small air holes. When the length of the PCF is 500 µm, the bandwidth of extinction ratio greater than - 20 dB is only 60 nm at the communication window of 1550 nm. It is beneficial to fabricate a narrow-band polarization filter.
Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu
2017-10-30
We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.
Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback
NASA Technical Reports Server (NTRS)
Maynard, William L.
1989-01-01
Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Separating and combining single-mode and multimode optical beams
Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S
2013-11-12
Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
NASA Astrophysics Data System (ADS)
Seyfferle, S.; Hargart, F.; Jetter, M.; Hu, E.; Michler, P.
2018-01-01
We report on the radiative interaction of two single quantum dots (QDs) each in a separate InP/GaInP-based microdisk cavity via resonant whispering gallery modes. The investigations are based on as-fabricated coupled disk modes. We apply optical spectroscopy involving a 4 f setup, as well as mode-selective real-space imaging and photoluminescence mapping to discern single QDs coupled to a resonant microdisk mode. Excitation of one disk of the double cavity structure and detecting photoluminescence from the other yields proof of single-photon emission of a QD excited by incoherent energy transfer from one disk to the other via a mode in the weak-coupling regime. Finally, we present evidence of photons emitted by a QD in one disk that are transferred to the other disk by a resonant mode and are subsequently resonantly scattered by another QD.
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.
Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C
2016-03-21
Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.
The fracture behaviour of dental enamel.
Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A
2010-01-01
Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).
Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2018-03-27
A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margueron, Samuel; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Maryland 02138; Pokorny, Jan
2016-05-21
A thermodynamically stable series of superlattices, (ZnO){sub k}In{sub 2}O{sub 3}, form in the ZnO-In{sub 2}O{sub 3} binary oxide system for InO{sub 1.5} concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO{sub 6} octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm{sup −1}, not present in either ZnO ormore » In{sub 2}O{sub 3}, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO{sub 1.5} sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO{sub 2}, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO{sub 2} interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.« less
NASA Astrophysics Data System (ADS)
Meng, Xiuxia; Shen, Yichi; Xie, Menghan; Yin, Yimei; Yang, Naitao; Ma, Zi-Feng; Diniz da Costa, João C.; Liu, Shaomin
2016-02-01
This work investigates the performance of solid oxide cells as fuel cells (SOFCs) for power production and also as electrolysis cells (SOECs) for hydrogen production. In order to deliver this dual mode flexible operation system, a novel perovskite oxide based on Ga3+ doped SrCo0.8Fe0.1Ga0.1O3-δ (SCFG) is synthesized via a sol-gel method. Its performance for oxygen electrode catalyst was then evaluated. Single solid oxide cell in the configuration of Ni-YSZ|YSZ|GDC|SCFG is assembled and tested in SOFC or SOEC modes from 550 to 850 °C with hydrogen as the fuel or as the product, respectively. GDC is used to avoid the reaction between the electrolyte YSZ and the cobalt-based electrode. Under SOFC mode, a maximum power density of 1044 mW cm-2 is obtained at 750 °C. Further, the cell delivers a stable power output of 650 mW cm-2 up to 125 h at 0.7 V. In the electrolysis mode, when the applied voltage is controlled at 2 V, the electrolysis current density reaches 3.33 A cm-2 at 850 °C with the hydrogen production rate up to 22.9 mL min-1 cm-2 (STP). These results reveal that SCFG is a very promising oxygen electrode material for application in both SOFC and SOEC.
Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.
Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie
2017-05-15
We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan
2017-01-01
Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
NASA Astrophysics Data System (ADS)
Frank, T. D.
The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.; ...
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer
NASA Astrophysics Data System (ADS)
Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong
2018-06-01
For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.
Single-mode hole-assisted fiber as a bending-loss insensitive fiber
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio
2010-12-01
We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.
Zonal flows and turbulence in fluids and plasmas
NASA Astrophysics Data System (ADS)
Parker, Jeffrey Bok-Cheung
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear system. The use of statistically-averaged equations and the pattern formation methodology provide a path forward for further systematic investigations of zonal flows and their interactions with turbulence.
Viscous driving of global oscillations in accretion discs around black holes
NASA Astrophysics Data System (ADS)
Miranda, Ryan; Horák, Jiří; Lai, Dong
2015-01-01
We examine the role played by viscosity in the excitation of global oscillation modes (both axisymmetric and non-axisymmetric) in accretion discs around black holes using two-dimensional hydrodynamic simulations. The turbulent viscosity is modelled by the α-ansatz, with different equations of state. We consider both discs with transonic radial inflows across the innermost stable circular orbit, and stationary discs truncated by a reflecting wall at their inner edge, representing a magnetosphere. In transonic discs, viscosity can excite several types of global oscillation modes. These modes are either axisymmetric with frequencies close to multiples of the maximum radial epicyclic frequency κmax, non-axisymmetric with frequencies close to multiples of the innermost stable orbit frequency ΩISCO, or hybrid modes whose frequencies are linear combinations of these two frequencies. Small values of the viscosity parameter α primarily produce non-axisymmetric modes, while axisymmetric modes become dominant for large α. The excitation of these modes may be related to an instability of the sonic point, at which the radial infall speed is equal to the sound speed of the gas. In discs with a reflective inner boundary, we explore the effect of viscosity on trapped p modes which are intrinsically overstable due to the corotation resonance effect. The effect of viscosity is either to reduce the growth rates of these modes, or to completely suppress them and excite a new class of higher frequency modes. The latter requires that the dynamic viscosity scales positively with the disc surface density, indicating that it is a result of the classic viscous overstability effect.
Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3
NASA Astrophysics Data System (ADS)
Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.
2017-07-01
The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n = 1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n = 2, 3, and higher modes.
Kim, Sung Kuk; Sessler, Jonathan L; Gross, Dustin E; Lee, Chang-Hee; Kim, Jong Seung; Lynch, Vincent M; Delmau, Laetitia H; Hay, Benjamin P
2010-04-28
An ion-pair receptor, the calix[4]pyrrole-calix[4]arene pseudodimer 2, bearing a strong anion-recognition site but not a weak cation-recognition site, has been synthesized and characterized by standard spectroscopic means and via single-crystal X-ray diffraction analysis. In 10% CD(3)OD in CDCl(3) (v/v), this new receptor binds neither the Cs(+) cation nor the F(-) anion when exposed to these species in the presence of other counterions; however, it forms a stable 1:1 solvent-separated CsF complex when exposed to these two ions in concert with one another in this same solvent mixture. In contrast to what is seen in the case of a previously reported crown ether "strapped" calixarene-calixpyrrole ion-pair receptor 1 (J. Am. Chem. Soc. 2008, 130, 13162-13166), where Cs(+) cation recognition takes place within the crown, in 2.CsF cation recognition takes place within the receptor cavity itself, as inferred from both single-crystal X-ray diffraction analyses and (1)H NMR spectroscopic studies. This binding mode is supported by calculations carried out using the MMFF94 force field model. In 10% CD(3)OD in CDCl(3) (v/v), receptor 2 shows selectivity for CsF over the Cs(+) salts of Cl(-), Br(-), and NO(3)(-) but will bind these other cesium salts in the absence of fluoride, both in solution and in the solid state. In the case of CsCl, an unprecedented 2:2 complex is observed in the solid state that is characterized by two different ion-pair binding modes. One of these consists of a contact ion pair with the cesium cation and chloride anion both being bound within the central binding pocket and in direct contact with one another. The other mode involves a chloride anion bound to the pyrrole NH protons of a calixpyrrole subunit and a cesium cation sandwiched between two cone shaped calix[4]pyrroles originating from separate receptor units. In contrast to what is seen for CsF and CsCl, single-crystal X-ray structural analyses and (1)H NMR spectroscopic studies reveal that receptor 2 forms a 1:1 complex with CsNO(3), with the ions bound in the form of a contact ion pair. Thus, depending on the counteranion, receptor 2 is able to stabilize three different ion-pair binding modes with Cs(+), namely solvent-bridged, contact, and host-separated.
Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements.
Habib, Md Selim; Bang, Ole; Bache, Morten
2016-04-18
A hollow-core fiber using anisotropic anti-resonant tubes in the cladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic anti-resonant tubes in the cladding, elongated in the radial direction, when compared to using isotropic, i.e. circular, anti-resonant tubes. The effective single-mode guidance of the proposed fiber is achieved by enhancing the coupling between the cladding modes and higher-order-core modes by suitably engineering the anisotropic anti-resonant elements. With a silica-based fiber design aimed at 1.06 µm, we show that the loss extinction ratio between the higher-order core modes and the fundamental core mode can be more than 1000 in the range 1.0-1.65 µm, while the leakage loss of the fundamental core mode is below 15 dB/km in the same range.
Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung
2013-10-28
Purpose To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. Materials and Methods This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Results Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). Conclusion The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013 Supplemental material: S1.
Lee, Su Hyun; Cho, Nariya; Chang, Jung Min; Koo, Hye Ryoung; Kim, Jin You; Kim, Won Hwa; Bae, Min Sun; Yi, Ann; Moon, Woo Kyung
2014-02-01
To determine whether two-view shear-wave elastography (SWE) improves the performance of radiologists in differentiating benign from malignant breast masses compared with single-view SWE. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. B-mode ultrasonographic (US) and orthogonal SWE images were obtained for 219 breast masses (136 benign and 83 malignant; mean size, 14.8 mm) in 219 consecutive women (mean age, 47.9 years; range, 20-78 years). Five blinded radiologists independently assessed the likelihood of malignancy for three data sets: B-mode US alone, B-mode US and single-view SWE, and B-mode US and two-view SWE. Interobserver agreement regarding Breast Imaging Reporting and Data System (BI-RADS) category and the area under the receiver operating characteristic curve (AUC) of each data set were compared. Interobserver agreement was moderate (κ = 0.560 ± 0.015 [standard error of the mean]) for BI-RADS category assessment with B-mode US alone. When SWE was added to B-mode US, five readers showed substantial interobserver agreement (κ = 0.629 ± 0.017 for single-view SWE; κ = 0.651 ± 0.014 for two-view SWE). The mean AUC of B-mode US was 0.870 (range, 0.855-0.884). The AUC of B-mode US and two-view SWE (average, 0.928; range, 0.904-0.941) was higher than that of B-mode US and single-view SWE (average, 0.900; range, 0.890-0.920), with statistically significant differences for three readers (P ≤ .003). The performance of radiologists in differentiating benign from malignant breast masses was improved when B-mode US was combined with two-view SWE compared with that when B-mode US was combined with single-view SWE. © RSNA, 2013
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
NASA Astrophysics Data System (ADS)
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m
Teleporting photonic qudits using multimode quantum scissors.
Goyal, Sandeep K; Konrad, Thomas
2013-12-19
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
Teleporting photonic qudits using multimode quantum scissors
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Konrad, Thomas
2013-12-01
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
NASA Technical Reports Server (NTRS)
Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian
2000-01-01
Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.
Interchange mode excited by trapped energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
2015-07-15
The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less
Strain mapping in single-layer two-dimensional crystals via Raman activity
NASA Astrophysics Data System (ADS)
Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.
2018-03-01
By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.
NASA Astrophysics Data System (ADS)
Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.
2016-11-01
A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
Single-mode annular chirally-coupled core fibers for fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali
2018-03-01
Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.
Microcavity morphology optimization
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute
2014-09-01
High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.
Pad-mode-induced instantaneous mode instability for simple models of brake systems
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-10-01
Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.
Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2015-03-09
In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.
Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O
2008-03-01
Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model, the nails with angle-stable or compressed angle-stable locking had better initial stability and better stability following cycling than did the nails with static locking.
Bai, Neng; Xia, Cen; Li, Guifang
2012-10-08
We propose and experimentally demonstrate single-carrier adaptive frequency-domain equalization (SC-FDE) to mitigate multipath interference (MPI) for the transmission of the fundamental mode in a few-mode fiber. The FDE approach reduces computational complexity significantly compared to the time-domain equalization (TDE) approach while maintaining the same performance. Both FDE and TDE methods are evaluated by simulating long-haul fundamental-mode transmission using a few-mode fiber. For the fundamental mode operation, the required tap length of the equalizer depends on the differential mode group delay (DMGD) of a single span rather than DMGD of the entire link.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
NASA Astrophysics Data System (ADS)
Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey
2015-02-01
We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk
We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.
Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.
Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.
Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun
2015-07-28
Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.
Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji
2012-10-22
We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.
All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute
2004-01-01
We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.
Nankivil, Derek; Waterman, Gar; LaRocca, Francesco; Keller, Brenton; Kuo, Anthony N.; Izatt, Joseph A.
2015-01-01
We describe the first handheld, swept source optical coherence tomography (SSOCT) system capable of imaging both the anterior and posterior segments of the eye in rapid succession. A single 2D microelectromechanical systems (MEMS) scanner was utilized for both imaging modes, and the optical paths for each imaging mode were optimized for their respective application using a combination of commercial and custom optics. The system has a working distance of 26.1 mm and a measured axial resolution of 8 μm (in air). In posterior segment mode, the design has a lateral resolution of 9 μm, 7.4 mm imaging depth range (in air), 4.9 mm 6dB fall-off range (in air), and peak sensitivity of 103 dB over a 22° field of view (FOV). In anterior segment mode, the design has a lateral resolution of 24 μm, imaging depth range of 7.4 mm (in air), 6dB fall-off range of 4.5 mm (in air), depth-of-focus of 3.6 mm, and a peak sensitivity of 99 dB over a 17.5 mm FOV. In addition, the probe includes a wide-field iris imaging system to simplify alignment. A fold mirror assembly actuated by a bi-stable rotary solenoid was used to switch between anterior and posterior segment imaging modes, and a miniature motorized translation stage was used to adjust the objective lens position to correct for patient refraction between −12.6 and + 9.9 D. The entire probe weighs less than 630 g with a form factor of 20.3 x 9.5 x 8.8 cm. Healthy volunteers were imaged to illustrate imaging performance. PMID:26601014
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
Stable Spheromaks with Profile Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R
A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
Quantum dash based single section mode locked lasers for photonic integrated circuits.
Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois
2014-05-05
We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.
Symmetry, stability, and computation of degenerate lasing modes
NASA Astrophysics Data System (ADS)
Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.
2017-02-01
We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.
Experimental investigations on characteristics of stable water electrospray in air without discharge
NASA Astrophysics Data System (ADS)
Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo
2017-06-01
An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.
Environmentally stable seed source for high power ultrafast laser
NASA Astrophysics Data System (ADS)
Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin
2017-02-01
We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
Chen, Yong; Yan, Zhenya
2016-01-01
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
Ultrastable, Zerodur-based optical benches for quantum gas experiments.
Duncker, Hannes; Hellmig, Ortwin; Wenzlawski, André; Grote, Alexander; Rafipoor, Amir Jones; Rafipoor, Mona; Sengstock, Klaus; Windpassinger, Patrick
2014-07-10
Operating ultracold quantum gas experiments outside of a laboratory environment has so far been a challenging goal, largely due to the lack of sufficiently stable optical systems. In order to increase the thermal stability of free-space laser systems, the application of nonstandard materials such as glass ceramics is required. Here, we report on Zerodur-based optical systems which include single-mode fiber couplers consisting of multiple components jointed by light-curing adhesives. The thermal stability is thoroughly investigated, revealing excellent fiber-coupling efficiencies between 0.85 and 0.92 in the temperature range from 17°C to 36°C. In conjunction with successfully performed vibration tests, these findings qualify our highly compact systems for atom interferometry experiments aboard a sounding rocket as well as various other quantum information and sensing applications.
NASA Astrophysics Data System (ADS)
Tian, J. J.; Yao, Y.
2011-03-01
We report an experimental demonstration of muliwavelength erbium-doped fiber laser with adjustable wavelength number based on a power-symmetric nonlinear optical loop mirror (NOLM) in a linear cavity. The intensity-dependent loss (IDL) induced by the NOLM is used to suppress the mode competition and realize the stable multiwavelength oscillation. The controlling of the wavelength number is achieved by adjusting the strength of IDL, which is dependent on the pump power. As the pump power increases from 40 to 408 mW, 1-7 lasing line(s) at fixed wavelength around 1601 nm are obtained. The output power stability is also investigated. The most power fluctuation of single wavelength is less than 0.9 dB, when the wavelength number is increased from 1-7.
Semiconductor laser using multimode interference principle
NASA Astrophysics Data System (ADS)
Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao
2018-01-01
Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.
Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong
2011-08-01
We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.
Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W
2012-04-25
A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.
Ultralong time response of magnetic fluid based on fiber-optic evanescent field.
Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong
2016-07-20
The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively.
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.
Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca
2018-05-18
We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications
NASA Astrophysics Data System (ADS)
In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca
2018-05-01
We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.
Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D.; Holland, Christy K.
2014-01-01
Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP (Radhakrishnan et al. 2013) has been shown to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. Smith et al. (2007) have reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The current study evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25 kHz, 2.5 kHz, 5 kHz, and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed and the spatial widths of stable and inertial cavitation emissions were compared to the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also show that 64%–79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. PMID:25438849
Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D; Holland, Christy K
2015-01-01
Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP has been found to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. It has been reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The study described here evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25, 2.5, 5 and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed, and the spatial widths of stable and inertial cavitation emissions were compared with the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF, and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also indicate that 64%-79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.
Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2016-12-10
By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550 μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3 dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100 dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.
Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka
2012-10-12
Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.
Ma, Yingjun; Wu, Li; Wu, Hehui; Chen, Weimin; Wang, Yanli; Gu, Shijie
2008-11-10
We present a single longitudinal mode, diode pumped Nd:YVO(4) microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO(4) and the principle axes of QWPs are oriented at 45 degrees to the c-axis of Nd:YVO(4). Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO(4), two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO(4). The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30 degrees C, respectively.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Stable transport in proton driven fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2009-09-15
Proton beam transport in the context of proton driven fast ignition is usually assumed to be stable due to proton high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven fast ignition parameters. In the cold regime, two fast growing modes are found, with an inverse growth rate much smaller than the beam time of flight to the target core. The stability issue is thus not so obvious, and kinetic effects are investigated. One unstable modemore » is found stabilized by the background plasma proton and electron temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than {approx}10 keV. In fusion conditions, the beam propagation should therefore be stable.« less
Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki
2004-12-01
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.
Generation of single- and two-mode multiphoton states in waveguide QED
NASA Astrophysics Data System (ADS)
Paulisch, V.; Kimble, H. J.; Cirac, J. I.; González-Tudela, A.
2018-05-01
Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In the optical regime, these states are generally obtained combining heralded single photons with linear optics tools and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al., Phys. Rev. Lett. 118, 213601 (2017), 10.1103/PhysRevLett.118.213601], we design several protocols that harness the long-range atomic interactions induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to generate two-mode multiphoton states, such as Yurke or NOON states.
Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design
NASA Astrophysics Data System (ADS)
Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen
2016-11-01
852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.
Single Mode, Extreme Precision Doppler Spectrographs
NASA Astrophysics Data System (ADS)
Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath
2014-04-01
The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.
Karalis, Aristeidis; Joannopoulos, J D
2016-07-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.
‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion
Karalis, Aristeidis; Joannopoulos, J. D.
2016-01-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522
Bi-stability in cooperative transport by ants in the presence of obstacles
Pinkoviezky, Itai; Feinerman, Ofer
2018-01-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle. PMID:29746457
Bi-stability in cooperative transport by ants in the presence of obstacles.
Ron, Jonathan E; Pinkoviezky, Itai; Fonio, Ehud; Feinerman, Ofer; Gov, Nir S
2018-05-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle.
Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2016-05-01
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.
INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less
Multicore fibre photonic lanterns for precision radial velocity Science
NASA Astrophysics Data System (ADS)
Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.
2018-04-01
Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser
Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling
2012-01-01
We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433
[Composition and stability of soil aggregates in hedgerow-crop slope land].
Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai
2013-01-01
Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.
Effects of resonant magnetic perturbation on the triggering and the evolution of double-tearing mode
NASA Astrophysics Data System (ADS)
Wang, L.; Lin, W. B.; Wang, X. Q.
2018-02-01
The effects of resonant magnetic perturbation on the triggering and the evolution of the double-tearing mode are investigated by using nonlinear magnetohydrodynamics simulations in a slab geometry. It is found that the double-tearing mode can be destabilized by boundary magnetic perturbation. Moreover, the mode has three typical development stages before it reaches saturation: the linear stable stage, the linear-growth stage, and the exponential-growth stage. The onset and growth of the double-tearing mode significantly depend on the boundary magnetic perturbations, particularly in the early development stage of the mode. The influences of the magnetic perturbation amplitude on the mode for different separations of the two rational surfaces are also discussed.
Discrete mode laser diodes for FTTH/PON applications up to 10 Gbit/s
NASA Astrophysics Data System (ADS)
O'Carroll, John; Phelan, Richard; Kelly, Brian; Byrne, Diarmuid; Latkowski, Sylwester; Anandarajah, Prince M.; Barry, Liam P.
2012-06-01
Discrete Mode Laser Diodes (DMLDs) present an economic approach with a focus on high volume manufacturability of single mode lasers using a single step fabrication process. We report on a DMLD designed for operation in the 1550 nm window with high Side Mode Suppression Ratio (SMSR) over a wide temperature tuning range of -20 °C < T < 95 °C. Direct modulation rates as high as 10 Gbit/s are demonstrated at both 1550 nm and 1310 nm. Transmission experiments were also carried out over single mode fibre at both wavelengths. Using dispersion pre-compensation transmission from 0 to 60 km is demonstrated at 1550 nm with a maximum power penalty measured at 60 km of 3.6 dB.
Foraging enrichment for stabled horses: effects on behaviour and selection.
Goodwin, D; Davidson, H P B; Harris, P
2002-11-01
The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.
Acoustic Levitation With One Transducer
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.
1987-01-01
Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.
Dual-color single-mode lasing in axially coupled organic nanowire resonators
Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng
2017-01-01
Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731
On non-local energy transfer via zonal flow in the Dimits shift
NASA Astrophysics Data System (ADS)
St-Onge, Denis A.
2017-10-01
The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.
``Stable'' Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology
NASA Astrophysics Data System (ADS)
Wagoner, Robert V.; Silbergleit, Alexander S.; Ortega-Rodríguez, Manuel
2001-09-01
We compare our calculations of the frequencies of the fundamental g-, c-, and p-modes of relativistic thin accretion disks with recent observations of high-frequency quasi-periodic oscillations (QPOs) in X-ray binaries with black hole candidates. These classes of modes encompass all adiabatic perturbations of such disks. The frequencies of these modes depend mainly on the mass and angular momentum of the black hole; their weak dependence on disk luminosity is also explicitly indicated. Identifying the recently discovered, relatively stable QPO pairs with the fundamental g- and c-modes provides a determination of the mass and angular momentum of the black hole. For GRO J1655-40, M=5.9+/-1.0 Msolar and J=(0.917+/-0.024)GM2/c, in agreement with spectroscopic mass determinations. For GRS 1915+105, M=42.4+/-7.0 Msolar and J=(0.926+/-0.020)GM2/c or (less favored) M=18.2+/-3.1 Msolar and J=(0.701+/-0.043)GM2/c. We briefly address the issues of the amplitude, frequency width, and energy dependence of these QPOs.
Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.
2016-08-01
Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and amore » hard (Φ 4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.« less
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.
1984-01-01
A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.
Perturbative instability of inflationary cosmology from quantum potentials
NASA Astrophysics Data System (ADS)
Tawfik, A.; Diab, A.; Abou El Dahab, E.
2017-09-01
It was argued that the Raychaudhuri equation with a quantum correction term seems to avoid the Big Bang singularity and to characterize an everlasting Universe (Ali and Das in Phys Lett B 741:276, 2015). Critical comments on both conclusions and on the correctness of the key expressions of this work were discussed in literature (Lashin in Mod Phys Lett 31:1650044, 2016). In the present work, we have analyzed the perturbative (in)stability conditions in the inflationary era of the early Universe. We conclude that both unstable and stable modes are incompatible with the corresponding ones obtained in the standard FLRW Universe. We have shown that unstable modes do exist at small (an)isotropic perturbation and for different equations of state. Inequalities for both unstable and stable solutions with the standard FLRW space were derived. They reveal that in the FLRW flat Universe both perturbative instability and stability are likely. While negative stability modes have been obtained for radiation- and matter-dominated eras, merely, instability modes exist in case of a finite cosmological constant and also if the vacuum energy dominates the cosmic background geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Onge, Denis A.
The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in anmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.« less
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less
Theoretical Studies of Low-Loss Optical Fibers.
1980-09-15
on the fiber surface. Single-mode fiber operation is of interest in communications. Marcuse has shown that surface imperfections are a strong source...0.01 very small value of a : 8A at X = 1 vim Marcuse single mode 2.7 typical value of a = 1 jim, A : 10.6 vm, af = 37 Pim surface imperfections 55...Braunstein, "Scattering Losses in Single and Polycrystalline Materials for Infrared Fiber Applications," unpublished. 5. D. Marcuse , "Mode Conversion
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo
2013-07-15
We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.
Short-Period Surface Wave Based Seismic Event Relocation
NASA Astrophysics Data System (ADS)
White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.
2017-12-01
Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.
Stable long-term chronic brain mapping at the single-neuron level.
Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M
2016-10-01
Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum
NASA Astrophysics Data System (ADS)
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Levitation With a Single Acoustic Driver
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Gaspar, M. S.; Allen, J. L.
1986-01-01
Pair of reports describes acoustic-levitation systems in which only one acoustic resonance mode excited, and only one driver needed. Systems employ levitation chambers of rectangular and cylindrical geometries. Reports first describe single mode concept and indicate which modes used to levitate sample without rotation. Reports then describe systems in which controlled rotation of sample introduced.
Acoustic performance of inlet suppressors on an engine generating a single mode
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Rice, E. J.; Homyak, L.
1981-01-01
Three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode in order to evaluate an inlet suppressor design method based on mode cutoff ratio. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data show the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.
Characterization of pseudosingle bunch kick-and-cancel operational mode
Sun, C.; Robin, D. S.; Steier, C.; ...
2015-12-18
Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments andmore » drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.« less
Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals
Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos
2013-01-01
Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520
NASA Astrophysics Data System (ADS)
Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng
2016-10-01
A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.