DOE Office of Scientific and Technical Information (OSTI.GOV)
Compere, A.L.; Griffith, W.L.; Googin, J.M.
Microemulsions fuels containing fully and partially coconut, palm, and soy fatty acids; varying amounts of C/sub 1/ to C/sub 4/ alcohols; varying amounts of water; and four fuel bases were evaluated between 0 and 60/sup 0/C for stability as a single phase system. In general, ability to form a stable single phase system rose with increasing alcohol chain length, decreasing water, and increasing dispersed phase content. It was possible to form 0 to 60/sup 0/C stable single phase systems in all four fuels tested using 30 to 50% v/v dispersed phase containing 1-butanol and either palm or soy fatty acids.more » 11 refs., 3 tabs.« less
Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
NASA Astrophysics Data System (ADS)
Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-06-01
Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat; ...
2017-06-16
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Hierarchical structure in sharply divided phase space for the piecewise linear map
NASA Astrophysics Data System (ADS)
Akaishi, Akira; Aoki, Kazuki; Shudo, Akira
2017-05-01
We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.
Existence of a stable intermixing phase for monolayer Ge on Si(001)
NASA Astrophysics Data System (ADS)
Yeom, H. W.; Sasaki, M.; Suzuki, S.; Sato, S.; Hosoi, S.; Iwabuchi, M.; Higashiyama, K.; Fukutani, H.; Nakamura, M.; Abukawa, T.; Kono, S.
1997-06-01
A monolayer adsorption of Ge on a single-domain Si(001)2 × 1 surface has been investigated by X-ray excited Auger electron diffraction (AED) and scanning tunneling microscopy. Contrary to the common belief, a significant intermixing of Ge down to at least the fourth layer is identified. This intermixing is found to progress to a stable interface alloy phase that develops fully for annealing at 500-600°C. A possible reason for the alloy phase is discussed to be an elastic interaction from the Si(001) surface.
Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study
NASA Astrophysics Data System (ADS)
Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati
2018-05-01
We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s < 20 and a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.
NASA Astrophysics Data System (ADS)
Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa
2017-12-01
The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.
Understanding Single Adulthood.
ERIC Educational Resources Information Center
Stein, Peter J.
The life styles and life chances of the unmarried include elements of choices. Singles may be grouped and characterized according to whether their status may be considered stable or temporary. A life cycle, or continuum model of singlehood is reviewed, including its different factors, or phases. A new model for singles is proposed--a life spiral…
Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.
Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad
2018-05-10
We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s < 20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.
Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr
NASA Technical Reports Server (NTRS)
Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.
1996-01-01
Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.
Robert, B; Perrin, M-A; Coquerel, G; Céolin, R; Rietveld, I B
2016-03-01
The topological pressure-temperature phase diagram for the dimorphism of spiperone, a potent neuroleptic drug, has been constructed using literature data and improved crystal structures obtained with new crystallographic data from single-crystal X-ray diffraction at various temperatures. It is inferred that form II, which is the more dense form and exhibits the lower melting temperature, becomes the more stable phase under pressure. Under ambient conditions, form I is more stable. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
The motion control of a statically stable biped robot on an uneven floor.
Shih, C L; Chiou, C J
1998-01-01
This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.
On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.
Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H
2013-07-15
This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.
Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
NASA Astrophysics Data System (ADS)
Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
2018-01-01
Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
Preparation of highly oxidized RBa.sub.2 Cu.sub.4 O.sub.8 superconductors
Morris, Donald E.
1991-01-01
Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. The compounds and structures thus formed are substantially nonsusceptible to variations in their oxygen content when subjected to changing temperatures, thereby forming a temperature-stable substantially single phase crystal.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
Shen, Fei; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zhu, Baoning; Zou, Dexun; Liu, Yanping; Ma, Jingwei; Yu, Liang; Li, Xiujin
2013-09-01
The co-digestion of fruit & vegetable waste (FVW) and food waste (FW) was performed at various organic loading ratios (OLRs) in single-phase and two-phase system, respectively. The results showed that the ethanol-type fermentation dominated in both digestion processes when OLR was at low levels (<2.0 g(VS) L(-1) d(-1)). The propionic acid was rapidly accumulated as OLR was increased to higher levels (>2.0 g(VS) L(-1) d(-1)), which could cause unstable anaerobic digestion. Single-phase digestion was better than two-phase digestion in term of 4.1% increase in CH4 production at lower OLRs (<2.0 g(VS) L(-1) d(-1)). However, at higher level of OLR (≥2.0 g(VS) L(-1) d(-1)), two-phase digestion achieved higher CH4 production of 0.351-0.455 L(g VS)(-1) d(-1), which were 7.0-15.8% more than that of single-phase. Additionally, two-phase digestion presented more stable operation, and higher OLR treatment capacity. Furthermore, comparison of these two systems with bioenergy recovery revealed that two-phase system overall presented higher bioenergy yield than single-phase. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, Carol M.
1995-01-01
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.
Stabilization of Quinapril by Incorporating Hydrogen Bonding Interactions
Roy, B. N.; Singh, G. P.; Godbole, H. M.; Nehate, S. P.
2009-01-01
In the present study stability of various known solvates of quinapril hydrochloride has been compared with nitromethane solvate. Nitromethane solvate was found to be more stable compared to other known solvates. Single crystal X-ray diffraction analysis of quinapril nitromethane solvate shows intermolecular hydrogen bonding between quinapril molecule and nitromethane. Stabilization of quinapril by forming strong hydrogen bonding network as in case of co-crystals was further studied by forming co-crystal with tris(hydroxymethyl)amino methane. Quinapril free base forms a stable salt with tris(hydroxymethyl)amino methane not reported earlier. Quinapril tris(hydroxymethyl)amino methane salt found to be stable even at 80° for 72 h i.e. hardly any formation of diketopiperazine and diacid impurity. As expected single crystal X-ray diffraction analysis reveals tris(hydroxymethyl)amino methane salt of quinapril shows complex hydrogen bonding network between the two entities along with ionic bond. The properties of this stable salt - stable in solid as well as solution phase, might lead to an alternate highly stable formulation. PMID:20502545
Experimental circular quantum secret sharing over telecom fiber network.
Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui
2013-07-15
We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.
Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer
NASA Astrophysics Data System (ADS)
Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.
NASA Astrophysics Data System (ADS)
Olivato, Paulo R.; Santos, Jean M. M.; Cerqueira, Carlos R.; Vinhato, Elisângela; Zukerman-Schpector, Julio; Ng, Seik Weng; Tiekink, Edward R. T.; Colle, Maurizio Dal
2012-11-01
The analysis of the infrared (IR) carbonyl band of some 3-(4'-substituted phenylsulfonyl)-1-methyl-2-piperidones 1-5 bearing as substituents: OMe 1, Me 2, H 3, Cl 4 and NO25, supported by B3LYP/6-31G(d,p) calculations along with NBO analysis (for 1, 3 and 5) and X-ray diffraction (for 5), indicated the existence of three stable conformations i.e. quasi-axial (q-ax), syn-clinal (s-cl) and quasi-equatorial (q-eq). In the gas phase, the q-ax conformer is calculated as the most stable (ca. 88%) and the least polar, the s-cl conformer is less stable (ca. 12%) but more polar, and the q-eq conformer is the least stable (ca. 1%) and the most polar of the three conformers evaluated. The sum of the most important orbital interactions from NBO analysis and the trend of the electrostatic interactions accounts for the relative populations as well as for the νCO frequencies of the q-ax, s-cl and q-eq conformers calculated in the gas phase. The unique IR νCO band in CCl4 may be ascribed to the most stable q-ax conformer. The more intense (60%) high frequency doublet component in CHCl3 may be assigned to the summing up of the least stable q-eq and the less stable s-cl conformers, as their frequencies are almost coincident. The occurrence of only a single νCO band in both CH2Cl2 and CH3CN supports the fact that the νCO band of the two more polar conformers appear as a single band. Additional support to this rationalization is given by the single point PCM method, which showed a progressive increase of the q-eq + s-cl/q-ax population ratio going from the gas phase to CCl4, to CHCl3, to CH2Cl2 and to CH3CN. X-ray single crystal analysis of 5 indicates that this compound displays a quasi-axial geometry with respect to the [Odbnd Csbnd CHsbnd S] moiety, and that the 2-piperidone ring assumes a slightly distorted half-chair conformation. In the crystal packing, molecules of 5 are arranged into supramolecular layers linked through Csbnd H⋯O interactions along with π⋯π interactions between adjacent benzene rings.
Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle
NASA Astrophysics Data System (ADS)
Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.
2017-12-01
Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, C.M.
1995-05-09
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.
Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.
Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf
2005-12-01
Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.
NASA Astrophysics Data System (ADS)
Huang, C. W.; Chu, Y. H.; Chen, Z. H.; Wang, Junling; Sritharan, T.; He, Q.; Ramesh, R.; Chen, Lang
2010-10-01
Strain-driven phase transitions and related intrinsic polarization, dielectric, and piezoelectric properties for single-domain films were studied for BiFeO3 using phenomenological Landau-Devonshire theory. A stable and mixed structure between tetragonal and rhombohedral-like (monoclinic) phases is predicted at a compressive misfit strain of um=-0.0382 without an energy barrier. For a tensile misfit strain of um=0.0272, another phase transition between the monoclinic and orthorhombic phases was predicted with sharply high dielectric and piezoelectric responses.
NASA Astrophysics Data System (ADS)
Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele
2018-05-01
A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.
Park, YongJin; Hong, Feng; Cheon, JiHoon; Hidaka, Taira; Tsuno, Hiroshi
2008-01-01
Lab-scale single-phase and two-phase thermophilic methane fermentation systems (SPS and TPS, respectively) were operated and fed with artificial kitchen waste. In both SPS and TPS, the highest methane recovery ratio of 90%, in terms of chemical oxygen demand by dichromate (CODcr), was observed at an organic loading rate (OLR) of 15 gCODcr/(l.d). The ratio of particle CODcr remaining to total CODcr in the influent was 0.1 and the ratio of NH(4)-N concentration to the input total nitrogen concentration was 0.5 in both SPS and TPS. However, the propionate concentration in the SPS reactor fluctuated largely and was 2 gCODcr/l higher than that in TPS, indicating less stable digestion. Regardless, efficient kitchen waste degradation can be accomplished in both SPS and TPS at an OLR of <20 gCODcr/(l.d), even though TPS may be more stable and easier to maintain. Bacillus coagulans predominated with an occupied ratio of approximately 90% in the acid fermentation reactor of TPS, and then a richer microbial community with a higher Shannon index value was maintained in the methane fermentation reactor of TPS than in the SPS reactor.
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.
2017-01-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium. PMID:28195226
NASA Astrophysics Data System (ADS)
Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; van Aert, S.; van Tendeloo, G.; Krok, F.
2017-02-01
Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.
Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.
Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J
2014-08-25
Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-01-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459
NASA Astrophysics Data System (ADS)
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-12-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.
Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma
Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid
2011-01-01
Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614
The Effect of AOT and Octanoic Acid on the Formation of Stable Water-in-diesel Microemulsion
NASA Astrophysics Data System (ADS)
Zhang, Yue; Misran, Misni Bin; Wang, Zhicheng; Zhang, Yu
2017-05-01
Sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and octanoic acid (OA) were used as surfactants to prepare water-in-diesel microemulsion. The effect of mixed surfactants ratio on the phase behavior of water-in-diesel microemulsion was investigated. The R0-T plot phase diagrams for the diesel/AOT and OA/water system with different surfactant ratios were constructed at 30-80 °C. The results indicate that the largest single phase region could be obtained when OA to AOT molar ratio was 1. The temperature had a significant influence on phase transformation behavior. The single phase separated into two immiscible phases with the increase of temperature when R0 value was above 10. Compared with applying AOT alone, mixing AOT with appropriate amount of OA is benefit to form smaller nanosized W/O droplets. The determination of particle size was performed to verify the phase transformation behavior, and the results were consistent with the phase diagrams.
Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
NASA Astrophysics Data System (ADS)
Solomatova, N. V.; Asimow, P. D.
2017-12-01
It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at 35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase [1,2]. Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO3)2 dolomite is more stable than previously reported structures [3]. In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO3 agrees well with experiments, whereas an internally-consistent U overestimates the spin transition pressure by 50 GPa. However, whether we use constant or internally-consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth's mantle. [1] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [2] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514. [3] Solomatova, N. V. and Asimow, P. D. (2017) American Mineralogist, 102, 210-215.
Collective phase description of oscillatory convection
NASA Astrophysics Data System (ADS)
Kawamura, Yoji; Nakao, Hiroya
2013-12-01
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.
NASA Astrophysics Data System (ADS)
Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan
2013-02-01
Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.
NASA Astrophysics Data System (ADS)
Bärthlein, S.; Hart, G. L. W.; Zunger, A.; Müller, S.
2007-01-01
Our notions of the phase stability of compounds rest to a large extent on the experimentally assessed phase diagrams. Long ago, it was assumed that in the Cu-Pd system for xPd<=25% there are at least two phases at high temperature (L12 and a L12-based superstructure), which evolve into a single L12-ordered phase at low temperature. By constructing a first-principles Hamiltonian, we predict a yet undiscovered Cu7Pd ground state at xPd = 12.5% (referred to as S1 below) and an L12-like Cu9Pd3 superstructure at 25% (referred to as S2). We find that in the low-temperature regime, a single L12 phase cannot be stable, even with the addition of anti-sites. Instead we find that an S2-phase with S1-like ordering tendency will form. Previous short-range order diffraction data are quantitatively consistent with these new predictions.
Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C.; Van Stiphout, K.
2016-04-07
We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide withmore » a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.« less
Hydrogen-induced structural transition in single layer ReS2
NASA Astrophysics Data System (ADS)
Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.
2017-09-01
By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.
Dynamic Nucleation of Ice Induced by a Single Stable Cavitation Bubble
NASA Technical Reports Server (NTRS)
Ohsaka, Kenichi; Trinh, Eugene H.
1997-01-01
Dynamic nucleation of ice induced by caviation bubble in undercooled water is observed using an acoustic levitation technique. The observation indicates that a high pressure pulse associated with a collapsing bubble is indeed responsible for the nucleation of a high pressure phase of ice.
Jassem, Naserallah A; El-Bermani, Muhsin F
2010-07-01
Infrared spectra of ethyl alpha-fluoroacetate, ethyl alpha-chloroacetate, ethyl alpha-bromoacetate and ethyl alpha-iodoacetate have been measured in the solid, liquid and vapor phases in the region 4000-200 cm(-1). Vibrational frequency assignment of the observed bands to the appropriate modes of vibration was made. Calculations at DFT B3LYP/6-311+G** level, Job: conformer distribution, using Spartan program '08, release 132 was made to determine which conformers exist in which molecule. The results indicated that the first compound exists as an equilibrium mixture of cis and trans conformers and the other three compounds exist as equilibrium mixtures of cis and gauche conformers. Enthalpy differences between the conformers have been determined experimentally for each compound and for every phase. The values indicated that the trans of the first compound is more stable in the vapor phase, while the cis is the more stable in both the liquid and solid phases. In the other three compounds the gauche is more stable in the vapor and liquid phases, while the cis conformer is the more stable in the solid phase for each of the second and third compound, except for ethyl alpha-iodoacetate, the gauche conformer is the more stable over the three phases. Molar energy of activation Ea and the pseudo-thermodynamic parameters of activation DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) were determined in the solid phase by applying Arrhenius equation; using bands arising from single conformers. The respective E(a) values of these compounds are 5.1+/-0.4, 6.7+/-0.1, 7.5+/-1.3 and 12.0+/-0.6 kJ mol(-1). Potential energy surface calculations were made at two levels; for ethyl alpha-fluoroacetate and ethyl alpha-chloroacetate; the calculations were established at DFT B3LYP/6-311+G** level and for ethyl alpha-bromoacetate and ethyl alpha-iodoacetate at DFT B3LYP/6-311G* level. The results showed no potential energy minimum exists for the gauche conformer in ethyl alpha-fluoroacetate. Copyright 2010 Elsevier B.V. All rights reserved.
Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study
NASA Astrophysics Data System (ADS)
Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun
2018-04-01
The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.
Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.
Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun
2018-04-18
The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong
2015-08-24
A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Collective phase description of oscillatory convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory convection on the basis of the derived phase equations.« less
Magnetic field controlled floating-zone single crystal growth of intermetallic compounds
NASA Astrophysics Data System (ADS)
Hermann, R.; Gerbeth, G.; Priede, J.
2013-03-01
Radio-frequency (RF) floating zone single crystal growth is an important technique for the preparation of single bulk crystals. The advantage of the floating-zone method is the crucible-free growth of single crystals of reactive materials with high melting points. The strong heat diffusion on the surface, as well as the melt convection in the molten zone due to induction heating, often leads to an undesired solid-liquid interface geometry with a concave (towards the solid phase) outer rim. These concave parts aggravate the single crystal growth over the full cross-section. A two-phase stirrer was developed at IFW Dresden in order to avoid the problems connected with these concave parts. It acts as a magnetic field pump and changes the typical double vortex structure to a single roll structure, thus pushing hot melt into the regions where the concave parts may arise. The current in the secondary coil is induced by the primary coil, and the capacitor and the resistance of the secondary circuit are adjusted to get a stable 90 degree phase-shift between the coil currents. Single crystal growth of industrial relevant RuAl and TiAl intermetallic compounds was performed based on the material parameters and using the adjusted two-phase stirrer. Very recently, the magnetic system was applied to the crystal growth of biocompatible TiNb alloys and antiferromagnetic Heusler MnSi compounds.
An unusual type of polymorphism in a liquid crystal
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...
2018-02-19
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
An unusual type of polymorphism in a liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan
Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less
Floating liquid phase in sedimenting colloid-polymer mixtures.
Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre
2004-08-20
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Langmuir monolayers composed of single and double tail sulfobetaine lipids.
Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E
2016-07-15
Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to that seen for phospholipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)
NASA Technical Reports Server (NTRS)
Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz
1995-01-01
For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.
Behavior of sheets from Ti-alloys by rolling and heat treatment
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.
2017-10-01
Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD<101 ¯0>. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
How temperature determines formation of maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Girod, Matthias; Vogel, Stefanie; Szczerba, Wojciech; Thünemann, Andreas F.
2015-04-01
We report on the formation of polymer-stabilized superparamagnetic single-core and multi-core maghemite nanoparticles. The particle formation was carried out by coprecipitation of Fe(II) and Fe(III) sulfate in a continuous aqueous process using a micromixer system. Aggregates containing 50 primary particles with sizes of 2 nm were formed at a reaction temperature of 30 °C. These particles aggregated further with time and were not stable. In contrast, stable single-core particles with a diameter of 7 nm were formed at 80 °C as revealed by small-angle X-ray scattering (SAXS) coupled in-line with the micromixer for particle characterization. X-ray diffraction and TEM confirmed the SAXS results. X-ray absorption near-edge structure spectroscopy (XANES) identified the iron oxide phase as maghemite.
1.5- μm single photon counting using polarization-independent up-conversion detector
NASA Astrophysics Data System (ADS)
Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa
2006-12-01
We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.
NASA Astrophysics Data System (ADS)
Dong, Jingtao; Lu, Rongsheng
2018-04-01
The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Rangaraj; Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr; Sousbie, Philippe
Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatilemore » solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.« less
Parity-time–symmetric optoelectronic oscillator
2018-01-01
An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325
NASA Astrophysics Data System (ADS)
Sahlstedt, Elina; Arppe, Laura
2017-04-01
Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.
Solar Power Satellite (SPS) fiber optic link assessment
NASA Technical Reports Server (NTRS)
1980-01-01
A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
Ground state structure of high-energy-density polymeric carbon monoxide
NASA Astrophysics Data System (ADS)
Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.
2017-04-01
Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.
BaTiO3-based nanolayers and nanotubes: first-principles calculations.
Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D
2013-01-30
The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter. Copyright © 2012 Wiley Periodicals, Inc.
Quantum Spin Stabilized Magnetic Levitation
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Quantum Spin Stabilized Magnetic Levitation.
Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O
2017-10-20
We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
Many-Body Localization and Thermalization in Quantum Statistical Mechanics
NASA Astrophysics Data System (ADS)
Nandkishore, Rahul; Huse, David A.
2015-03-01
We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Haifeng; Lin, Sen; Goetze, Joris
CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation ofmore » small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.« less
Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution.
Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming
2015-08-28
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
High Precision Laser Range Sensor
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge (Inventor); Lay, Oliver P. (Inventor)
2003-01-01
The present invention is an improved distance measuring interferometer that includes high speed phase modulators and additional phase meters to generate and analyze multiple heterodyne signal pairs with distinct frequencies. Modulation sidebands with large frequency separation are generated by the high speed electro-optic phase modulators, requiring only a single frequency stable laser source and eliminating the need for a fist laser to be tuned or stabilized relative to a second laser. The combination of signals produced by the modulated sidebands is separated and processed to give the target distance. The resulting metrology apparatus enables a sensor with submicron accuracy or better over a multi- kilometer ambiguity range.
Minimal color-flavor-locked-nuclear interface
NASA Astrophysics Data System (ADS)
Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank
2001-10-01
At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.
Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon
2016-10-01
Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong
2009-10-01
The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.
NASA Astrophysics Data System (ADS)
Deng, Hui-Xiong; Song, Zhi-Gang; Li, Shu-Shen; Wei, Su-Huai; Luo, Jun-Wei
2018-05-01
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, but the transition may also occur between different classes of topological Dirac phases. However, it is a fundamental challenge to realize quantum transition between Z2 nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because Z2 TI and TCI are hardly both co-exist in a single material due to their contradictory requirement on the number of band inversions. The Z2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas, the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Here, take PbSnTe2 alloy as an example, we show that at proper alloy composition the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z2 TI phase when the alloy is ordered from a random phase into a stable CuPt phase. Our results suggest that atomic-ordering provides a new platform to switch between different topological phases.
Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R
2006-02-01
We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.
Stability, diffusion and interactions of nonlinear excitations in a many body system
NASA Astrophysics Data System (ADS)
Coste, Christophe; Jean, Michel Saint; Dessup, Tommy
2017-04-01
When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.
Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki
2011-05-07
The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son
2014-11-15
Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (anilinemore » and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.« less
Developments in Ultra-Stable Quartz Oscillators for Deep Space Reliability
2004-12-01
langatate , and III-V compounds such as gallium orthophosphate) exhibit superior electromechanical coupling in a single material phase around room...higher figures of merit than quartz. Indeed, langatate , despite the infancy of its development, has already demonstrated a quality factor that is...Langasite, Langanite, and Langatate Bulk-Wave Y-cut Resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-47, 355-360.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaesche, S.; Majewski, P.; Aldinger, F.
1994-12-31
For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for themore » 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.« less
NASA Astrophysics Data System (ADS)
Grine, D.; Pompon, F.; Faugel, H.; Funfgelder, H.; Noterdaeme, J. M.; Koch, R.
2011-12-01
The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line [1]. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and in phase quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system.
Topological Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zhai, Hui
2018-05-01
In this Rapid Communication, we construct a large-N exactly solvable model to study the interplay between interaction and topology, by connecting the Sachdev-Ye-Kitaev (SYK) model with constant hopping. The hopping forms a band structure that can exhibit both topologically trivial and nontrivial phases. Starting from a topologically trivial insulator with zero Hall conductance, we show that the interaction can drive a phase transition to a topologically nontrivial insulator with quantized nonzero Hall conductance, and a single gapless Dirac fermion emerges when the interaction is fine tuned to the critical point. The finite temperature effect is also considered, and we show that the topological phase with a stronger interaction is less stable against temperature. Our model provides a concrete example to illustrate the interacting topological phases and phase transitions, and can shed light on similar problems in physical systems.
Novel penta-graphene nanotubes: strain-induced structural and semiconductor–metal transitions
Wang, Zhanyu; Cao, Xinran; Qiao, Chong; ...
2017-11-17
Research into novel one-dimensional (1D) materials and associated structural transitions is of significant scientific interest. It is widely accepted that a 1D system with a short-range interaction cannot have 1D phase transition at finite temperature. In this paper, we propose a series of new stable carbon nanotubes by rolling up penta-graphene sheets, which exhibit fascinating well-defined 1D phase transitions triggered by axial strain. Our first-principles calculations show that such penta-graphene nanotubes (PGNTs) are dynamically stable by phonon calculations, but transform from a tri-layer structure to a highly defective single-walled nanotube at low temperature in molecular dynamics simulations. We show thatmore » moderate compressive strains can drive structural transitions of (4,4), (5,5), and (6,6) PGNTs, during which the distances of neighboring carbon dimers in the inner shell have a sudden drop, corresponding to dimer–dimer nonbonding to bonding transitions. After such transition, the tubes become much more thermally stable and undergo semiconductor–metal transitions under increasing strain. The band gaps of PGNTs are not sensitive to chirality whereas they can be tuned effectively from visible to short-wavelength infrared by appropriate strain, making them appealing materials for flexible nano-optoelectronics. In conclusion, these findings provide useful insight into unusual phase transitions in low-dimensional systems.« less
Novel penta-graphene nanotubes: strain-induced structural and semiconductor–metal transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhanyu; Cao, Xinran; Qiao, Chong
Research into novel one-dimensional (1D) materials and associated structural transitions is of significant scientific interest. It is widely accepted that a 1D system with a short-range interaction cannot have 1D phase transition at finite temperature. In this paper, we propose a series of new stable carbon nanotubes by rolling up penta-graphene sheets, which exhibit fascinating well-defined 1D phase transitions triggered by axial strain. Our first-principles calculations show that such penta-graphene nanotubes (PGNTs) are dynamically stable by phonon calculations, but transform from a tri-layer structure to a highly defective single-walled nanotube at low temperature in molecular dynamics simulations. We show thatmore » moderate compressive strains can drive structural transitions of (4,4), (5,5), and (6,6) PGNTs, during which the distances of neighboring carbon dimers in the inner shell have a sudden drop, corresponding to dimer–dimer nonbonding to bonding transitions. After such transition, the tubes become much more thermally stable and undergo semiconductor–metal transitions under increasing strain. The band gaps of PGNTs are not sensitive to chirality whereas they can be tuned effectively from visible to short-wavelength infrared by appropriate strain, making them appealing materials for flexible nano-optoelectronics. In conclusion, these findings provide useful insight into unusual phase transitions in low-dimensional systems.« less
NASA Astrophysics Data System (ADS)
Mendonça, J. R. G.
2018-04-01
We propose and investigate a one-parameter probabilistic mixture of one-dimensional elementary cellular automata under the guise of a model for the dynamics of a single-species unstructured population with nonoverlapping generations in which individuals have smaller probability of reproducing and surviving in a crowded neighbourhood but also suffer from isolation and dispersal. Remarkably, the first-order mean field approximation to the dynamics of the model yields a cubic map containing terms representing both logistic and weak Allee effects. The model has a single absorbing state devoid of individuals, but depending on the reproduction and survival probabilities can achieve a stable population. We determine the critical probability separating these two phases and find that the phase transition between them is in the directed percolation universality class of critical behaviour.
NASA Astrophysics Data System (ADS)
Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian
2008-05-01
Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.
Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace
NASA Astrophysics Data System (ADS)
Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao
1983-02-01
A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.
Pang, Haosheng; Li, Minglin; Gao, Chenghui; Huang, Haili; Zhuo, Weirong; Hu, Jianyue; Wan, Yaling; Luo, Jing; Wang, Weidong
2018-03-27
The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1 to 6 of the Periodic Table of Elements (PTE), excluding lanthanides. The calculations have been performed using PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functional. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
Pašti, Igor A; Jovanović, Aleksandar; Dobrota, Ana S; Mentus, Slavko V; Johansson, Börje; Skorodumova, Natalia V
2018-01-03
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides. The calculations have been performed using the PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functionals. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is, the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
Quantum dot-polymer conjugates for stable luminescent displays.
Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai
2018-05-23
The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.
Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys
Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...
2015-09-03
High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less
Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe 3 GeTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.
Comore » mputationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe 3 GeTe 2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe 3 GeTe 2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe 3 GeTe 2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe 3 GeTe 2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920μ eV per Fe atom originating from spin-orbit coupling. In conclusion, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe 3 GeTe 2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe 3 GeTe 2 is potentially useful for magnetic storage applications.« less
Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe 3 GeTe 2
Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.
2016-04-06
Comore » mputationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe 3 GeTe 2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe 3 GeTe 2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe 3 GeTe 2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe 3 GeTe 2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920μ eV per Fe atom originating from spin-orbit coupling. In conclusion, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe 3 GeTe 2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe 3 GeTe 2 is potentially useful for magnetic storage applications.« less
Thermodynamic investigations on the growth of CuAlO2 delafossite crystals
NASA Astrophysics Data System (ADS)
Wolff, Nora; Klimm, Detlef; Siche, Dietmar
2018-02-01
Simultaneous differential thermal analysis (DTA) and thermogravimetric (TG) measurements with copper oxide/aluminum oxide mixtures were performed in atmospheres with varying oxygen partial pressures and with crucibles made of different materials. Only sapphire and platinum crucibles proved to be stable under conditions that are useful for the growth of CuAlO2 delafossite single crystals. Then the ternary phase diagram Al2O3-CuO-Cu and its isopleth section Cu2O-Al2O3 were redetermined. Millimeter sized crystals could be obtained from copper oxide melts with 1-2 mol% addition of aluminum oxide that are stable in platinum crucibles held in oxidizing atmosphere containing 15-21% oxygen.
NASA Astrophysics Data System (ADS)
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
Lang, Anthony J; Vyazovkin, Sergey
2008-09-11
Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.
Singularity and stability in a periodic system of particle accelerators
NASA Astrophysics Data System (ADS)
Cai, Yunhai
2018-05-01
We study the single-particle dynamics in a general and parametrized alternating-gradient cell with zero chromaticity using the Lie algebra method. To our surprise, the first-order perturbation of the sextupoles largely determines the dynamics away from the major resonances. The dynamic aperture can be estimated from the topology and geometry of the phase space. In the linearly normalized phase space, it is scaled according to A ¯ ∝ϕ √{L } , where ϕ is the bending angle and L the length of the cell. For the 2 degrees of freedom with equal betatron tunes, the analytical perturbation theory leads us to the invariant or quasi-invariant tori, which play an important role in determining the stable volume in the four-dimensional phase space.
Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku
2013-11-01
We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.
Streptococcus pneumoniae TIGR4 Phase-Locked Opacity Variants Differ in Virulence Phenotypes.
Oliver, Melissa B; Basu Roy, Ankita; Kumar, Ranjit; Lefkowitz, Elliot J; Swords, W Edward
2017-01-01
Streptococcus pneumoniae (pneumococcus) is a leading human pathogen that can cause serious localized and invasive diseases. Pneumococci can undergo a spontaneous and reversible phase variation that is reflected in colony opacity and which allows the population to adapt to different host environments. Generally, transparent variants are adapted for nasopharyngeal colonization, whereas opaque variants are associated with invasive disease. In recent work, colony phase variation was shown to occur by means of recombination events to generate multiple alleles of the hsdS targeting domain of a DNA methylase complex, which mediates epigenetic changes in gene expression. A panel of isogenic strains were created in the well-studied S. pneumoniae TIGR4 background that are "locked" in the transparent ( n = 4) or opaque ( n = 2) colony phenotype. The strains had significant differences in colony size which were stable over multiple passages in vitro and in vivo . While there were no significant differences in adherence for the phase-locked mutant strains to immortalized epithelial cells, biofilm formation and viability were reduced for the opaque variants in static assays. Nasopharyngeal colonization was stable for all strains, but the mortality rates differed between them. Transcript profiling by transcriptome sequencing (RNA-seq) analyses revealed that the expression levels of certain virulence factors were increased in a phase-specific manner. As epigenetic regulation of phase variation (often referred to as "phasevarion") is emerging as a common theme for mucosal pathogens, these results serve as a model for future studies of host-pathogen interactions. IMPORTANCE A growing number of bacterial species undergo epigenetic phase variation due to variable expression or specificity of DNA-modifying enzymes. For pneumococci, this phase variation has long been appreciated as being revealed by changes in colony opacity, which are reflected in changes in expression or accessibility of factors on the bacterial surface. Recent work showed that recombination-generated variation in alleles of the HsdS DNA methylase specificity subunit mediated pneumococcal phase variation. We generated phase-locked populations of S. pneumoniae TIGR4 expressing a single nonvariant hsdS allele and observed significant differences in gene expression and virulence. These results highlight the importance of focused pathogenesis studies within specific phase types. Moreover, the generation of single-allele hsdS constructs will greatly facilitate such studies.
Streptococcus pneumoniae TIGR4 Phase-Locked Opacity Variants Differ in Virulence Phenotypes
Oliver, Melissa B.; Basu Roy, Ankita; Kumar, Ranjit; Lefkowitz, Elliot J.
2017-01-01
ABSTRACT Streptococcus pneumoniae (pneumococcus) is a leading human pathogen that can cause serious localized and invasive diseases. Pneumococci can undergo a spontaneous and reversible phase variation that is reflected in colony opacity and which allows the population to adapt to different host environments. Generally, transparent variants are adapted for nasopharyngeal colonization, whereas opaque variants are associated with invasive disease. In recent work, colony phase variation was shown to occur by means of recombination events to generate multiple alleles of the hsdS targeting domain of a DNA methylase complex, which mediates epigenetic changes in gene expression. A panel of isogenic strains were created in the well-studied S. pneumoniae TIGR4 background that are “locked” in the transparent (n = 4) or opaque (n = 2) colony phenotype. The strains had significant differences in colony size which were stable over multiple passages in vitro and in vivo. While there were no significant differences in adherence for the phase-locked mutant strains to immortalized epithelial cells, biofilm formation and viability were reduced for the opaque variants in static assays. Nasopharyngeal colonization was stable for all strains, but the mortality rates differed between them. Transcript profiling by transcriptome sequencing (RNA-seq) analyses revealed that the expression levels of certain virulence factors were increased in a phase-specific manner. As epigenetic regulation of phase variation (often referred to as "phasevarion") is emerging as a common theme for mucosal pathogens, these results serve as a model for future studies of host-pathogen interactions. IMPORTANCE A growing number of bacterial species undergo epigenetic phase variation due to variable expression or specificity of DNA-modifying enzymes. For pneumococci, this phase variation has long been appreciated as being revealed by changes in colony opacity, which are reflected in changes in expression or accessibility of factors on the bacterial surface. Recent work showed that recombination-generated variation in alleles of the HsdS DNA methylase specificity subunit mediated pneumococcal phase variation. We generated phase-locked populations of S. pneumoniae TIGR4 expressing a single nonvariant hsdS allele and observed significant differences in gene expression and virulence. These results highlight the importance of focused pathogenesis studies within specific phase types. Moreover, the generation of single-allele hsdS constructs will greatly facilitate such studies. PMID:29152579
Pham, TH Nguyen; Lengkeek, Nigel A; Greguric, Ivan; Kim, Byung J; Pellegrini, Paul A; Bickley, Stephanie A; Tanudji, Marcel R; Jones, Stephen K; Hawkett, Brian S; Pham, Binh TT
2017-01-01
Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe. PMID:28184160
Formation of co-crystals: Kinetic and thermodynamic aspects
NASA Astrophysics Data System (ADS)
Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.
2009-04-01
Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.
Predicting New Materials for Hydrogen Storage Application
Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer
2009-01-01
Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
NASA Astrophysics Data System (ADS)
Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun
2016-02-01
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices. Electronic supplementary information (ESI) available: Detailed computational method; structural data of T'' MoS2; DOS of the T'' MoS2 phase under different strains; orbital energy of T'' MoS2 under different strains; electronic structures for all other five MX2 in the T'' phase; edge states of T'' MoS2. See DOI: 10.1039/c5nr07715j
Evolution of the bi-stable wake of a square-back automotive shape
NASA Astrophysics Data System (ADS)
Pavia, Giancarlo; Passmore, Martin; Sardu, Costantino
2018-01-01
Square-back shapes are popular in the automotive market for their high level of practicality. These geometries, however, are usually characterised by high drag and their wake dynamics present aspects, such as the coexistence of a long-time bi-stable behaviour and short-time global fluctuating modes that are not fully understood. In the present paper, the unsteady behaviour of the wake of a generic square-back car geometry is characterised with an emphasis on identifying the causal relationship between the different dynamic modes in the wake. The study is experimental, consisting of balance, pressure, and stereoscopic PIV measurements. Applying wavelet and cross-wavelet transforms to the balance data, a quasi-steady correlation is demonstrated between the forces and bi-stable modes. This is investigated by applying proper orthogonal decomposition to the pressure and velocity data sets and a new structure is proposed for each bi-stable state, consisting of a hairpin vortex that originates from one of the two model's vertical trailing edges and bends towards the opposite side as it merges into a single streamwise vortex downstream. The wake pumping motion is also identified and for the first time linked with the motion of the bi-stable vortical structure in the streamwise direction, resulting in out-of-phase pressure variations between the two vertical halves of the model base. A phase-averaged low-order model is also proposed that provides a comprehensive description of the mechanisms of the switch between the bi-stable states. It is demonstrated that, during the switch, the wake becomes laterally symmetric and, at this point, the level of interaction between the recirculating structures and the base reaches a minimum, yielding, for this geometry, a 7% reduction of the base drag compared to the time-averaged result.
The nonlinear model for emergence of stable conditions in gas mixture in force field
NASA Astrophysics Data System (ADS)
Kalutskov, Oleg; Uvarova, Liudmila
2016-06-01
The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.
Trapping photons on the line: controllable dynamics of a quantum walk
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao
2014-04-01
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.
NASA Astrophysics Data System (ADS)
Biswas, S.; Ram, S.
2004-11-01
Nanoparticles of stable CrO2 of a half-metallic ferromagnet are synthesized with a novel chemical method involving a Cr4+-polymer composite precursor. A single phase CrO2 of D4h 14 : P42 / mnm tetragonal crystal structure (lattice parameters a = 0.4250 and c = 0.3190 nm) lies after firing the precursor at 350 °C for 1 h in air. Microstructure reveals single domain CrO2 particles of thin platelets (aspect ratio ∼1) of average 50 nm diameter and 35 nm thickness. In air, unless heating at temperatures above 500 °C, no due CrO2 → Cr2O3 phase transformation encounters. The results are presented in terms of X-ray diffraction and thermal or thermogravimetric analysis of precursor and derived CrO2 powder.
Frequency domain optical parametric amplification
Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François
2014-01-01
Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968
Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jostmeier, Thorben; Betz, Markus; Zimmer, Johannes
We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.
Lin, Tsung-Hsien; Li, Yannian; Wang, Chun-Ta; Jau, Hung-Chang; Chen, Chun-Wei; Li, Cheng-Chung; Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan
2013-09-25
A new light-driven chiral molecular switch doped in a stable blue phase (BP) liquid crystal allows wide optical tunability of three-dimensional cubic nanostructures with a selective reflection wavelength that is reversibly tuned through the visible region. Moreover, unprecedented reversible light-directed red, green, and blue reflections of the self-organized three-dimensional cubic nanostructure in a single film are demonstrated for the first time. Additionally, unusual isothermal photo-stimulated less ordered BP II to more ordered BP I phase transition was observed in the system. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
Freezing Transition Studies Through Constrained Cell Model Simulation
NASA Astrophysics Data System (ADS)
Nayhouse, Michael; Kwon, Joseph Sang-Il; Heng, Vincent R.; Amlani, Ankur M.; Orkoulas, G.
2014-10-01
In the present work, a simulation method based on cell models is used to deduce the fluid-solid transition of a system of particles that interact via a pair potential, , which is of the form with . The simulations are implemented under constant-pressure conditions on a generalized version of the constrained cell model. The constrained cell model is constructed by dividing the volume into Wigner-Seitz cells and confining each particle in a single cell. This model is a special case of a more general cell model which is formed by introducing an additional field variable that controls the number of particles per cell and, thus, the relative stability of the solid against the fluid phase. High field values force configurations with one particle per cell and thus favor the solid phase. Fluid-solid coexistence on the isotherm that corresponds to a reduced temperature of 2 is determined from constant-pressure simulations of the generalized cell model using tempering and histogram reweighting techniques. The entire fluid-solid phase boundary is determined through a thermodynamic integration technique based on histogram reweighting, using the previous coexistence point as a reference point. The vapor-liquid phase diagram is obtained from constant-pressure simulations of the unconstrained system using tempering and histogram reweighting. The phase diagram of the system is found to contain a stable critical point and a triple point. The phase diagram of the corresponding constrained cell model is also found to contain both a stable critical point and a triple point.
Nanomechanics of Ferroelectric Thin Films and Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.
2016-08-31
The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined.more » These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.« less
Youdas, James W; Hollman, John H; Hitchcock, James R; Hoyme, Gregory J; Johnsen, Jeremiah J
2007-02-01
The purpose of this study was to determine if women are quadriceps dominant and men are hamstring dominant during the performance of a partial single-leg squat (SLS) on both a stable and labile ground surface against body weight resistance. Thirty healthy participants (15 men and 15 women) performed an SLS on both a stable surface and a 6.4-cm-thick vinyl pad. Surface electromyographic (EMG) recordings were obtained from the quadriceps femoris and hamstring muscles during the extension phase of the SLS. Statistical analysis revealed that women produced 14% more EMG activity (p = 0.04) in their quadriceps than the men during the SLS on a stable surface, whereas the men generated 18% more EMG activity (p = 0.04) in their hamstrings than the women during the SLS on a labile surface. Additionally, we found a statistically significant sex effect (p = 0.048) for the hamstring/quadriceps (H/Q) EMG ratio, which was 2.25 and 0.62, respectively, for men and women on the stable surface and 2.52 and 0.71, respectively, on the labile surface. We concluded that women are quadriceps dominant and men are hamstring dominant during the performance of SLS against body weight resistance on either a stable or labile surface condition. During an SLS, men showed an H/Q ratio approximately 3.5 times larger than their female counterparts, suggesting that men activate their hamstrings more effectively than women during an SLS. According to our data, the SLS may not be an ideal exercise for activating the hamstring muscles in women without additional neuromuscular training techniques, because women are quadriceps dominant during the SLS.
Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling
NASA Astrophysics Data System (ADS)
Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun
2017-05-01
High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.
Flagella and motility behaviour of square bacteria.
Alam, M; Claviez, M; Oesterhelt, D; Kessel, M
1984-01-01
Square bacteria are shown to have right-handed helical (RH) flagella. They swim forward by clockwise (CW), and backwards by counterclockwise (CCW) rotation of their flagella. They are propelled by several or single filaments arising at several or single points on the cell surface. When there are several filaments a stable bundle is formed that does not fly apart during the change from clockwise to counterclockwise rotation or vice versa. In addition to the flagella attached to the cells, large amounts of detached flagella aggregated into thick super-flagella, can be observed at all phases of growth. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6526006
Luminescence spectra of chromium-doped LiGaO 2 crystals as indicator of their phase heterogeneity
NASA Astrophysics Data System (ADS)
Meylman, Mikhail L.
2006-02-01
The luminescent properties of chromium-doped LiGaO2 single crystals grown from melt by Cz pulling technique are considered and compared with similar data for the other stable crystalline compounds in Li2O-Ga2O3 oxide system. It is proposed that co-crystallization of large LiGaO2 single crystal and a great number of LiGa5O8 spinel microcrystallites of nano scale dimensions is the key cause for appearance of numerous inclusions observed in LiGaO2 plates used as substrates at the III nitride films epitaxial growth.
Gagaoua, Mohammed; Hoggas, Naouel; Hafid, Kahina
2015-02-01
The present work describes for the first time an elegant non-chromatographic method, the three phase partitioning for the purification and recovery of zingibain, a milk-clotting enzyme, from Zingiber officinale rhizomes. Factors affecting partitioning efficiency such as (NH4)2SO4 saturation, crude extract to t-butanol ratio and pH on zingibain partitioning were investigated. Optimal purification parameters were 50% (NH4)2SO4 saturation with 1.0:1.0 ratio of crude extract:t-butanol at pH 7.0, which gave 14.91 purification fold with 215% recovery of zingibain. The enzyme was found to be exclusively partitioned in the aqueous phase. The enzyme showed a prominent single band on SDS-PAGE. It is a monomeric protein of 33.8 kDa and its isoelectric point is 4.38. The enzyme exhibited maximal proteolytic activity at a temperature of 60 °C and pH 7.0. It was found to be stable at 40-65 °C during 2 h. The enzyme was found to be highly stable against numerous metal ions and its activity was enhanced by Ca(2+), K(+) and Na(+). It was completely inhibited by heavy metal ions such as Cu(2+) and Hg(2+) and partially by Cd(+). Zingibain milk-clotting activity (MCA) was found to be highly stable when stored under freezing (-20 °C) for 30 days compared at 4 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
Fu, Yongping; Zhu, Haiming; Stoumpos, Constantinos C; Ding, Qi; Wang, Jue; Kanatzidis, Mercouri G; Zhu, Xiaoyang; Jin, Song
2016-08-23
Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices.
Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H
2014-02-25
The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.
Domain and phase change contributions to response in high strain piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cross, L. Eric
2000-09-01
Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.
Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery
Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A.; Jung, Yousung; Choi, Jang Wook
2014-01-01
Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na+ while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials. PMID:24379365
Yurtsever, Arda; Saraçoğlu, Berna; Tuncel, Ali
2009-02-01
A new, fluorinated monolithic stationary phase for CEC was first synthesized by a single-stage, thermally initiated copolymerization of a fluorinated monomer, 2,2,2-trifluoroethyl methacrylate (TFEM) and ethylene dimethacrylate (EDMA) in the presence of a porogen mixture. In this preparation, 2-acrylamido-2-methyl-1-propanesulfonic acid was used as the charge-bearing monomer. The porogen mixture was prepared by mixing isoamylalcohol and 1,4-butanediol. A clear increase in the electroosmotic mobility was observed with increasing pH. The electroosmotic mobility decreased with increasing ACN concentration. Poly(TFEM-co-EDMA) monolith prepared under optimized polymerization conditions was successfully used in the separation of alkylbenzenes and phenols by CEC. The best chromatographic separation for alkylbenzenes was performed with lower ACN concentrations (i.e. 60% v/v) with respect to the common acrylic-based CEC monoliths. The theoretical plate numbers up to 220 000 plates/m were achieved in the reversed phase separation of phenols. Poly(TFEM-co-EDMA) monolith also allowed the simultaneous separation of aniline and benzoic acid derivatives by a single run and by using a lower ACN concentration in the mobile phase with respect to the similar electrochromatographic separations. A stable retention behaviour in reversed phase separation of alkylbenzenes was obtained with the poly(TFEM-co-EDMA) monolith.
Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery.
Lim, Soo Yeon; Kim, Heejin; Chung, Jaehoon; Lee, Ji Hoon; Kim, Byung Gon; Choi, Jeon-Jin; Chung, Kyung Yoon; Cho, Woosuk; Kim, Seung-Joo; Goddard, William A; Jung, Yousung; Choi, Jang Wook
2014-01-14
Sodium ion batteries offer promising opportunities in emerging utility grid applications because of the low cost of raw materials, yet low energy density and limited cycle life remain critical drawbacks in their electrochemical operations. Herein, we report a vanadium-based ortho-diphosphate, Na7V4(P2O7)4PO4, or VODP, that significantly reduces all these drawbacks. Indeed, VODP exhibits single-valued voltage plateaus at 3.88 V vs. Na/Na(+) while retaining substantial capacity (>78%) over 1,000 cycles. Electronic structure calculations reveal that the remarkable single plateau and cycle life originate from an intermediate phase (a very shallow voltage step) that is similar both in the energy level and lattice parameters to those of fully intercalated and deintercalated states. We propose a theoretical scheme in which the reaction barrier that arises from lattice mismatches can be evaluated by using a simple energetic consideration, suggesting that the presence of intermediate phases is beneficial for cell kinetics by buffering the differences in lattice parameters between initial and final phases. We expect these insights into the role of intermediate phases found for VODP hold in general and thus provide a helpful guideline in the further understanding and design of battery materials.
NASA Astrophysics Data System (ADS)
Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.
2018-03-01
The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.
Tsunashima, Satoshi; Nakajima, Fumito; Nasu, Yusuke; Kasahara, Ryoichi; Nakanishi, Yasuhiko; Saida, Takashi; Yamada, Takashi; Sano, Kimikazu; Hashimoto, Toshikazu; Fukuyama, Hiroyuki; Nosaka, Hideaki; Murata, Koichi
2012-11-19
We demonstrate a compact and variable-optical-attenuator (VOA) integrated coherent receiver with a silica-based planar lightwave circuit (PLC). To realize the compact receiver, we integrate a VOA in a single PLC chip with polarization beam splitters and optical 90-degree hybrids, and employ a stable optoelectronic coupling system consisting of micro lens arrays and photodiode (PD) subcarriers with high-speed right-angled signal lines. We integrate a VOA and a coherent receiver in a 27x40x6 mm package, and successfully demodulate a 128-Gbit/s polarization division multiplexed (PDM) quadrature phase shift keying (QPSK) signal with a VOA-assisted wide dynamic range of more than 30 dB.
Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P
2015-01-01
A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.
Injection System for Multi-Well Injection Using a Single Pump
Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.
2015-01-01
Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014
NASA Astrophysics Data System (ADS)
Han, Myung-Soo; Kim, Dae Hyeon; Ko, Hang Ju; Shin, Jae Chul; Kim, Hyo Jin; Kim, Do Gun
2014-06-01
In this work, a novel fabrication method for VOx-ZnO multilayers with mixed phase of the VO2 and V2O3 through the diffusion of oxygen by annealing at low temperature is presented. A stable sandwich structure of a VOx/ZnO/VOx multilayer was deposited at room temperature, through the oxygen gas flow rate, by RF sputtering system, and the mixed phase was formed through oxygen diffusion by annealing at O2 atmosphere. The results show that the single phase like multilayer formed by this process has a high TCR of more than -2.5%/K and low resistance of about 100 kohm at room temperature. XRD results for the as-deposited VOx/ZnO/VOx multilayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavina, Barbara; Kim, Eunja; Cynn, Hyunchae
Using combined experimental and computational approaches, we show that at 43 GPa and 1300 K gallium phosphide adopts the super-Cmcm structure, here indicated with its Pearson notation oS24. First-principles enthalpy calculations demonstrate that this structure is more thermodynamically stable above ~20 GPa than previously proposed polymorphs. Here, in contrast to other polymorphs, the oS24 phase shows a strong bonding differentiation and distorted fivefold coordination geometries of both P atoms. The shortest bond of the phase is a single covalent P–P bond measuring 2.171(11) Å at synthesis pressure. Phosphorus dimerization in GaP sheds light on the nature of the super-Cmcm phasemore » and provides critical new insights into the high-pressure polymorphism of octet semiconductors. Bond directionality and anisotropy explain the relatively low symmetry of this high-pressure phase.« less
Multiple emulsions controlled by stimuli-responsive polymers.
Besnard, Lucie; Marchal, Frédéric; Paredes, Jose F; Daillant, Jean; Pantoustier, Nadège; Perrin, Patrick; Guenoun, Patrick
2013-05-28
The phase inversion of water-toluene emulsions stabilized with a single thermo- and pH-sensitive copolymer occurs through the formation of multiple emulsions. At low pH and ambient temperature, oil in water emulsions are formed which transform into highly stable multiple emulsions at pHs immediately lower than the inversion border. At higher pHs, the emulsion turns into a water in oil one. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fashandi, Hossein; Dahlqvist, Martin; Lu, Jun; Palisaitis, Justinas; Simak, Sergei I.; Abrikosov, Igor A.; Rosen, Johanna; Hultman, Lars; Andersson, Mike; Lloyd Spetz, Anita; Eklund, Per
2017-08-01
The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.
Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys
NASA Astrophysics Data System (ADS)
Das, Sujit; Robi, P. S.
2018-04-01
Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.
Structural and molecular remodeling of dendritic spine substructures during long-term potentiation
Bosch, Miquel; Castro, Jorge; Saneyoshi, Takeo; Matsuno, Hitomi; Sur, Mriganka; Hayashi, Yasunori
2014-01-01
SUMMARY Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time. PMID:24742465
NASA Astrophysics Data System (ADS)
Wu, Ye; Yang, Jing; Wu, Xiang; Song, Maoshuang; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan; Huang, Haijun; Lin, Jung-Fu
2016-08-01
The new hexagonal aluminous phase, named the NAL phase, is expected to be stable at depths of <1200 km in subducted slabs and believed to constitute 10~30 wt% of subducted mid-ocean ridge basalt together with the CaFe2O4-type aluminous phase. Here elasticity of the single-crystal NAL phase is investigated using Brillouin light scattering coupled with diamond anvil cells up to 20 GPa at room temperature. Analysis of the results shows that the substitution of iron lowers the shear modulus of the NAL phase by ~5% (~6 GPa) but does not significantly affect the adiabatic bulk modulus. The NAL phase exhibits high-velocity anisotropies with AVP = 14.7% and AVS = 15.12% for the Fe-bearing phase at ambient conditions. The high AVS of the NAL phase mainly results from the high anisotropy of the faster VS1 (13.9~15.8%), while the slower VS2 appears almost isotropic (0.1~2.8%) at ambient and high pressures. The AVP and AVS of the NAL phase decrease with increasing pressure but still have large values with AVP = 11.4% and AVS = 14.12% for the Fe-bearing sample at 20.4 GPa. The extrapolated AVP and AVS of the Fe-free and Fe-bearing NAL phases at 40 GPa are larger than those of bridgmanite at the same pressure. Together with its spin transition of iron and structural transition to the CF phase, the presence of the NAL phase with high-velocity anisotropies may contribute to the observed seismic anisotropy around subducted slabs in the uppermost lower mantle.
Naturally stable Sagnac–Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-11-16
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Xiaoma; Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906; Wang, Ziru
2016-05-15
The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement withmore » experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Yoshizo; Kawasaki, Tadahiro; Kimura, Yoshihide
A single-atom-sized gold wire was successfully observed in real time by a newly developed defocus-image modulation processing electron microscope. Because of phase retrieval processing with spherical aberration correction, the single-atom strand wire was observed with high contrast and without contrast blurring. By carefully looking at the atomic distance, the contrast, and the dynamic behavior of the wire, we recognized that there are two stages of the wire. In the first stage the wire maintained the atomic distance in the bulk crystal, but in the second stage the wire showed the atomic distance of the nearest-neighbor atoms with weaker contrast. Themore » gold wire was rather stable for a few seconds under strong electron beam illumination.« less
NASA Astrophysics Data System (ADS)
Ovadia, Marc; Zavitz, Daniel H.
2004-06-01
Impedance spectroscopy was used to solve the Pt electrode interface with metabolically active perfused living heart. Three impedance spectra were observed: the Warburg impedance ( ZW∞), a single high angle constant-phase-element, and a thin-film impedance ( ZD). When characterized again after cyclic change of ionic strength (and hence conductivity κ) each interface had one of only two spectra, with exclusion of ZW∞. The in vivo interfacial impedance spectrum is thus neither single-valued nor stable in time. Because metal|living tissue interfaces are obligatory circuit elements in biosensors and electrodes in heart and brain, the multiple-valued and thin-film character of its impedance are significant.
Evolution of opinions on social networks in the presence of competing committed groups.
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P
2018-07-15
The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.
Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures
Myint, Philip C.; Nichols, Albert L.
2016-12-09
In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less
NASA Astrophysics Data System (ADS)
Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.
2016-11-01
Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, Philip C.; Nichols, Albert L.
In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less
C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
2015-12-03
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Control of Multilayer Networks
Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra
2016-01-01
The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210
THE STATISTICAL MECHANICS OF PLANET ORBITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, Scott, E-mail: tremaine@ias.edu
2015-07-10
The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region ofmore » phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.« less
Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huhtamaeki, J. A. M.; Virtanen, S. M. M.; Moettoenen, M.
2006-12-15
Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry andmore » condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.« less
First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path
NASA Astrophysics Data System (ADS)
Zelený, M.; Sozinov, A.; Straka, L.; Björkman, T.; Nieminen, R. M.
2014-05-01
The influence of Co and Cu doping on Ni-Mn-Ga Heusler alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. Single-element doping and simultaneous doping by both elements are investigated in Ni50-xCoxMn25-yGa25-zCuy+z alloys, with dopant concentrations x ,y, and z up to 7.5 at. %. Doping with Co in the Ni sublattice decreases the (c/a)NM ratio of the nonmodulated (NM) martensite, but it simultaneously increases the cubic phase stability with respect to the NM phase. Doping with Cu in the Mn or in Ga sublattices does not change the (c/a)NM ratio significantly and it decreases the cubic phase stability. For simultaneous doping by Co in the Ni sublattice and Cu in the Mn or Ga sublattices, the effects of the individual dopants are independent and about the same as for the single-element doping. Thus, the (c/a)NM ratio can be adjusted by Co doping while the phase stability can be balanced by Cu doping, resulting in stable martensite with a reduced (c/a)NM. The local stability of the cubic phase with respect to the tetragonal deformation can be understood on the basis of a density-of-states analysis.
High-power diode lasers for optical communications applications
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Channin, D. J.
1985-01-01
High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.
Bressan, Paola; Stranieri, Debora
2008-02-01
Because men of higher genetic quality tend to be poorer partners and parents than men of lower genetic quality, women may profit from securing a stable investment from the latter, while obtaining good genes via extrapair mating with the former. Only if conception occurs, however, do the evolutionary benefits of such a strategy overcome its costs. Accordingly, we predicted that (a) partnered women should prefer attached men, because such men are more likely than single men to have pair-bonding qualities, and hence to be good replacement partners, and (b) this inclination should reverse when fertility rises, because attached men are less available for impromptu sex than single men. In this study, 208 women rated the attractiveness of men described as single or attached. As predicted, partnered women favored attached men at the low-fertility phases of the menstrual cycle, but preferred single men (if masculine, i.e., advertising good genetic quality) when conception risk was high.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
NASA Astrophysics Data System (ADS)
Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim
2017-12-01
This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.
NASA Astrophysics Data System (ADS)
Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min
2018-06-01
With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'en
2017-03-16
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.
NASA Astrophysics Data System (ADS)
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'En
2017-03-01
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong’en
2017-01-01
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating. PMID:28300191
Szafrański, Marek; Katrusiak, Andrzej
2016-09-01
Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.
Liang, H; Shi, B C; Guo, Z L; Chai, Z H
2014-05-01
In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.
Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander
2013-09-01
Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fang, Jin
Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4 (0≤y≤0.4) is stable up to 600 °C with particle size above 100 nm particle. And in this work Mn rich olivine phase Fe1-yMnyPO4 is found to be thermally stable up to at least 450 °C with particle size down to below 50 nm, different delithiation methods result in different decomposition routes, electrochemical delithiation results in decreased thermal stability. Moisture exposure appears the most detrimental to the thermal stability of Mn-rich samples. LiNi0.5Mn1.5O4 has attracted a lot of attentions because the potential is even higher (˜ 4.7 V vs Li +/Li0). However, electrolyte decomposition is quite often observed during electrochemistry cycles due to the high voltage operation window. Spinel LiNi0.5Mn1.5O4 is known as ordered and disordered according to the distribution of cations which relates to the synthesis conditions. Mn and Ni ions distribute either randomly in 16d sites of an Fd3m-space group or ordered in 4a and 12d sites of P4332 space group. During discharge and charge processes, Li ions insert and extract from the structure with the oxidation state of Ni changing between +2 and +4 while Mn remains as Mn4+. So far the correlation between cation distribution and electrochemical performance is still unclear, mostly the disordered samples are observed to have better rate capabilities. In order to study the reaction mechanism, combined XRD and XAS are used to investigate the oxidation state of transition metals and structure change of LiNi0.5Mn1.5O4 during electrochemical cycling, disordered and ordered samples were compared and studied, and both samples show three phases transformation during charge and discharge. However, the samples suffer from severe electrolyte decomposition which has influence on the results. Good spinel samples with nice electrochemistry performance is required, pure spinel samples are obtained by using co-precipitation method, the distribution of transition metal ions can be controlled by controlling the synthesis temperature, and electrolyte plays an important role in the electrochemistry performance of spinel LiNi0.5Mn1.5O 4.
Synthesis and characterization of nanostructured titanium carbide for fuel cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet
2016-04-13
Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less
Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries
NASA Astrophysics Data System (ADS)
Murphy, A.; Bezryadin, A.
2017-09-01
We study nanostructures based on two ultrathin superconducting nanowires connected in parallel to form a superconducting quantum interference device (SQUID). The measured function of the critical current versus magnetic field, IC(B ) , is multivalued, asymmetric, and its maxima and minima are shifted from the usual integer and half integer flux quantum points. We also propose a low-temperature-limit model which generates accurate fits to the IC(B ) functions and provides verifiable predictions. The key assumption of our model is that each wire is characterized by a sample-specific critical phase ϕC defined as the phase difference at which the supercurrent in the wire is the maximum. For our nanowires ϕC is much greater than the usual π /2 , which makes a qualitative difference in the behavior of the SQUID. The nanowire current-phase relation is assumed linear, since the wires are much longer than the coherence length. The model explains single-valuedness regions where only one vorticity value nv is stable. Also, it predicts regions where multiple vorticity values are stable because the Little-Parks (LP) diamonds, which describe the region of stability for each winding number nv in the current-field diagram, can overlap. We also observe and explain regions in which the standard deviation of the switching current is independent of the magnetic field. We develop a technique that allows a reliable detection of hidden phase slips and use it to determine the boundaries of the LP diamonds even at low currents where IC(B ) is not directly measurable.
A prospective study on the clinical effectiveness of the stainless steel crown Herbst appliance.
Latkauskiene, Dalia; Jakobsone, Gundega; McNamara, James A
2012-09-01
To evaluate the clinical performance of the stainless steel crown Herbst (cHerbst) used as a single appliance for a single phase therapy. A total of 180 consecutive Class II patients were treated with cHerbst for one year and followed up one year after the end of treatment. Class I relationship was achieved in all 175 patients who finished the functional phase of treatment, 58 patients continued treatment with fixed appliances while 21 patients (12%) showed relapse. Seventy two patients (41.1%) obtained and maintained stable Class I relationship one year after treatment with the cHerbst appliance used as a single appliance. Altogether 46 episodes of appliance breakages were observed and most of them could be repaired at the chair side. Patients' questionnaire revealed that in general the appliance was easy to tolerate and did not cause esthetic or functional problems. The crown Herbst appliance is a viable therapeutical option in patients with Class II malocclusions and it is characterized by low complication rate along with good patient compliance. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Sun, Xiaohong; Ouyang, Yue; Chu, Jinfang; Yan, Jing; Yu, Yan; Li, Xiaoqiang; Yang, Jun; Yan, Cunyu
2014-04-18
A sensitive and reliable in-advance stable isotope labeling strategy was developed for simultaneous relative quantification of 8 acidic plant hormones in sub-milligram amount of plant materials. Bromocholine bromide (BETA) and its deuterated counterpart D9-BETA were used to in-advance derivatize control and sample extracts individually, which were then combined and subjected to solid-phase extraction (SPE) purification followed by UPLC-MS/MS analysis. Relative quantification of target compounds was obtained by calculation of the peak area ratios of BETA/D9-BETA labeled plant hormones. The in-advance stable isotope labeling strategy realized internal standard-based relative quantification of multiple kinds of plant hormones independent of availability of internal standard of every analyte with enhanced sensitivity of 1-3 orders of magnitude. Meanwhile, the in-advance labeling contributes to higher sample throughput and more reliability. The method was successfully applied to determine 8 plant hormones in 0.8mg DW (dry weight) of seedlings and 4 plant hormones from single seed of Arabidopsis thaliana. The results show the potential of the method in relative quantification of multiple plant hormones in tiny plant tissues or organs, which will advance the knowledge of the crosstalk mechanism of plant hormones. Copyright © 2014 Elsevier B.V. All rights reserved.
Lattice model theory of the equation of state covering the gas, liquid, and solid phases
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.
1975-01-01
The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.
Responses of horses offered a choice between stables containing single or multiple forages.
Goodwin, D; Davidson, H P B; Harris, P
2007-04-21
To investigate the choices of foraging location of horses, 10 to 12 horses were introduced for five minutes into each of two similar stables containing a single forage or six forages, in four replicated trials. The horses were then removed and released into the gangway between the stables, and allowed five minutes to choose between the stables. Their initial and final choices, mean duration in each stable and proportional frequency of change of location were compared. Most of the horses initially entered the closest stable on release (P<0.05); if the closest stable contained a single hay, most horses transferred to the stable containing multiple forages (P<0.001). The length of time spent by the horses in the two stables suggested that they preferred multiple forages in multiple locations (P<0.001). Eleven horses moved from one stable to the other on one or more occasions during trials when hay or a preferred forage was available in both stables, possibly indicating a motivation to move between foraging locations regardless of the palatability of the forages offered or the horses' preference for a forage.
Phenomenology of Polymorphism, III: p, TDiagram and Stability of Piracetam Polymorphs
NASA Astrophysics Data System (ADS)
Céolin, R.; Agafonov, V.; Louër, D.; Dzyabchenko, V. A.; Toscani, S.; Cense, J. M.
1996-02-01
The nootropic drug Piracetam is known to crystallize in three phases. In order to obtain their stability hierarchy from sublimation pressure inequalities, the drawing of a topologicalp,Tdiagram was attempted. For such a purpose and also for quality control, crystallographic and thermodynamic data were required. Powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) were used. Molecular energy calculations were performed. Phase I melts at 426 K (ΔfusH(I) = +180 J·g-1). Phase II transforms into Phase I at 399 K (Δ(II→I)H= +24 J·g-1). Phase III transforms into phase I at 392 K (Δ(III→I)H= +28 J·g-1) or melts at 412 K (ΔfusH(III) = +210 J·g-1). Thep,Tdiagram shows that phase I is stable at higher temperature and phase II at lower temperature, like phase III, which is stable under high pressure. At room temperature, phase II is the more stable form, and phase I the less stable one. This agrees with the spontaneous I → II transformation observed at 298 K within a few hours, and with lattice energies, calculated previously. Molecular energy calculations and crystal structure comparison show how intermolecular hydrogen bonds and H-bonded dimers, in phases II and III, may stabilize conformations higher in energy than those of the isolated molecule and of phase I.
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning
Zhang, Xinping; Liu, Feifei; Li, Hongwei
2016-01-01
Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248
NASA Technical Reports Server (NTRS)
Kishio, K.; Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamaura, K.; Hiroi, Z.; Takano, M.
1995-01-01
A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr2Ca(n - 1)Cu(n)P(y) with n = 1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M = Cr, Mo and Re. While the Hgl2O1(n = 1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n = 2) phase. On the other hand, single-phase Y-free Hg1212(n = 2) and Hg1223 (n = 3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.
Turing patterns and a stochastic individual-based model for predator-prey systems
NASA Astrophysics Data System (ADS)
Nagano, Seido
2012-02-01
Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.
Double Dirac point semimetal in 2D material: Ta2Se3
NASA Astrophysics Data System (ADS)
Ma, Yandong; Jing, Yu; Heine, Thomas
2017-06-01
Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.
Moras, Gerard; Vázquez-Guerrero, Jairo
2015-11-01
[Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases.
Moras, Gerard; Vázquez-Guerrero, Jairo
2015-01-01
[Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707
Sanz, Delia Nieto; Loubeyre, Paul; Mezouar, Mohamed
2002-12-09
The equation of state of boron has been measured up to 100 GPa by single-crystal x-ray diffraction with helium as the pressure transmitting medium. Rhombohedral beta-boron is the stable structure up to 100 GPa under hydrostatic conditions. Nonhydrostatic stress stabilizes a different rhombohedral structure. At about 100 GPa a pressure-induced amorphization is observed. The amorphous phase can be quenched to ambient pressure. An explanation is proposed based on the different stability under pressure between intraicosahedra and intericosahedra bonds.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source
NASA Astrophysics Data System (ADS)
Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.
2018-05-01
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q < 6, breeding times <30 ms, low background contamination, and charge breeding efficiencies >18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.
Conductive ceramic composition and method of preparation
Smith, J.L.; Kucera, E.H.
1991-04-16
A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.
Conductive ceramic composition and method of preparation
Smith, James L.; Kucera, Eugenia H.
1991-01-01
A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.
Chipiso, Kudzanai; Logan, Isabelle E; Eskew, Matthew W; Omondi, Benard; Simoyi, Reuben H
2016-10-11
The kinetics and mechanism of the oxidation of the important antitubercular agent, ethionamide, ETA (2-ethylthioisonicotinamide), by peracetic acid (PAA) have been studied. It is effectively a biphasic reaction with an initial rapid first phase of the reaction which is over in about 5 s and a second slower phase of the reaction which can run up to an hour. The first phase involves the addition of a single oxygen atom to ethionamide to form the S-oxide. The second phase involves further oxidation of the S-oxide to desulfurization of ETA to give 2-ethylisonicotinamide. In contrast to the stability of most organosulfur compounds, the S-oxide of ETA is relatively stable and can be isolated. In conditions of excess ETA, the stoichiometry of the reaction was strictly 1:1: CH 3 CO 3 H + Et(C 5 H 4 )C(═S)NH 2 → CH 3 CO 2 H + Et(C 5 H 4 )C(═NH)SOH. In this oxidation, it was apparent that only the sulfur center was the reactive site. Though ETA was ultimately desulfurized, only the S-oxide was stable. Electrospray ionization (ESI) spectral analysis did not detect any substantial formation of the sulfinic and sulfonic acids. This suggests that cleavage of the carbon-sulfur bond occurs at the sulfenic acid stage, resulting in the formation of an unstable sulfur species that can react further to form more stable sulfur species. In this oxidation, no sulfate formation was observed. ESI spectral analysis data showed a final sulfur species in the form of a dimeric sulfur monoxide species, H 3 S 2 O 2 . We derived a bimolecular rate constant for the formation of the S-oxide of (3.08 ± 0.72) × 10 2 M -1 s -1 . Oxidation of the S-oxide further to give 2-ethylisonicotinamide gave zero order kinetics.
Tang, Siah Ying; Sivakumar, Manickam; Nashiru, Billa
2013-02-01
The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; Oue, Mariko; Ahlgrimm, Maike; Zhang, Damao; Shupe, Matthew; Luke, Edward; Protat, Alain
2016-04-01
In the Arctic, a region particularly sensitive to climate change, mixed-phase clouds occur as persistent single or multiple stratiform layers. For many climate models, the correct partitioning of hydrometeor phase (liquid vs. ice) remains a challenge. However, this phase partitioning plays an important role for precipitation processes and the radiation budget. To better understand the partitioning of phase in Arctic clouds, observations using a combination of surface-based remote sensors are useful. In this study, the focus is on a persistent low-level single-layer stratiform Arctic mixed-phase cloud observed during March 11-12, 2013 at the US Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Barrow, Alaska. This case is of particular interest due to two significant shifts in observed precipitation intensity over a 36 hour period. For the first 12 hours of this case, the observed liquid portion of the cloud cover featured a stable cloud top height with a gradually descending liquid cloud base and continuous ice precipitation. Then the ice precipitation intensity significantly decreased. A second decrease in ice precipitation intensity was observed a few hours later coinciding with the advection of a cirrus over the site. Through analysis of the data collected by extensive ground-based remote-sensing and in-situ observing systems as well as Nested Weather Research and Forecasting (WRF) simulations and ECMWF radiation scheme simulations, we try to shed light on the processes responsible for these rapid changes in precipitation rates. A variety of parameters such as the evolution of the internal dynamics and microphysics of the low-level mixed-phase cloud and the influence of the cirrus cloud are evaluated.
NASA Astrophysics Data System (ADS)
Cheng, Tai-min; Yu, Guo-liang; Su, Yong; Zhu, Lin; Li, Lin
2018-04-01
The stability of lattice dynamics and the magnetism of the ordered γ‧-Fe4N crystalline alloy at high pressures were studied by first-principle calculations based on density-functional theory. The dynamical stable new phase P2/m-Fe4N at high pressures was found by conducting the softening phenomenon at the point M (0.5 0.5 0) of the acoustic phonon at 10 GPa in the γ‧-Fe4N via soft-mode phase transition theory. Compared to the phonon spectrum of γ‧-Fe4N without considering electronic spin polarization, the ground-state lattice dynamical stability of the ferromagnetic phase γ‧-Fe4N is induced by the spontaneous magnetization at pressures below 1 GPa. However, P2/m-Fe4N is more thermodynamically stable than γ‧-phase at pressures below 1 GPa, and the magnetic moments of the two phases are almost the same. The ground-state structure of P2/m phase is more stable than that of γ‧-phase in the pressure range from 2.9 to 19 GPa. The magnetic moments of the two phases are almost the same in the pressure range from 20 to 214 GPa, but the ground-state structure of γ‧-phase is more stable than that of P2/m phase in the pressure range from 143.8 to 214 GPa. On the contrary, the ground-state structure of P2/m phase is more stable when the pressure is above 214 GPa. In the pressure range from 214 to 300 GPa, the magnetic moment of P2/m phase is lower than that of γ‧-phase, and the magnetic moments of the two phase tend to be consistent when the pressure exceeds 300 GPa.
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid
NASA Astrophysics Data System (ADS)
Wang, N.; Prodanovic, M.
2017-12-01
Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.
Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets
NASA Astrophysics Data System (ADS)
Lucis, Michael J.
In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase composition and therefore affects the magnetic properties. Phase diagrams for the Zr-Co system show that the Zr2Co11 phase is stable to a temperature of 1272°C, at which point the Zr6Co23 phase is the most favorable. However, this thesis shows that the Zr6Co23 phase forms at room temperature during high energy mechanical milling and at annealing temperatures as low as 600°C. Since high energy mechanical milling was not a potential method to creating single crystalline particles, hydrogen embrittlement was investigated. Hydrochloric acid was used to induce hydrogen embrittlement in the Zr2Co11 alloy, modifying the fracture characteristics of the alloy causing it to occur primarily along grain boundaries resulting in single crystalline particles with remanent magnetization enhancement.
Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra
2016-02-15
Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Self-consistent large- N analytical solutions of inhomogeneous condensates in quantum ℂP N - 1 model
NASA Astrophysics Data System (ADS)
Nitta, Muneto; Yoshii, Ryosuke
2017-12-01
We give, for the first time, self-consistent large- N analytical solutions of inhomogeneous condensates in the quantum ℂP N - 1 model in the large- N limit. We find a map from a set of gap equations of the ℂP N - 1 model to those of the Gross-Neveu (GN) model (or the gap equation and the Bogoliubov-de Gennes equation), which enables us to find the self-consistent solutions. We find that the Higgs field of the ℂP N - 1 model is given as a zero mode of solutions of the GN model, and consequently only topologically non-trivial solutions of the GN model yield nontrivial solutions of the ℂP N - 1 model. A stable single soliton is constructed from an anti-kink of the GN model and has a broken (Higgs) phase inside its core, in which ℂP N - 1 modes are localized, with a symmetric (confining) phase outside. We further find a stable periodic soliton lattice constructed from a real kink crystal in the GN model, while the Ablowitz-Kaup-Newell-Segur hierarchy yields multiple solitons at arbitrary separations.
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Ab initio study of the structural properties of ascorbic acid (vitamin C)
NASA Astrophysics Data System (ADS)
Allen, Reeshemah N.; Shukla, M. K.; Reed, Demarcio; Leszczynski, Jerzy
Geometries of the neutral and ionic tautomeric species of ascorbic acid were optimized at the density functional theory (DFT) level using the B3LYP functional. The radical species were evaluated using the unrestricted B3LYP method. Single-point energy calculations were also performed using the Møller-Plesset (MP2) and unrestricted MP2 (UMP2) methods for the closed-shell and open-shell systems, respectively. The effects of aqueous solution were evaluated using the conducting polarized continuum model (CPCM) and polarized continuum model (PCM). The geometries of most stable radicals in the respective groups were also optimized in the water solution using the CPCM model at the UB3LYP level. All calculation were performed using the 6-311++G(d,p) basis set. The nature of stationary points on the gas phase potential energy surfaces (PESs) was evaluated using vibrational frequency calculations; all geometries characterize local minima. The species obtained by the deprotonation of the O3 site is the most stable monoanion of ascorbic acid. For the radical species, the structure obtained by the dehydrogenation of the O3 site is the most stable monoradical. Among the radical anions, the species obtained by the deprotonation of the O3 site and subsequent dehydrogenation of the O2 site is the most stable in the gas phase and in an aqueous medium. The computed isotropic hyperfine coupling constants of this species were found to be in good agreement with the experimental data. Our investigation also supports the earlier findings that the oxidized species of ascorbic acid in water solution by the OH? radical is radical anion of the AAO?3O-2 form. The spin densities and molecular electrostatic potentials are also discussed.
Molybdenum-titanium phase diagram evaluated from ab initio calculations
NASA Astrophysics Data System (ADS)
Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad
2017-07-01
The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.
A Self-Synchronized Optoelectronic Oscillator based on an RTD Photo-Detector and a Laser Diode
Romeira, Bruno; Seunarine, Kris; Ironside, Charles N.; Kelly, Anthony E.; Figueiredo, José M. L.
2013-01-01
We propose and demonstrate a simple and stable low-phase noise optoelectronic oscillator (OEO) that uses a laser diode, an optical fiber delay line and a resonant tunneling diode (RTD) free-running oscillator that is monolithic integrated with a waveguide photo-detector. The RTD-OEO exhibits single-side band phase noise power below −100 dBc/Hz with more than 30 dB noise suppression at 10 kHz from the center free-running frequency for fiber loop lengths around 1.2 km. The oscillator power consumption is below 0.55 W, and can be controlled either by the injected optical power or the fiber delay line. The RTD-OEO stability is achieved without using other high-speed optical/optoelectronic components and amplification. PMID:23814452
NASA Astrophysics Data System (ADS)
Horvath, Tomas; Munster, Petr; Vojtech, Josef; Velc, Radek; Oujezsky, Vaclav
2018-01-01
Optical fiber is the most used medium for current telecommunication networks. Besides data transmissions, special advanced applications like accurate time or stable frequency transmissions are more common, especially in research and education networks. On the other hand, new applications like distributed sensing are in ISP's interest because e.g. such sensing allows new service: protection of fiber infrastructure. Transmission of all applications in a single fiber can be very cost efficient but it is necessary to evaluate possible interaction before real application and deploying the service, especially if standard 100 GHz grid is considered. We performed laboratory measurement of simultaneous transmission of 100 G data based on DP-QPSK modulation format, accurate time, stable frequency and sensing system based on phase sensitive OTDR through two types of optical fibers, G.655 and G.653. These fibers are less common than G.652 fiber but thanks to their slightly higher nonlinear character, there are suitable for simulation of the worst case which can arise in a real network.
Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols
Acik, Muge; Alam, Todd M.; Guo, Fangmin; ...
2017-09-29
Methylammonium lead iodide (MAPbI 3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light-harvesting component in optoelectronics. Through a substitutional growth of MAPbI 3 catalyzed by polar protic alcohols, evidence is shown in this paper for their substrate- and annealing-free production and use of toxic solvents and high temperature is prevented. The resulting variable-sized crystals (≈100 nm–10 µm) are found to be tetragonally single-phased in alcohols and precipitated as powders that are metallic-lead-free. A comparatively low MAPbI 3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). Themore » theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol-catalyzed approach, MAPbI 3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). Finally, this method is amendable to large-scale manufacturing and ultimately can lead to energy-efficient, low-cost, and stable devices.« less
The physics of chromatin silencing: Bi-stability and front propagation
NASA Astrophysics Data System (ADS)
Sedighi, Mohammad
A mean-field dynamical model of chromatin silencing in budding yeast is provided and the conditions giving rise to two states: one silenced and another un-silenced, is studied. Based on these conditions, the space of control parameters is divided into two distinct regions of mono-stable and bi-stable solutions (the bifurcation diagram). Then, considering both the discrete and continuous versions of the model, the formation of a stable boundary between the silenced and un-silenced areas on DNA is investigated. As a result, a richer phase diagram is provided. The dynamics of the boundary is also studied under different conditions. Consequently, assuming negative feedback due to possible depletion of silencing proteins, the model explains a paradoxical epigenetic behavior of yeast that happens under some mutation. A stochastic treatment of the model is also considered to verify the results of the mean-field approximation and also to understand the role of intrinsic noise at single cell level. This model could be used as a general guide to discuss chromatin silencing in many organisms.
Nesterova, Irina V.; Verdree, Vera T.; Pakhomov, Serhii; Strickler, Karen L.; Allen, Michael W.; Hammer, Robert P.; Soper, Steven A.
2011-01-01
Water soluble, metallo-pthalocyanine (MPc) near-IR fluorophores were designed, synthesized, and evaluated as highly stable and sensitive reporters for fluorescence assays. Their conjugation to oligonucleotides was achieved via succinimidyl ester-amino coupling chemistry with the conditions for conjugation extensively examined and optimized. In addition, various conjugate purification and isolation techniques were evaluated as well. Results showed that under proper conditions and following purification using reverse-phase ion-pair chromatography, labeling efficiencies near 80% could be achieved using ZnPc (Zn phthalocyanine) as the labeling fluorophore. Absorption and fluorescence spectra accumulated for the conjugates indicated that the intrinsic fluorescence properties of the MPc’s were not significantly altered by covalent attachment to oligonucleotides. As an example of the utility of MPc reporters, we used the MPc–oligonucleotide conjugates as primers for PCR (polymerase chain reaction) amplifications with the products sorted via electrophoresis and detected using near-IR fluorescence (λex = 680 nm). The MPc dyes were found to be more chemically stable under typical thermal cycling conditions used for PCR compared to the carbocyanine-based near-IR reporter systems typically used and produced single and narrow bands in the electrophoretic traces, indicative of producing a single PCR product during amplification. PMID:18030995
Stability and bistability in a one-dimensional model of coastal foredune height
NASA Astrophysics Data System (ADS)
Goldstein, Evan B.; Moore, Laura J.
2016-05-01
On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.
NASA Astrophysics Data System (ADS)
Antoniadou, Kyriaki I.; Libert, Anne-Sophie
2018-06-01
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.
Stable isotope reactive transport modeling in water-rock interactions during CO2 injection
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre
2010-05-01
Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.
Molecular structure and vibrational assignment of dimethyl oxaloacetate
NASA Astrophysics Data System (ADS)
Tayyari, Sayyed Faramarz; Salemi, Sirous; Tabrizi, Mansoureh Zahedi; Behforouz, Mohammad
2004-06-01
A complete conformational analysis of the keto and chelated enol forms of dimethyl oxaloacetate (DMOA), a β-dicarbonyl compound, was carried out by ab initio calculations, at the density functional theory (DFT) level. In addition to nine stable enol conformers, which are stabilized by intramolecular hydrogen bonds, twelve stable keto conformers were also obtained. The considerably higher energy of the keto compared to that of the most stable enol conformer makes the presence of keto form, at least in the gas phase, unlikely. Theoretical calculations in the solution, using the Onsager Method, suggest two coexisting enol conformers in the solution. This finding is in agreement with the experimental data. The hydrogen bond strength of the most stable conformer of DMOA is compared with that of acetylacetone (AA). Harmonic vibrational frequencies of this stable enol form and its deuterated analog were also calculated and compared with the experimental data. According to the theoretical calculations, the enolated proton in dimethyl oxaloacetate moves in an asymmetric single minimum potential with a hydrogen bond strength of 31.1 kJ/mol, 35.3 kJ/mol less than that of AA. This weakening of hydrogen bond is consistent with the frequency shifts for OH/OD stretching, OH/OD out-of-plane bending and O⋯O stretching modes. The calculated O ⋯O distance is about 0.07-0.08 Å longer than that of its parent AA.
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A
1999-06-01
This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.
Multi-q crystal and magnetic structure in TbMnO3: Evidence for a Soliton-lattice
NASA Astrophysics Data System (ADS)
Aliouane, N.; Strempfer, J.; Caliebe, W.
2005-03-01
In TbMnO3, Mn-spins order with a sinusoidal antiferromagnetic (AF) propagation wave vector QMn=[0,k+/-q,l] (q˜0.288b^*) at TN(Mn)=41K. The propagation vector QMn varies with temperature on cooling until TLock(Mn) ˜30K, which coincides with a ferroelectric transition. In addition to QMn reflections we find magnetic reflections at 3QMn. Our X-ray measurements show that the magneto-elastic coupling gives rise to a structural modulation at twice the magnetic wavevector (2QMn). Field cooling the sample under a magnetic field oriented along the a-direction with H>9T shows that all magnetic wavevectors for Mn and Tb collapse to a single q structure with Q=[0,1/4,0], an up-up, down-down phase, and coincide with anomalies in the polarization. We argue that the temperature and field dependence of the magnetic and superlattice reflections are consistent with a soliton formalism which predicts a stable commensurate single q=1/4 phase [1]. [1] Kimura et al., PRB 68, 60403(2003).
Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel
2014-10-06
Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.
Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.
Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J
2009-12-01
We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.
Minati, Ludovico
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang
2017-01-15
This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
First-principles modeling of hafnia-based nanotubes.
Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V
2017-09-15
Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Stable, inducible thermoacidophilic alpha-amylase from Bacillus acidocaldarius.
Buonocore, V; Caporale, C; De Rosa, M; Gambacorta, A
1976-01-01
Bacillus acidocaldarius Agnano 101 produces an inducible thermoacidophilic alpha-amylase. The enzyme production occurs during the stationary phase of growth in the presence of compounds with alpha-1,4-glucosidic linkages. The enzymatic activity is both present in the culture medium and associated with the cells; the enzymes purified from both sources show identical molecular and catalytic properties. The purified amylase has a single polypeptide chain of molecular weight 68,000 and behaves like an alpha-amylase with affinity constants for starch and related substances of 0.8 to 0.9 mg/ml. The pH and temperature optima for activity are 3.5 and 75degreesC, respectively. The amylase is stable at acidic pH (below 4.5). Its thermal stability is strictly dependent upon protein concentration; the half-life at 60degreesC of the amylase in a 70-mug/ml solution is about 5 days. PMID:10276
NASA Astrophysics Data System (ADS)
Soto-Crespo, J. M.; Akhmediev, Nail
2002-12-01
The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite solitons of this equation are generally stable and have a wider range of existence than for those of the complex quintic Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In particular, there are three types of stable soliton pairs with π and π/2 phase difference and three different fixed separations between the pulses. Different types of soliton pairs can be generated by changing the parameter corresponding to the nonlinear gain (ɛ).
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmuller, U.; Strozzi, T.; Wiesmann, A.
2006-12-01
Principle contributors to the noise in differential SAR interferograms are temporal phase stability of the surface, geometry relating to baseline and surface slope, and propagation path delay variations due to tropospheric water vapor and the ionosphere. Time series analysis of multiple interferograms generated from a stack of SAR SLC images seeks to determine the deformation history of the surface while reducing errors. Only those scatterers within a resolution element that are stable and coherent for each interferometric pair contribute to the desired deformation signal. Interferograms with baselines exceeding 1/3 the critical baseline have substantial geometrical decorrelation for distributed targets. Short baseline pairs with multiple reference scenes can be combined using least-squares estimation to obtain a global deformation solution. Alternately point-like persistent scatterers can be identified in scenes that do not exhibit geometrical decorrelation associated with large baselines. In this approach interferograms are formed from a stack of SAR complex images using a single reference scene. Stable distributed scatter pixels are excluded however due to the presence of large baselines. We apply both point- based and short-baseline methodologies and compare results for a stack of fine-beam Radarsat data acquired in 2002-2004 over a rapidly subsiding oil field near Lost Hills, CA. We also investigate the density of point-like scatters with respect to image resolution. The primary difficulty encountered when applying time series methods is phase unwrapping errors due to spatial and temporal gaps. Phase unwrapping requires sufficient spatial and temporal sampling. Increasing the SAR range bandwidth increases the range resolution as well as increasing the critical interferometric baseline that defines the required satellite orbital tube diameter. Sufficient spatial sampling also permits unwrapping because of the reduced phase/pixel gradient. Short time intervals further reduce the differential phase due to deformation when the deformation is continuous. Lower frequency systems (L- vs. C-Band) substantially improve the ability to unwrap the phase correctly by directly reducing both interferometric phase amplitude and temporal decorrelation.
Experimental evidence of body centered cubic iron in Earth's core
NASA Astrophysics Data System (ADS)
Hrubiak, R.; Meng, Y.; Shen, G.
2017-12-01
The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).
Energetics and structure of simvastatin.
Simões, Ricardo G; Bernardes, Carlos E S; Diogo, Hermínio P; Agapito, Filipe; Minas da Piedade, Manuel E
2013-07-01
The study of structure-energetics relationships for active pharmaceutical ingredients has received considerable attention in recent years, due to its importance for the effective production and safe use of drugs. In this work the widely prescribed cholesterol-lowering drug simvastatin was investigated by combining experimental (combustion calorimetry and differential scanning calorimetry, DSC) and computational chemistry (quantum chemistry and molecular dynamics calculations) results. The studies addressed the crystalline form stable at ambient temperature (form I) and the liquid and gaseous phases. Heat capacity determinations by DSC showed no evidence of polymorphism between 293 K and the fusion temperature. It was also found that the most stable molecular conformation in the gas phase given by the quantum chemistry calculations (B3LYP-D3/cc-pVTZ) is analogous to that observed in the crystal phase. The molecular dynamics simulations correctly captured the main structural properties of the crystalline phase known from published single crystal X-ray diffraction results (unit cell dimensions and volume). They also suggested that, while preferential conformations are exhibited by the molecule in the solid at 298.15 K, these preferences are essentially blurred upon melting. Finally, the experiments and calculations led to enthalpies of formation of simvastatin at 298.15 K, in the crystalline (form I) ΔfH(m)(o) (cr I) = -1238.4 ± 5.6 kJ · mol(-1), liquid ΔfH(m)(o) (l) = -1226.4 ± 5.7 kJ · mol(-1), and gaseous ΔfH(m)(o) (g) = -1063.0 ± 7.1 kJ · mol(-1) states.
Pressure-induced phase transition in titanium alloys
NASA Astrophysics Data System (ADS)
Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin
2018-05-01
The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.
Probing the Pathways and Interactions Controlling Crystallization by Particle Attachment
NASA Astrophysics Data System (ADS)
De Yoreo, J. J.; Li, D.; Chun, J.; Schenter, G.; Mundy, C.; Rosso, K. M.
2016-12-01
Crystallization by particle attachment appears to be a widespread mechanism of mineralization. Yet many long-standing questions surrounding nucleation and assembly of precursor particles remain unanswered, due in part to a lack of tools to probe mineralization dynamics with adequate spatial and temporal resolution. Here we report results of liquid phase TEM studies of nucleation and particle assembly in a number of mineral systems. We interpret the results within a framework that considers the impact of both the complexity of free energy landscapes and kinetic factors associated with high supersaturation or slow dynamics. In the calcium carbonate system, the need for high supersturations to overcome the high barrier to nucleation of calcite leads to simultaneous occurrence of multiple pathways, including direct formation of all the common ploymorphs, as well as two-step pathways through which initial precursors, particularly ACC, undergo a direct transformation to a more stable phase. Introduction of highly charged polymers that bind calcium inhibits nucleation, but directs the pathway to a metastable amorphous phase that no longer transforms to more stable polymorphs. Experiments in the iron oxide and oxyhydroxide systems show that, when high supersaturations lead to nucleation of many nanoprticles, further growth occurs through a combination of particle aggregation events and Ostwald ripening. In some cases, aggregation occurs only through oriented attachment on lattice matched faces, leading to single crystals with complex topologies and internal twin boundaries, while in others aggregation results initially in poor co-alignment, but over time the particles undergo atomic rearrangements to achieve a single crystal structure. AFM-based measurements of forces between phyllosilicate surfaces reveal the importance of long-range dispersion interactions in driving alignment, as well as the impact of electrolyte concentration and temperature on the competition of those attractive forces with repulsive electrostatic interactions. Taken together, the results help to define an emerging framework for understanding crystallization by particle attachment.
Phase stable RF transport system
Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.
1992-01-01
An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.
Ab Initio Study of the Structure and Stability of High-Pressure Iron-Bearing Dolomite
NASA Astrophysics Data System (ADS)
Solomatova, N. V.; Asimow, P. D.
2016-12-01
Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze, all of which often contain dolomite. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5-6 GPa in the temperature range of 800-1200 K [1]. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize high-pressure dolomite over single-cation carbonates above 35 GPa [2,3]. The structure and equation of state of high-pressure dolomite phases have been debated, creating a need for theoretical calculations. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), we have found a monoclinic phase with space group C2/c. The C2/c structure has a lower energy than previously reported dolomite structures at relevant pressures. It is possible that this phase is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. We calculate the equation of state of trigonal dolomite, dolomite III and monoclinic C2/c dolomite to 80 GPa with 0 and 50 mol% CaFe(CO3)2 and compare their enthalpies to single-carbonate assemblages. Although end-member C2/c CaMg(CO3)2 dolomite is not stable relative to single-cation carbonates, C2/c CaMg0.5Fe0.5(CO3)2 is preferred over single-cation carbonates at high pressures. Thus, iron-bearing C2/c dolomite may be an important host phase for carbon in slabs subducted into the lower mantle. [1] Shirasaka, M., et al. (2002) American Mineralogist, 87, 922-930. [2] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [3] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514.
Zhou, Jie; Coles, Lisa D; Kartha, Reena V; Nash, Nardina; Mishra, Usha; Lund, Troy C; Cloyd, James C
2015-08-01
There is an increasing interest in using N-acetylcysteine (NAC) as a treatment for neurodegenerative disorders to increase glutathione (GSH) levels and its redox status. The purpose of this study was to characterize the biosynthesis of NAC to GSH using a novel stable isotope-labeled technique, and investigate the pharmacodynamics of NAC in vivo. Female wild-type mice were given a single intravenous bolus dose of 150 mg kg(-1) stable-labeled NAC. Plasma, red blood cells (RBC), and brain tissues were collected at predesignated time points. Stable-labeled NAC and its metabolite GSH (both labeled and unlabeled forms) were quantified in blood and brain samples. Molar ratios of the reduced and oxidized forms of GSH (GSH divided by glutathione disulfide, redox ratio) were also determined. The elimination phase half-life of NAC was approximately 34 min. Both labeled and unlabeled GSH in RBC were found to increase; however, the area under the curve above baseline (AUCb0-280 ) of labeled GSH was only 1% of the unlabeled form. These data indicate that NAC is not a direct precursor of GSH. In addition, NAC has prolonged effects in brain even when the drug has been eliminated from systemic circulation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pairmore » (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.« less
Stable Optical Phase Modulation With Micromirrors
2012-01-27
Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the
New pharmacokinetic methods. III. Two simple test for deep pool effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, T.R.; Greenblatt, D.J.; Schumacher, G.E.
1990-08-01
If a portion of administered drug is distributed into a deep peripheral compartment, the drug's actual elimination half-life during the terminal exponential phase of elimination may be longer than determined by a single dose study or a tracer dose study (deep pool effect). Two simple methods of testing for deep pool effect applicable to drugs with either linear or nonlinear pharmacokinetic properties are described. The methods are illustrated with stable isotope labeled (13C15N2) tracer dose studies of phenytoin. No significant (P less than .05) deep pool effect was detected.
Onset of chaos in a single-phase power electronic inverter.
Avrutin, Viktor; Mosekilde, Erik; Zhusubaliyev, Zhanybai T; Gardini, Laura
2015-04-01
Supported by experiments on a power electronic DC/AC converter, this paper considers an unusual transition from the domain of stable periodic dynamics (corresponding to the desired mode of operation) to chaotic dynamics. The behavior of the converter is studied by means of a 1D stroboscopic map derived from a non-autonomous ordinary differential equation with discontinuous right-hand side. By construction, this stroboscopic map has a high number of border points. It is shown that the onset of chaos occurs stepwise, via irregular cascades of different border collisions, some of which lead to bifurcations while others do not.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
Imaging with Second-Harmonic Generation Nanoparticles
NASA Astrophysics Data System (ADS)
Hsieh, Chia-Lung
Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and dynamic computer generated holography using a spatial light modulator. The phase-conjugated second-harmonic scattered field retraced the scattering trajectory and formed a clean focus on the nanoparticle placed inside a scattering medium. The nanoparticle acted as a beacon of light; it helped us find the tailored wavefront for concentrating light at the nanoparticle inside the scattering medium. We also demonstrated imaging through a thin scattering medium by raster-scanning the phase-conjugated focus in the vicinity of the beacon nanoparticle, in which a clear image of a target placed behind a ground glass diffuser was obtained.
Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K
NASA Astrophysics Data System (ADS)
Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru
2016-05-01
Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.
Prediction of novel stable Fe-V-Si ternary phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
Prediction of novel stable Fe-V-Si ternary phase
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin; ...
2018-10-28
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishio, K.; Shimoyama, J.; Hahakura, S.
1994-12-31
A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in themore » present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.« less
High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure
NASA Astrophysics Data System (ADS)
Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.
2014-01-01
At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.
In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, J.; Mukerjee, S.; Yang, X. Q.
Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observedmore » in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.« less
Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1991-01-01
It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.
Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1990-01-01
It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.
NASA Astrophysics Data System (ADS)
Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju
2018-03-01
The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.
Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai
2016-07-27
We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.
Crystal growth of argyrodite-type phases Cu 8-xGeS 6-xI x and Cu 8-xGeSe 6-xI x (0⩽ x⩽0.8)
NASA Astrophysics Data System (ADS)
Tomm, Yvonne; Schorr, Susan; Fiechter, Sebastian
2008-04-01
The growth of single crystalline argyrodites of type Cu 8-xGeX 6-xY x ( X=S, Se; Y=I) is reported. These materials undergo solid-solid phase transitions at temperatures ranging from 30 to 90 °C. In the high temperature phase, Cu 8GeS 6 crystallizes in the cubic space group F4¯3m. In the low temperature phase, the compound is present in the orthorhombic space group Pmn2 1. Cu 8GeSe 6 appears exclusively in the hexagonal space groups P6 3mc or P6 3cm, respectively. Single crystals of these argyrodites were obtained by chemical vapor transport in a temperature gradient Δ T=980-950 and Δ T=700-620 °C for sulfides and selenides, respectively. As a result of the growth process, the high temperature phase remains stable even at ambient temperature by incorporation of the transport agent iodine during the growth process. As determined by energy dispersive X-ray analysis (EDAX), the composition of the sulfide crystals grown ranges from Cu 8GeS 6 to Cu 7.16GeS 5.16I 0.84. The selenide crystallizes as Cu 7.69GeSe 5.69I 0.31. In contrast, the solid state reaction of the elements Cu, Ge and X produces a material in the low temperature modification with an ideal composition of Cu 8GeX 6.
The metal-insulator triple point in vanadium dioxide
NASA Astrophysics Data System (ADS)
Cobden, David
2014-03-01
The metal-insulator transition (MIT) in vanadium dioxide is a candidate for optical and electrical switching applications. However, being a first-order solid-state phase transition makes it challenging to study reproducibly in any detail. The combination of the change in unit cell shape, symmetry reduction, long range of elastic distortion, and latent heat leads to domain structure, hysteresis, and cracking of even the highest quality samples. At the MIT two stable insulating phases (M1 and M2) occur in addition to the metallic phase (R), but their phase stability diagram was poorly known. To establish it precisely we studied single-crystal nanobeams of VO2 in a purpose-built nanomechanical strain apparatus. We were able to measure the transition temperature accurately to be 65.0 +- 0.1 oC, to determine the phase boundary slopes, and to detect the intermediate metastable triclinic (T) phase where it is metastable towards M2. We were surprised to find that the transition occurs precisely at the solid-state triple point of the metallic and two insulating phases, a fact that is not explained by existing theories. See J.H. Park et al, Nature 500, 431-4 (August 2013), doi:10.1038/nature12425. Supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, award DE-SC0002197.
Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics
NASA Astrophysics Data System (ADS)
Jagadeesha Angadi, V.; Anupama, A. V.; Choudhary, Harish K.; Kumar, R.; Somashekarappa, H. M.; Mallappa, M.; Rudraswamy, B.; Sahoo, B.
2017-02-01
The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe2O3 and ZnFe2O4 phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications.
Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; McBrearty, Ian; Ott, R. T.
Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al 5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al 90Sm 10 alloys.
Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
Photon-induced oxidation of graphene/Ir(111) by SO2 adsorption
NASA Astrophysics Data System (ADS)
Böttcher, Stefan; Vita, Hendrik; Horn, Karsten
2015-11-01
We prepare a single layer of graphene oxide by adsorption and subsequent photo-dissociation of SO2 on graphene/Ir(111). Epoxidic oxygen is formed as the main result of this process on graphene, as judged from the appearance of characteristic spectroscopic features in the C 1s and O 1s core level lines. The different stages of decomposition of SO2 into its photo-fragments are examined during the oxidation process. NEXAFS at the carbon K edge reveals a strong disturbance of the graphene backbone after oxidation and upon SO adsorption. The oxide phase is stable up to room temperature, and is fully reversible upon annealing at elevated temperatures. A band gap opening of 330 ± 60 meV between the valence and conduction bands is observed in the graphene oxide phase.
Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line
2011-01-01
Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555
Alumina forming iron base superalloy
Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.
2014-08-26
An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.
Terahertz control of nanotip photoemission
NASA Astrophysics Data System (ADS)
Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.
2014-06-01
The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.
A sliding-control switch stabilizes synchronized states in a model of actuated cilia
NASA Astrophysics Data System (ADS)
Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa
2017-11-01
A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.
Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B
2016-05-05
Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.
NASA Astrophysics Data System (ADS)
Chen, Dongyue; Murakami, Kenta; Dohi, Kenji; Nishida, Kenji; Ohnuma, Toshiharu; Soneda, Naoki; Li, Zhengcao; Liu, Li; Sekimura, Naoto
2017-10-01
Recent atom probe tomography (APT) study has revealed the complicated nature of Ni-Si precipitates in irradiated stainless steels. Although Ni3Si γ‧ phase has been confirmed under transmission electron microscopy (TEM), the Ni/Si ratio of the precipitates detected by APT is smaller than its theoretical value 3. An interpretation of the APT results is provided in this work by considering the lattice defects in the Ni3Si γ‧ phase. Using first principles calculations, Si substitutions on Ni sites were found to be the most thermodynamically stable among all the single defects considered here. Although two such substitutional defects are repulsive to each other, the repulsion decreases quickly as their separation distance grows. By keeping a large enough distance between each other, multiple Si substitutions can appear at high densities in the γ‧ phase, which can be one important contributor to the small Ni/Si atom ratio in Ni-Si precipitates observed by APT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flueck, Alex
The “High Fidelity, Faster than RealTime Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of largescale power system dynamics simulation, including (1) a validated faster than real time simulation of both stable and unstable transient dynamics in a largescale positive sequence transmission grid model, (2) a threephase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled singlephase static var compensators (SVCs), (3) the world’s first high fidelity threephase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a firstofits kind implementation of a singlephase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the longterm, the simulator will form the backbone of the newly conceived hybrid realtime protection and control architecture that will coordinate local controls, widearea measurements, widearea controls and advanced realtime prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the fasterthanrealtime simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three phase unbalanced simulator’s ability to model threephase and single phase networks and devices.« less
Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds
NASA Astrophysics Data System (ADS)
Boudala, F. S.; Isaac, G. A.
2005-12-01
Mixed-phase clouds influence weather and climate in several ways. Due to the fact that they exhibit very different optical properties as compared to ice or liquid only clouds, they play an important role in the earth's radiation balance by modifying the optical properties of clouds. Precipitation development in clouds is also enhanced under mixed-phase conditions and these clouds may contain large supercooled drops that freeze quickly in contact with aircraft surfaces that may be a hazard to aviation. The existence of ice and liquid phase clouds together in the same environment is thermodynamically unstable, and thus they are expected to disappear quickly. However, several observations show that mixed-phase clouds are relatively stable in the natural environment and last for several hours. Although there have been some efforts being made in the past to study the microphysical properties of mixed-phase clouds, there are still a number of uncertainties in modeling these clouds particularly in large scale numerical models. In most models, very simple temperature dependent parameterizations of cloud phase fraction are being used to estimate the fraction of ice or liquid phase in a given mixed-phase cloud. In this talk, two different parameterizations of ice fraction using in-situ aircraft measurements of cloud microphysical properties collected in extratropical stratiform clouds during several field programs will be presented. One of the parameterizations has been tested using a single prognostic equation developed by Tremblay et al. (1996) for application in the Canadian regional weather prediction model. The addition of small ice particles significantly increased the vapor deposition rate when the natural atmosphere is assumed to be water saturated, and thus this enhanced the glaciation of simulated mixed-phase cloud via the Bergeron-Findeisen process without significantly affecting the other cloud microphysical processes such as riming and particle sedimentation rates. After the water vapor pressure in mixed-phase cloud was modified based on the Lord et al. (1984) scheme by weighting the saturation water vapor pressure with ice fraction, it was possible to simulate more stable mixed-phase cloud. It was also noted that the ice particle concentration (L>100 μm) in mixed-phase cloud is lower on average by a factor 3 and as a result the parameterization should be corrected for this effect. After accounting for this effect, the parameterized ice fraction agreed well with observed mean ice fraction.
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko
2006-11-01
Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abughayada, C.; Dabrowski, B.; Kolesnik, S.
2015-09-22
Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
NASA Astrophysics Data System (ADS)
Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.
2007-11-01
Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Legut, Dominik
2018-05-01
The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.
Foraging enrichment for stabled horses: effects on behaviour and selection.
Goodwin, D; Davidson, H P B; Harris, P
2002-11-01
The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.
NASA Astrophysics Data System (ADS)
Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian
First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).
Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...
2015-05-15
Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less
Stable Eutectoid Transformation in Nodular Cast Iron: Modeling and Validation
NASA Astrophysics Data System (ADS)
Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.
2017-01-01
This paper presents a new microstructural model of the stable eutectoid transformation in a spheroidal cast iron. The model takes into account the nucleation and growth of ferrite grains and the growth of graphite spheroids. Different laws are assumed for the growth of both phases during and below the intercritical stable eutectoid. At a microstructural level, the initial conditions for the phase transformations are obtained from the microstructural simulation of solidification of the material, which considers the divorced eutectic and the subsequent growth of graphite spheroids up to the initiation of the stable eutectoid transformation. The temperature field is obtained by solving the energy equation by means of finite elements. The microstructural (phase change) and macrostructural (energy balance) models are coupled by a sequential multiscale procedure. Experimental validation of the model is achieved by comparison with measured values of fractions and radius of 2D view of ferrite grains. Agreement with such experiments indicates that the present model is capable of predicting ferrite phase fraction and grain size with reasonable accuracy.
Time-bin entangled photons from a quantum dot
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor
2014-01-01
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024
Time-bin entangled photons from a quantum dot.
Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor
2014-06-26
Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.
Stable long-term chronic brain mapping at the single-neuron level.
Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M
2016-10-01
Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.
Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.
2013-01-01
Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.
NASA Astrophysics Data System (ADS)
Altun, Zikri; Bleda, Erdi; Trindle, Carl
2017-09-01
Gas phase conversion of acetylene to benzene, assisted by a single metal cation such as Fe(+), Ru(+) and Rh(+), offers an attractive prospect for application of computational modelling techniques to catalytic processes. Gas phase processes are not complicated by environmental effects and the participation of a single metal atom is a significant simplification. Still the process is complex, owing to the possibility of several low-energy spin states and the abundance of alternative structures. By density functional theory modelling using recently developed models with range and dispersion corrections, we locate and characterise a number of extreme points on the FeC6H6(+) surface, some of which have not been described previously. These include eta-1, eta-2 and eta-3 complexes of Fe(+) with the C4H4 ring. We identify new FeC6H6(+) structures as well, which may be landmarks for the Fe(+)-catalysed production of benzene from acetylene. The Fe(+) benzene complex is the most stable species on the FeC6H6 cation surface. With the abundant energy of complexation available in the isolated gas phase species, detachment of the Fe(+) and production of benzene can be efficient. We address the issue raised by other investigators whether multi-configurational self-consistent field methods are essential to the proper description of these systems. We find that the relative energy of intrinsically multi-determinant doublets is strongly affected, but judge that the density functional theory (DFT) description provides more accurate estimates of energetics and a more plausible reaction path.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Tek, Cenk; Palmese, Laura B; Krystal, Andrew D; Srihari, Vinod H; DeGeorge, Pamela C; Reutenauer, Erin L; Guloksuz, Sinan
2014-12-01
Insomnia is frequent in schizophrenia and may contribute to cognitive impairment as well as overuse of weight inducing sedative antipsychotics. We investigated the effects of eszopiclone on sleep and cognition for patients with schizophrenia-related insomnia in a double-blind placebo controlled study, followed by a two-week, single-blind placebo phase. Thirty-nine clinically stable outpatients with schizophrenia or schizoaffective disorder and insomnia were randomized to either 3mg eszopiclone (n=20) or placebo (n=19). Primary outcome measure was change in Insomnia Severity Index (ISI) over 8 weeks. Secondary outcome measure was change in MATRICS Consensus Cognitive Battery (MATRICS). Sleep diaries, psychiatric symptoms, and quality of life were also monitored. ISI significantly improved more in eszopiclone (mean=-10.7, 95% CI=-13.2; -8.2) than in placebo (mean=-6.9, 95% CI=-9.5; -4.3) with a between-group difference of -3.8 (95% CI=-7.5; -0.2). MATRICS score change did not differ between groups. On further analysis there was a significant improvement in the working memory test, letter-number span component of MATRICS (mean=9.8±9.2, z=-2.00, p=0.045) only for subjects with schizophrenia on eszopiclone. There were improvements in sleep diary items in both groups with no between-group differences. Psychiatric symptoms remained stable. Discontinuation rates were similar. Sleep remained improved during single-blind placebo phase after eszopiclone was stopped, but the working memory improvement in patients with schizophrenia was not durable. Eszopiclone stands as a safe and effective alternative for the treatment of insomnia in patients with schizophrenia. Its effects on cognition require further study. Copyright © 2014 Elsevier B.V. All rights reserved.
LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma
NASA Technical Reports Server (NTRS)
Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi
2004-01-01
Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao
Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less
Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V
2014-09-03
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.
2015-01-01
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions. PMID:25133552
Order and chaos in the one-dimensional ϕ4 model: N-dependence and the Second Law of Thermodynamics
NASA Astrophysics Data System (ADS)
Hoover, William Graham; Aoki, Kenichiro
2017-08-01
We revisit the equilibrium one-dimensional ϕ4 model from the dynamical systems point of view. We find an infinite number of periodic orbits which are computationally stable. At the same time some of the orbits are found to exhibit positive Lyapunov exponents! The periodic orbits confine every particle in a periodic chain to trace out either the same or a mirror-image trajectory in its two-dimensional phase space. These ;computationally stable; sets of pairs of single-particle orbits are either symmetric or antisymmetric to the very last computational bit. In such a periodic chain the odd-numbered and even-numbered particles' coordinates and momenta are either identical or differ only in sign. ;Positive Lyapunov exponents; can and do result if an infinitesimal perturbation breaking a perfect two-dimensional antisymmetry is introduced so that the motion expands into a four-dimensional phase space. In that extended space a positive exponent results. We formulate a standard initial condition for the investigation of the microcanonical chaotic number dependence of the model. We speculate on the uniqueness of the model's chaotic sea and on the connection of such collections of deterministic and time-reversible states to the Second Law of Thermodynamics.
NASA Astrophysics Data System (ADS)
Joseph Daniel, D.; Madhusoodanan, U.; Annalakshmi, O.; Jose, M. T.; Ramasamy, P.
2015-07-01
This paper describes investigation of thermoluminescence radiation dosimetry characteristics of Eu2+ doped Potassium Magnesium Fluoride (KMgF3) single crystal co-doped with Ce3+ ions. The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation at room temperature. Order of kinetics (b), activation energy (E), and frequency factor (s) were determined by Chen's method and variable heating rate method. Results show that the TL glow peak of the KMgF3 samples obeys second-order kinetics. Analysis of the main dosimetric peak by using the methods mentioned above revealed that activation energy (E) is about 1.2 eV and the frequency factor (s) is in the range 1010-1011 s-1. The TL glow curve structure of the sample remained stable for higher doses of 90Sr/90Y beta source and it shows linearity up to 180 Gy. The time dependent fading behavior of the TL characteristics has also been investigated and is found to be quite stable over long time duration. The characteristic Eu2+ emissions are observed in the TL emission spectra.
High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions.
Hermann, Andreas; Mookherjee, Mainak
2016-12-06
We investigate the high-pressure phase diagram of the hydrous mineral brucite, Mg(OH) 2 , using structure search algorithms and ab initio simulations. We predict a high-pressure phase stable at pressure and temperature conditions found in cold subducting slabs in Earth's mantle transition zone and lower mantle. This prediction implies that brucite can play a much more important role in water transport and storage in Earth's interior than hitherto thought. The predicted high-pressure phase, stable in calculations between 20 and 35 GPa and up to 800 K, features MgO 6 octahedral units arranged in the anatase-TiO 2 structure. Our findings suggest that brucite will transform from a layered to a compact 3D network structure before eventual decomposition into periclase and ice. We show that the high-pressure phase has unique spectroscopic fingerprints that should allow for straightforward detection in experiments. The phase also has distinct elastic properties that might make its direct detection in the deep Earth possible with geophysical methods.
Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys
NASA Astrophysics Data System (ADS)
Vinod, E. M.; Ramesh, K.; Sangunni, K. S.
2015-01-01
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150°C and then to a stable hexagonal structure at high temperatures (>=250°C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)1-xSex thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150°C. The intermediate NaCl structure has been observed only for x < 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)1-xSex films are better candidates for phase change memory applications.
Observation of ferromagnetic ordering in a stable α -Co (OH) 2 phase grown on a Mo S2 surface
NASA Astrophysics Data System (ADS)
Debnath, Anup; Bhattacharya, Shatabda; Saha, Shyamal K.
2017-12-01
Because of the potential application of Co (OH) 2 in a magnetic cooling system as a result of its superior magnetocaloric effect many people have investigated magnetic properties of Co (OH) 2 . Unfortunately, most of the works have been carried out on the β -Co (OH) 2 phase due to the fact that the α -Co (OH) 2 phase is very unstable and continuously transformed into the stable β -Co (OH) 2 phase. However, in the present work, using a Mo S2 sheet as a two-dimensional template, we have been able to synthesize a stable α -Co (OH) 2 phase in addition to a β -Co (OH) 2 phase by varying the layer thickness. It is seen that for thinner samples the β phase, while for thicker samples α phase, is grown on the Mo S2 surface. Magnetic measurements are carried out for the samples over the temperature range from 2 to 300 K and it is seen that for the β phase, ferromagnetic ordering with fairly large coercivity (1271 Oe) at 2 K is obtained instead of the usual antiferromagnetism. The most interesting result is the observation of ferromagnetic ordering with a transition temperature (Curie temperature) more than 100 K in the α -Co (OH) 2 phase. Complete saturation in the hysteresis curve under application of very low field having coercivity of ˜162 Oe at 2 K and 60 Oe at 50 K is obtained. A thin stable α -Co (OH) 2 phase grown on Mo S2 surface with very soft ferromagnetic ordering will be very useful as the core material in electromagnets.
Turner, Arthur K; Beavis, Juliet C; Stephens, Jonathan C; Greenwood, Judith; Gewert, Cornelia; Thomas, Nicola; Deary, Alison; Casula, Gabriella; Daley, Alexandra; Kelly, Paul; Randall, Roger; Darsley, Michael J
2006-02-01
Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene. A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes. A phase I trial, consisting of an open-label dose escalation phase in 18 adult outpatient volunteers followed by a placebo-controlled double-blind phase in an additional 31 volunteers, was conducted. The vaccine was administered in two formulations, fresh culture and frozen suspension. These were both well tolerated, with no evidence of significant adverse events related to vaccination. Immunoglobulin A (IgA) and IgG antibody-secreting cells specific for CFA/I were assayed by ELISPOT. Positive responses (greater than twofold increase) were seen in 27 of 37 (73%) subjects who received the highest dose level of vaccine (nominally 5 x 10(9) CFU). Twenty-nine of these volunteers were secreting culturable vaccine organisms at day 3 following vaccination; five were still positive on day 7, with a single isolation on day 13. This live attenuated bacterial vaccine is safe and immunogenic in healthy adult volunteers.
Redgate, S E; Cooper, J J; Hall, S; Eady, P; Harris, P A
2014-04-01
Choice feeding is often used to investigate an animal's nutritional requirements and dietary preferences. A problem with this approach is that animals with long gut transit times, such as the horse, may find it difficult to associate a chosen food with its nutritional consequence when alternative foods are presented simultaneously. One solution is to present foods singly for a period of time before a simultaneous choice session to allow the development of learned associations. This method was used to determine if horse's voluntary intake and feeding behavior was influenced by the macronutrient composition of the diet. Seven stabled horses, maintained on a low intensity exercise regimen, were allowed, on an ad libitum basis, haylage and 3 isocaloric forage based diets that were rich in 1 of 3 macronutrients (protein, lipid, and hydrolyzable carbohydrate). Initially, diets were presented as a 3-way choice for 5 d (self-selection a [SSa]), then singly (monadic phase) with exposure to each diet for 2 separate periods of 3 d each, and finally again as a choice for 5 d (self-selection b [SSb]). The total amount of trial diet offered differed with trial phase, with 2 to 2.5% of BW during SSa and the monadic phase, increasing to ad libitum access during SSb. To control differences in the total amount of trial diet offered, 2 measurements of voluntary intake were taken at 4 and 22 h postpresentation. Daily macronutrient and energy intakes were estimated from proximate analysis of the trial diets and batches of haylage fed. Feeding behavior was observed over a single 4-h period during both self-selection phases. Horses showed no initial preference after 4 h for any 1 diet during SSa. Following the monadic phase, horses demonstrated a preference for the protein and hydrolyzable carbohydrate rich diets over the lipid rich diet (P < 0.001). Dietary experience modified foraging behavior as the total number of visits to the diets decreased during SSb (P < 0.005). Analysis of 24 -h macronutrient consumption showed that protein and hydrolyzable carbohydrate intake increased during SSb, whereas lipid intake remained constant over both self-selection phases (P < 0.001). These data indicate for perhaps the first time that horses can respond to dietary macronutrient content and that single presentations during choice studies facilitates expression of dietary preferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qi-Jun, E-mail: dianerliu@yahoo.com.cn; Liu, Zheng-Tang; Feng, Li-Ping
2012-12-15
On the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory (DFT), we calculated the structural, elastic, electronic and optical properties of the seven different phases of SrZrO{sub 3}. The obtained ground-state properties are in good agreement with previous experiments and calculations, which indicate that the most stable phase is orthorhombic Pnma structure. Seven phases of SrZrO{sub 3} are mechanically stable with cubic, tetragonal and orthorhombic structures. The mechanical and thermodynamic properties have been obtained by using the Voigt-Reuss-Hill approach and Debye-Grueneisen model. The electronic structures and optical properties are obtained and compared with the available experimental andmore » theoretical data. - Graphical abstract: Energy versus volume of seven phases SrZrO{sub 3} shows the Pnma phase has the minimum ground-state energy. Highlights: Black-Right-Pointing-Pointer We calculated the physical and chemical properties of seven SrZrO{sub 3} polymorphs. Black-Right-Pointing-Pointer The order of stability is Pnma>Imma>Cmcm>I4/mcm>P4/mbm>P4mm>Pm3-bar m. Black-Right-Pointing-Pointer The most stable phase is orthorhombic Pnma structure. Black-Right-Pointing-Pointer Seven phases of SrZrO{sub 3} are mechanically stable. Black-Right-Pointing-Pointer The relationship between n and {rho}{sub m} is n=1+0.18{rho}{sub m}.« less
Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2000-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.
NASA Astrophysics Data System (ADS)
Kesler, Michael Steiner
Titanium aluminides are of interest as a candidate material for aerospace turbine applications due to their high strength to weight ratio. gamma-TiAl + alpha2-Ti3Al alloys have recently been incorporated in the low pressure turbine region but their loss of strength near 750C limits their high temperature use. Additions of Nb have been shown to have several beneficial effects in gamma+alpha2 alloys, including enhancements in strength and ductility of the gamma-phase, along with the stabilization of the cubic BCC beta-phase at forging temperatures allowing for thermomechanical processing. In the ternary Ti-Al-Nb system at high Nb-contents above approximately 10at%, there exists a two-phase gamma-TiAl + sigma-Nb2Al region at and above current service temperature for the target application. Limited research has been conducted on the mechanical properties of alloys with this microstructure, though they have demonstrated excellent high temperature strength, superior to that of gamma+alpha2 alloys. Because the sigma-phase does not deform at room temperature, high volume fractions of this phase result in poor toughness and no tensile elongation. Controlling the microstructural morphology by disconnecting the brittle matrix through heat treatments has improved the toughness at room temperature. In this study, attempts to further improve the mechanical properties of these alloys were undertaken by reducing the volume fraction of the sigma-phase and controlling the scale of the gamma+sigma microstructure through the aging of a meta-stable parent phase, the beta- phase, that was quenched-in to room temperature. Additions of beta-stabilizing elements, Cr and Mo, were needed in order to quench-in the beta-phase. The room temperature mechanical properties were evaluated by compression, Vickers' indentation and single edge notch bend tests at room temperature. The formation of the large gamma-laths at prior beta- phase grain boundaries was found to be detrimental to ductility due to strain localization in this coarsened region of the microstructure. Furthermore, samples aged from beta- phase single crystals proved to have excellent combinations of strength and ductility under compression. In the single crystals, microcracking did not develop until much larger plastic strains were reached. Lowering the volume fraction of the sigma-phase proved to enhance the fracture toughness in these alloys. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; McBrearty, Ian; Ott, R T
Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Moyle, Graeme; Else, Laura; Jackson, Akil; Back, David; Yapa, Manisha H.; Seymour, Natalia; Ringner-Nackter, Lisa; Karolia, Zeenat; Gazzard, Brian
2013-01-01
Atazanavir (ATV) causes an elevation of unconjugated hyperbilirubinemia (HBR) as a result of UDP glucuronyltransferase (UGT) 1A1 inhibition. Zinc sulfate (ZnSO4) reduces unconjugated hyperbilirubinemia in individuals with Gilbert's syndrome. We assessed the changes in total, conjugated, and unconjugated bilirubin and the effect on ATV pharmacokinetics (PK) after single and 14-day dosing of ZnSO4. HIV patients, stable on ATV/ritonavir (ATV/r)-containing regimens with a total bilirubin level of >25mmol/liter received 125 mg daily of ZnSO4 as Solvazinc tablets for 14 days. ATV/r and bilirubin concentrations were measured pre-ATV/r dose and 2, 4, 6, 8, and 24 h post-ATV/r dose; before ZnSO4 initiation (phase 1), after a single dose (phase 2) and after 14 days (phase 3). Changes in bilirubin and ATV/r concentrations in the absence or presence of ZnSO4 were evaluated by geometric mean ratios (GMRs) and 90% confidence intervals (CIs; we used phase 1 as a reference). Sixteen male patients completed the study maintaining virologic suppression; ZnSO4 was well tolerated. Statistically significant declines in total bilirubin Cmax and AUC0–24 of 16 and 17% were seen in phase2 and 20% in phase 3. Although there were no significant changes in conjugated bilirubin, unconjugated bilirubin Cmax and AUC0–24 of were lower (17 and 19%, phase 2; 20 and 23% during phase 3). The ATV GMRs (90% CI) for Ctrough, Cmax, and AUC0–24 were 0.74 (0.62 to 0.89), 0.82 (0.70 to 0.97), and 0.78 (0.70 to 0.88). Intake of ZnSO4 decreases total and unconjugated bilirubin and causes modest declines in ATV exposure. ZnSO4 supplementation may be useful in management of ATV-related HBR in selected patients. PMID:23689708
Exotic stable cesium polynitrides at high pressure
Peng, Feng; Han, Yunxia; Liu, Hanyu; ...
2015-11-19
New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN 3, we identified five new stoichiometric compounds (Cs 3N, Cs 2N, CsN, CsN 2, and CsN 5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N 2, N 3 , Nmore » 4, N 5, N 6) and chains (N ∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN 2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N 4 4- anion. In conclusion, to our best knowledge, this is the first time a charged N 4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less
Exotic stable cesium polynitrides at high pressure
Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun
2015-01-01
New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175
Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan
2018-06-15
Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.
Mu, Boyuan; Li, Min
2018-06-11
In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.
Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo
Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...
2016-11-24
Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less
NASA Astrophysics Data System (ADS)
Nemati, Maedeh; Shateri Najaf Abady, Ali Reza; Toghraie, Davood; Karimipour, Arash
2018-01-01
The incorporation of different equations of state into single-component multiphase lattice Boltzmann model is considered in this paper. The original pseudopotential model is first detailed, and several cubic equations of state, the Redlich-Kwong, Redlich-Kwong-Soave, and Peng-Robinson are then incorporated into the lattice Boltzmann model. A comparison of the numerical simulation achievements on the basis of density ratios and spurious currents is used for presentation of the details of phase separation in these non-ideal single-component systems. The paper demonstrates that the scheme for the inter-particle interaction force term as well as the force term incorporation method matters to achieve more accurate and stable results. The velocity shifting method is demonstrated as the force term incorporation method, among many, with accuracy and stability results. Kupershtokh scheme also makes it possible to achieve large density ratio (up to 104) and to reproduce the coexistence curve with high accuracy. Significant reduction of the spurious currents at vapor-liquid interface is another observation. High-density ratio and spurious current reduction resulted from the Redlich-Kwong-Soave and Peng-Robinson EOSs, in higher accordance with the Maxwell construction results.
Zahedi, S; Sales, D; Romero, L I; Solera, R
2013-10-01
Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
NASA Astrophysics Data System (ADS)
Mitra, D.; Dhir, V. K.; Catton, I.
2009-10-01
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.
Proposal for automated transformations on single-photon multipath qudits
NASA Astrophysics Data System (ADS)
Baldijão, R. D.; Borges, G. F.; Marques, B.; Solís-Prosser, M. A.; Neves, L.; Pádua, S.
2017-09-01
We propose a method for implementing automated state transformations on single-photon multipath qudits encoded in a one-dimensional transverse spatial domain. It relies on transferring the encoding from this domain to the orthogonal one by applying a spatial phase modulation with diffraction gratings, merging all the initial propagation paths by using a stable interferometric network, and filtering out the unwanted diffraction orders. The automation feature is attained by utilizing a programmable phase-only spatial light modulator (SLM) where properly designed diffraction gratings displayed on its screen will implement the desired transformations, including, among others, projections, permutations, and random operations. We discuss the losses in the process which is, in general, inherently nonunitary. Some examples of transformations are presented and, considering a realistic scenario, we analyze how they will be affected by the pixelated structure of the SLM screen. The method proposed here enables one to implement much more general transformations on multipath qudits than is possible with a SLM alone operating in the diagonal basis of which-path states. Therefore, it will extend the range of applicability for this encoding in high-dimensional quantum information and computing protocols as well as fundamental studies in quantum theory.
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
A numerically-stable algorithm for calibrating single six-ports for national microwave reflectometry
NASA Astrophysics Data System (ADS)
Hodgetts, T. E.
1990-11-01
A full description and analysis of the numerically stable algorithm currently used for calibrating single six ports or multi states for national microwave reflectometry, employing as standards four one port devices having known voltage reflection coefficients, is given.
Oxidation resistant high creep strength austenitic stainless steel
Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.
2010-06-29
An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.
Laser-plasma accelerator-based single-cycle attosecond undulator source
NASA Astrophysics Data System (ADS)
Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.
2018-06-01
Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.
Evidence for asymmetric edge-on Langmuir monolayer: Application to surface potential measurements
NASA Astrophysics Data System (ADS)
El Abed, A.; Ionov, R.; Goldmann, M.; Fontaine, P.; Billard, J.; Peretti, P.
2001-10-01
We show, using surface pressure vs. molecular area isotherm measurements and synchrotron grazing X-ray diffraction, that 4BCD12 molecules, which consist of a central flexible bowl-like core to which eight long lateral hydrocarbon chains are bound, form a stable edge-on monolayer. Experimental data indicate that six lateral hydrocarbon chains orient upwards to form a quasi-rectangular lattice of 43° tilted hydrocarbon chains. The obtained axially asymmetric phase, which we label edge26-on, allows using surface potential measurements, for the validation of literature electric models of a single monolayer spread at the air-water interface.
Diverse forms of bonding in two-dimensional Si allotropes: Nematic orbitals in the MoS2 structure
NASA Astrophysics Data System (ADS)
Gimbert, Florian; Lee, Chi-Cheng; Friedlein, Rainer; Fleurence, Antoine; Yamada-Takamura, Yukiko; Ozaki, Taisuke
2014-10-01
The interplay of sp2- and sp3-type bonding defines silicon allotropes in two- and three-dimensional forms. A two-dimensional phase bearing structural resemblance to a single MoS2 layer is found to possess a lower total energy than low-buckled silicene and to be stable in terms of its phonon dispersion relations. A set of cigar-shaped nematic orbitals originating from the Si sp2 orbitals realizes bonding with a sixfold coordination of the inner Si atoms of the layer. The identification of these nematic orbitals advocates diverse Si bonding configurations different from those of C atoms.
New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Gris-Sanchez, Itandehui; Ehrlich, Katjana; Birks, Tim A.; Giannone, Domenico; Haynes, Roger
2014-07-01
We present a new type of multicore fiber (MCF) and photonic lantern that consists of 511 individual cores designed to operate over a broadband visible wavelength range (380-860nm). It combines the coupling efficiency of a multimode fiber with modal stability intrinsic to a single mode fibre. It is designed to provide phase and amplitude scrambling to achieve a stable near field and far field illumination pattern during input coupling variations; it also has low modal noise for increased photometric stability. Preliminary results are presented for the new MCF as well as current state of the art octagonal fiber for comparison.
Modeling the use of a binary mixture as a control scheme for two-phase thermal systems
NASA Technical Reports Server (NTRS)
Benner, S. M.; Costello, Frederick A.
1990-01-01
Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.
Arvanitogiannis, A; Amir, S
1999-12-01
The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Hawoong; Kim, Jongjin; Fang, Xinyue
Thin films of iron oxides including magnetite (Fe3O4) and hematite (α-Fe2O3) have many important applications. Both forms of oxide can occur naturally during film growth by iron deposition under various oxidation environment; an important issue is to understand and control the process resulting in a single-phase film. We have performed in-situ real-time studies using x-ray diffraction of such film growth on sapphire (001) under pure ozone by monitoring the (00L) rod. Stable magnetite growth can be maintained at growth temperatures below 600° C up to a certain critical film thickness, beyond which the growth becomes hematite. The results demonstrate themore » importance of interfacial interaction in stabilizing the magnetite phase.« less
Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling
NASA Astrophysics Data System (ADS)
Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.
2016-05-01
A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.
Temporal Interactions between Cortical Rhythms
Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.
2008-01-01
Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency – suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales. PMID:19225587
Thioaptamer Diagnostic System (TDS)
NASA Technical Reports Server (NTRS)
Yang, Xianbin
2015-01-01
AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.
High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy
NASA Astrophysics Data System (ADS)
Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.
2015-02-01
Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.
NASA Astrophysics Data System (ADS)
He, Feng
The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.
Perceptual Learning Immediately Yields New Stable Motor Coordination
ERIC Educational Resources Information Center
Wilson, Andrew D.; Snapp-Childs, Winona; Bingham, Geoffrey P.
2010-01-01
Coordinated rhythmic movement is specifically structured in humans. Movement at 0[degrees] mean relative phase is maximally stable, 180[degrees] is less stable, and other coordinations can, but must, be learned. Variations in perceptual ability play a key role in determining the observed stabilities so we investigated whether stable movements can…
Xu, Hang; Su, Shi; Tang, Wuji; Wei, Meng; Wang, Tao; Wang, Dongjin; Ge, Weihong
2015-09-01
A large number of warfarin pharmacogenetics algorithms have been published. Our research was aimed to evaluate the performance of the selected pharmacogenetic algorithms in patients with surgery of heart valve replacement and heart valvuloplasty during the phase of initial and stable anticoagulation treatment. 10 pharmacogenetic algorithms were selected by searching PubMed. We compared the performance of the selected algorithms in a cohort of 193 patients during the phase of initial and stable anticoagulation therapy. Predicted dose was compared to therapeutic dose by using a predicted dose percentage that falls within 20% threshold of the actual dose (percentage within 20%) and mean absolute error (MAE). The average warfarin dose for patients was 3.05±1.23mg/day for initial treatment and 3.45±1.18mg/day for stable treatment. The percentages of the predicted dose within 20% of the therapeutic dose were 44.0±8.8% and 44.6±9.7% for the initial and stable phases, respectively. The MAEs of the selected algorithms were 0.85±0.18mg/day and 0.93±0.19mg/day, respectively. All algorithms had better performance in the ideal group than in the low dose and high dose groups. The only exception is the Wadelius et al. algorithm, which had better performance in the high dose group. The algorithms had similar performance except for the Wadelius et al. and Miao et al. algorithms, which had poor accuracy in our study cohort. The Gage et al. algorithm had better performance in both phases of initial and stable treatment. Algorithms had relatively higher accuracy in the >50years group of patients on the stable phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phase field modeling of tetragonal to monoclinic phase transformation in zirconia
NASA Astrophysics Data System (ADS)
Mamivand, Mahmood
Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for predicting tetragonal to monoclinic transformation in the cases we lack experimental observations.
NeuroGrid: recording action potentials from the surface of the brain.
Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György
2015-02-01
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
Phosphorous dimerization in GaP high-pressure polymorph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavina, Barbara; Kim, Eunja; Cynn, Hyunchae
We report on the experimental and theoretical characterization of a novel GaP polymorph formed by laser heating of a single crystal of GaP-II in its stable region near 43 GPa. Thereby formed unstrained multigrain sample at 43 GPa and 1300 K, allowed high-resolution crystallographic analysis. We find an oS24 as an energetically optimized crystal structure contrary to oS8 reported by Nelmes et al. (1997). Our DFT calculation confirms a stable existence of oS24 between 18 – 50 GPa. The emergence of the oS24 structure is related to the differentiation of phosphorous atoms between those forming P-P dimers and those formingmore » P-Ga bonds only. Bonding anisotropy explains the symmetry lowering with respect to what is generally expected for semiconductors high-pressure polymorphs. The metallization of GaP does not occur through a uniform change of the nature of its bonds but through the formation of an anisotropic phase containing different bond types.« less
Conventional and dense gas techniques for the production of liposomes: a review.
Meure, Louise A; Foster, Neil R; Dehghani, Fariba
2008-01-01
The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.
Realization of compact tractor beams using acoustic delay-lines
NASA Astrophysics Data System (ADS)
Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.
2017-01-01
A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
Discontinuity of the annuity curves. III. Two types of vital variability in Drosophila melanogaster.
Bychkovskaia, I B; Mylnikov, S V; Mozhaev, G A
2016-01-01
We confirm five-phased construction of Drosophila annuity curves established earlier. Annuity curves were composed of stable five-phase component and variable one. Variable component was due to differences in phase durations. As stable, so variable components were apparent for 60 generations. Stochastic component was described as well. Viability variance which characterize «reaction norm» was apparent for all generation as well. Thus, both types of variability seem to be inherited.
Zhang, Yu; Luo, Hao; Carr, Peter W.
2011-01-01
A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745
Setnik, Beatrice; Roland, Carl L; Sommerville, Kenneth W; Pixton, Glenn C; Berke, Robert; Calkins, Anne; Goli, Veeraindar
2015-01-01
To evaluate the conversion of opioid-experienced patients with chronic moderate-to-severe pain to extended-release morphine sulfate with sequestered naltrexone hydrochloride (MSN) using a standardized conversion guide. This open-label, single-arm study was conducted in 157 primary care centers in the United States. A total of 684 opioid-experienced adults with chronic moderate-to-severe pain were converted to oral administration of MSN from transdermal fentanyl and oral formulations of hydrocodone, hydromorphone, methadone, oxycodone, oxymorphone, and other morphine products using a standardized conversion guide. The primary endpoint was the percentage of patients achieving a stable MSN dose within a 6-week titration phase. Secondary endpoints included duration of time to stable dose, number of titration steps, safety and efficacy measures, and investigator assessment of conversion guide utility. Of the 684 patients, 51.3% were converted to a stable dose of MSN (95% confidence interval: 47.5%, 55.1%). The mean (standard deviation) number of days to stable dose was 20 (8.94), and number of titration steps to stable dose was 2.4 (1.37). The majority of adverse events were mild/moderate and consistent with opioid therapy. Mean pain scores at stable dose decreased from baseline. Investigators were generally satisfied with the conversion guide and, in 94% of cases, reported they would use it again. Conversion to MSN treatment using the standardized MSN conversion guide was an attainable goal in approximately half of the population of opioid-experienced patients with chronic moderate-to-severe pain. Investigators found the guide to be a useful tool to assist conversion of opioid-experienced patients to MSN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenzhi; Yang, Jili; Wang, Chunjie
2012-09-15
Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less
Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L
2014-01-01
Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Mercury removal from aqueous streams utilizing microemulsion liquid membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, K.A.; Wiencek, J.M.
1994-11-01
The goal of this work is the removal of mercury ion from wastewater using thermodynamically stable microemulsions as liquid membranes. The research focuses on identification and modeling of the appropriate aqueous and organic phase equilibrium reactions for mercury extraction and stripping, comparison of extraction kinetics between coarse emulsions and microemulsions, and demulsification and recovery of the emulsion components. An oleic acid microemulsion liquid membrane (water-in-oil) containing sulfuric acid as the internal phase reduces the feed phase mercury concentration from 460 mg/l to 0.84 mg/l in a single contacting. This compares favorably with a control extraction (oleic acid/no internal phase) whichmore » results in a final concentration of 20 mg/l Hg{sup +2}. Microemulsions can be demulsified using butanol as an additive. The demulsification kinetics are proportional to butanol concentration and temperature and inversely proportional to surfactant concentration. The demulsification rate is second order with respect to water concentration which implies that the rate-limiting step in the process is the rate of internal phase droplet encounters. Proof-of-principle experiments demonstrate the ability to extract mercury ion using microemulsions formulated with recycled organic phase, albeit at a somewhat reduced efficiency. The reduced efficiency is attributed to increased internal phase leakage due to residual butanol in the oil phase. Finally, the cycle is brought around full circle by recovering metallic mercury from the internal phase by electroplating. 27 refs., 11 figs., 1 tab.« less
Revealing on metallurgical behavior of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets
NASA Astrophysics Data System (ADS)
Song, Kuikui; Sun, Wei; Chen, Hongsheng; Yu, Nengjun; Fang, Yikun; Zhu, Minggang; Li, Wei
2017-05-01
The sintered magnets with the nominal composition of Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 were prepared by standard metallurgical method. The evolution of phase transformation of the specimens during heat treatments was investigated in detail. After isothermal aging at 1103 K for 20 hrs and step cooling to 673 K and keeping for 10hrs, the remanence Br of the specimens almost keeps constant (˜11.5 kGs), while the intrinsic coercivity Hcj increases from 7.9 to 31.5 kOe. The maximum energy product of the final magnet is close to 32 MGOe. The phase is single phase with 1:7H structure in the specimen A only annealed at 1453 K for 4hrs. It is found that a cellular microstructure with a platelet Z-phase have appeared in the sample after the isothermal aging in 1103 K for 20h, which contain 2:17R, 2:7R and 5:19H phases. Furthermore, the 1:5H phase has appeared after the step cooling to 873 K, together with some 2:17R, 2:7R and 5:19H phases. Interestingly, it is found that the phase transformation has completed after the step cooling to 773 K. And the phase constitution in specimens is stable during the step cooling to 673 K.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).
Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias
2015-08-25
Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.
Structural stability of methane hydrate at high pressures
Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang
2011-01-01
The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.
Synthesis and structural study of Ti-rich Mg-Ti hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji
2014-02-26
Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less
NASA Astrophysics Data System (ADS)
Yoon, Mi Young; Lee, Eun Jung; Song, Rak Hyun; Hwang, Hae Jin
2011-12-01
MnCo2O4 powder was prepared by a wet chemistry method using metal nitrates and glycine in an aqueous solution. The phase stability, sintering behavior, thermal expansion and electrical conductivity were examined to characterize powder suitability as an interconnect material in solid oxide fuel cells (SOFCs). X-ray diffraction indicated that the MnCo2O4 spinel synthesized by the glycine nitrate process was stable until 1100 °C and it was possible to obtain a fully densified single phase spinel. On the other hand, the MnCo2O4 synthesized by a solid state reaction decomposed into a cubic spinel and CoO after being sintered at 1100 °C. This might be associated with the reduction of Co3+ in the octahedral site of the cubic spinel phase. MnCo2O4 showed a thermal expansion coefficient comparable to that of other SOFCs components, as well as good electrical conductivity. Therefore, MnCo2O4 is a potential candidate for the ceramic interconnects in SOFCs, provided the phase instability under reducing environments can be improved.
Towards a drift-free multi-level Phase Change Memory
NASA Astrophysics Data System (ADS)
Cinar, Ibrahim; Ozdemir, Servet; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan
For ultra-high density data storage applications, Phase Change Memory (PCM) is considered a potentially disruptive technology. Yet, the long-term reliability of the logic levels corresponding to the resistance states of a PCM device is an important issue for a stable device operation since the resistance levels drift uncontrollably in time. The underlying mechanism for the resistance drift is considered as the structural relaxation and spontaneous crystallization at elevated temperatures. We fabricated a nanoscale single active layer-phase change memory cell with three resistance levels corresponding to crystalline, amorphous and intermediate states by controlling the current injection site geometry. For the intermediate state and the reset state, the activation energies and the trap distances have been found to be 0.021 eV and 0.235 eV, 1.31 nm and 7.56 nm, respectively. We attribute the ultra-low and weakly temperature dependent drift coefficient of the intermediate state (ν = 0.0016) as opposed to that of the reset state (ν = 0.077) as being due to the dominant contribution of the interfacial defects in electrical transport in the case of the mixed phase. Our results indicate that the engineering of interfacial defects will enable a drift-free multi-level PCM device design.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui
2016-08-26
A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1) cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.
2018-03-01
Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.
ERIC Educational Resources Information Center
Guillem, F.; Ganeva, E.; Pampoulova, T.; Stip, E.; Lalonde, P.; Sasseville, M.
2005-01-01
This study was designed to investigate whether the neuropsychological correlates of the symptom dimensions of schizophrenia vary with the clinical state in patients followed from the acute to stable the phase of the illness. Fifteen patients were assessed for symptoms (SAPS-SANS) and undergone a complete neuropsychological assessment at two…
Novel phases and superconductivity of tin sulfide compounds
NASA Astrophysics Data System (ADS)
Gonzalez, Joseph M.; Nguyen-Cong, Kien; Steele, Brad A.; Oleynik, Ivan I.
2018-05-01
Tin sulfides, SnxSy, are an important class of materials that are actively investigated as novel photovoltaic and water splitting materials. A first-principles evolutionary crystal structure search is performed with the goal of constructing the complete phase diagram of SnxSy and discovering new phases as well as new compounds of varying stoichiometry at ambient conditions and pressures up to 100 GPa. The ambient phase of SnS2 with P 3 ¯ m 1 symmetry remains stable up to 28 GPa. Another ambient phase, SnS, experiences a series of phase transformations including α-SnS to β-SnS at 9 GPa, followed by β-SnS to γ-SnS at 40 GPa. γ-SnS is a new high-pressure metallic phase with P m 3 ¯ m space group symmetry stable up to 100 GPa, which becomes a superconductor with a maximum Tc = 9.74 K at 40 GPa. Another new metallic compound, Sn3S4 with I 4 ¯ 3 d space group symmetry, is predicted to be stable at pressures above 15 GPa, which also becomes a superconductor with relatively high Tc = 21.9 K at 30 GPa.
Phase I study of single-agent ribociclib in Japanese patients with advanced solid tumors.
Doi, Toshihiko; Hewes, Becker; Kakizume, Tomoyuki; Tajima, Takeshi; Ishikawa, Norifumi; Yamada, Yasuhide
2018-01-01
The cyclin D-CDK4/6-INK4-Rb pathway is frequently dysregulated in cancers. Ribociclib, an orally available, selective CDK4/6 inhibitor, showed preliminary clinical activity in a phase I study in the USA and Europe for patients with solid tumors and lymphomas. The present study aimed to determine the single-agent maximum tolerated dose (MTD) and recommended dose for expansion (RDE) in Japanese patients with advanced solid tumors. Ribociclib safety, tolerability, pharmacokinetic profile, and preliminary antitumor activity were also assessed. Japanese patients with solid tumors that had progressed on prior therapies received escalating doses of single-agent ribociclib on a 3-weeks-on/1-week-off schedule. Treatment continued until the development of toxicity or disease progression. A dose escalation was planned for patients with esophageal cancer. In the dose-escalation phase, 4 patients received 400 mg ribociclib and 13 patients received 600 mg ribociclib. Four patients experienced dose-limiting toxicities, 3 of whom were in the 600 mg group. The RDE was declared to be 600 mg, and the MTD was not determined. The most frequent adverse events were hematologic and gastrointestinal. Four patients achieved stable disease at the 600 mg dose; no patients achieved complete or partial response. All patients discontinued the study, the majority due to disease progression. No patients discontinued due to adverse events. Dose escalation was not pursued due to lack of observed efficacy in esophageal cancer. At the RDE of 600 mg/d on a 3-weeks-on/1-week-off schedule, ribociclib showed acceptable safety and tolerability profiles in Japanese patients with advanced solid tumors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
Céolin, René; Rietveld, Ivo B.
2017-04-01
The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.
Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K
2016-09-10
Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries
NASA Astrophysics Data System (ADS)
Huang, Haili; Guo, Yinjian; Cheng, Yuanhui
2018-03-01
α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.
Slip-stacking Dynamics for High-Power Proton Beams at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey Scott
Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less
NASA Astrophysics Data System (ADS)
Hennig, D.
1997-09-01
We study the dynamics of excitation energy transfer along a lattice chain modeled by the discrete nonlinear Schrödinger (DNLS) equation. We prove that a segment carrying resonant motion can be decoupled from the remainder of the chain supporting quasiperiodic dynamics. The resonant segment from the extended chain is taken to be a four-site element, viz., a tetramer. First, we focus interest on the energy exchange dynamics along the tetramer viewed as two weakly coupled DNLS dimers. Hamiltonian methods are used to investigate the phase-space dynamics. We pay special attention to the role of the diffusion of the action variables inside resonance layers for the energy migration. When distributing the energy initially equally between the two dimers one observes a directed irreversible flow of energy from one dimer into the other assisted by action diffusion. Eventually on one dimer a stable self-trapped excitation of large amplitude forms at a single site while the other dimer exhibits equal energy partition over its two sites. Finally, we study the formation of localized structure on an extended DNLS lattice chain. In particular we explore the stability of the so-called even-parity and odd-parity localized modes, respectively, and explain their different stability properties by means of phase-space dynamics. The global instability of the even-parity mode is shown. For the excited even-parity mode a symmetry-breaking perturbation of the pattern leads to an intrinsic collapse of the even-parity mode to the odd-parity one. The latter remains stable with respect to symmetry-breaking perturbations. In this way we demonstrate that the favored stable localized states for the DNLS lattice chain correspond to one-site localized excitations.
NASA Astrophysics Data System (ADS)
Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.
2009-01-01
The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.
Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2015-08-01
Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.
On the stability of the exact solutions of the dual-phase lagging model of heat conduction.
Ordonez-Miranda, Jose; Alvarado-Gil, Juan Jose
2011-04-13
The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena.
Chromatic patchy particles: Effects of specific interactions on liquid structure
Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.
2015-07-13
We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less
Cai, WeiHui; Deng, WanDing; Yang, HuiHui; Chen, XiaoPing; Jin, Fang
2012-10-15
The purpose of this study was to develop a propofol microemulsion with a low concentration of free propofol in the aqueous phase. Propofol microemulsions were prepared based on single-factor experiments and orthogonal design. The optimal microemulsion was evaluated for pH, osmolarity, particle size, zeta potential, morphology, free propofol in the aqueous phase, stability, and pharmacokinetics in beagle dogs, and comparisons made with the commercial emulsion, Diprivan(®). The pH and osmolarity of the microemulsion were similar to those of Diprivan(®). The average particle size was 22.6±0.2 nm, and TEM imaging indicated that the microemulsion particles were spherical in appearance. The concentration of free propofol in the microemulsion was 21.3% lower than that of Diprivan(®). Storage stability tests suggested that the microemulsion was stable long-term under room temperature conditions. The pharmacokinetic profile for the microemulsion showed rapid distribution and elimination compared to Diprivan(®). We conclude that the prepared microemulsion may be clinically useful as a potential carrier for propofol delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Priyanka; Rai, R. N.
2018-05-01
Two novel organic inter-molecular compounds (IMCs), (3-(4-chloro-3-nitrophenylimino) methyl) phenol) (CNMP) and urea ̶ 4-dimethylaminopyridine complex (UDMAP), have been synthesized by solid state reaction. These two IMCs were identified by phase diagram study of CNA-HB and U-DMAP systems. The single crystals of newly obtained IMCs were grown by slow solvent evaporation technique at room temperature. Both the IMCs were further studied for their thermal, spectral, single crystal XRD for their atomic packing in molecule, crystallinity, optical and nonlinear optical behaviour. In both the cases, melting point of inter-molecular compounds was found to be higher than that of their parent components, CNMP was found to be thermally stable up to 158 °C while UDMAP was stable up to 144 °C, which indicate their extra stability than their parents. The single crystal XRD studies confirmed that CNMP has crystallized in orthorhombic unit cell with non-centrosymmetric space group P212121 while UDMAP has crystallized in monoclinic unit cell with centrosymmetric space group C2/c. The absorption spectrum of CNMP was found to be in between the absorption of parents, while broadening of peak and red shift was observed in UDMAP as compared to the parents. Second order nonlinear optical property of CNMP and UDMAP was studied using Kurtz Perry powder technique and intense green light emission was observed with CNMP on excitation with 1064 nm of Nd:YAG laser while no emission was observed with UDMAP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-07-02
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less
The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A
2010-06-21
The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.
Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices
Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin
2013-01-01
The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462
Shape-designed single-polymer micelles: a proof-of-concept simulation
NASA Astrophysics Data System (ADS)
Moths, Brian; Witten, Thomas A.
Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.
Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.
Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B
2013-11-18
Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Nucleation via an unstable intermediate phase.
Sear, Richard P
2009-08-21
The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.
A route to possible civil engineering materials: the case of high-pressure phases of lime
NASA Astrophysics Data System (ADS)
Bouibes, A.; Zaoui, A.
2015-07-01
Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.
A route to possible civil engineering materials: the case of high-pressure phases of lime.
Bouibes, A; Zaoui, A
2015-07-23
Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.
Microstructure of Mixed Surfactant Solutions by Electron Microscopy
NASA Astrophysics Data System (ADS)
Naranjo, Edward
1995-01-01
Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.
Brown, Patrick; Megason, Gail; Ahn, Hyo Seop; Cho, Bin; Kirov, Ivan; Frankel, Lawrence; Aplenc, Richard; Bensen-Kennedy, Debra; Munteanu, Mihaela; Weaver, Jennifer; Harker-Murray, Paul
2014-01-01
This open-label, single-arm, phase I/II, dose-escalation study was designed to determine the recommended phase II dose (RP2D), pharmacokinetics, tolerability, and efficacy of bendamustine in pediatric patients (age ranging from 1 to 20 y) with histologically proven relapsed/refractory acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Patients (27 with ALL, 16 with AML) received intravenous bendamustine on days 1 and 2 of each treatment cycle. Phase I involved planned dose escalation of bendamustine to establish the RP2D for phase II. Objectives included overall response rate, duration of response, and tolerability. Eleven patients were treated in phase I, and the RP2D was 120 mg/m2. In phase II, 32 patients received bendamustine 120 mg/m2. Two patients with ALL (bendamustine 90 mg/m2) experienced complete response (CR). Among patients who received bendamustine 120 mg/m2, 2 experienced partial response (PR); 7 had stable disease. The overall response rate (CR+CR without platelet recovery [CRp]) was 4.7% and biological activity rate (CR+CRp+PR) was 9.3%. No AML patients responded. The most common adverse events were anemia, neutropenia, thrombocytopenia, pyrexia, nausea, vomiting, and diarrhea. Bendamustine monotherapy has acceptable tolerability in heavily pretreated children with relapsed/refractory ALL or AML and appears to have some activity in ALL, warranting further studies in combination trials. PMID:24072240
Castellero, Alberto; Fiore, Gianluca; Evenstein, Eliran; Baricco, Marcello; Amouyal, Yaron
2017-03-01
We report on rapid solidification of an Ag(16.7)Sb(30.0)Te(53.3) compound using planar flow casting to stabilize the δ-AgSbTe₂ single phase and avoid precipitation of the interconnected Sb₂Te₃ phase, which leads to deterioration of thermoelectric properties. Rapidly solidified samples are in form of flakes with different thickness (60–400 μm). Precipitation of Sb2Te₃ phase is fully inhibited in thin flakes (thickness below 100 μm), which consist of an homogeneous δ-AgSbTe₂ matrix, whereas isolated Sb₂Te₃ precipitates, dispersed throughout the δ-AgSbTe₂ matrix, were found in thick flakes (thickness above 100 μm). The lattice parameter of the δ-AgSbTe₂ phase progressively increases with the cooling rate, indicating progressive supersaturation of the matrix for high degree of supercooling. Bulk specimens were prepared by hot pressing of the rapidly solidified flakes to evaluate thermoelectric properties. After sintering of the rapidly solidified flakes, the differential scanning calorimetry (DSC) traces indicates partial decomposition of the non equilibrium δ-AgSbTe₂ into the stable phases. Measurements of the thermoelectric transport properties indicate the positive effects of rapid solidification on thermal conductivity and Seebeck coefficient and its negative effect on electrical conductivity, suggesting an operative way to improve thermoelectric performance.
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
Interferometric phase measurement techniques for coherent beam combining
NASA Astrophysics Data System (ADS)
Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud
2015-03-01
Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Clemmons, D. R.
1974-01-01
An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.
NASA Astrophysics Data System (ADS)
Walter, M. J.; Thomson, A. R.; Wang, W.; Lord, O. T.; Kleppe, A. K.; Ross, J.; Kohn, S. C.
2014-12-01
Laser-heated diamond anvil cell experiments were performed at pressures from ~ 30 to 125 GPa on bulk compositions in the system MgO-Al2O3-SiO2-H2O (MASH) to constrain the stability of hydrous phases in Earth's lower mantle. Phase identification in run products by synchrotron powder diffraction reveals a consistent set of stability relations for the high-pressure, dense hydrous silicate phases D and H. Experiments show that aluminous phase D is stable to ~ 55 GPa. Aluminous phase H becomes stable at ~ 40 GPa and remains stable to higher pressures throughout the lower mantle depth range in both model peridotitic and basaltic lithologies. Preliminary FEG-probe analyses indicate that Phase H is alumina-rich at ~ 50 GPa, with only 5 to 10 wt% each of MgO and SiO2. Variations in ambient unit cell volumes show that Mg-perovskite becomes more aluminous with pressure throughout the pressure range studied, and that Phase H may become more Mg- and Si-rich with pressure. We also find that at pressures above ~ 90 GPa stishovite is replaced in Si-rich compositions by seifertite, at which point there is a corresponding increase in the Al-content of phase H. The melting curves of MASH compositions have been determined using thermal perturbations in power versus temperature curves, and are observed to be shallow with dT/dP slopes of ~ 4K/GPa. Our results show that hydrated peridotitic or basaltic compositions in the lower mantle should be partially molten at all depths along an adiabatic mantle geotherm. Aluminous Phase H will be stable in colder, hydrated subducting slabs, potentially to the core-mantle boundary. Thus, aluminous phase H is the primary vessel for transport of hydrogen to the deepest mantle, but hydrous silicate melt will be the host of hydrogen at ambient mantle temperatures.
The prediction of a new high-pressure phase of hafnia using first-principles computations
NASA Astrophysics Data System (ADS)
Al-Khatatbeh, Y.; Tarawneh, K.; Hamad, B.
2018-02-01
Using density functional theory (DFT) calculations, we predicted a new high- pressure phase of hafnia (HfO2). We found the hexagonal phase (Ni2In-type structure; space group: P63 /mmc) to be the stable phase at ultrahigh pressures greater than ~386 GPa. Our findings are consistent with recent calculations performed on the similar dioxide ZrO2 [M. Durandurdu, J. Solid State Chem. 230, 233 (2015)] where this phase has been claimed to be the most stable at pressures greater than 380 GPa. The Birch-Murnaghan equation of state (BM- EOS) of the new phase shows that this phase is more compressible and less dense than Fe2P-type phase. Additionally, the hardness calculations using a scaling model confirmed that our newly predicted phase has a similar hardness compared to the other HfO2 phases, indicating that none of the HfO2 phases can be considered to be superhard.
Riesco Miranda, Juan Antonio; Alcázar, Bernardino; Alfageme, Inmaculada; Casanova, Ciro; Celli, Bartolomé; de-Torres, Juan P; Jiménez Ruiz, Carlos A
2017-10-01
To describe the evidence- and experience-based expert consensus on the use of single-agent bronchodilators in patients with stable mild-moderate chronic obstructive pulmonary disease (COPD). Using Delphi methodology, a panel of 7 respiratory medicine experts was established, who, in the first nominal group meeting defined the scope, users, and document sections. The panel drew up 14 questions on the use of single-agent bronchodilators in patients with mild-moderate stable COPD to be answered with a systematic review of the literature. The results of the review were discussed in a second nominal group meeting and 17 statements were generated. Agreement/disagreement with the statements was tested among16 different experts including respiratory medicine experts and primary care physicians. Statements were scored from1 (total disagreement) to10 (total agreement). Agreement was considered if at least 70% voted ≥7. The level of evidence and grade of recommendation of the systematic literature review was assessed using the Oxford Centre for Evidence-based Medicine levels. A total of 12 of the 17 statements were selected. Specific statements were generated on different profiles of patients with stable mild-moderate COPD in whom single-agent bronchodilators could be prescribed. These statements on the use of single-agent bronchodilators might improve the outcomes and prognosis of patients with stable mild-moderate COPD. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Gumz, Antje; Geyer, Michael; Brähler, Elmar
2014-01-01
Observations from therapeutic practice and a series of empirical findings, for example, those on discontinuous change in psychotherapeutic processes, suggest modelling the therapeutic process as a self-organizing system with stable and critical instable phases and abrupt transitions. Here, a concept of psychotherapeutic change is presented that applies self-organization theory to psychodynamic principles. The authors explain the observations and considerations that form the basis of the concept and present some connections with existing findings and concepts. On the basis of this model, they generated two hypotheses regarding the co-occurrence of instability and discontinuous change and the degree of synchrony between the therapist and patient. A study design to test these hypotheses was developed and applied to a single case (psychodynamic therapy). After each session, patient and therapist rated their interaction. A measure of instability was calculated across the resulting time series. Sequences of destabilization were observed. On the basis of points of extreme instability, the process was divided into phases. Local instability maxima were accompanied by significant discontinuous change. Destabilization was highly synchronous in therapist and patient ratings. The authors discussed the concept and the methodological procedure. The approach enables the operationalization of crises and to empirically assess the significance of critical phases and developments within the therapeutic relationship. We present a concept of change that applies self-organization theory to psychodynamic therapy. We empirically tested the hypotheses formulated in the concept based on an extract of 125 long-term psychodynamic therapy sessions. We continuously monitored the therapeutic interaction and calculated a measure of the instability of the assessments. We identified several sequences of stable and unstable episodes. Episodes of high instability were accompanied by discontinuous change. On the basis of these episodes of high instability, we divided the process into four phases. Mean values of variables differed across these phases. Destabilization proved to be highly synchronous in therapist and patient ratings. The approach allows to empirically assess critical phases and developments within the therapeutic relationship. Copyright © 2013 John Wiley & Sons, Ltd.
Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.
Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis
2006-03-30
The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.
Effect of a crystal-melt interface on Taylor-vortex flow
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Murray, B. T.; Glicksman, M. E.; Selleck, M. E.
1990-01-01
The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case that the stationary outer cylinder is a crystal-melt interface rather than a rigid surface. A radial temperature difference is maintained across the liquid gap, and equations for heat transport in the crystal and melt phases are included to extend the ordinary formulation of this problem. The stability of this two-phase system depends on the Prandtl number. For small Prandtl number the linear stability of the two-phase system is given by the classical results for a rigid-walled system. For increasing values of the Prandtl number, convective heat transport becomes significant and the system becomes increasingly less stable. Previous results in a narrow-gap approximation are extended to the case of a finite gap, and both axisymmetric and nonaxisymmetric disturbance modes are considered. The two-phase system becomes less stable as the finite gap tends to the narrow-gap limit. The two-phase system is more stable to nonaxisymmetric modes with azimuthal wavenumber n = 1; the stability of these n = 1 modes is sensitive to the latent heat of fusion.
Sagnac secret sharing over telecom fiber networks.
Bogdanski, Jan; Ahrens, Johan; Bourennane, Mohamed
2009-01-19
We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.
NASA Astrophysics Data System (ADS)
Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael
2018-05-01
Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.
NASA Astrophysics Data System (ADS)
Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.
2018-05-01
The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.
[Musculoskeletal symptoms in patients with post-polio syndrome].
Balzien, B; Hofner, B; Harlander-Weikert, E; Frommelt, P; Bork, H; Forst, R; Fujak, A
2014-06-01
The prevalence of the post-polio syndrome (PPS) is in estimated 50 % of persons with established poliomyelitis with a subsequently stable phase of at least 15 years. The basic mechanism is a loss of motoneuron cells in the spinal cord resulting in muscle weakness and fatigue. In addition pain, cold intolerance and a loss of stamina are frequently reported. There are few studies focusing on the orthopaedic symptoms in the PPS. This study should support the health-care professionals to the address the needs of PPS patients. A questionnaire was developed to collect data on patients who have been diagnosed by a neurologist as fulfilling the criteria of a PPS. It consists of two parts. In the first part, general patient data are collected. In the second part, details of health, pain, and activities of daily living are collected at two points in time: the time of the stable phase immediately after the acute phase of the disease and the phase after the PPS diagnosis. The questionnaires were sent to patients with a diagnosis of PPS. A total of 124 questionnaires were analysed (male: 45, female: 79). Parts of the data were used to calculate a score. It was hypothesised that the score would demonstrate a higher load of orthopaedic symptoms in the PPS phase. The results show that the phase after poliomyelitis (stable phase vs. PPS phase) was associated with significantly different sum score relating to the orthopaedic impairments. The score in the stable phase is on average 18.6 units lower than that in the post-PPS diagnosis phase (p < 0.001). The hypothesis that in the PPS phase the load of orthopaedic symptoms is increased is confirmed by our data. The "loss of functioning in the upper extremity" is also significantly associated with the score (p = 0.004). At the time the survey was taken, patients reveal a high level of musculoskeletal impairments and disabilities after PPS than during the stable phase with regard to general health as well as pain status and performance of daily activities. Age has no significant impact. Many of the patients are severely limited, especially with regard to activities such as walking, climbing stairs, and performing simple household tasks. Since there is no causal therapy for the underlying degeneration of the anterior horn cell pools, treatment is focused on the compensation of the functional limitations. Georg Thieme Verlag KG Stuttgart · New York.
Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.
Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin
2017-11-16
Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.
Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.
Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue
2016-11-15
We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.
Pressure-induced collapsed-tetragonal phase in SrCo2As2
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.
2015-12-01
We present high-energy x-ray diffraction data under applied pressures up to p =29 GPa , neutron diffraction measurements up to p =1.1 GPa , and electrical resistance measurements up to p =5.9 GPa , on SrCo2As2 . Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T =7 K . The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferencesmore » of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.« less
NASA Astrophysics Data System (ADS)
Engstrom, T. A.; Yoder, N. C.; Crespi, V. H.
2016-02-01
A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Using large volume samplers for the monitoring of particle bound micro pollutants in rivers
NASA Astrophysics Data System (ADS)
Kittlaus, Steffen; Fuchs, Stephan
2015-04-01
The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This relatively low cost approach (less costs for analysis because of small sample number) allows to quantify the pollutant load, to derive dissolved-solid partition coefficients and to quantify the pollutant load in different particle size classes.
Montes, María; Veiga, María C; Kennes, Christian
2012-02-20
Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m⁻³ and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m⁻³ h⁻¹ (without silicone oil) and 608 g m⁻³ h⁻¹ (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-11-04
In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.
Computation of the phase response curve: a direct numerical approach.
Govaerts, W; Sautois, B
2006-04-01
Neurons are often modeled by dynamical systems--parameterized systems of differential equations. A typical behavioral pattern of neurons is periodic spiking; this corresponds to the presence of stable limit cycles in the dynamical systems model. The phase resetting and phase response curves (PRCs) describe the reaction of the spiking neuron to an input pulse at each point of the cycle. We develop a new method for computing these curves as a by-product of the solution of the boundary value problem for the stable limit cycle. The method is mathematically equivalent to the adjoint method, but our implementation is computationally much faster and more robust than any existing method. In fact, it can compute PRCs even where the limit cycle can hardly be found by time integration, for example, because it is close to another stable limit cycle. In addition, we obtain the discretized phase response curve in a form that is ideally suited for most applications. We present several examples and provide the implementation in a freely available Matlab code.
NASA Astrophysics Data System (ADS)
Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.
2015-07-01
The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.
2015-12-01
We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.
Sutaria, Shailen; Philipson, Peter; Fitzpatrick, Natalie K; Abrams, Keith; Moreno, Santiago G; Timmis, Adam; Hingorani, Aroon D; Hemingway, Harry
2012-04-01
Translational phases of study are important in evaluating whether a prognostic biomarker is likely to have impact on clinical practice but systematic evaluations of such evidence are lacking. To systematically evaluate the clinical usefulness of the published literature on the association of natriuretic peptides (NP) and prognosis in stable coronary disease. MEDLINE and EMBASE until the end of July 2009, without restrictions. Prospective studies measuring NP in people with stable coronary disease who were followed-up for all cause mortality, coronary or cardiovascular events. Two independent reviewers categorised studies according to the American Heart Association phase of study, and extracted data according to the study reporting guidelines from the American Heart Association and REMARK. Systematic review of 19 studies found 17 which were phase 2, reporting an association between NP and events, two phase 3 studies, statistically examining the incremental prognostic value of NP, but no studies assessing whether NP predicted risk sufficiently to change management (phase 4), improve clinical outcomes (phase 5) or cost effectiveness (phase 6). No study referred to a statistical analytic protocol. Meta-analysis of 14 studies, reporting 18,841 patients and 1655 outcome events, found an RR for events of 3.28 (95% CI 2.45 to 4.38) comparing top versus bottom third of NP. This effect was 26% lower among the five studies which adjusted for a priori confounders (age, sex, renal function and left ventricular function) and 38% lower when adjusting for publication bias (Egger's p=0.001). The unbiased strength of association of NP with prognosis in stable coronary disease is unclear, and there is a lack of reports of clinically useful measures of prediction and discrimination or studies relating NP levels to clinical decision making. The available literature is confined to early phases and is of limited clinical usefulness.
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.
2016-10-01
The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.
Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.
2013-01-01
Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808
Single-flavor CSL phase in compact stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, David; Bogoliubov Laboratory for Theoretical Physics, JINR, 141980 Dubna; Sandin, Fredrik
2008-08-29
We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by {beta}-equilibrium and charge neutrality. At about 3n{sub 0} u-quarks appear andmore » a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M{sub {center_dot}}. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation due to d-quark drip at the crust-core boundary fulfills basic criteria for a deep crustal heating process which is required to explain superbusts as well as cooling of X-ray transients.« less
Structure and phase composition of ultrafine-grained TiNb alloy after high-temperature annealings
NASA Astrophysics Data System (ADS)
Eroshenko, Anna Yu.; Glukhov, Ivan A.; Mairambekova, Aikol; Tolmachev, Alexey I.; Sharkeev, Yurii P.
2017-12-01
The paper presents the experimental data observed in the microstructure and phase composition of ultrafine-grained Ti-40 mass % Nb (Ti40Nb) alloy after high-temperature annealings. The ultrafine-grained Ti40Nb alloy is produced by severe plastic deformation (SPD). This method includes multiple abc-pressing and multi-pass rolling followed by further pre-recrystallizing annealing which, in its turn, enhances the formation of ultrafine-grained structures with mean size of 0.28 µm involving stable β- and α-phase and metastable nanosized ω-phase in the alloy. It is shown that annealing at 500°C preserves the ultrafine-grained structure and phase composition. In cases of annealing at 800°C the ultrafine-grained state transforms into the coarse-grained state. The stable β-phase and the nanosized metastable ω-phase have been identified in the coarse-grained structure.
Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng
2016-08-15
A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained.
Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S
2009-12-01
Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.
Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases
NASA Astrophysics Data System (ADS)
Weiner, S.
2003-12-01
The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.
Statistics of stable marriages
NASA Astrophysics Data System (ADS)
Dzierzawa, Michael; Oméro, Marie-José
2000-11-01
In the stable marriage problem N men and N women have to be matched by pairs under the constraint that the resulting matching is stable. We study the statistical properties of stable matchings in the large N limit using both numerical and analytical methods. Generalizations of the model including singles and unequal numbers of men and women are also investigated.
Ricci, A; Jullien, A; Forget, N; Crozatier, V; Tournois, P; Lopez-Martens, R
2012-04-01
We demonstrate compression of amplified carrier-envelope phase (CEP)-stable laser pulses using paired transmission gratings and high-index prisms, or grisms, with chromatic dispersion matching that of a bulk material pulse stretcher. Grisms enable the use of larger bulk stretching factors and thereby higher energy pulses with lower B-integral in a compact amplifier design suitable for long-term CEP control.
Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling
2016-01-01
Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.
Microfluidic control of droplet formation from stable emulsions formed by aqueous two-phase systems
NASA Astrophysics Data System (ADS)
Teixeira, Alyne G.; Tsai, Meng-Chiao; Frampton, John P.
2018-02-01
Aqueous two-phase systems (ATPSs) form from the thermodynamic separation of two dissolved incompatible solutes, such as two polymers, a polymer and a salt, and a polymer and a surfactant. At most supercritical concentrations, ATPS emulsions can be formed by vigorous mixing. These emulsions typically settle into distinct layers in minutes to hours. However, it is also possible to choose ATPS compositions with extremely long settling times that resemble stable emulsions. Here, we generated stable emulsions from a polyethylene glycol (PEG)-dextran ATPS by selecting ATPS compositions at the extreme ends of the tie lines connecting the binodal curve delineating phase-separating compositions. Droplets of PEG in a continuous dextran phase did not coalesce appreciably over the course of several days when stored in a conical tube or syringe. However, upon exposure to laminar flow conditions in a microfluidic channel, droplets were observed to coalesce. Through microscopic characterization of droplet volume, an increase in droplet size and decrease in overall droplet number was observed as a function of channel distance, suggesting a progressive droplet merging phenomenon. This novel approach to control droplet size by encouraging coalescence of stable emulsions under laminar flow in a microfluidic channel enables the production of droplets ranging from fL to several pL, which may enable various future biotechnology applications.
Oxygen vacancy chain and conductive filament formation in hafnia
NASA Astrophysics Data System (ADS)
Xue, Kan-Hao; Miao, Xiang-Shui
2018-04-01
The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.
Basar, A O; Castro, S; Torres-Giner, S; Lagaron, J M; Turkoglu Sasmazel, H
2017-12-01
In the present study, a single and binary Ketoprofen-loaded mats of ultrathin fibers were developed by electrospinning and their physical properties and drug release capacity was analyzed. The single mat was prepared by solution electrospinning of poly(ε-caprolactone) (PCL) with Ketoprofen at a weight ratio of 5wt%. This Ketoprofen-containing PCL solution was also used as the oil phase in a 7:3 (wt/wt) emulsion with gelatin dissolved in acidified water. The resultant stable oil-in-water (O/W) emulsion of PCL-in-gelatin, also containing Ketoprofen at 5wt%, was electrospun to produce the binary mat. Cross-linking process was performed by means of glutaraldehyde vapor on the electrospun binary mat to prevent dissolution of the hydrophilic gelatin phase. The performed characterization indicated that Ketoprofen was successfully embedded in the single and binary electrospun mats, i.e. PCL and PCL/gelatin, and both mats showed high hydrophobicity but poor thermal resistance. In vitro release studies interestingly revealed that, in comparison to the single PCL electrospun mat, the binary PCL/gelatin mat significantly hindered Ketoprofen burst release and exhibited a sustained release capacity of the drug for up to 4days. In addition, the electrospun Ketoprofen-loaded mats showed enhanced attachment and proliferation of L929 mouse fibroblast cells, presenting the binary mat the highest cell growth yield due to its improved porosity. The here-developed electrospun materials clearly show a great deal of potential as novel wound dressings with an outstanding controlled capacity to release drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2012 CFR
2012-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2013 CFR
2013-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
Wakelee, Heather A.; Lee, Ju-Whei; Hanna, Nasser H.; Traynor, Anne M.; Carbone, David P.; Schiller, Joan H.
2012-01-01
Introduction Sorafenib is a raf kinase and angiogenesis inhibitor with activity in multiple cancers. This phase II study in heavily pretreated non-small cell lung cancer (NSCLC) patients (≥ two prior therapies) utilized a randomized discontinuation design. Methods Patients received 400 mg of sorafenib orally twice daily for two cycles (two months) (Step 1). Responding patients on Step 1 continued on sorafenib; progressing patients went off study, and patients with stable disease were randomized to placebo or sorafenib (Step 2), with crossover from placebo allowed upon progression. The primary endpoint of this study was the proportion of patients having stable or responding disease two months after randomization. Results : There were 299 patients evaluated for Step 1 with 81 eligible patients randomized on Step 2 who received sorafenib (n=50) or placebo (n=31). The two-month disease control rates following randomization were 54% and 23% for patients initially receiving sorafenib and placebo respectively, p=0.005. The hazard ratio for progression on Step 2 was 0.51 (95% CI 0.30, 0.87, p=0.014) favoring sorafenib. A trend in favor of overall survival with sorafenib was also observed (13.7 versus 9.0 months from time of randomization), HR 0.67 (95% CI 0.40-1.11), p=0.117. A dispensing error occurred which resulted in unblinding of some patients, but not before completion of the 8 week initial step 2 therapy. Toxicities were manageable and as expected. Conclusions : The results of this randomized discontinuation trial suggest that sorafenib has single agent activity in a heavily pretreated, enriched patient population with advanced NSCLC. These results support further investigation with sorafenib as a single agent in larger, randomized studies in NSCLC. PMID:22982658
Chawla, Sant P; Cranmer, Lee D; Van Tine, Brian A; Reed, Damon R; Okuno, Scott H; Butrynski, James E; Adkins, Douglas R; Hendifar, Andrew E; Kroll, Stew; Ganjoo, Kristen N
2014-10-10
TH-302, a prodrug of the cytotoxic alkylating agent bromo-isophosphoramide mustard, is preferentially activated in hypoxic conditions. This phase II study investigated TH-302 in combination with doxorubicin, followed by single-agent TH-302 maintenance therapy in patients with first-line advanced soft tissue sarcoma (STS) to assess progression-free survival (PFS), response rate, overall survival, safety, and tolerability. In this open-label phase II study, TH-302 300 mg/m(2) was administered intravenously on days 1 and 8 with doxorubicin 75 mg/m(2) on day 1 of each 21-day cycle. After six cycles, patients with stable and/or responding disease could receive maintenance monotherapy with TH-302. Ninety-one patients initiated TH-302 plus doxorubicin induction treatment. The PFS rate at 6 months (primary efficacy measure) was 58% (95% CI, 46% to 68%). Median PFS was 6.5 months (95% CI, 5.8 to 7.7 months); median overall survival was 21.5 months (95% CI, 16.0 to 26.2 months). Best tumor responses were complete response (n = 2 [2%]) and partial response (n = 30 [34%]). During TH-302 maintenance (n = 48), five patients improved from stable disease to partial response, and one patient improved from partial to complete response. The most common adverse events during induction were fatigue, nausea, and skin and/or mucosal toxicities as well as anemia, thrombocytopenia, and neutropenia. These were less severe and less frequent during maintenance. There was no evidence of TH-302-related hepatic, renal, or cardiac toxicity. PFS, overall survival, and tumor response compared favorably with historical outcomes achieved with other first-line chemotherapies for advanced STS. A phase III study of TH-302 is ongoing (NCT01440088). © 2014 by American Society of Clinical Oncology.
30 CFR 77.806 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...
Dilute condition corrosion behavior of glass-ceramic waste form
Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...
2016-08-11
Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-01-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954
Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal
NASA Astrophysics Data System (ADS)
Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng
2015-03-01
A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.
Dilute condition corrosion behavior of glass-ceramic waste form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.
Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less
NASA Astrophysics Data System (ADS)
Weidinger, Simon A.; Knap, Michael
2017-04-01
We study the regimes of heating in the periodically driven O(N)-model, which is a well established model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green’s function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an exponent that approaches the universal value of 1/2, and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems.
NASA Astrophysics Data System (ADS)
Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.
2017-11-01
In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .
Iriarte, Ana G; Cutin, Edgardo H; Argüello, Gustavo A
2014-01-01
The synthesis of [chloro(difluor)acetyl]phosphorimidic trichloride (ClF2CC(O)NPCl3), together with a tentative assignment of the vibrational, NMR and mass spectra, are reported. Quantum chemical calculations (MP2 and B3LYP methods with 6-311+G(d) and 6-311+G(2df,p) basis sets) predict three stable conformers in the gas phase (syn, gauche and anti, defined according to the rotation around both the ClCCN and the CCNP dihedral angles). However, only a single C1 symmetry conformer is observed in the liquid phase, possessing the CO double bond in synperiplanar orientation with respect to the PN double bond, and the ClC bond distorted from the plane defined by the CC(O)NP entity. A Natural Bond Orbital (NBO) analysis was carried out for the title compound and related molecules in order to provide an explanation about the electronic properties. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.
2018-04-01
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.
NASA Astrophysics Data System (ADS)
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-06-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread--an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.
High Mn austenitic stainless steel
Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN
2010-07-13
An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
San, Anh T; Joyce, Daryl C; Hofman, Peter J; Macnish, Andrew J; Webb, Richard I; Matovic, Nicolas J; Williams, Craig M; De Voss, James J; Wong, Siew H; Smyth, Heather E
2017-04-15
Reported herein is a high throughput method to quantify in a single analysis the key volatiles that contribute to the aroma of commercially significant mango cultivars grown in Australia. The method constitutes stable isotope dilution analysis (SIDA) in conjunction with headspace (HS) solid-phase microextraction (SPME) coupled with gas-chromatography mass spectrometry (GCMS). Deuterium labelled analogues of the target analytes were either purchased commercially or synthesised for use as internal standards. Seven volatiles, hexanal, 3-carene, α-terpinene, p-cymene, limonene, α-terpinolene and ethyl octanoate, were targeted. The resulting calibration functions had determination coefficients (R 2 ) ranging from 0.93775 to 0.99741. High recovery efficiencies for spiked mango samples were also achieved. The method was applied to identify the key aroma volatile compounds produced by 'Kensington Pride' and 'B74' mango fruit and by 'Honey Gold' mango sap. This method represents a marked improvement over current methods for detecting and measuring concentrations of mango fruit and sap volatiles. Copyright © 2016 Elsevier Ltd. All rights reserved.
1.6 μm dissipative soliton fiber laser mode-locked by cesium lead halide perovskite quantum dots.
Liu, Bang; Gao, Lei; Cheng, Wei Wei; Tang, Xiao Sheng; Gao, Chao; Cao, Yu Long; Li, Yu Jia; Zhu, Tao
2018-03-19
We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr 3 -QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows that it has a modulation depth of 2.5% and a saturation power of 17.29 MW/cm 2 . After incorporating the fabricated device into an Er 3+ -doped fiber ring cavity with a net normal dispersion of 0.238 ps 2 , we obtain stable dissipative soliton with a pulse duration of 14.4 ps and a center wavelength at 1600 nm together with an edge-to-dege bandwidth of 4.5 nm. The linear chirped phase can be compensated by 25 m single mode fiber, resulting into a compressed pulse duration of 1.046 ps. This experimental works proves that such CsPbBr3-QDs materials are effective choice for ultrafast laser operating with devious mode-locking states.
Robust controller design for flexible structures using normalized coprime factor plant descriptions
NASA Technical Reports Server (NTRS)
Armstrong, Ernest S.
1993-01-01
Stabilization is a fundamental requirement in the design of feedback compensators for flexible structures. The search for the largest neighborhood around a given design plant for which a single controller produces closed-loop stability can be formulated as an H(sub infinity) control problem. The use of normalized coprime factor plant descriptions, in which the plant perturbations are defined as additive modifications to the coprime factors, leads to a closed-form expression for the maximum neighborhood boundary allowing optimal and suboptimal H(sub infinity) compensators to be computed directly without the usual gamma iteration. A summary of the theory on robust stabilization using normalized coprime factor plant descriptions is presented, and the application of the theory to the computation of robustly stable compensators for the phase version of the Control-Structures Interaction (CSI) Evolutionary Model is described. Results from the application indicate that the suboptimal version of the theory has the potential of providing the bases for the computation of low-authority compensators that are robustly stable to expected variations in design model parameters and additive unmodeled dynamics.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo
2015-04-01
We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.
2013-01-01
The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at aw (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen. PMID:24027438
Braun, Doris E; Bhardwaj, Rajni M; Arlin, Jean-Baptiste; Florence, Alastair J; Kahlenberg, Volker; Griesser, Ulrich J; Tocher, Derek A; Price, Sarah L
2013-09-04
The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at a w (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen.
NASA Astrophysics Data System (ADS)
Bai, Weihua; Liu, Congliang; Meng, Xiangguang; Sun, Yueqiang; Kirchengast, Gottfried; Du, Qifei; Wang, Xianyi; Yang, Guanglin; Liao, Mi; Yang, Zhongdong; Zhao, Danyang; Xia, Junming; Cai, Yuerong; Liu, Lijun; Wang, Dongwei
2018-02-01
The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou System (BDS) and the US Global Positioning System (GPS). An ultra-stable oscillator with 1 s stability (Allan deviation) at the level of 10-12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and four medium Earth orbit (MEO) satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013) for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation) of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 %) over the upper troposphere and lower stratosphere. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise. The validation results indicate that GNOS can provide, on top of GPS RO profiles, accurate and precise BDS RO profiles both from single- and zero-difference processing. The GNOS observations by the series of FY-3 satellites are thus expected to provide important contributions to numerical weather prediction and global climate change analysis.
High-pressure compressibility and vibrational properties of (Ca,Mn)CO 3
Liu, Jin; Caracas, Razvan; Fan, Dawei; ...
2016-12-01
Knowledge of potential carbon carriers such as carbonates is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Here we investigated the high-pressure behavior of (Ca,Mn)CO 3 up to 75 GPa by synchrotron single-crystal X-ray diffraction, laser Raman spectroscopy, and theoretical calculations. MnCO 3-rich carbonate underwent a structural phase transition from the CaCO 3-I structure into the CaCO 3-VI structure at 45–48 GPa, while CaCO 3-rich carbonate transformed into CaCO 3-III and CaCO 3-VI at approximately 2 and 15 GPa, respectively. The equation of state and vibrational properties of MnCO 3-rich and CaCO 3-richmore » carbonates changed dramatically across the phase transition. The CaCO 3-VI-structured CaCO 3-rich and MnCO 3-rich carbonates were stable at room temperature up to at least 53 and 75 GPa, respectively. In conclusion, the addition of smaller cations (e.g., Mn 2+, Mg 2+, and Fe 2+) can enlarge the stability field of the CaCO 3-I phase as well as increase the pressure of the structural transition into the CaCO 3-VI phase.« less
Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa
2013-08-02
An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.
Bittihn, Philip; Squires, Amgad; Luther, Gisa; Bodenschatz, Eberhard; Krinsky, Valentin; Parlitz, Ulrich; Luther, Stefan
2010-01-01
Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments. PMID:20368243
Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S
2018-06-18
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen
During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less
Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.
Lee, Woochul; Reddy, Pramod
2011-12-02
The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.
Structural transformations in Ge{sub 2}Sb{sub 2}Te{sub 5} under high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mio, A. M.; Privitera, S., E-mail: stefania.privitera@imm.cnr.it; D'Arrigo, G.
2015-08-14
The structural transformations occurring in Ge{sub 2}Sb{sub 2}Te{sub 5} films heated at temperature up to 400 °C, and under hydrostatic pressure up to 12 GPa, have been investigated through in-situ X ray diffraction measurements. The adopted experimental conditions are close to those experienced by the phase change material during the SET (crystallization)/RESET (amorphization) processes in a nonvolatile memory device. The compression enhances the thermal stability of the amorphous phase, which remains stable up to 180 °C at 8 GPa and to 230 °C at 12 GPa. The structure of the crystalline phases is also modified, with the formation of a CsCl-type structure instead of rock-salt andmore » of a GeS-type structure at the temperature at which usually the trigonal stable phase is formed. Overall, the stability of the stable phase appears to be more affected by the compression. We argue that the presence of weak bonds associated to the van der Waals gaps is a determining factor for the observed reduced stability.« less
Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation
NASA Astrophysics Data System (ADS)
Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal
2018-04-01
Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.
Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B
2016-01-30
The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Emergence of multiple synchronization modes in hydrodynamically-coupled cilia
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanso, Eva
2016-11-01
Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
On the location of acid-hydrolysable carbon in lunar soil fines
NASA Technical Reports Server (NTRS)
Fallick, A. E.; Wright, I. P.; Pillinger, C. T.; Stephenson, A.; Morris, R. V.
1982-01-01
Soil fines exposed on the lunar surface accumulate small metallic iron particles and solar wind-derived carbon. In previous work, it has been suggested that an intimate association exists between one particular carbon phase, hydrolysable carbon, and very fine iron droplets, where the carbon is in solid solution in the iron. The earlier hypothesis of a constant carbon in iron concentration across a broad range of droplet sizes is testable by combining hydrolysable carbon determinations with a variety of magnetic measurements sensitive to different droplet diameters. New measurements of ferromagnetic resonance response on density and magnetic separates from size fractions of soil 12023 are interpreted as evidence that hydrolysable carbon is preferentially associated with the larger, magnetically stable single-domain iron particles rather than with the smaller superparamagnetic droplets. For the former, there is a quite uniform ratio of iron to carbon both within a series of separates from a single soil, and among soils of widely varying FeO content.
Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid
NASA Astrophysics Data System (ADS)
Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O'Keeffe, Michael
2014-12-01
We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.
Phase Behavior of a Single Structured Ionomer Chain in Solution
Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; ...
2014-08-14
Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less
Exploring the Clapeyron Equation and the Phase Rule Using a Mechanical Drawing Toy
ERIC Educational Resources Information Center
Darvesh, Katherine V.
2013-01-01
The equilibrium between phases is a key concept from the introductory physical chemistry curriculum. Phase diagrams display which phase is the most stable at a given temperature and pressure. If more than one phase has the lowest Gibbs energy, then those phases are in equilibrium under those conditions. An activity designed to demonstrate the…
NASA Astrophysics Data System (ADS)
Bava, Yanina B.; Tamone, Luciana M.; Juncal, Luciana C.; Seng, Samantha; Tobón, Yeny A.; Sobanska, Sophie; Picone, A. Lorena; Romano, Rosana M.
2017-07-01
The IR spectrum of methyl thioglycolate (MTG) was studied in three different phases, and interpreted with the aid of DFT calculations. The gas phase IR spectrum was explainable by the presence of the most stable conformer (syn-gauche-(-)gauche) only, while the IR spectrum of the liquid reveals strong intermolecular interactions, coincident with the formation of a dimeric form. The matrix-isolated spectra allow the identification of the second conformer (syn-gauche-gauche), in addition to the most stable form. The MTG dimer was also isolated by increasing the proportion of MTG in the matrix. The theoretical most stable structure of the dimer, which calculated IR spectrum agrees very well with the experimental one, is stabilized by a double interaction of the lone pair of the O atom of each of the Cdbnd O groups with the antibonding orbitals σ* (Ssbnd H).
Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs
Sekkal, W.; Zaoui, A.
2013-01-01
Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842
Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs.
Sekkal, W; Zaoui, A
2013-01-01
Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m(2)) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m(2), i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.
Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs
NASA Astrophysics Data System (ADS)
Sekkal, W.; Zaoui, A.
2013-04-01
Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.
NASA Astrophysics Data System (ADS)
Raulerson, S.; Volkmann, T.; Pangle, L. A.
2017-12-01
Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making temporally resolved measurements of the stable isotopes in xylem water, using a setup that can be easily repeated by other research groups. The method is anticipated to find broad application in ecohydrological analyses, and in tracer studies aimed at quantifying age distributions of soil water extracted by plant roots.
Effect of Al on stability of DHMS up to the uppermost lower mantle
NASA Astrophysics Data System (ADS)
Xu, C.; Inoue, T.
2017-12-01
Water plays an important role on Earth. It influences the physical and chemical property of minerals and melts, which further effects the evolution of the Earth. A series of dense hydrous magnesium silicate (DHMS) phases such as phase A (PhA), phase E (PhE), superhydrous phase B (SUB) and phase D (PhD) have been suggested as potential water carriers to transition zone and even to the lower mantle under the conditions present in the cold subducting slabs [e.g. Kawamoto, 2004; Komabayashi and Omori, 2006]. Because of its importance, the DHMS have been widely studied by using different starting materials in MgO-SiO2-H2O system. Recently, the newly reported Al-PhD is stable at temperatures up to 2,000 °C at 26 GPa, which indicates aluminum increases stability regions of DHMS [e.g. Pamato et al., 2015]. To systematically study the effect of Al on the stability of hydrous phases, we use Kawai-type high pressure apparatus to investigate nature clinochlore, which contains about 15 wt% H2O and about 14 wt% Al2O3. The Al-bearing hydrous PhE, SUB and PhD were observed with P-T increasing. Following the P-T path of cold subduction, the phase assemblage PhE + PhD is stable at 14-23 GPa, and even a trace of PhE is detected at 1150°C and 25 GPa coexisting with PhD. The phase SUB is stable between 16-22 GPa coexisting with PhE + PhD. Following the P-T path of hot subduction, the phase assemblage PhE + Gt is observed at 14-18 GPa coexisting with fluid or melt. The phase assemblage SUB + PhD is stable at 18-25 GPa, which may extend to higher pressures and temperatures. Therefore, it is obvious that Al enhances the stabilities of these three hydrous minerals, which are stable even in the hot subducting conditions. On the other hand, the Al substitution mechanism in PhE, SUB and PhD were clarified according to chemical compositional relationship between Mg, Si, Al. This shows that they can hold a significant amount of H (water) in their structure. Our results may indicate that the wide stabilities of Al-bearing DHMS increase the chance of water transportation to deeper mantle after antigorite (serpentine) decomposition at the shallow region of the subduction zone.
NASA Astrophysics Data System (ADS)
Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.
2017-01-01
We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.
Reactions between palladium and gallium arsenide: Bulk versus thin-film studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Hsieh, K.; Schulz, K.J.
1988-01-01
Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (approx.0.6 mm thick)/GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600 /sup 0/C between bulk Pd and GaAs was established. Initial formation of the solution phase ..mu.. and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs chemically bondepsilonchemically bondlambdachemically bond..gamma..chemically bond..nu..chemically bondPd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500 /sup 0/C. Phase formation for the thin-film Pd/GaAsmore » specimens was studied at 180, 220, 250, 300, 350, 400, 450, 600, and 1000 /sup 0/C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga--Pd--As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd--GaAs interface or any other M--GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.« less
Pickavance, John; Azmoodeh, Arianne; Wilson, Andrew D
2018-06-01
The stability of coordinated rhythmic movement is primarily affected by the required mean relative phase. In general, symmetrical coordination is more stable than asymmetrical coordination; however, there are two ways to define relative phase and the associated symmetries. The first is in an egocentric frame of reference, with symmetry defined relative to the sagittal plane down the midline of the body. The second is in an allocentric frame of reference, with symmetry defined in terms of the relative direction of motion. Experiments designed to separate these constraints have shown that both egocentric and allocentric constraints contribute to overall coordination stability, with the former typically showing larger effects. However, separating these constraints has meant comparing movements made either in different planes of motion, or by limbs in different postures. In addition, allocentric information about the coordination is either in the form of the actual limb motion, or a transformed, Lissajous feedback display. These factors limit both the comparisons that can be made and the interpretations of these comparisons. The current study examined the effects of egocentric relative phase, allocentric relative phase, and allocentric feedback format on coordination stability in a single task. We found that while all three independently contributed to stability, the egocentric constraint dominated. This supports previous work. We examine the evidence underpinning theoretical explanations for the egocentric constraint, and describe how it may reflect the haptic perception of relative phase. Copyright © 2018 Elsevier B.V. All rights reserved.
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
Synthesis of superconducting phases in Tl-Ba-Ca-Cu-O system
NASA Astrophysics Data System (ADS)
Bayya, S. S.; Stangle, G. C.; Snyder, R. L.
1992-04-01
This paper describes various novel processing techniques for the synthesis of superconducting phases in the Ti-Ba-Ca-Cu-O system. A Self propagating high temperature synthesis technique has been used to synthesize phase pure 2212 and 2223. Various engineering parameters are identified for this process. A glass-ceramic (melt quench) technique with subsequent post heat-treatment produced pure 2201 and 2212 phases. Tl2O3 itself is not a very good glass former and the addition of other glass formers is necessary to form stable glasses. Only the gallate glass system has been found to stabilize the 2201 and 2212 superconducting phases. Molten salt synthesis studies showed that the superconducting phases in the thallium system are stable in the NaCl-KCl eutectic salt system. Highly textured 2201 grains (about 60 μm×60 ¯ platelets) were grown by this technique. Various potential applications of these techniques are also discussed.
Exploration of phase transition in Th2C under pressure: An Ab-initio investigation
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.
2018-05-01
With the motivation of searching for new compounds in the Th-C system, we have performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0-100 GPa. We have found previously unknown, thermodynamically stable, composition Th2C along with experimentally known ThC, ThC2 and Th2C3 phases at 0 GPa. Interestingly at pressure of 13 GPa the predicted ground state orthorhombic (SG no. 59, Pmmn) phase of Th2C transforms to trigonal (SG no. 164, P-3m1) phase. We also find the mechanical and dynamical stability of both the phases. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of Pmmn phase at ambient conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W.
NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2more » to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.« less
Chemical properties of ground water and their corrosion and encrustation effects on wells
Barnes, Ivan; Clarke, Frank Eldridge
1969-01-01
Well waters in Egypt, Nigeria, and West Pakistan were studied for their chemical properties and corrosive or encrusting behavior. From the chemical composition of the waters, reaction states with reference to equilibrium were tested for 29 possible coexisting oxides, carbonates, sulfides, and elements. Of the 29 solids considered, only calcite, CaCO3, and ferric hydroxide, Fe(OH)3, showed any correlation with the corrosiveness of the waters to mild steel (iron metal). All 39 of the waters tested were out of equilibrium with iron metal, but those waters in equilibrium or supersaturated with both calcite and ferric hydroxide were the least corrosive. Supersaturation with other solid phases apparently was unrelated to corrosion. A number of solids may form surface deposits in wells and lead to decreased yields by fouling well intakes (screens and gravel packs) or increasing friction losses in casings. Calcite, CaCO3; ferric hydroxide, Fe(OH)3; magnetite, Fe3O4; siderite, FeCO3; hausmannite, Mn304 (tetragonal); manganese spinel, Mn3O4 (isometric); three iron sulfides mackinawite, FeS (tetragonal); greigite, Fe3S4 (isometric); and smythite, Fe3S4 (rhombohedral)-copper hydroxide, Co(OH)2; and manganese hydroxide, Mn(OH)2, were all at least tentatively identified in the deposits sampled. Of geochemical interest is the demonstration that simple stable equilibrium models fail in nearly every case to predict compositions of water yielded by the wells studied. Only one stable phase (calcite) was found to exhibit behavior approximately predictable from stable equilibrium considerations. No other stable phase was found to behave as would be predicted from equilibrium considerations. All the solids found to precipitate (except calcite) are metastable in that they are not the least soluble phases possible in the systems studied. In terms of metastable equilibrium, siderite and ferric hydroxide behave approximately as would be predicted from equilibrium considerations, but both are metastable and the presence of neither would be anticipated if only the most stable phases were considered. The behaviors of none of the other solids would be predictable from either stable or metastable equilibrium considerations. An unanswered problem raised by the study reported here is how, or by what paths, truly stable phases form if first precipitates are generally metastable.The utility of the findings in well design and operation is in no way impaired by the general lack of equilibrium. Conditions leading to either corrosion (which is related to lack of supersaturation with protective phases), or encrustation (supersaturation with phases that were found to precipitate), or both, apparently can be identified. The application of the methods described can be of great importance in developing unexploited ground-water resources in that certain practical problems can be identified before extensive well construction and unnecessary well failure.
SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure
NASA Astrophysics Data System (ADS)
Soni, Namrata D.
2018-04-01
Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.
Paper diagnostic for instantaneous blood typing.
Khan, Mohidus Samad; Thouas, George; Shen, Wei; Whyte, Gordon; Garnier, Gil
2010-05-15
Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing.
NASA Technical Reports Server (NTRS)
Holt, R. G.; Gaitan, D. F.
1996-01-01
Teh region of parameter space (acoustic pressure P(sub a), bubble radius R(sub 0)) in which stable single bubble sonoluminescence (SBSL) occurs in an air-water system is a small fraction of that which is accesible. This is due ot the existence of an island of dissolution at high P(sub a) and small R(sub 0).
NASA Astrophysics Data System (ADS)
Reed, M. D.; Kilkenny, D.; O'Toole, S.; Østensen, R. H.; Honer, C.; Gilker, J. T.; Quint, A. C.; Doennig, A. M.; Hicks, L. H.; Thompson, M. A.; McCart, P. A.; Zietsman, E.; Chen, W.-P.; Chen, C.-W.; Lin, C.-C.; Beck, P.; Degroote, P.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; Lacluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Baran, A.; Winiarski, M.; Drozdz, M.
2012-03-01
We present follow-up observations of the pulsating subdwarf B (sdB) star EC 01541-1409 as part of our efforts to resolve pulsation spectra for use in asteroseismological analyses. This paper reports on data obtained from a single-site campaign, during 2008, and a multisite campaign, during 2009. From limited 2008 data, we were able to clearly resolve and pre-whiten 24 periods. A subsequent multisite campaign spanning nearly 2 months found over 30 individual periodicities most of which were unstable in amplitude and/or phase. Pulsation amplitudes were found to the detection limit, meaning that further observations would likely reveal more periodicities. EC 01541-1409 reveals itself to be one of two sdB pulsators with many pulsation frequencies covering a large frequency range. Unlike the other star of this type (PG 0048+091), it has one high-amplitude periodicity which appears phase stable, making EC 01541-1409 an excellent candidate for exoplanet studies via pulsation phases. No multiplets were detected leaving EC 01541-1409 as yet another rich p-mode sdB pulsator without these features, limiting observational constraints on pulsation modes.
Thermal management of high power space based systems
NASA Technical Reports Server (NTRS)
Hwangbo, H.; Mcever, W. S.
1985-01-01
Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.
NASA Astrophysics Data System (ADS)
Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun
2017-04-01
Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.
2016-06-01
A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Frouin, Robert; Deschamps, Pierre-Yves
1997-01-01
Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.
Deng, Zeyu; Wei, Fengxia; Brivio, Federico; Wu, Yue; Sun, Shijing; Bristowe, Paul D; Cheetham, Anthony K
2017-10-19
Two hybrid rare-earth double perovskites, (CH 3 NH 3 ) 2 KGdCl 6 and (CH 3 NH 3 ) 2 KYCl 6 , have been synthesized by a solution evaporation method and their structures determined by variable temperature single-crystal X-ray diffraction. The diffraction results show that at room temperature both perovskites adopt a rhombohedral structure with R3̅m symmetry, as found previously for (MA) 2 KBiCl 6 , and lattice parameters of a = 7.7704(5) Å and c = 20.945(2) Å for (MA) 2 KGdCl 6 and a = 7.6212(12) Å and c = 20.742(4) Å for (MA) 2 KYCl 6 . Both phases exhibit a rhombohedral-to-cubic phase transition on heating to ∼435 K for (MA) 2 KYCl 6 and ∼375 K for (MA) 2 KGdCl 6 . Density functional calculations on the rhombohedral phase indicate that both materials have large direct band gaps, are mechanically stable, and, in the case of (MA) 2 KGdCl 6 , could exhibit magnetic ordering at low temperatures.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-03-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.
NASA Astrophysics Data System (ADS)
Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie
2017-08-01
We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-01-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545
NASA Astrophysics Data System (ADS)
Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.
2016-12-01
The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.
Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
NASA Astrophysics Data System (ADS)
Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke; Yamanaka, Shoji
2009-01-01
Formation conditions of two types of sodium containing silicon clathrate compounds were determined by the controlled thermal decomposition of sodium monosilicide NaSi under vacuum. The decomposition began at 360 °C. Much higher decomposition temperatures and the presence of sodium metal vapor were favorable for the formation of type I clathrate compound Na 8Si 46. Type II clathrate compound Na xSi 136 was obtained as a single phase at a decomposition temperature <440 °C under the condition without sodium metal vapor. The type I clathrate compound was decomposed to crystalline Si above 520 °C. The type II clathrate compound was thermally more stable, and retained at least up to 550 °C in vacuum.
NASA Astrophysics Data System (ADS)
Akkuzina, A. A.; Khomyakov, A. V.; Avetisov, R. I.; Avetissov, I. Ch.
2017-04-01
Single-phase crystalline luminophore tris(8-hydroxyquinoline) aluminum (Alq3) has been synthesized at T = 483 K and a partial pressure of 8-hydroxyquinoline vapor from 0.15 to 6.12 Torr. The influence of P 8-Hq on the luminescent characteristics of crystalline Alq3 samples has been studied. It has been found that an increase in P 8-Hq led to a shift of the photoluminescence-band maximum and to a change in the photoluminescence-decay kinetics. It has been shown that Alq3 synthesized at T = 483 K and P 8-Hq = 6.12 Torr had the most stable spectral-luminescent characteristics. The results obtained are discussed taking into account defect formation in crystalline Alq3.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Bergslien, Elisa; Fountain, John
2006-12-15
By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.
Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing
NASA Astrophysics Data System (ADS)
Parker, John S.
Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb bandwidths to 2.5 THz. Active mode-locking with an RF source was used to precisely set the frequency spacing between comb lines with better than 10 Hz accuracy. An integrated optical phase-locked loop (OPLL) for the comb was designed, built, and tested. The OPLL fixed a single comb line to a stable single linewidth laser, demonstrating a ˜430 Hz FWHM optical linewidth on the locked comb line and 20º RMS phase deviation between the comb and optical reference. The free-running linewidth is 50--100 MHz, demonstrating over 50 dB improvement in optical linewidth via locking. An integrated tunable laser (SG-DBR) with an OPLL was phase-locked to a comb source with a fixed offset frequency, thus showing the potential for using a comb with SG-DBRs as a compact frequency synthesizer.
Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites.
Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Stoumpos, Constantinos C; Soe, Chan Myae Myae; Yoo, Jinkyoung; Crochet, Jared; Tretiak, Sergei; Even, Jacky; Sadhanala, Aditya; Azzellino, Giovanni; Brenes, Roberto; Ajayan, Pulickel M; Bulović, Vladimir; Stranks, Samuel D; Friend, Richard H; Kanatzidis, Mercouri G; Mohite, Aditya D
2018-02-01
State-of-the-art light-emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors, but high fabrication cost has limited their widespread use for large area solid-state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure 2D Ruddlesden-Popper (RP) halide perovskites with a formula (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n -1 Pb n I 3 n +1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr -1 cm -2 at 744 nm with an ultralow turn-on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase-pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm -2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data
NASA Astrophysics Data System (ADS)
Bai, L.; Hong, W.; Cao, F.; Zhou, Y.
2009-04-01
In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.
30 CFR 75.905 - Connection of single-phase loads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
30 CFR 75.905 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
NASA Astrophysics Data System (ADS)
Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.
2018-03-01
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.
NASA Astrophysics Data System (ADS)
Till, J. L.; Nowaczyk, N.
2018-06-01
The iron oxyhydroxide goethite is unstable at elevated temperatures and can transform to magnetite under reducing conditions. In this study, various heating experiments were conducted to simulate Fe-mineral transformations during pyrogenic or burial diagenesis alteration in the presence of organic matter. Thermomagnetic measurements, capsule heating experiments and thermochemical remanence acquisition measurements were performed to determine the effect of organic carbon additions on samples containing synthetic microcrystalline goethite, microcrystalline hematite or nanocrystalline goethite. Changes in magnetic properties with heating were monitored to characterize the magnetic behaviour of secondary magnetite and hematite formed during the experiments. Authigenic magnetite formed in all samples containing organic C, while goethite heated without organic C altered to poorly crystalline pseudomorphic hematite. The concentration of organic matter was found to have little influence on the rate or extent of reaction or on the characteristics of the secondary phases. Authigenic magnetite formed from microcrystalline goethite and hematite dominantly behaves as interacting single-domain particles, while nanophase goethite alters to a mixture of small single-domain and superparamagnetic magnetite. Authigenic magnetite and hematite both acquire a stable thermochemical remanence on heating to temperatures between 350 and 600 °C, although the remanence intensity acquired below 500 °C is much weaker than that at higher temperatures. Reductive transformation of fine-grained goethite or hematite is therefore a potential pathway for the production of authigenic magnetite and the generation of stable chemical remanence that may be responsible for remagnetization in organic-matter-bearing sedimentary rocks.
Morón, Fanny; Delumpa, Alfred; Guffey, Danielle; Dunaway, David
2017-01-01
Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial) versus single phase (arterial) CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695). These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient. PMID:28828238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu
2017-02-01
In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less
Calculating phase diagrams using PANDAT and panengine
NASA Astrophysics Data System (ADS)
Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.
2003-12-01
Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.
Metallic hydrogen with a strong electron-phonon interaction at a pressure of 300-500 GPa
NASA Astrophysics Data System (ADS)
Degtyarenko, N. N.; Mazur, E. A.; Grishakov, K. S.
2017-08-01
Atomic metallic hydrogen with a lattice with FDDD symmetry is shown to have a stable phase under hydrostatic compression pressure in the range of 350-500 GPа. The resulting structure has a stable spectrum regarding the collapse of the phonons. Ab-unitio simulation method has been used to calculate the structural, electronic, phononic and other characteristics of the normal metallic phase of the hydrogen at a pressure of 350-500 GPA.
Decomposition Products of Phosphine Under Pressure: PH 2 Stable and Superconducting?
Shamp, Andrew; Terpstra, Tyson; Bi, Tiange; ...
2016-02-17
Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PH n, n = 1 - 6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH 2 and H 2. Three metallic PH 2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2=m symmetry (5FU-C2=m). It is comprised of 1D periodic PH 3-PH-PH 2-PH-PH 3 oligomers. Twomore » structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4=mmm and 2FU-C 2=m) were the most stable phases between 160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, . Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.« less