Science.gov

Sample records for stable water isotope

  1. Tritium and stable isotopes of magmatic waters

    NASA Astrophysics Data System (ADS)

    Goff, F.; McMurtry, G. M.

    2000-04-01

    To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parı´cutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1-5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO 2, S total, HCl, HF, B, Br, 3He R/ RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/ δ18O and 3H/ δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H 2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).

  2. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  3. Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    PubMed Central

    O'Grady, Shannon P.; Wende, Adam R.; Remien, Christopher H.; Valenzuela, Luciano O.; Enright, Lindsey E.; Chesson, Lesley A.; Abel, E. Dale; Cerling, Thure E.; Ehleringer, James R.

    2010-01-01

    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis. PMID:20657736

  4. Stable isotopic composition of bottled mineral waters from Romania

    NASA Astrophysics Data System (ADS)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  5. Modelling of stable water isotopes in Central Europe with COSMOiso

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Pfahl, Stephan; Schädler, Gerd

    2016-04-01

    Atmospheric water in form of vapor or clouds is responsible for ˜75 % of the natural greenhouse effect and carries huge amounts of latent heat. For this reason, a best possible description of the hydrological cycle is a prerequisite for reliable climate modelling. As the stable isotopes H216O, H218O and HDO differ in vapor pressure, they are fractionated during phase changes and contain information about the formation of precipitation, evaporation from the ground, etc. Therefore, the isotopic composition of atmospheric water is an useful tracer to test and improve our understanding of the extremely complex and variable hydrological cycle in Earth's atmosphere. Within the project PalMod the isotope-enabled limited-area model COSMOiso will be used for high-resolution isotope simulations of paleo-climates. For validation with modern observations we compare 12 years of modelled isotope ratios from Central Europe to observations of the Global Network of Isotopes in Precipitation (GNIP) and to observations of isotope ratios of water vapor at different locations in Germany. We find a good agreement of modelled and observed isotope ratios in summer. In winter, we observe a systematic overestimation of modelled isotope ratios in precipitation and low-level water vapor. We relate those differences to specific circulation regimes with predominantly easterly moisture transport and the corresponding strong dependence of modelled isotope ratios on lateral boundary data. Furthermore, we investigate the dependence of modelled isotope ratios in winter on the type of isotope fractionation during surface evaporation at skin temperatures close to the freezing point.

  6. Divergence of stable isotopes in tap water across China

    NASA Astrophysics Data System (ADS)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-03-01

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical “continental effect”. (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale.

  7. Divergence of stable isotopes in tap water across China.

    PubMed

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-03-02

    Stable isotopes in water (e.g., δ(2)H and δ(18)O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ(2)H = 7.72 δ(18)O + 6.57 (r(2) = 0.95). (2) SITW spatial distribution presents typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale.

  8. Divergence of stable isotopes in tap water across China

    PubMed Central

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-01-01

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical “continental effect”. (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. PMID:28252670

  9. Assessing the Amazon Basin Circulation with Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    McGuffie, K.; Henderson-Sellers, A.

    2004-05-01

    The isotopic abundances of Oxygen-18 (δ 18O) and Deuterium (δ D) over the Amazon are used to constrain simulations of the water cycle in this, the largest river basin in the world. Tracking the two stable but rare isotopes of water (1HD16O and 1H218O) makes it possible to trace Amazonian regional evaporative and condensation processes. This offers isotopic constraints on regional to global-scale atmospheric moisture budgets. Based on data in the Global Network on Isotopes in Precipitation (GNIP) database, we analyse the simulation of the land surface hydrology and water cycling. Temporal changes between 1965 and 2000 in stable water isotopic signatures in the Amazon have been used to evaluate global climate model (GCM) predictions revealing notable anomalies. For example, the differences in the wet season deuterium excess between Belem and Manaus are consistent with recent GCM simulations only if there has been a relative increase in evaporation from non-fractionating water sources over this period. Despite earlier predictions that land-use change signals would be found, late twentieth century data reveal no significant change in dry season isotopic characteristics. On the other hand, more recent isotopic data do show trends at stations in the Andes, where as much as 88% of the rainfall is thought to be derived from recycled moisture. At Izobamba the wet season depletions are enhanced (greater depletion) and the dry season ones decreased (less depletion). At Bogota only the wet months show statistically significant changes - also an enhancement. More depletion in the wet months is consistent with reductions in non-fractioning recycling such as through transpiration and in full re-evaporation of canopy-intercepted rainfall. These data might be linked to deforestation impacts. Results of GCM and simpler model simulations of the Amazon suggest that the recent stable isotope record is consistent with the predicted effects of forest removal, perhaps combined with

  10. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  11. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  12. System for high throughput water extraction from soil material for stable isotope analysis of water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  13. Water budget determination for Northern groundwater dependent lakes using stable isotopes of water

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    Understanding groundwater - surface water interaction is crucial in numerous water resources management problems. Stable isotopes of water can bring understanding of this interaction especially in catchment scale questions. In this study stable isotopes were used in a Finnish esker aquifer (Lat 64.58° , Lon 26.50° ) where groundwater dependent lakes have suffered from seasonal water level declines. Esker aquifers are the main groundwater reserves in Finland used in water abstraction. In order to determine how hydrology of the lakes is dependent on groundwater, the isotopic composition of oxygen and hydrogen was studied from 36 sampling points during years 2010 to 2012. Samples were taken from 13 groundwater pipes, 11 lakes and 11 streams during winter, spring, summer and autumn. Additionally local precipitation was sampled. The CRDS-method (Picarro L2120-i analyzer) was used to analyze δ18O- and δ2H-values. The data from the study was used to define the Local Meteoric Water Line of the site (δ2H = 7.60 δ18O + 6.70) and the groundwater line of the esker aquifer (δ2H = 7.59 δ18O + 4.79). The groundwater line of the esker aquifer differs from the groundwater line of Finnish groundwaters (δ2H = 8.51 δ18O + 16.65) based on previous studies. This emphasizes the importance of using local isotopic values when stable isotopes of water are used in hydrological studies. Furthermore, the isotopic compositions of the examined lakes differed enough from the isotopic composition of the local groundwater to separate groundwater component in the lake hydrology. The results also verified that evaporation from lakes in Northern Finland can be high enough to utilize isotopic method for determination of groundwater and surface water interactions.

  14. Isotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach.

    PubMed

    Houhou, J; Lartiges, B S; France-Lanord, C; Guilmette, C; Poix, S; Mustin, C

    2010-01-01

    This paper investigates the potential of stable isotopes of both water (deltaD and deltaOH(2)O18) and dissolved sulfate (delta(34)S and deltaOSO(4)18) for determining the origin and the amount of clear waters entering an urban sewer. The dynamics of various hydrological processes that commonly occur within the sewer system such as groundwater infiltration, rainwater percolation, or stormwater release from retention basins, can be readily described using water isotope ratios. In particular, stable water isotopes indicate that the relative volumes of infiltrated groundwater and sewage remain approximately constant and independent of wastewater flow rate during the day, thus demonstrating that the usual quantification of parasitic discharge from minimal nocturnal flow measurements can lead to completely erroneous results. The isotopic signature of dissolved sulfate can also provide valuable information about the nature of water inputs to the sewage flow, but could not be used in our case to quantify the infiltrating water. Indeed, even though the microbial activity had a limited effect on the isotopic composition of dissolved sulfate at the sampling sites investigated, the dissolved sulfate concentration in sewage was regulated by the formation of barite and calcium-phosphate mineral species. Sulfate originating from urine was also detected as a source using the oxygen isotopic composition of sulfate, which suggests that deltaOSO(4)18 might find use as a urine tracer.

  15. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    USGS Publications Warehouse

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "

  16. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  17. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    PubMed

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  18. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  19. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  20. Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake.

    PubMed

    Xiao, Wei; Wen, Xuefa; Wang, Wei; Xiao, Qitao; Xu, Jingzheng; Cao, Chang; Xu, Jiaping; Hu, Cheng; Shen, Jing; Liu, Shoudong; Lee, Xuhui

    2016-01-01

    Stable isotopic compositions of lake water provide additional information on hydrological, meteorological and paleoclimate processes. In this study, lake water isotopic compositions were measured for more than three years in Lake Taihu, a large and shallow lake in southern China, to investigate the isotopic spatial and seasonal variations. The results indicated that (1) the whole-lake mean δ(2)H and δ(18)O values of the lake water varied seasonally from -48.4 ± 5.8 to -25.1 ± 3.2 ‰ and from -6.5 ± 0.9 to -3.5 ± 0.8 ‰, respectively, (2) the spatial pattern of the lake water isotopic compositions was controlled by the direction of water flow and not by local evaporation rate, and (3) using a one-site isotopic measurement to represent the whole-lake mean may result in unreasonable estimates of the isotopic composition of lake evaporation and the lake water residence time in poorly mixed lakes. The original data, documented here as an online supplement, provides a good reference for testing sensitivity of lake water budget to various isotopic sampling strategies. We propose that detailed spatial measurement of lake water isotopic compositions provides a good proxy for water movement and pollutant and alga transports, especially over big lakes.

  1. The use of stable isotopes in quantitative determinations of exogenous water and added ethanol in wines

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Moldovan, Z.; Cristea, G.

    2012-02-01

    The application of oxygen isotope ratios analysis to wine water according to EU regulation no. 822/97 to determine wine's origin and also, the possible water addition to wines, gained great importance in wines authenticity control. In the natural cycle of water isotopic fractionation, during water evaporation process, the water vapors are depleted in heavy isotopes. On the other hand inside the plants take place an isotope enrichment of heavy stable isotopes of water compared with meteoric water due to photosynthesis and plants transpiration. This process makes possible the detection of exogenous water from wines 18O/16O ratios. Carbon isotopic ratios were used to estimate the supplementary addition of ethanol obtained from C4 plants (sugar cane or corn). This work presents the way in which the isotopic fingerprints (δ13C and δ18O) were used to determine the content of exogenous water from wines and the added supplementary ethanol coming from C4 plants. By using this method, the calculated values obtained for the degree of wine adulteration were in a good agreement with the real exogenous percent of water and ethanol from investigated samples.

  2. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water—USGS50 Lake Kyoga Water

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.

    2015-01-01

    This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.

  3. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  4. Investigating surface water-well interaction using stable isotope ratios of water

    USGS Publications Warehouse

    Hunt, R.J.; Coplen, T.B.; Haas, N.L.; Saad, D.A.; Borchardt, M. A.

    2005-01-01

    Because surface water can be a source of undesirable water quality in a drinking water well, an understanding of the amount of surface water and its travel time to the well is needed to assess a well's vulnerability. Stable isotope ratios of oxygen in river water at the City of La Crosse, Wisconsin, show peak-to-peak seasonal variation greater than 4??? in 2001 and 2002. This seasonal signal was identified in 7 of 13 city municipal wells, indicating that these 7 wells have appreciable surface water contributions and are potentially vulnerable to contaminants in the surface water. When looking at wells with more than 6 sampling events, a larger variation in ??18O compositions correlated with a larger fraction of surface water, suggesting that samples collected for oxygen isotopic composition over time may be useful for identifying the vulnerability to surface water influence even if a local meteoric water line is not available. A time series of ??18O from one of the municipal wells and from a piezometer located between the river and the municipal well showed that the travel time of flood water to the municipal well was approximately 2 months; non-flood arrival times were on the order of 9 months. Four independent methods were also used to assess time of travel. Three methods (groundwater temperature arrival times at the intermediate piezometer, virus-culture results, and particle tracking using a numerical groundwater-flow model) yielded flood and non-flood travel times of less than 1 year for this site. Age dating of one groundwater sample using 3H-3He methods estimated an age longer than 1 year, but was likely confounded by deviations from piston flow as noted by others. Chlorofluorocarbons and SF6 analyses were not useful at this site due to degradation and contamination, respectively. This work illustrates the utility of stable hydrogen and oxygen isotope ratios of water to determine the contribution and travel time of surface water in groundwater, and

  5. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    PubMed

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher.

  6. Tritium and Stable Isotopes of Precipitation and Surface Water in California

    NASA Astrophysics Data System (ADS)

    Harms, P.; Moran, J. E.; Visser, A.; Esser, B. K.

    2014-12-01

    Tritium (3H) and stable isotopes (2H and 18O) are effective natural tracers of water molecules through the hydrologic system. The strong topographic gradient in California results in distinct isotopic signatures that are particularly effective in watershed studies. Past studies of meteoric tritium distribution within the United States have focused on large-scale trends, at low spatial resolution. Globally, tritium in precipitation is monitored by the International Atomic Energy Agency contributing to the Global Network of Isotopes in Precipitation (GNIP) database. The two tritium monitoring stations in California contributing to the GNIP database were discontinued in 1976 (Santa Maria) and 1993 (Menlo Park). Surface water studies have focused on time series in major rivers nationwide or localized studies. Our study focuses on high spatial resolution water isotope data collection in California. Over 140 tritium and stable water isotope samples were collected from surface water and direct precipitation during the 2013 Summer/Fall and 2014 Winter/Spring flow regimes and analyzed by helium accumulation and noble gas mass spectrometry. Surface water samples are collected as a proxy for precipitation and to investigate trends related to water residence times. Tritium concentrations in precipitation show strong spatial trends, with higher concentrations at inland high elevation locations. Surface water tritium trends with spatial location (latitude and longitude) and elevation (reflecting the precipitation signal) and distance downstream (reflecting water residence times). A local meteoric water line (MWL) for California is developed from stable isotope data and analyzed in comparison to the global MWL. Results have implications for tritium tracer and water provenance studies.

  7. Effect of accumulation rate on water stable isotopes of near-surface snow in inland Antarctica

    NASA Astrophysics Data System (ADS)

    Hoshina, Yu; Fujita, Koji; Nakazawa, Fumio; Iizuka, Yoshinori; Miyake, Takayuki; Hirabayashi, Motohiro; Kuramoto, Takayuki; Fujita, Shuji; Motoyama, Hideaki

    2014-01-01

    changes in water stable isotopes in polar firn were investigated at three sites characterized by different accumulation rates along the East Antarctic ice divide near Dome Fuji. Water stable isotopes, major ion concentrations, and tritium contents of three 2-4 m deep pits were measured at high resolution (2 cm). Temporally, the snow pits cover the past 50 years with snow accumulation rates in the range of 29-41 kg m-2 a-1 around Dome Fuji. Oxygen isotopic profiles in the three pits do not show annual fluctuations, but instead exhibit multiyear cycles. These multiyear cycles are lower in frequency at Dome Fuji as compared with the other two sites. Peaks of water stable isotopes in the multiyear cycles correspond to some ion concentration minima in the pits, although such relationships are not observed in coastal regions. We propose that the extremely low accumulation environment keeps the snow layer at the near surface, which result in postdepositional modifications of isotopic signals by processes such as ventilation and vapor condensation-sublimation. We estimate that oxygen isotopic ratios could be modified by >10‰ and that the original seasonal cycle could be completely overprinted under the accumulation conditions at Dome Fuji. Moreover, stake measurements at Dome Fuji suggest that the large variability in snow accumulation rate is the cause of the multiyear cycles.

  8. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2010-12-31

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  9. Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders

    PubMed Central

    McCluney, Kevin E.; Sabo, John L.

    2010-01-01

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change. PMID:21209877

  10. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology

    NASA Astrophysics Data System (ADS)

    Sturm, C.; Zhang, Q.; Noone, D.

    2009-06-01

    Stable water isotopes have been measured in a wide range of climate archives, with the purpose of reconstructing regional climate variations. Yet the common assumption that the isotopic signal is a direct indicator of temperature proves to be misleading under certain circumstances, since its relationship with temperature also depends on e.g. atmospheric circulation and precipitation seasonality. The present article introduces the principles, benefits and caveats of using climate models with embedded water isotopes as a support for the interpretation of isotopic climate archives. A short overview of the limitations of empirical calibrations of isotopic proxy records is presented, with emphasis on the physical processes that infirm its underlying hypotheses. The simulation of climate and its associated isotopic signal, despite difficulties related to downscaling and intrinsic atmospheric variability, can provide a "transfer function" between the isotopic signal and the considered climate variable. The multi-proxy data can then be combined with model output to produce a physically consistent climate reconstruction and its confidence interval. A sensitivity study with the isotope-enabled global circulation model CAM3iso under idealised present-day, pre-industrial and mid-Holocene is presented to illustrate the impact of a changing climate on the isotope-temperature relationship.

  11. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  12. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  13. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  14. Continual in-situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2013-11-01

    The stable isotope signature of pore water provides an integral fingerprint of water origin, flow path, transport processes, and residence times and can thus serve as a powerful tracer of hydrological processes in the unsaturated and saturated zone. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive detailed and continual measurements of spatiotemporally variable pore water signatures. With the development of field-deployable laser-based isotope analyzers, such measurements are now becoming feasible. This study presents the development and application of a functional, automatable, and cost-efficient system for non-destructive continual in-situ monitoring of pore water stable isotope signatures with high resolution. The monitoring system uses automatic-controllable valve arrays to continuously extract diluted soil air water vapor via a branching network of multiple small microporous probes into a commercial isotope analyzer. Soil temperature observations are used to convert obtained vapor phase into liquid phase water isotope signatures, but these can also be obtained based on vapor concentration measurements. In-situ sampling was conducted at six depths for each of three plots planted with varying vegetation on an experimental site in SW Germany. Two different methods based on advective and diffusive soil water vapor probing were employed suitable under unsaturated and all (including saturated) moisture conditions, respectively. The advective sampling method was applied using multiple permanently installed probes (continual mode) and using a single probe subsequently inserted to sample the various locations (push-in mode), while the diffusive sampling method was applied in push-in mode only. Using a specific identical treatment onsite calibration approach along with basic corrections for instrument bias and temperature dependent free water

  15. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  16. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential

  17. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential

  18. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  19. Temporal and Spatial Variation of Surface Water Stable Isotopes in the Marys River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Nickolas, L. B.; Segura, C.; Brooks, J. R.

    2015-12-01

    Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed "rainout effect", which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the Oregon Coastal Range. We hypothesize that catchment orientation, drainage area, geology, and topography act as controlling factors on groundwater flow, storage, and atmospheric moisture cycling, which explain variations in source water contribution. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Preliminary results indicate a significant difference (p<0.001) in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation is the most distinct during the summer when low flows likely reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall & winter) show a greater degree of similarity between the two lithologies. These findings indicate that the more permeable sandstone formations may be hydrologically connected to enriched water sources on the windward side of the Coastal Range that sustain baseflow within catchments on the leeward side, while streams draining basalt catchments are fed by a more depleted source of water (e.g. precipitation originating within the Marys River Basin).

  20. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    2000-01-01

    Oxygen and hydrogen stable isotope values of precipitation, irrigation water, soil water, and ground water were used with soil-moisture contents and water levels to estimate transit times and pathways of recharge water in the unsaturated zone of a sand and gravel aquifer. Nitrate-nitrogen (nitrate) concentrations in ground water were also measured to assess their relation to seasonal recharge. Stable isotope values indicated that recharge water usually had a transit time through the unsaturated zone of several weeks to months. However, wetting fronts usually moved through the unsaturated zone in hours to weeks. The much slower transit of isotopic signals than that of wetting fronts indicates that recharge was predominantly composed of older soil water that was displaced downward by more recent infiltrating water. Comparison of observed and simulated isotopic values from pure-piston flow and mixing-cell water and isotope mass balance models indicates that soil water isotopic values were usually highly mixed. Thus, movement of recharge water did not occur following a pure piston-flow displacement model but rather follows a hydrid model involving displacement of mixed older soil water with new infiltration water. An exception to this model occurred in a topographic depression, where movement of water along preferential flowpaths to the water table occurred within hours to days following spring thaw as result of depression-focused infiltration of snow melt. In an adjacent upland area, recharge of snow melt occurred one to two months later. Increases in nitrate concentrations at the water table during April-May 1993 and 1994 in a topographic lowland within a corn field were related to recharge of water that had infiltrated the previous summer and was displaced from the unsaturated zone by spring infiltration. Increases in nitrate concentrations also occurred during July-August 1994 in response to recharge of water that infiltrated during May-August 1994. These results

  1. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes

    SciTech Connect

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    2000-06-01

    Oxygen and hydrogen stable isotope values of precipitation, irrigation water, soil water, and ground water were used with soil-moisture contents and water levels to estimate transit times and pathways of recharge water in the unsaturated zone of a sand and gravel aquifer. Nitrate-nitrogen (nitrate) concentrations in ground water were also measured to assess their relation to seasonal recharge. Stable isotope values indicated that recharge water usually had a transit time through the unsaturated zone of several weeks to months. However, wetting fronts usually moved through the unsaturated zone in hours to weeks. The much slower transit of isotopic signals than that of wetting fronts indicates that recharge was predominantly composed of older soil water that was displaced downward by more recent infiltrating water. Comparison of observed and simulated isotopic values from pure-piston flow and mixing-cell water and isotope mass balance models indicates that soil water isotopic values were usually highly mixed. Thus, movement of recharge water did not occur following a pure piston-flow displacement model but rather follows a hybrid model involving displacement of mixed older soil water with new infiltration water. An exception to this model occurred in a topographic depression, where movement of water along preferential flowpaths to the water table occurred within hours to days following spring thaw as result of depression-focused infiltration of snow melt. In an adjacent upland area, recharge of snow melt occurred one to two months later. Increases in nitrate concentrations at the water table during April-May 1993 and 1994 in a topographic low-land within a corn field were related to recharge of water that had infiltrated the previous summer and was displaced from the unsaturated zone by spring infiltration. Increases in nitrate concentrations also occurred during July-August 1994 in response to recharge of water that infiltrated during May-August 1994. These results

  2. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  3. Stable isotopes in obesity research.

    PubMed

    Dolnikowski, Gregory G; Marsh, Julian B; Das, Sai Krupa; Welty, Francine K

    2005-01-01

    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.

  4. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  5. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  6. Trees growing through impervious surfaces use shallower water sources: a stable isotope study

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ryu, Y.; Lee, D.

    2015-12-01

    Trees growing through impervious surfaces can give an impact on hydrological cycle in urban areas by increasing ground permeability. Even though depth and distribution of the root can substantially alter the hydrological cycle, only a few studies have dealt with rooting depth and water use of trees growing through impervious surfaces. We compared the water sources of trees growing through impervious and pervious surfaces using a non-destructive stable isotope approach. We measured oxygen and hydrogen isotopic compositions from stem water and other potential water sources before and during the wet season. Oxygen and hydrogen isotopic compositions of stem water were measured, indicating that trees growing through the impervious surfaces used isotopically enriched water in both periods. An IsoSource model applied in the wet season showed that trees growing through impervious surfaces took most of their water from depths of around 20 cm, while the control trees took the greatest portion from a depth of 100 cm. Our results imply that urban trees growing through impervious surfaces might be vulnerable to drought and show the distinctive effect of urban plants on the redistribution of hydrological components.

  7. Identifying drivers of leaf water and cellulose stable isotope enrichment in Eucalyptus in northern Australia.

    PubMed

    Munksgaard, N C; Cheesman, A W; English, N B; Zwart, C; Kahmen, A; Cernusak, L A

    2017-01-01

    Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ(18)O and δ(2)H values in eucalypt leaf and stem water and δ(18)O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig-Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed (18)O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while (2)H enrichment is driven mainly by variation in the water vapour-source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig-Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric-leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ(18)O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ(18)O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.

  8. Comparative Hydrology Over Monsoonal Regions Using Seasonal Distributions of Stable Water Isotopes.

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Worden, J.; Noone, D. C.

    2007-12-01

    The hydrologic regimes of monsoonal regions contain complex balances of large-scale advective supply of water, surface exchange and atmospheric condensation, which are important for the regional energy balance and climate. Stable water isotopes are powerful tools for studying such processes, as isotopic fractionations occurring during evaporation and condensation give rise to measurable variations in the isotopic composition that reflects the history of moist processes for each observed air parcel. The HDO/H2O data set from the Tropospheric Emission Spectrometer (TES) on NASA's Aura spacecraft offers a unique global view of the isotopic composition of water vapor. The TES data set, and the analysis here, is complimentary to previous work using isotopic ratios in precipitation; however it need not be that the simple relationships found in the precipitation data hold for the atmospheric vapor case because of the variability induced by atmospheric mixing and convection. Over tropical continents, the intensity of water vapor recycling, precipitation rates and circulation patterns are thought to dominate the seasonal isotopic composition of water vapor and rainfall. By examining and contrasting the isotopic budgets of the Amazon, north Australia, and Asian monsoon regions, we gain insight into these hydrological processes, show which processes are regionally robust, and expose those processes that are regionally unique. To establish the importance of local processes on the regional isotopic composition, we first examine the relationship between the measured isotopic composition and meteorological parameters that capture the strength of the local processes. Secondly, we use the history of condensation, evaporation and air mass mixing during transport from five-day origin locations to the local TES observations, and the isotopic ratios of vapor at both locations, to examine isotopic changes that occur upstream. Using this information, as well as a simple isotopic exchange

  9. Late Cretaceous bottom waters in south Atlantic using benthonic foraminifera and stable isotopes

    SciTech Connect

    Gilmour, W.B.; Douglas, R.G.

    1987-05-01

    Benthonic foraminifera and stable isotopes were used to evaluate the history of bottom water 70-74 Ma in the south Atlantic. Site 355 was above the CCD at a backtracked depth of 3400 +/- 300 m. The assemblages are interpreted as autochthonous and contain a mixture of upper-to-middle bathyal species (e.g., Gavelinella whitei, Gyroidinoides bandyi, and G. goudkoffi) and abyssal species. In the Argentine basin, Site 358 was below the CCD at a backtracked depth of 3700 + 300 m. Unlike Site 355, bathyal foraminifera present at Site 358 are interpreted as redeposited below the CCD. The different foraminiferal dissolution depths in the Brazil and Argentine basins indicate different bottom water chemistries and are reflected in oxygen and carbon isotope ratios of foraminiferal tests. Average oxygen isotope ratios at Site 355 are heavier than those at Site 358 by 3.3 per thousand, in part as the result of secondary calcite overgrowths on tests at Site 358. Average carbon isotope ratios at Site 355 are heavier than those at Site 358 by 0.9 per thousand. Bottom waters in the Brazil basin were different from those in the Argentine basin and may have been warm saline bottom waters (WSBW) like those proposed by Brass et al in 1982. This is supported by broad foraminiferal distributions, light oxygen ratios (warm water mass), heavy carbon ratios (young water mass), and a deeper calcite compensation depth in the Brazil basin.

  10. Precipitation water stable isotope measurements and analyses in Middle and Polar Ural

    NASA Astrophysics Data System (ADS)

    Stukova, Olga; Gribanov, Konstantin; Zakharov, Vyacheslav; Cattani, Olivier; Jouzel, Jean

    2015-11-01

    In this paper, we present results of precipitation (rain, snow) water stable isotope measurements, which were collected on two places. Measuring was made on laser spectroscopy analyzer PICARRO L2130-i equipped with liquid auto sampler. We describe method of sample collecting, preparing, measuring and continuing analysis of experimental data. Stored data include results of 177 samples measuring from Kourovka collected from November 2012 to March 2014 and 73 samples from Labytnangi collected from March 2013 to December 2013.

  11. Dew water effects on leaf water using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  12. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from

  13. Water masses along the OVIDE 2010 section as identified by oxygen and hydrogen stable isotope values

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Thierry, Virginie

    2016-04-01

    The OVIDE transect between the western Iberian Peninsula and the southern tip of Greenland is one of the hydrographic sections in the North Atlantic that is measured regularly to identify changes in water mass formation and transport and thus to evaluate the state of the Atlantic Meridional Overturning Circulation (Mercier et al., 2015; García-Ibáñez et al., 2015; both in Progr. in Oceanography). During the OVIDE 2010 campaign seawater samples covering the complete water column were collected on the section between Portugal and the Reykjanes ridge for stable isotope analyses. Oxygen (δ18O) and hydrogen (δD) stable isotope values were measured simultaneously by cavity ring-down laser spectroscopy using a L1102-i Picarro water isotope analyser at the Godwin Laboratory for Paleoclimate Research (Univ. Cambridge, UK). Within the upper water column the stable isotope values clearly mark the positions of the Portugal Current (40.3°N 11°W), the North Atlantic Drift (46.2°N 19.4°W) and of the subarctic front (51°N 23.5°W). Up to Station 36 (47.7°N 20.6°W) an upper (around 600 m) and lower (around 1000 m) branch of the Mediterranean Outflow water (MOW) can clearly be distinguished by high oxygen (0.5-0.7‰) and hydrogen (3-5‰) values. At Station 28 (42.3°N 15.1°W) strong MOW influence is also indicated between 1400 and 1600 m. In the west European Basin, lower oxygen isotope values reveal the presence of Labrador Sea Water (LSW) below the MOW (down to 2200 m). Close to and west of the subarctic front this water mass shallows and occupies the complete interval between 1000 and 2000 m water depth. In the Iceland basin, two additional levels with lower oxygen isotope values are observed. The deeper level (2200-3500 m) marks Iceland Scotland Overflow Water (ISOW) that based on its distinct isotopic signature (δ18O ≤ 0.25‰) can be traced as far east as 18.5°W (down to at least 3500 m). Close to the Reykjanes ridge both, the ISOW and LSW, are also

  14. Stable isotopes of water in estimation of groundwater dependence in peatlands

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2016-04-01

    Peatland hydrology and ecology can be irreversibly affected by anthropogenic actions or climate change. Especially sensitive are groundwater dependent areas which are difficult to determine. Environmental tracers such as stable isotopes of water are efficient tools to identify these dependent areas and study water flow patterns in peatlands. In this study the groundwater dependence of a Finnish peatland complex situated next to an esker aquifer was studied. Groundwater seepage areas in the peatland were localized by thermal imaging and the subsoil structure was determined using ground penetrating radar. Water samples were collected for stable isotopes of water (δ18O and δ2H), temperature, pH and electrical conductivity at 133 locations of the studied peatland (depth of 10 cm) at approximately 100 m intervals during 4 August - 11 August 2014. In addition, 10 vertical profiles were sampled (10, 30, 60 and 90 cm depth) for the same parameters and for hydraulic conductivity. The cavity ring-down spectroscopy (CRDS) was applied to measure δ18O and δ2H values. The local meteoric water line was determined using precipitation samples from Nuoritta station located 17 km west of the study area and the local evaporation line was defined using water samples from lake Sarvilampi situated on the studied peatland complex. Both near-surface spatial survey and depth profiles of peatland water revealed very wide range in stable isotope composition, from approximately -13.0 to -6.0 ‰ for δ18O and from -94 to -49 ‰ for δ2H, pointing to spatially varying influence of groundwater input from near-by esker aquifer. In addition, position of the data points with respect to the local meteoric water line showed spatially varying degree of evaporation of peatland water. Stable isotope signatures of peatland water in combination with thermal images delineated the specific groundwater dependent areas. By combining the information gained from different types of observations, the

  15. A stable isotope study of water movements with typical vegetation cover in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Li, Jing

    2015-04-01

    The stable isotope 2H and 18O are often used as natural tracers in subsurface water pathways in semi-arid areas. The stable isotopic compositions in precipitation, soil water and groundwater were observed to assess the temporal variations in soil water flow at three sites covered by grass (Carex humili and Carex lanceolata) (site A), poplar (Ponulus hopeiensis) (site B) and winter wheat (Triticum asetivum) and summer maize (Zea mays) (site C) in the shallow groundwater area in the North China Plain (NCP) from April 2012 to October 2013. Precipitation isotopes resulted in a meteoric water line of δ2H =7.6δ18O -3.7 and showed a typical seasonal variation for δ2H (-98.9 to -13.3) and δ18O (-12.0 to -1.7). The seasonality in the shallow groundwater was further subdued due to the evaporation and mixing and diffusional exchange with stored water held in the soil pores within the unsaturated zone. Shallow groundwater was mainly recharged by precipitation in the rainy season. Soil water isotope profiles were sampled at depths of 10 cm down to 150 cm every 10 cm for the three sites. The vertical profiles of soil water δ18O showed large variations in the superficial 10 cm layer under the precipitation input and evapotranspiration effects. The soil water δ18O decreased and soil moisture increased with depth ( 70 cm) due to continuously evapotranspiration for the three sites though that at site B showed more positive δ18O values and smaller soil moisture than those at site A and C. The signal of individual rainstorm event in the summer with low δ18O values could be traced down to a depth of 40 cm that mixed with antecedent mobile soil water and to 120 cm due to a fast and direct preferential infiltration of the input rainwater that bypassed the upper soil layer at sites B and C. Keywords: stable isotopes; soil water pathways; groundwater recharge; North China Plain

  16. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock

    NASA Astrophysics Data System (ADS)

    Barbour, S. Lee; Hendry, M. Jim; Carey, Sean K.

    2016-03-01

    Characterization of the rate of water migration through unsaturated mine waste rock dumps is an essential element in assessing the chemical loading from these landforms; yet our understanding of how water moves into, through and out of waste rock is incomplete. To further understand the rates and magnitude of percolation through waste rock, deep high-resolution (every 0.1-4.5 m) depth profiles of the stable isotopes of water (δ2H and δ18O) at two coal waste rock dumps and a natural alluvial deposit down-gradient of one of the dumps were collected in the Elk Valley, British Columbia, Canada. The profiles were generated using vapor equilibrium techniques applied to continuous core samples collected using dry sonic drilling methods. Elevated core temperatures (up to 80 °C) were measured during sonic coring. The isotopic values of pore waters measured in the core samples were corrected for water loss to the atmosphere attributed to the elevated core temperatures. The average isotopic composition of the core samples were compared to water collected from rock drains discharging from the base of the dumps. The results indicate that high-resolution profiles of δ2H and δ18O can be measured to depths of 86 m in coal waste rock dumps and, based on the seasonal cycles in the isotopic composition of recharging water, can be used to characterize the migration of recharge water within these dumps. These profiles also suggest that recharge into these dumps occurs from both rain as well as snow melt and may be as high as 400-600 mm/yr (60-75% of annual precipitation). Combined with the relatively low volumetric water contents of these dumps (5-10%) the rates of water migration through the dumps are tens of meters each year.

  17. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  18. A stable isotope approach to assessing water loss in fruits and vegetables during storage.

    PubMed

    Greule, Markus; Rossmann, Andreas; Schmidt, Hanns-Ludwig; Mosandl, Armin; Keppler, Frank

    2015-02-25

    Plant tissue water is the source of oxygen and hydrogen in organic biomatter. Recently, we demonstrated that the stable hydrogen isotope value (δ(2)H) of plant methoxyl groups is a very reliable and easily available archive for the δ(2)H value of this tissue water. Here we show in a model experiment that the δ(2)H values of methoxyl groups remain unchanged after water loss during storage of fruits and vegetables under controlled conditions, while δ(2)H and δ(18)O values of tissue water increase. This enhancement is plant-dependent, and the correlation differs from the meteoric water line. The δ(18)O value is better correlated to the weight decrease of the samples. Therefore, we postulate that the δ(2)H value of methoxyl groups and the δ(18)O value of tissue water are suitable parameters for checking postharvest alterations of tissue water, either addition or loss.

  19. Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

    USGS Publications Warehouse

    Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.

    2007-01-01

    Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume-weighted average cloud water and rain samples was 1.4??? ??18O and 12??? ??2H for the windward site and 2.8??? ??18O and 25??? ??2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end-member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

  20. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    PubMed

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  1. [Monitoring and Analysis of Stable Isotopes of the Near Surface Water Vapor in Changsha].

    PubMed

    Xie, Yu-long; Zhang, Xin-ping; Yao, Tian-ci; Huang, Huang

    2016-02-15

    Based on the monitored atmospheric water vapor stable isotopes and observed meteorological elements at Changsha during the period from November 12, 2014 to April 13, 2015, the variations of water vapor stable isotopes and the relationships between isotope ratios and temperature, absolute humidity, precipitation amount were analyzed in this paper. The results indicated that: (1) Seasonal variations of delta18O and 82H in atmospheric water vapor at Changsha were remarkable, with high values in winter. delta18O and delta2H in atmospheric water vapor were positively correlated with absolute humidity in winter. There were some fluctuations of the delta18O and delta2H in atmospheric water vapor, especially when the precipitation events occurred. Precipitation events had a significant effect on the variations of delta18O and delta2H in atmospheric water vapor, and low values were often accompanied with precipitation events; (2) Diurnal Variations of delta18O and delta2H in atmospheric water vapor had a close correlation with the atmospheric water vapor content, whereas the absolute humidity was mainly controlled by the strength of the local evapotranspiration and atmospheric turbulence. The "precipitation amount effect" was observed during the process of a single precipitation event; (3) Values of delta18O and delta2H in atmospheric water vapor were always lower than those of precipitation in Changsha, but he variation trends were completely consistent, the average difference values were 8.6% per hundred and 66.82% per hundred, respectively; (4) The meteoric vapor line (MVL) in cold months was delta2H =7.18 delta18O + 10.58, the slope and intercept of MVL were always lower than those of MWL, and the slope and intercept of MVL in spring were significantly higher than those of winter.

  2. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  3. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  4. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument.

    PubMed

    Skrzypek, Grzegorz; Ford, Douglas

    2014-01-01

    The analysis of the stable hydrogen and oxygen isotope composition of water using cavity ring-down spectroscopy (CRDS) instruments utilizing infrared absorption spectroscopy have been comprehensively tested. However, potential limitations of infrared spectroscopy for the analysis of highly saline water have not yet been evaluated. In this study, we assessed uncertainty arising from elevated salt concentrations in water analyzed on a CRDS instrument and the necessity of a correction procedure. We prepared various solutions of mixed salts and separate solutions with individual salts (NaCl, KCl, MgCl2, and CaCl2) using deionized water with a known stable isotope composition. Most of the individual salt and salt mixture solutions (some up to 340 g L(-1)) had δ-values within the range usual for CRDS analytical uncertainty (0.1‰ for δ (18)O and 1.0‰ for δ (2)H). Results were not compromised even when the total load of salt in the vaporizer reached ∼38.5 mg (equivalent to build up after running ∼100 ocean water samples). Therefore, highly saline mixtures can be successfully analyzed using CRDS, except highly concentrated MgCl2 solutions, without the need for an additional correction if the vaporizer is frequently cleaned and MgCl2 concentration in water is relatively low.

  5. Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Barth, Johannes A. C.

    2013-04-01

    Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024

  6. Results from stable isotope investigations of river waters in Western Croatia

    NASA Astrophysics Data System (ADS)

    Häusler, H.; Frančišković-Bilinski, S.; Rank, D.; Stadler, P.; Bilinski, H.

    2012-04-01

    During a campaign lasting from 27 October to 21 November 2010, sixty-one water samples were taken from the Kupa River, the catchment of which is about ten thousand square kilometres in size. Due to the fact that the upper tributaries of e.g. the Čabranka-, Dobra-, Korana-, Mrežnica- and Petrinjčica River comprise karstified Mesozoic carbonate formations, the hydrogeologic catchment of Kupa River extends the hydrologic one by far. The upper Kupa River is mainly charged by springs from big karst reservoirs in the Gorski Kotar mountain range, where a mean groundwater residence time of up to one year has to be considered. The rapid increase of discharge of these tributary rivers results from the rapid increase of discharge of karst wells after melting in springtime as well as from storm events. In general, the minimum mean discharge for all hydrographs in July reveals a dry summer season, with the maximum discharge in August/September resulting from an increase in precipitation. We interpret the d O-18 values of the Čabranka River (of about -8, 07‰) as signals from maritime precipitation in this karstified catchment area. The d O-18 value of upper Kupa River diminishes along its course from -8,09‰ near Osilnica to -9,06‰ west of Karlovac. After the inflow of tributaries south of Karlovac, the oxygen isotope ratio of Kupa River water reveals a significant change because the d O-18 values of the Dobra-, Korana- and Mrežnica River range from -10,45‰ to -9,58‰ . Due to the fact that the catchment of Dobra- and Korana River rises between 400 and 880 metres, we interpret the lower d O-18 values of river waters from recharge areas at those low mean altitudes as not caused by an altitude effect, but instead by precipitation out of more continental air masses. Our interpretation of stable isotope ratios in river waters is based on the relation between the weighted mean d O-18 and the altitude obtained from stations of the Global Network of Isotopes in

  7. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    Water is a key factor driving ecosystem productivity, especially in water-limited ecosystems. A separation of the component fluxes is needed to gain a functional understanding on the development of net ecosystem water fluxes and their coupling with biogeochemical cycles. Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of the distinct isotopic compositions of water in soil and vegetation. In the past, determination of isotopic signatures of evaporative or transpirational fluxes has been challenging since measurements of water vapor isotopes were difficult to obtain using cold-trap methods, delivering data with low time resolution. Recent developments in laser spectroscopy now enable direct high frequency measurements of the isotopic composition of atmospheric water vapor (δv), evapotranspiration (δET), and its components and allow validations of common modeling approaches for estimating δE and δT based on Craig and Gordon (1965). Here, a novel approach was used, combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediteranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We aimed at 1) testing the Craig and Gordon equation for soil evaporation against directly measured δE and 2) quantifying the role of non-steady-state transpiration under natural conditions. Thirdly, we used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of

  8. Preliminary identification of ground-water nitrate sources using nitrogen and carbon stable isotopes, Kansas

    USGS Publications Warehouse

    Townsend, M.A.; Macko, S.A.

    2007-01-01

    Increasing nitrate-N in ground water is a problem in areas with limited ground-water supplies, such as central Kansas. Nitrate-N concentrations in ground water in the study area in Ellis County range from 0.9 to 26 mg/L. Calculated mean values observed in soil cores are 1.2-15 mg/kg. The ??15N signatures of the ground waters are more enriched (+16.8 to +28.7???) than those of the soils (+8.4 to +1 3.7???), strongly suggesting that nitrate-N sources are not from mineralized and labile nitrogen present in the unsaturated zone. Soil cores were collected near municipal wells to determine if soil nitrogen was a contributing source to the ground water. Increased ??15N of total nitrogen with depth suggests that microbial mineralization processes and possible denitrification or volatilization isotope enrichments have affected the observed ?? 15N signatures in the soil. However, the observed soil-nitrogen values are not of sufficient magnitude to explain the nitrate-N concentrations or associated ??15N values observed in the ground water. Stable carbon isotopes provide some supporting evidence that soils are not a major contributor to the observed nitrate-N concentration in the ground water. ?? 13C values of the dissolved organic carbon (DOC) in soils generally become more enriched with depth while corresponding ground-water ??13C (DOC) values are more depleted than in the overlying soils. Carbon isotope values of the soils are indicative of a C4 plant source that is enriched by microbial processes. The ??13C (DOC) of ground water indicates C3 values that may reflect impacts from animal-waste sources.

  9. Stable isotopes in tree rings

    NASA Astrophysics Data System (ADS)

    McCarroll, Danny; Loader, Neil J.

    2004-04-01

    Stable isotopes in tree rings could provide palaeoclimate reconstructions with perfect annual resolution and statistically defined confidence limits. Recent advances make the approach viable for non-specialist laboratories. The relevant literature is, however, spread across several disciplines, with common problems approached in different ways. Here we provide the first overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies. Stable carbon isotopes record the balance between stomatal conductance and photosynthetic rate, dominated at dry sites by relative humidity and soil water status and at moist sites by summer irradiance and temperature. Stable oxygen and hydrogen isotopic ratios record source water, which contains a temperature signal, and leaf transpiration, controlled dominantly by vapour pressure deficit. Variable exchange with xylem (source) water during wood synthesis determines the relative strength of the source water and leaf enrichment signals. Producing long Holocene chronologies will require a change in emphasis towards processing very large numbers of samples efficiently, whilst retaining analytical precision. A variety of sample preparation and data treatment protocols have been used, some of which have a deleterious effect on the palaeoclimate signal. These are reviewed and suggestions made for a more standardised approach.

  10. A new stable water isotope-salinity dataset from the central tropical Pacific

    NASA Astrophysics Data System (ADS)

    Conroy, J. L.; Cobb, K.; Lynch-Stieglitz, J.

    2013-12-01

    The central tropical Pacific is home to key water isotope-based paleoclimate proxies that reveal past interannual to millennial-scale ocean variability. In particular, the stable oxygen isotope ratio of seawater (henceforth δ18Osw), which is strongly correlated with salinity, is often interpreted as a proxy for past surface forcing (precipitation-evaporation). However, very few modern δ18Osw measurements exist in this region, and a clear understanding of the drivers of δ18Osw variability on mean, seasonal, and interannual timescales needs to be investigated. This is a particularly important region to understand these dynamics: central tropical Pacific oceanography is complex, defined by three surface currents, upwelling, and zonal shifts in the boundary defining the fresher waters of the western tropical Pacific and the more saline waters of the central tropical Pacific. In addition, this region also experiences the seasonal migration of the intertropical convergence zone and associated changes in precipitation-evaporation. Here we present 177 paired stable water isotope and salinity measurements taken in May 2012 from the Line Islands Ridge, tripling the number of available stable isotope observations from the region. We find a δ18Osw-salinity slope of 0.35 across the main surface currents as well as water masses of the surface and subsurface. The May 2012 δ18Osw-salinity relationship is not significantly different from previous measurements in the region, supporting the integrity of these datasets. The highest δ18Osw-salinity values of the new dataset occur in the core of the Equatorial Undercurrent. Salinity and δ18Osw values throughout the North Equatorial Countercurrent (NECC) are higher compared to previous data from the region. This may be due to a weaker NECC during the boreal spring, as the previous data are biased toward boreal winter, but more data are needed to understand temporal δ18Osw-salinity variability. We have also increased the number of

  11. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...

  12. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene

    NASA Astrophysics Data System (ADS)

    Cook, Mea S.; Ravelo, A. Christina; Mix, Alan; Nesbitt, Ian M.; Miller, Nari V.

    2016-03-01

    As the largest ocean basin, the Pacific helps to set the global climate state, since its circulation affects mean ocean properties, air-sea partitioning of carbon dioxide, and the distribution of global oceanic poleward heat transport. There is evidence that during the Last Glacial Maximum (LGM) the subarctic Pacific contained a better-ventilated, relatively fresh intermediate water mass above ~2000 m that may have formed locally. The source and spatial extent of this water mass is not known, nor do we know how formation of this water mass varied during Pleistocene glaciations with different orbital and ice sheet boundary conditions. Here we present a 0.5 My multi-species benthic stable isotope record from Site U1345 (1008 m) on the northern Bering slope and a 1.0 My record from U1339 (1868 m) from the Umnak Plateau in the southeastern basin. We find that the relatively well-ventilated low-δ18O intermediate water reaches 1000 m in the Bering Sea during MIS2, but that the hydrographic divide between this water mass and poorly-ventilated deep water was shallower than 1000 m for earlier glaciations. We also compare Bering Sea piston core and IODP Expedition 323 Uvigerina data from the Holocene and LGM with the modern hydrography, and to previously published profiles from the Okhotsk Sea and Emperor Seamounts. We find that the carbon and oxygen stable isotope signatures of well-ventilated water in the Bering and Okhotsk Seas are distinct, suggesting that there may have been intermediate water formation in both basins during the LGM.

  13. Reconstruction of groundwater formation in the Baltic Artesian basin through water stable isotopes

    NASA Astrophysics Data System (ADS)

    Babre, A.; Delina, A.; Retike, I.

    2012-04-01

    Subsurface hydrology of the Baltic Artesian basin has changed rapidly during the Quaternary period. Glacial and several interglacial phases as well as the change in the sea level led to complicated subsurface hydrology and a large difference in groundwater chemical as much as isotopic content. Baltic artesian basin fully covers territory of Latvia, Lithuania and Estonia; also parts of Poland, Russia, and Belarus are included. This work aims to give better overview of the complexity of the groundwater recharge and discharge dynamics beyond country borders, taking into account only shared geological framework, common climate conditions and development during the Quaternary period. To maintain better understanding of the processes that took part in the formation of groundwater that can be observed nowadays several methods were applied placing major emphasis on the new oxygen and hydrogen stable isotope ratio results. Additionally large scale modeling as well as hydrochemistry and trace element concentrations was used. Paleowaters usually are isotopically lighter, that facilitate to detect their presence. Earlier investigations in the northern part of the basin indicated glacial melt water intrusion in the Cambrian-Vendian aquifer corrected radiocarbon age suggests that this meltwater intrusion took place during the late Weichelian. Several radiocarbon and stable isotope studies in groundwater have been done at the southern part of the basin as well reporting extensive groundwater recharge during the Late Pleistocene in the Devonian aquifers; authors suggest that recharge took place under different recharge mechanisms compared with the northern part. So far no similar studies were accomplished in the central part of the basin, thus to make clearer picture and possibility to find the mixing line between groundwater bodies of different origin, the new groundwater samples were collected from more than 200 wells mainly in the territory of Latvia. New stable isotope samples

  14. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  15. Plant Water Use and Environmental Stress on Two Opposite Slopes: from Water and Carbon Stable Isotopic Perspective

    NASA Astrophysics Data System (ADS)

    Guan, H.; Xu, X.; Skrzypek, G.; Simmons, C. T.

    2014-12-01

    Climate-soil-vegetation dynamics are among key research focuses in the emerging ecohydrology discipline. Topographic relieves on landscapes provide various hydroclimatic conditions to examine vegetation functions and its responses to climate variation and changes in a short distance. In this study, we investigate ecohydrologic processes on two slopes of contrasting orientation and soil conditions in a native vegetation catchment with mean annual precipitation of 716 mm in South Australia, using water and carbon stable isotopes. Throughfall, soil water, twig water, and groundwater stable isotopes were measured and integrated into an isotope incorporated soil-plant-atmosphere model to examine different plant water use patterns on two slopes with different environmental conditions. The focuses are on how ecosystems on the two slopes receive, store, and use soil moisture in different manners. On these two slopes, trees are under different water stresses. Both leaf and soil 13C/12C ratio were measured for the two slopes to examine if δ13C can be used as an water stress indicator in this small catchment, and if the potential difference in δ13C can be observed in the soil organic matter. We monitored one-year leaf δ13C of two tree species, Eucalyptus leucoxylon and Acacia pycnantha. Our results indicate that leaf δ13C reflects different water stress conditions between slopes, seasons, and different locations on the slopes.

  16. Determining the Hydrological Importance of Coastal Fog in Northern California Using Stable Isotopes of Water

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Torregrosa, A.; Coplen, T. B.

    2014-12-01

    Fog and cloud water can be an important part of the water cycle in mountainous coastal areas. In coastal California's Mediterranean climate, fog is the predominant precipitation source during the summer months. Here we report initial results of a study utilizing stable hydrogen and oxygen isotopes of water to investigate the role of fog in the hydrology of two ecosystems in Sonoma County, CA. The two study sites were the Bodega Marine Laboratory (BML) at 13 m elevation at the coast, and the Pepperwood Preserve at 375 m elevation in the North Coast Range, 44 km inland to the northeast. During a 1-week period in July 2014, fog samples were collected at 30-minute intervals using small active-strand cloudwater collectors (mini-CASCCs) and automated precipitation samplers. Four overnight fog events were collected at the Pepperwood site, while at the BML site, the liquid water content of the fog was very low, and only one cumulative sample was obtained. Groundwater samples from five wells and seven springs, and surface water samples from two streams were collected in and around the Pepperwood Preserve and on Bodega Head near BML. Droplet size distribution of the fog at BML was monitored, and at both sites, air temperature was measured at 10-minute intervals to assess variation in the δ 18O and δ 2H values of fog related to temperature. Relative humidity, wind speed, and wind direction were obtained from weather stations at each site. Previous work in this area (Coplen et al., in prep) documented the isotopic signatures of winter precipitation from frontal systems and landfalling Pacific storms. These results will be combined with the isotopic signature of summer fog water to determine whether fog contributes to shallow groundwater recharge or streamflow at the two sites.

  17. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  18. Understanding patterns of water use in a subtropical woodland using stable isotopes

    NASA Astrophysics Data System (ADS)

    Grierson, Pauline; Page, Gerald; Skrzypek, Grzegorz; Dogramaci, Shawan; Luccitti, Samuel; O'Donnell, Alison

    2015-04-01

    Vegetation structure in the arid subtropics is often highly variable across the landscape, reflecting at least in part the high spatial and temporal heterogeneity of rainfall, groundwater and soil moisture. Here, we investigated how patterns of water uptake by trees and shrubs differed across landscape positions in the Pilbara region of northwest Australia and assessed the responsiveness of trees and shrubs to large (cyclonic) rainfall events. We sampled water stable isotope compositions of xylem, soil, rain and groundwater as well as soil water content and root distributions of eucalypt and mulga woodlands in the Pilbara region over three years. Based on the 18O results, we found that the sampled plant taxa (mulga, Eucalyptus victrix) were using water originally derived from a large rainfall event (Cyclone Heidi), both at lowland and upland sites. Trees and shrubs such as mulga were accessing shallow soil water of meteoric origin. Eucalyptus victrix accessed water deeper in the profile (8-10 m) as surface soils dried out. Mulga appeared to store water for many months after the recharge event. This ability to take up and likely store a large proportion of shallow soil water after rainfall is a key feature enabling mulga to survive through the period of greatest water demand and to acclimate to the spatiotemporal changes to water conditions in the soil profile. Alternatively, episodic cyclonic recharge maintains deep soil and groundwater resources that maintain deeper-rooted species such as E. victrix throughout the prolonged drought periods.

  19. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  20. A lab in the field: real-time measurements of water quality and stable isotopes

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; von Freyberg, J.

    2015-12-01

    Hydrological and bio-geochemical processes in catchments are largely determined by the flow pathways of water through the subsurface. While the properties of the input (precipitation) and the output (streamflow) can be monitored with relatively low expenditure, subsurface flow processes and travel times remain difficult to quantify. A comprehensive understanding of these physical mechanisms is, however, crucial for a sustainable management of water resources. Natural tracers, such as stable isotopes of water (18O and 2H), in combination with other water quality parameters allows for studying various hydrological and associated processes in great detail. To follow the dynamics in rapidly changing hydrologic systems, high temporal resolution measurements of water isotopes and other constituents is required. Here, we present first results from an extensive field experiment in Switzerland where rain- and river water samples are sampled and analyzed directly in the field every 30 minutes. With this, sample degradation during storage and transportation can be minimized. At the same time, errors due to the collection and handling of numerous water samples are avoided. The fully automated monitoring system is comprised of the newly developed Continuous Water Sampler Module (CoWS), which was coupled to a Picarro L2130-i Cavity Ring-Down Spectrometer (Picarro Inc., USA), to continuously measure 18O and 2H. Optical and electrochemical sensors together with a spectrometer probe monitor NO3-, DOC and physico-chemical parameters, such as oxygen content, pH, electrical conductivity (s::can Messtechnik GmbH, Vienna). An ion chromatograph (Metrohm, Switzerland) allows for precise measurements of the major anions and cations. For quality control, additional water samples are taken automatically at the same frequency and analyzed in the laboratory.

  1. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy.

    PubMed

    Chesson, Lesley A; Bowen, Gabriel J; Ehleringer, James R

    2010-11-15

    Hydrogen (δ(2)H) and oxygen (δ(18)O) stable isotope analysis is useful when tracing the origin of water in beverages, but traditional analytical techniques are limited to pure or extracted waters. We measured the isotopic composition of extracted beverage water using both isotope ratio infrared spectroscopy (IRIS; specifically, wavelength-scanned cavity ring-down spectroscopy) and isotope ratio mass spectrometry (IRMS). We also analyzed beer, sodas, juices, and milk 'as is' using IRIS. For IRIS analysis, four sequential injections of each sample were measured and data were corrected for sample-to-sample memory using injections (a) 1-4, (b) 2-4, and (c) 3-4. The variation between δ(2)H and δ(18)O values calculated using the three correction methods was larger for unextracted (i.e., complex) beverages than for waters. The memory correction was smallest when using injections 3-4. Beverage water δ(2)H and δ(18)O values generally fit the Global Meteoric Water Line, with the exception of water from fruit juices. The beverage water stable isotope ratios measured using IRIS agreed well with the IRMS data and fit 1:1 lines, with the exception of sodas and juices (δ(2)H values) and beers (δ(18)O values). The δ(2)H and δ(18)O values of waters extracted from beer, soda, juice, and milk were correlated with complex beverage δ(2)H and δ(18)O values (r = 0.998 and 0.997, respectively) and generally fit 1:1 lines. We conclude that it is possible to analyze complex beverages, without water extraction, using IRIS although caution is needed when analyzing beverages containing sugars, which can clog the syringe and increase memory, or alcohol, a known spectral interference.

  2. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen

    USGS Publications Warehouse

    Hitchon, B.; Friedman, I.

    1969-01-01

    Stable isotopes of hydrogen and oxygen, together with chemical analyses, were determined for 20 surface waters, 8 shallow potable formation waters, and 79 formation waters from oil fields and gas fields. The observed isotope ratios can be explained by mixing of surface water and diagenetically modified sea water, accompanied by a process which enriches the heavy oxygen isotope. Mass balances for deuterium and total dissolved solids in the western Canada sedimentary basin demonstrate that the present distribution of deuterium in formation waters of the basin can be derived through mixing of the diagenetically modified sea water with not more than 2.9 times as much fresh water at the same latitude, and that the movement of fresh water through the basin has redistributed the dissolved solids of the modified sea water into the observed salinity variations. Statistical analysis of the isotope data indicates that although exchange of deuterium between water and hydrogen sulphide takes place within the basin, the effect is minimized because of an insignificant mass of hydrogen sulphide compared to the mass of formation water. Conversely, exchange of oxygen isotopes between water and carbonate minerals causes a major oxygen-18 enrichment of formation waters, depending on the relative masses of water and carbonate. Qualitative evidence confirms the isotopic fractionation of deuterium on passage of water through micropores in shales. ?? 1969.

  3. Using Water Vapor Isotope Observations from above the Greenland Ice Sheet to improve the Interpretation of Ice Core Water Stable Isotope Records

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Risi, C. M.; Yoshimura, K.; Werner, M.; Butzin, M.; Brun, E.; Landais, A.; Bonne, J. L.; Dahl-Jensen, D.

    2014-12-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. For the purpose of improving the climatic interpretation from ice core records, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm surface layer has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We compare the observed water vapor isotopic composition with model outputs from three isotope-enabled general circulation models: LMDZiso, isoGSM, ECHAM-wiso. This allows us to benchmark the models and address effect of model resolution, effect of transport, effect of isotope parameterization, and representation of significant source region contributions. We find for all models that the simulated isotopic value δD are significantly biased towards too enriched values. A bias, which is only partly explained by the air temperature. The simulated amplitude in d-excess variations is ~50% smaller than observed and the simulated average summer level is ~10‰ lower than in observations. Using back trajectories we observe water vapor of Arctic origin to have a high d-excess fingerprint. This fingerprint is not observed in the GCMiso simulations indicating a problem of simulating accurately the Arctic hydrological cycle. The bias in the simulated δD and d-excess water vapor is similar to the already-documented bias in the simulated δD and d-excess of Greenland ice core records. This suggests that if we improve the simulation of the water vapor isotopic composition we might also improve the simulation of the ice core isotope record. During periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is

  4. Identifying Hydrological Controls in the Lower Nelson River Basin utilizing Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    Delavau, C. J.; Smith, A. A.; Stadnyk, T.; Koenig, K.

    2012-12-01

    In 2010 a Stable Water Isotope (SWI) Monitoring Network was established within the lower Nelson River Basin (LNRB) (approximately 90,000 km2) in northern Manitoba, Canada, through a joint collaboration between the University of Manitoba and Manitoba Hydro (MH). The monitoring network encompasses over 60 sites where surface waters are regularly sampled, four sites sampling isotopes in precipitation, two sites utilizing drive point piezometers for the isotopic sampling of baseflow waters, and one site collecting evaporatively enriched water samples from an evaporation pan. In addition, two synoptic surveys have been completed in June 2011 and July 2012 to obtain annual snapshots of the monitoring network at a point in time. Currently, over 700 samples have been collected and analyzed. The LNRB contains approximately 9% of the total Nelson River Basin (NRB) drainage area, which encompasses an area of over 1 million km2. A diversion from the Churchill River through the Rat/Burntwood system routes an additional portion of flow into the northwest portion of the LNRB. The LNRB is significant to MH's network as it represents 75% of their power generation potential through six generating stations, thus resulting in a large portion of the basin being regulated. The watershed is topographically flat, therefore the movement and runoff of water, as well as isotopic composition of streamflow, is suspected to be highly impacted by changes in landscape and hydrography. The LNRB is a coniferous and wetland dominated basin, with almost 35% of the land cover composed of coniferous forest and 40% comprised of wetlands and lakes. Interpretation of the LNRB isotope framework shows that the major water sources (rainfall, snowfall, groundwater and surface waters) and rivers are isotopically distinct from one another. The main stem of the Nelson River shows little spatial or temporal variability, with an average δ18O of -10.6‰ and a standard deviation of 0.5‰ throughout the sampling

  5. The use of stable isotope to evaluate water mixing and water use by flood plain trees along the Garonne valley

    USGS Publications Warehouse

    Lambs, L.; Loubiat, M.; Richardson, W.

    2003-01-01

    Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.

  6. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  7. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; Feng, Xiahong; Graham, David E.; O'Malley, Daniel; Vesselinov, Velimir V.; Young, Jessica; Wullschleger, Stan D.; Wilson, Cathy J.

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.

  8. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measuredmore » in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  9. Methane carbon stable isotope signatures in waters and sediments of the Laptev Sea Shelf

    NASA Astrophysics Data System (ADS)

    Samarkin, V.; Semiletov, I. P.; Finke, N.; Shakhova, N. E.; Joye, S. B.

    2012-12-01

    There are a number of areas characterized high water column methane concentrations and active seafloor methane seepage zones along the shelf of the Laptev Sea. Degrading subsea permafrost, which is rich in organic carbon and possibly containing metastable methane gas hydrates, is considered a potent source of methane in this area. To better understand possible methane sources generating high methane areas of the Laptev Sea, carbon stable isotope signatures of water column methane and in surface and deep drill core sediment samples were obtained during summer 2011 and spring 2012 field campaigns. The δ13C values of methane dissolved in seawater at the drill site varied from -37.8 to -75.7 ‰. The range of δ13C values of methane in the surface sediments was from -51.3 to -58.2 ‰ and in drill core samples (up to 26.5 m depth) values ranged from -77.8 to -100 ‰. Methane carbon isotope signatures in seawater reflect various sources of methane and the influence of active aerobic methane oxidation in seawater and surface sediments. Significant depletion of methane from drill core with δ13C (to -100‰) is characteristic of hydrogenotrophic methanogenesis at cold near 0°C in situ temperatures, which was confirmed with δ14C-radiotracer rate incubations.

  10. Seasonal variation of water level, water and soil temperature, chemistry, and stable isotopes in hyporheic zone of Korea

    NASA Astrophysics Data System (ADS)

    Jeon, W. H.; Lee, J. Y.

    2015-12-01

    The purpose of study was to evaluate interaction between groundwater and stream water in hyporheic zone using water level, water temperature, soil temperature, chemistry, and stable isotopes. We installed seven piezometers (IYHW1 to 7) in the streambed that across stream in every 10 m and in depth of 0.85 to 1.54 m, a device that measure stage level nearby IYHW1, and devices that measure soil temperature in every 10 cm down to 50 cm nearby each piezometer was installed. We monitored water level and water temperature every hour from automatic transducers at the piezometers and the stage level, and soil temperatures were monitored every two hours. We took samples from the hyporheic water, stream water, and nearby groundwater to analysis chemical and isotopic compositions. The water level difference between stream water and hyporheic waters indicated that groundwater was downwelling in wet season and upwelling in dry season. The groundwater temperature remained steady in different seasons, but the stream water represented a frequent fluctuation with large amplitude. The hyporheic waters and soil temperature represented intermediate variation characteristics. The chemical compositions were not able to indicate in interaction of groundwater and stream water because no distinctive difference in seasonal variation in waters. The quantity of isotopic compositions of oxygen and hydrogen determined from using mixing ratio indicated that downwelling in wet season and upwelling in dry season. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2011-0007232).

  11. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  12. Constraints on water cycling in a deep mountain valley from stable water isotope and sap flux measurements

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    The stable isotopes of oxygen and hydrogen in water are unequally partitioned during phase changes, with environmental conditions controlling the degree of partitioning. As a result, the isotopic composition of water reflects the thermodynamic history of water parcels in the water cycle. Recent advances in cavity ringdown spectrometry allow for the continuous measurement of water vapor isotope compositions, and provide insight into the processes influencing the concentration of near-surface water vapor at high resolution. We used stable water isotopes to investigate the processes controlling water vapor cycling in a deep mountain valley in northwestern Wyoming. A Picarro L2120-i Cavity Ring-Down spectrometer was deployed to measure the isotopic composition of atmospheric water vapor at the University of Michigan Camp Davis Field Station near Jackson, WY for three consecutive summers (2012-2014) and during winter 2013. We also constructed a network of Granier-style sap flux probes to estimate the local transpiration flux from regionally dominant tree species in July 2014. A prominent diurnal cycle was observed during the summer that was mostly absent in the winter. Summer specific humidity, δD, δ18O, and sap flux all reach daily maximum values in the mid-to-late morning that we associate with the onset of transpiration. The mountain valley is capped by an inversion, which limits atmospheric mixing during the morning. After the breakup of the inversion, the atmospheric boundary layer develops quickly and results in decreases in near-surface specific humidity and δ18O. δD appears to be less affected following the inversion breakup, resulting in a strong diurnal cycle in d-excess. Specific humidity, δD, and δ18O all return to their morning values rapidly near sunset, marking the cessation of mixing and atmospheric stratification. This absence of this diurnal cycle in the winter is consistent with reduced transpiration and atmospheric mixing anticipated for the

  13. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  14. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Yao, Tandong; Xie, Shiyou; He, You

    2017-02-01

    Constraining temporal and spatial variability in water stable isotopes (δ18O and δD) is requested for interpreting proxy records of paleoclimate/paleoaltimetry. The southeastern Tibetan Plateau (TP) receives large amounts of precipitation in both summer (JJAS) and spring (MAM) and this makes it different from most other parts of the TP where annual precipitation concentrates only in summer. However, our knowledge of controls on precipitation and surface runoff generation in this region is still far from sufficient. In this study, the δ18O and δD of precipitation and stream waters across the southeastern TP were analyzed to investigate moisture sources and empirical isotope-elevation relationships. Herein, seasonal precipitation patterns, moisture trajectories and precipitation isotopes suggest this region is seasonally dominated by the monsoon in summer and the southerlies (from the Bay of Bengal) or a mix of southerlies and westerlies in spring. Spatially, vertical variations in precipitation seasonality exert profound influences on isotopic variability for stream waters. Larger contributions of spring precipitation (with higher δ18O and d-excess (d-excess = δD-8δ18O) compared to summer precipitation) vs. summer precipitation in the surface runoff generation at lower elevations account for the uncommon altitudinal decrease in streamwater d-excess. Such a cause also contributes to the slightly greater vertical lapse rates of streamwater δ18O (-0.28 to -0.48‰/100 m) relative to the Himalayan front. In addition, although a robust δ18O-elevation relationship is demonstrated based upon our measured and other published data on a broad spatial scale (over a 5200 m elevation range), this relationship is found to deviate from the empirical/theoretical pattern in the Himalayan front, which is also caused by the substantial spring precipitation in the southeastern TP. It is suggested that long-term changes in δ18O or δD of paleowater in this region actually

  15. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  16. Stable isotopes reveal ecotypic variation of water uptake patterns in Aleppo pine

    NASA Astrophysics Data System (ADS)

    Ferrio, Juan Pedro; Lucabaugh, Devon; Chambel, Regina; Voltas, Jordi

    2014-05-01

    Aleppo pine (Pinus halepensis Mill.) has a large natural distribution range that encompasses a multitude of thermal and moisture conditions found in the Mediterranean basin. We hypothesized that due to the recurrent incidences of drought stress and high temperatures that occur at varying degrees along its distribution range, populations of Aleppo pine have undergone ecotypic differentiation in soil water uptake patterns. This study analyzed stable isotopic compositions (δ18O and δ2H) of xylem water to identify adaptive divergence associated to the pattern of soil water consumption by roots of Aleppo pine populations originating from the Mediterranean region. The results from this study show that genetic diversity in the extraction pattern of soil water can be found among populations and ecological regions of Aleppo pine under common garden conditions. However, the ability to detect such differences depended on the period of the year examined. In particular, data collection in full summer (end of July) proved to be the most adequate in revealing genetic divergence among populations, while end of spring and, to a lesser extent, end of summer, were less successful for this purpose. Both water uptake patterns (as estimated by δ18O and δ2H) and above-ground growth, exhibited significant relationships with both climatic and geographical variables. This suggests that the underlying variation among populations can be explained by certain characteristics at origin. In addition, we used a bayesian mixing model (SIAR package for R) that incorporated isotopic signatures from xylem and soil water in order to determine the predominant soil layer of water source consumption at the aforementioned periods of the growing season, where water availably ranged from lowest to highest. This allowed us to gain some understanding of Aleppo pines' differential reaction to drought, at the intraspecific level, across the fluctuating conditions of the growing season by comparing the

  17. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2016-10-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  18. Reconstructing Water Column Hydrography Using Individual Shell Stable Isotope Data From Multiple Planktic Foraminifera Species

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Fehrenbacher, J. S.; Davis, K. V.; Griffin, J. M.; Grimm, B. L.; Kercher, P.; Kostlan, M.; Menicucci, A. J.; Santare, L.; Starnes, J.; Vetter, L.; Wilbanks, E.; Wildgoose, M.

    2012-12-01

    , ontogeny, and the depth-dependent variation of the carbonate ion effect, water column light levels, temperature and salinity. In the context of these variables, stable isotope datasets from multiple foraminifera species may be accurately interpreted for paleoceanographic reconstructions of upper water column structure.

  19. Use of stable lead isotopes to characterize the sources of anthropogenic lead in North Atlantic surface waters

    SciTech Connect

    Veron, A.J. Univ. of Delaware, Newark, DE ); Church, T.M. ); Patterson, C.C. ); Flegal, A.R. Univ. of California, Santa Cruz, CA )

    1994-08-01

    Stable lead isotopes are used to illustrate the impact of surface water circulation on dissolved lead distribution in North Atlantic surface waters during oligotrophic conditions. Using stable lead isotopic signatures from (1) the Sargasso Sea and (2) direct tropospheric deposition to the North Atlantic, the authors estimate that 10-40% of the lead accumulated in surface waters of the European Basin is transported from the western North Atlantic by the North Atlantic Current. South of 50[degrees]N, lead appears to be primarily distributed by the Subtropical North Atlantic Gyre that extends well beyond the western basins to 30[degrees]W in the North African Basin (at 30-40[degrees]N). There are different lead isotopic signatures between the subtropical gyre of the Guiana and western Guinea Basins, which suggests that the Inter Tropical Convergence Zone acts as an efficient barrier limiting chemical exchanges between the gyre and the equatorial currents.

  20. Simulation of stable isotopic pools and fluxes by a land-surface scheme forced with observed isotopic ratios in precipitation and atmospheric water vapour.

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Griffith, D.; Irannejad, P.; Williams, A.; Stone, D.

    2004-12-01

    Stable isotopes provide independent tools for evaluating key components of the hydrological and carbon cycles as simulated by land-surface schemes (LSS). The Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS http://www.pilps.mq.edu.au) is initiating a new type of experiment (IPILPS) to assess the ability of LSSs to reproduce isotopic components of water and mass (carbon) budgets. The project aims to intercompare LSS simulations of diurnal and annual cycles of isotopic pools and fluxes, and to evaluate the performance of isotope-enabled LSSs under varying environmental conditions. The need for evaluation data is driving a new experimental effort concentrating on the measurement of stable water isotopes (SWI), in precipitation, atmospheric and canopy water vapour, soil water and leaf/stem water, on annual and diurnal time scales at three sites in the GEWEX CSE Amazon, Murray-Darling and Baltic Sea basins. We present diurnal and annual cycles of stable isotopes in the ecosystem as simulated by an isotope enabled LSS (ISOLSM)1 over an agricultural pasture in Wagga Wagga (SE Australia). Climatological values of SWI in precipitation and water vapour, as well as continuous in situ D/H ratios of atmospheric water vapour obtained during a three-week field campaign, are used to force the LSS. The D/H ratio was measured using a fully automated and mobile Fourier Transform Infrared (FTIR)2 spectrometer. The sensitivity of simulated isotopes (in soil water, plants and canopy air space, as well as isotopic exchanges between the land surface and the atmosphere) to the atmospheric forcing is analysed. The results highlight the importance of intensive field campaigns for measuring SWI in the environment as both forcing and evaluation data for land surface simulations. 1. A. Henderson-Sellers et al., 2004, Using stable water isotopes to evaluate basin-scale simulations of surface water budgets, in press, J. Hydrometeorol. 2. D.W.T. Griffith et al., 2002

  1. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    PubMed

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.

  2. A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models

    PubMed Central

    Buttle, James; Carey, Sean K.; van Huijgevoort, Marjolein H. J.; Laudon, Hjalmar; McNamara, James P.; Mitchell, Carl P. J.; Spence, Chris; Gabor, Rachel S.; Soulsby, Chris

    2015-01-01

    Abstract We combined a conceptual rainfall‐runoff model and input–output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow‐influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta‐analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek > Krycklan > Dorset > Baker Creek > Dry Creek > Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near‐surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near‐surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil–vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on

  3. Using Stable Isotopes to Understand Degradation of Organic Contaminants in Ground Water

    EPA Science Inventory

    Stable isotopes are a powerful tool to understand biodegradation. However, there are two interactions that can substantially confuse the interpretation of CSIR data: heterogeneity in flow paths in the aquifer and proximity to NAPL or other source of contamination to ground wate...

  4. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  5. Stable isotope techniques to investigate cloud water in forested mountain watersheds in the trade wind latitudes - Hawaii and Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Giambelluca, T. W.

    2010-07-01

    Fog and cloud water can contribute to stream flow, soil moisture, groundwater recharge and plant uptake in mountain watersheds in the trade wind latitudes. Results from three island sites, two in Hawaii and one in Puerto Rico, are discussed to evaluate the utility of isotopic methods in studies of fog and cloud water in watersheds. In forests that are immersed in orographic clouds, the precipitation consists of a range of droplet sizes from fog to rain. Stable isotopes distinguish precipitation source to a greater extent than precipitation size, and isotopic composition of fog-sized droplets may be similar to the smallest raindrops in a cloud. Therefore, results from isotopic methods can differ from estimates using fog collectors, canopy water balances, eddy covariance, and other methods. Examples from study sites in Hawaii and Puerto Rico illustrate these differences. East Maui in Hawaii rises 3054 m above the ocean, and clouds intercept the mountain slopes between 600 and 2200 m on both windward and leeward sides of the island. The eastern mountains of the island of Puerto Rico receive cloud water input at their highest altitudes, between 900-1100 m. In both study areas, stable isotopes of fog/cloud water and rain were measured monthly using passive fog and rain collectors. The sites on Maui were instrumented with weather stations and throughfall gages to estimate cloud water input with canopy water balance methods. Estimates of cloud water as a fraction of total precipitation input from isotopic mixing models and the canopy water balance calculations were 29% and 15%, respectively, on leeward Maui and 27% and 32% on windward Maui, using the most conservative mixing model end member for fog. Cloud water input at Pico del Este in Puerto Rico was estimated to be 45-56% of total precipitation from isotope mixing model results, compared with 10-16% from previous studies using various methods. Sources of uncertainty in using isotope mixing model analyses to

  6. Landscape-scale observations of plant water use using continuous stable isotope monitoring

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K. K.; Good, S. P.; Villegas, J. C.; Breshears, D. D.

    2009-12-01

    Water vapor isotopes (δ2H and δ18O) are useful for resolving the dynamics of the near-surface atmospheric water cycle across a range of temporal and spatial scales. Previously, insight was limited by the temporal resolution of available measurement and sampling techniques. In recent years, with the development of laser-based spectroscopy techniques, continuous monitoring of δ2H and δ18O compositions in water vapor has become feasible. In this study, we reported two experiments, one conducted within a sealed mega-scale chamber (Biosphere 2) and another in an African savanna ecosystem. These studies were conducted to examine the feasibility of continuously monitoring the isotopic composition of surface evapotranspiration by coupling isotope and eddy covariance techniques. Results from the Biosphere 2 glasshouse facility provided clear evidence of the method’s ability to track the impact of diurnal cycles in plant transpiration on atmospheric isotope composition. In addition, patterns of isotopic vapor composition were well-correlated to experimental manipulations of vegetation cover, which we related to changes in the relative amounts of evaporation and transpiration. Preliminary results for the field experiment conducted in a Kenyan savanna revealed a rapid, dramatic shift in the isotopic composition of near-surface water vapor after a very small rainfall event (~1 mm), which was likely caused by the canopy/soil evaporation. Our field observations also indicated that soil moisture/potential may play a role in determining the evaporation signals. Taken as a whole, these experiments confirm the potential of laser based continuous isotope monitoring as a means for greatly expanding the use of isotope flux measurements to address a wide range of research topics related to landscape-scale plant water use in drylands.

  7. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L. 1

    PubMed Central

    Flanagan, Lawrence B.; Comstock, Jonathan P.; Ehleringer, James R.

    1991-01-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  8. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study

    NASA Astrophysics Data System (ADS)

    Gierke, Casey; Newton, B. Talon; Phillips, Fred M.

    2016-06-01

    In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water `compartments', from which trees extract water for transpiration as a function of the season. The results indicate that "immobile" or "slow" soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. "Mobile" or "fast" soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.

  9. Effects of Mild Water Stress and Diurnal Changes in Temperature and Humidity on the Stable Oxygen and Hydrogen Isotopic Composition of Leaf Water in Cornus stolonifera L. 1

    PubMed Central

    Flanagan, Lawrence B.; Ehleringer, James R.

    1991-01-01

    In this paper we make comparisons between the observed stable isotopic composition of leaf water and the predictions of the Craig-Gordon model of isotopic enrichment when plants (Cornus stolonifera L.) were exposed to natural, diurnal changes in temperature and humidity in a glasshouse. In addition, we determined the effects of mild water stress on the isotopic composition of leaf water. The model predicted different patterns of diurnal change for the oxygen and hydrogen isotopic composition of leaf water. The observed leaf water isotopic composition followed qualitatively similar patterns of diurnal change to those predicted by the model. At midday, however, the model always predicted a higher degree of heavy isotope enrichment than was actually observed in leaves. There was no effect of mild water stress on the hydrogen isotopic composition of leaf water. For the oxygen isotopic composition of leaf water, there was either no significant difference between control and water-stressed plants or the stressed plants had lower δ18O values, despite the enriched stem water isotopic composition observed for the stressed plants. PMID:16668385

  10. Interaction of a river with an alluvial basin aquifer: Stable isotopes, salinity and water budgets

    NASA Astrophysics Data System (ADS)

    Eastoe, Christopher J.; Hutchison, William R.; Hibbs, Barry J.; Hawley, John; Hogan, James F.

    2010-12-01

    SummaryDetailed sets of tracer data (isotopes, salinity) and the results of MODFLOW modeling of water budgets provide an unprecedented opportunity for comparing modeling with field data in the area where the Rio Grande enters the Hueco Bolson basin of Texas and Chihuahua. Water from the Rio Grande has recharged the Hueco Bolson aquifer to a depth of 300 m below the surface in the El Paso-Ciudad Juárez area, the depth of infiltration corresponding to the depth of ancestral Rio Grande fluvial sediments. Groundwater beneath the river exhibits complex isotope and salinity stratification. Post-dam (post -1916, type A) river water has infiltrated to depths up to 80 m. Pre-dam (type B) river water has infiltrated to 300 m depth near downtown El Paso, and has mixed with, or been displaced further downstream by high-salinity native Hueco Bolson groundwater (type C, present in the basin north of the river). Salinity and isotope boundaries do not correspond precisely. Isotope stratification corresponds to water residence time and (for type C) to degree of evaporation; the highest salinities are associated with the most evaporated water. Modeling of water budgets in the basin fill beneath the river predicts present-day mixing of water types B and C where changing rates of pumping have caused a reversal of groundwater flow direction between El Paso and Ciudad Juárez, and deep recharge of type B water under conditions prevailing in the 1960s.

  11. Mesozooplankton stable isotope composition in Cyprus coastal waters and comparison with the Aegean Sea (eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Hannides, Cecelia C. S.; Zervoudaki, Soultana; Frangoulis, Constantin; Lange, Manfred A.

    2015-03-01

    Here we use bulk and amino acid-specific stable nitrogen (N) isotope analysis (AA-CSIA) to evaluate seasonal and regional change in mesozooplankton dynamics for the first time in coastal waters of the eastern Mediterranean. Cyprus mesozooplankton δ15N values were significantly higher in late winter (2.3‰) than in summer (1.2‰), and in all cases were less than the δ15N values of mesozooplankton in the northeast Aegean Sea (NEA; 3.4‰). AA-CSIA indicates that these differences can primarily be attributed to seasonal and regional change in mesozooplankton community trophic structure, with overall trophic position increasing by 0.2-0.3 in winter as compared to summer around Cyprus, and trophic position higher in the NEA than in Cyprus by 0.3-0.6. Such differences are most likely related to the larger contribution of carnivorous mesozooplankton observed in winter around Cyprus and in the NEA. Overall, our findings indicate change in bulk mesozooplankton δ15N value in the eastern Mediterranean is primarily driven by change in community trophic position, rather than variability in δ15N value at the base of the food web.

  12. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria.

    PubMed

    Aanderud, Zachary T; Lennon, Jay T

    2011-07-01

    Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H2(18)O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H2(18)O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H2(18)O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H2(18)O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H2(18)O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H2(18)O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.

  13. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  14. The stable hydrogen and oxygen isotope variation of water stored in polyethylene terephthalate (PET) bottles.

    PubMed

    Spangenberg, Jorge E; Vennemann, Torsten W

    2008-01-01

    A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.

  15. Groundwater Ages and Stable Isotope Fingerprints of Contaminated Water to Examine Potential Solute Sources at a Uranium Processing Mill

    NASA Astrophysics Data System (ADS)

    Hurst, T. G.; Solomon, D. K.

    2007-12-01

    To evaluate sources of high solute concentrations in groundwater near a uranium processing facility, groundwater recharge dates are correlated to specific solute concentrations and depth in the water column. Stable isotopes are also used as potential fingerprints of water sourced from mill tailing cells. Passive diffusion samplers, to be analyzed for 3He/4He ratio, were deployed in 15 different wells with samplers at two depths in the saturated interval. Low-flow purging and sampling was then conducted to isolate sampling points at different depths in the wells, with sampling at multiple depths being completed in 4 of the 15 wells sampled. Laboratory analyses were conducted for CFC recharge age, as well as T/3He recharge age. Contract laboratories analyzed for: deuterium and oxygen-18 isotopes of water; sulfur-34 and oxygen-18 isotopes of sulfate; trace metals uranium, manganese, and selenium; and nitrate and sulfate. Analysis for 235U/238U isotope ratios will be conducted to further identify fingerprint signals of source water. Groundwater recharge ages determined using CFC analysis show some vertical stratification in ages across the water column. Upon initial data processing and analysis, measured CFC ages ranged from 30 to 40 years within the water column of one well to only several years difference in another well. Additional results for trace metal concentrations, stable isotope ratios, and T/3He recharge ages will be reported when results are received. Further post-processing of CFC laboratory analysis and noble gas analyses will provide greater clarity as to groundwater ages within the aquifer and, combined with field pumping data, will allow for a comprehensive groundwater model to be constructed. This study provides great insight to potential mine tailings leakage problems and using isotopes and groundwater age dating techniques as a means of tracing contaminated groundwater to the leakage source. Utilizing stable isotopes of water and sulfate, combined

  16. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Magaritz, Mordeckai; Gat, Joel R.

    1989-12-01

    Day-to-day and within-day (diel) variations in δD and δ18O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished: 1) on rain days, snail water becomes isotopically depleted approximately in the direction of the rain isotope values, but always less depleted in D as is atmospheric water vapor; 2) during the 1-3 days following a rain, the snail water becomes isotopically enriched along a line with slope < 8, in δD vs. δ18O space (this relates to an increasing influence of humidity derived from the Mediterranean Sea); 3) a period of relative stability of the isotopic composition persists until the next rain event. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in 18O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in 18O by ca. 1-2%. relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate 18O should provide a reliable indication of rainfall 18O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  17. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work

  19. High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment

    NASA Astrophysics Data System (ADS)

    Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

    2013-04-01

    Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water

  20. Utilizing Present-Day Stable Water Isotopes to Improve Paleoclimate Records from the Southeast (USA)

    NASA Astrophysics Data System (ADS)

    McKay, K. K.; Lambert, W. J.

    2015-12-01

    Present-day water isotope data are used to help interpret climate (paleo-rainfall) proxies archived in the geologic record, which can then aid in the creation of General Circulation Models (GCM). The Southeast (USA) is under-represented with respect to present-day measurement of water isotopes and high-resolution paleoclimate records, thus GCMs must extrapolate data for the region. We will evaluate water isotope data (δ18O, δD) collected and analyzed at The University of Alabama (33°13'N, 87°33'W) since June 2005. The monitoring station, central to the Southeast, was established to provide long-term water isotope data needed for reconstructing paleo-rainfall records of the region. Proxy data (e.g., δ18Ocalcite) archived in speleothems have been demonstrated to provide trustworthy information about past climate conditions; however, present-day monitoring of both local rainfall and cave dripwater are crucial. The decade-long (June 2005 - May 2015) rainfall record allows for the establishment of the relationship between water isotopes (δ18O, δD) and monthly air temperature, rainfall amount, as well as the general differences between summer and winter rainfall. Dripwater from Cathedral Caverns (34°34'N, 86°13'W), located in northeastern Alabama, has been sampled at a monthly resolution since January 2015 to determine if the water chemistry in the cave represents an annual mean for the rainfall or if it is seasonally biased. The ultimate goal of this study is to better understand how atmospheric air currents (specifically the strength/position of the Polar Jet Stream, PJS), and hence rainfall in the Southeast, varied during past periods of relative warming (e.g., Dansgaard-Oeschger events) and cooling (e.g., Heinrich events) of the Northern Hemisphere atmosphere. Future GCMs will be improved if a reliable high-resolution paleo-rainfall record can be produced for the Southeast.

  1. Stable isotopes of water used to trace relationships between vegetation and streamflow in a semi-arid catchment

    NASA Astrophysics Data System (ADS)

    McCutcheon, R.; Benner, S. G.; Kohn, M. J.; Flores, A. N.; McNamara, J. P.

    2012-12-01

    Natural abundances of the stable isotopes found in water (δ2H and δ18O) vary over time and space in natural watersheds as a result of varying input signals and subsequent isotopic enrichment or depletion processes (e.g. varying wind directions or evaporative enrichment of shallow soil moisture). As a result, unique isotopic compositions can be identified within the soil column, vegetation, and streams. Assuming that plants do not discriminate between water molecules of varying isotopic composition, δ2H and δ18O data from plants, adjacent soil at multiple depths, and stream water can reveal valuable information about the relationships between plant water uptake and streamflow. What are the interactions between plant water uptake and streamflow in a semi-arid watershed? We know that many streams exhibit a diurnal streamflow pattern, but what plants are contributing to this pattern? And how does each plant's influence on streamflow change temporally? Monthly samples were collected from dominant plant species, adjacent soil (at depths of 1, 10, 25, 45, 75, and 100 cm when available), and two streams, at three locations in Dry Creek Experimental Watershed (Boise, ID) during the 2011 and 2012 growing seasons. Initial isotope analyses show that local shrubs, trees, and soils plot well to the right of the local meteoric water line (likely due to evaporative enrichment), while local streams plot near the line (suggesting groundwater may be the dominant stream water source). Samples plotted farther to the right as the climate dried in the late summer. Also, some shrubs (Rabbitbrush and Sagebrush) appear to uptake shallow soil source water in the summer when hillslope trees only uptake deeper source water. However, further investigation is needed, as many plants exhibit δ18O concentrations greater than adjacent soil water samples, suggesting the existence of an additional plant water source.

  2. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  3. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, K.; Poeter, E.

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (??18O and ??2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  4. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  5. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants

    USGS Publications Warehouse

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.

    1991-01-01

    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  6. Tellurium Stable Isotope Fractionation in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Fehr, M. A.; Hammond, S. J.; Parkinson, I. J.

    2014-09-01

    New Te double spike procedures were set up to obtain high-precision accurate Te stable isotope data. Tellurium stable isotope data for 16 chondrite falls are presented, providing evidence for significant Te stable isotope fractionation.

  7. Application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park.

    PubMed

    Ingraham, N L; Zukosky, K; Kreamer, D K

    2001-04-01

    Waters on, and below, the South Rim of the Grand Canyon were sampled for stable isotopic analysis to determine the hydrologic effects of the transcanyon pipeline. The transcanyon pipeline transports North Rim water discharging at Roaring Spring across the Grand Canyon to South Rim. Ultimately this water is discharged through the sewage treatment plant at the Clearwell Overflow wash on the surface expression of the Bright Angel Fault. The North Rim water is some 8 per mil more depleted in deltaD than most of the water issuing from springs on the South Rim except for that from Indian Garden Spring which lies below the Clearwell Overflow wash. Such a composition of Indian Garden Spring must come from discharged wastewater onthe rim, percolating downward approximately 1,000 m vertically through the Bright Angel Fault. The difference in stable isotopic composition of the North Rim water renders it not only traceable in Indian Garden Spring water, but the proportions may be determined as well which result in projecting an admixture of up to half the total discharge. Curiously however, Indian Garden Spring contains no appreciable amounts of the anions associated with wastewater. More recently, a leak in the transcanyon pipeline was discovered above Indian Garden Spring, suggesting that a portion of that spring's discharge may have its origin in water directly from the pipeline. Nevertheless, these data provide information relevant to the National Park Service policy of precluding anthropomorphic forces impacting national parks. In addition, the stable isotopic ratios of park water provide a mechanism to assess the potential for future degradation, as well as the origin of any future degradation, of the water quality of Indian Garden Spring.

  8. Use of Stable Isotopes to Follow Intracellular Water Dynamics in Living Cells

    SciTech Connect

    Kreuzer, Helen W.; Hegg, Eric L.

    2012-01-28

    Despite the importance of water to cell structure and function, intracellular water dynamics are poorly understood. A new method based on isotope ratio measurements has revealed that a substantial portion of the O and H atoms in the intracellular water of rapidly-dividing cultured cells is derived from metabolic activity, and not from environmental water. These findings have led to a dynamic model of intracellular water composition: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis. Data from gram-positive and gram-negative bacteria as well as cultured mammalian cells are consistent with the model.

  9. Water-Use Efficiency and Stable Carbon Isotopes: Accounting for Photosynthetic Refixation

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Marshall, J. D.

    2007-12-01

    Three processes are performed by every green plant tissue: photosynthesis, respiration and refixation. Each of these affects the ratio of stable isotopes, 12C and 13C. Refixation allows plants to fix a portion of the CO2 produced via respiration prior to releasing the remaining CO2 back into the atmosphere. The process begins with a pool of CO2 already depleted in 13C and subsequently depletes it further, resulting in two simultaneous effects: enrichment of CO2 released into the atmosphere and depletion of biomass that is formed. Recently, considerable research has concentrated on identifying processes that determine the isotopic composition of a given plant tissue. A convincing explanation for the observed enrichment of stems versus leaves has still not been derived. We advocate that refixation can explain currently inexplicable patterns. We hypothesized that leaves re-fix carbon during their entire lifespan when light intensity is below the light compensation point and above total darkness. We grew Idaho hybrid poplars under controlled conditions in a growth chamber. Light intensity was regulated to create three different treatments: (1) Light (PAR=270 μmol/m2s), (2) Shade (PAR=89 μmol/m2s) and (3) Dark (PAR=0 μmol/m2s). For each treatment we modified respiration values by regulating the light environment between total darkness and the light compensation point. For the light treatment group, leaf respired CO2 was collected at 5% (PAR=14) and 22% (PAR=59) of the light growing environment. For the shade treatment group, leaf respired CO2 was collected at 22% (PAR=20) of the light growing environment. We estimated the amount of refixation as (Ddark- Dlight)/Ddark, where Ddark represents dark respiration (μmol/gs) and Dlight respiration during light periods (μmol/gs). Light treatments plants exhibited a maximum refixation level of 53% at PAR=59, with an associated enrichment of leaf respired C isotopic composition (δ13CLR) of 3.3‰. At PAR=14, refixation rate

  10. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  11. Stable isotope study of precipitation and cave drip water in Florida (USA): implications for speleothem-based paleoclimate studies.

    PubMed

    Onac, Bogdan P; Pace-Graczyk, Kali; Atudirei, Viorel

    2008-06-01

    Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.

  12. A soil water distillation technique using He-purging for stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Ignatev, A.; Velivetckaia, T.; Sugimoto, A.; Ueta, A.

    2013-08-01

    A new method of soil water extraction for oxygen and hydrogen isotopic analysis has been developed; this method uses a helium flow system as an alternative to the conventional vacuum extraction method. The method significantly increases the efficiency of sample preparation and simplifies the extraction. During the water distillation, a helium carrier gas transfers water vaporized at 95 °C from the soil sample to a cold trap at liquid nitrogen temperature. An extraction time of 180 min is used to distill the water from the fine-grained soil completely. The proposed He-purging distillation technique makes it possible to distill approximately a dozen samples simultaneously. The method was tested using liquid water samples and clayey soil samples hydrated with water of known isotopic composition. The standard deviations for these tests were 0.08‰ for δ18O and 0.7‰ for δD. An intercomparison test was conducted for the helium and vacuum extraction methods using natural soil samples. The correlation coefficients between the methods were 0.9926 and 0.9939 for δD and δ18O, respectively. The proposed He-purging distillation method can achieve high precision for clayey soil samples with low water content and has the potential to provide adequate isotopic data in hydrological and ecological studies. The method is relatively fast, efficient, and inexpensive. We also recommend using the method to distill salt solutions (sea water, mineralized water) before determining the δD and δ18O values using a chromium or carbon reduction method to avoid “salt effects”.

  13. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  14. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Saylor, Joel E.; Garzione, Carmala N.; Leier, Andrew; Sundell, Kurt E.

    2016-12-01

    Environmental parameters that influence the isotopic composition of meteoric water (δ18O and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in δ18O of stream water west of the Eastern Cordillera (∼1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative δ18O values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in δ18O on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to

  15. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  16. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    USGS Publications Warehouse

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  17. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia

    PubMed Central

    Wallace, Michael P.; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H. E.; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  18. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    PubMed

    Wallace, Michael P; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H E; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices.

  19. The impact of snowpack decline on high elevation surface-water flow in the Willamette River: a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.

    2015-12-01

    Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.

  20. Perfluorinated chemicals infiltrate ocean waters: link between exposure levels and stable isotope ratios in marine mammals.

    PubMed

    Van de Vijver, Kristin Inneke; Hoff, Philippe Tony; Das, Krishna; Van Dongen, Walter; Esmans, Eddy Louis; Jauniaux, Thierry; Bouquegneau, Jean-Marie; Blust, Ronny; de Coen, Wim

    2003-12-15

    This is the first study to report on concentrations of perfluorinated organochemicals (FOCs) in marine mammals stranded along the southern North Sea coast in relation to stable nitrogen and carbon isotope ratios (delta15N and delta13C). The presence of FOCs in top predators such as marine mammals would indicate a potential biomagnification of these compounds and their widespread occurrence. Liver and kidney tissues of nine marine mammal species have been sampled. Among all the measured FOCs compounds, PFOS (perfluorooctane sulfonate) was predominant in terms of concentration. The highest PFOS concentrations were found in the liver of harbor seal compared to white-beaked dolphin, harbor porpoise, gray seal, sperm whale, white-sided dolphin, striped dolphin, fin whale, and hooded seal. PFOS concentrations differed significantly between sexes and age classes in harbor porpoises. Stable isotope measurements (delta13C and delta15N) were used in this study to describe the behavior of contaminants in food webs. We found a significant (p < 0.05) linear relationship between PFOS concentrations in livers of harbor porpoises and both muscle delta13C and delta15N measurements. Harbor and gray seals and white-beaked dolphin, which displayed the highest trophic position, contained the highest PFOS levels, while offshore feeders such as sperm whales, fin whales, striped dolphin, and white-sided dolphin showed lower PFOS concentrations than inshore species.

  1. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages.

    PubMed

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin

    2015-10-28

    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required.

  2. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  3. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  4. Investigating Residential History Using Stable Hydrogen and Oxygen Isotopes of Human Hair and Drinking Water.

    PubMed

    Mant, Madeleine; Nagel, Ashley; Prowse, Tracy

    2016-07-01

    The relationship between isotopic signals in human hair and geographic region has potential forensic applications for identifying unknown individuals' place of recent residence. This study analyzes δ(2) H and δ(18) O isotopes in residential tap water and bulk hair samples from 17 volunteers representing 12 locations in Ontario, Canada. There is a strong correlation (R(2) = 0.9) between δ(2) H and δ(18) O values of the water samples. In contrast, the δ(2) H and δ(18) O values of the hair samples are weakly correlated (R(2) = 0.3), and the greater variability in the data is linked to dietary factors. This study demonstrates that the δ(2) H and δ(18) O values of hair and drinking water can be used to help identify potential place of residence in forensic cases, particularly in relation to proximity to large bodies of water such as the Great Lakes, but interpretations are complicated by the contribution of both water and diet to δ(2) H and δ(18) O values in hair.

  5. Baboons, water, and the ecology of oxygen stable isotopes in an arid hybrid zone.

    PubMed

    Moritz, Gillian L; Fourie, Nicolaas; Yeakel, Justin D; Phillips-Conroy, Jane E; Jolly, Clifford J; Koch, Paul L; Dominy, Nathaniel J

    2012-01-01

    Baboons regularly drink surface waters derived from atmospheric precipitation, or meteoric water. As a result, the oxygen isotope (δ(18)O) composition of their tissues is expected to reflect that of local meteoric waters. Animal proxies of the oxygen isotope composition of meteoric water have practical applications as paleoenvironmental recorders because they can be used to infer aridity and temperature in historic and fossil systems. To explore this premise, we measured the δ(18)O values of hair from two baboon species, Papio anubis and Papio hamadryas, inhabiting Awash National Park, Ethiopia. The hybridizing taxa differ in their ranging behavior and physiological response to heat. Papio hamadryas ranges more widely in the arid thornbush and is inferred to ingest a greater proportion of leaf water that is enriched in (18)O as a result of evaporative fractionation. It is also better able to conserve body water, which reduces its dependence on meteoric waters depleted in (18)O. Taken together, these factors would predict relatively higher δ(18)O values in the hair (δ(18)O(hair)) of P. hamadryas. We found that the δ(18)O(hair) values of P. hamadryas were higher than those of P. anubis, yet the magnitude of the difference was marginal. We attribute this result to a common source of drinking water, the Awash River, and the longer drinking bouts of P. hamadryas. Our findings suggest that differences in δ(18)O values among populations of Papio (modern or ancient) reflect different sources of drinking water (which might have ecological significance) and, further, that Papio has practical value as a paleoenvironmental recorder.

  6. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters.

    PubMed

    Matthies, Romy; Aplin, Andrew C; Boyce, Adrian J; Jarvis, Adam P

    2012-03-15

    Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III)(aq). The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long

  7. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    NASA Astrophysics Data System (ADS)

    Yang, L.; Song, X.; Zhang, Y.; Han, D.; Zhang, B.; Long, D.

    2012-11-01

    The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers) and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl- in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells) based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3) seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60-70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  8. Stable isotope assessment of water quality, primary productivity, nutrient sources, and food web structure in Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Wassenaar, L. I.

    2008-12-01

    Lake Winnipeg (Canada) is a shallow great lake currently undergoing extensive eutrophication. A 4-year stable isotope project is currently underway to examine water quality, primary productivity, nutrient sources, and food web structure in the lake. The isotope hydrology (18O, 2H) of Lake Winnipeg is needed in order to gain a picture of spatial isotopic patterns in the lake that can be related to the unique fingerprints imposed by contributing watersheds, and to verify hydrodynmamic mixing models. Stable isotope assays of key nutrients (nitrate, phosphate), particulate organic matter (POM), and dissolved oxygen in Lake Winnipeg are being applied to assess (1) the sources of nutrients, (2) the sources of the organic matter (internal vs external), (3) the biogeochemical cycling of nutrients and organic matter that lead to algal formation and enhanced biological oxygen demand and 4) quantify the rates of aquatic photoautotrophic activity, respiration and gas exchange. Altogether, these assays will allow us to better link nutrient sources and cycling to enhanced aquatic productivity. Foodweb structure and function is being examined using 13C and 15N while DH and 34S are being evaluated as tracer of inter basin fish migration. Only if the current foodweb structure is well understood can predictions regarding the negative impacts of eutrophication and invasive species on the foodweb be possible.

  9. Quantitative Microbial Ecology through Stable Isotope Probing

    PubMed Central

    Mau, Rebecca L.; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa A.; Marks, Jane C.; Morrissey, Ember M.; Price, Lance B.

    2015-01-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in 18O and 13C composition after exposure to [18O]water or [13C]glucose. The addition of glucose increased the assimilation of 18O into DNA from [18O]water. However, the increase in 18O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  10. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and

  11. Stable carbon and oxygen isotopes reveal Sahel drought events and ground water fluctuations in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gebrekirstos, Aster

    2014-05-01

    Tree rings are important proxies for paleoclimate studies because they contain continuous historical records of inter-annual and intra-annual time resolutions, which range over hundreds of years. This study uses stable carbon and oxygen isotopes in tree rings to understand the drivers and impacts of climate change in sub-Saharan Africa and their ability to reconstruct past regional climate variability and climatic trends. Our approach considers large scale climate gradients and different temporal scales (inter-annual and intra-annual variations) and combines multi- parameter measurements (carbon and oxygen isotopes, whole wood and cellulose measurements). The study species are Faidherbia albida and Sclerocarya birrea from south and West Africa, respectively. Both are very important deciduous trees, and widely distributed in sub-Saharan Africa. Particularly, F. albida has a distinctive phenology; it bears leaves and flowers during the dry season and sheds its leaves during the rainy season. Stable carbon (δ13C) and oxygen (δ18O) mean values showed similar inter annual patterns. In general, both δ13C and δ18O show negative correlations with rainfall, humidity and PDSI. On the contrary, they are positively correlated with sunshine hours, maximum temperature and evaporation. The reverse phenology of Faidherbia and intra seasonal resolution measurements reveals seasonal ground water fluctuations. Both carbon and oxygen stable isotopes showed strong climatic signals including the long Sahel drought events and climatic recovery phases.

  12. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  13. Simultaneous measurements of stable water isotopes in near-surface vapor and precipitation to constrain below-cloud processes

    NASA Astrophysics Data System (ADS)

    Graf, Pascal; Sodemann, Harald; Pfahl, Stephan; Schneebeli, Marc; Ventura, Jordi Figueras i.; Leuenberger, Andreas; Grazioli, Jacopo; Raupach, Tim; Berne, Alexis; Wernli, Heini

    2016-04-01

    Present-day observations of stable water isotopes (SWI) in precipitation on monthly time scales are abundant and the processes governing the variation of SWI on these time scales have been investigated by many studies. However, also on much shorter time scales of hours mesoscale meteorological processes lead to significant variations of SWIs, which are important to understand. There are only few studies investigating the variations of SWI on this short time scale, for which, e.g., frontal dynamics, convection and cloud microphysics play an essential role. In particular, the isotopic composition of both near-surface vapor and precipitation is significantly influenced by below-cloud processes that include precipitation evaporation and isotopic exchange between falling precipitation and surrounding vapor. In this study, simultaneous measurements of SWI in near-surface vapor and precipitation with high (sub-hourly) temporal resolution in combination with observational data from radars, disdrometers, radiosondes and standard meteorological instruments are used for a detailed analysis of the relative importance of below-cloud and in-cloud (i.e., precipitation formation) processes during the course of three rain events in Switzerland in spring 2014. Periods are identified when the isotopic composition of near-surface vapor and equilibrium vapor above liquid rain drops agree and when they differ due to either evaporation of precipitation or incomplete equilibration of precipitation with surrounding vapor. These findings are verified by the supporting observational data. In addition, calculations with a simple rain-shaft model fed with observational data are compared to the actual isotopic composition of precipitation. This combination of isotope measurements and model calculations allows us to test the sensitivity of the precipitation isotope signal to rain intensity, drop-size distribution and temperature and humidity profiles.

  14. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  15. Fifteen Years of Stable Oxygen, Hydrogen, and Carbon Isotopic Data from the Surface Waters in South Florida

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Price, R. M.

    2008-05-01

    The flow of water into the coastal zone of South Florida has been subject to significant anthropogenic modification over the past 100 years. Information on pre-anthropogenic conditions has been usually obtained from proxy indicators such as the oxygen isotope ratios contained in sedimentological archives such as corals and sediment cores. The current effort to restore water flows to historic conditions combined with a 10 year record of stable oxygen and hydrogen isotopic measurements from > 100 locations in the Everglades, Biscayne Bay, and the west coast and a > 15 year record from Florida Bay offers a unique opportunity to study the influence of changes in water management upon this proxy. Such information is important in assessing the veracity of previous oxygen isotopic interpretations as well as the influence of the restoration effort to influence water flows. Two of the significant findings are; 1) There has been a continual decline in the δ18O of the freshwater end-member reaching the western portion of Florida Bay suggesting a reduction a change in the hydrological status of this portion of Florida Bay; 2) there has been a decline in the δ13C of the dissolved inorganic carbon in all the coastal environments, which is ten times the rate of decline in the δ13C of the atmosphere originated from the burning of fossil fuel. These two examples suggest multiple influences upon the coastal ecosystem relating to anthropogenic activity.

  16. Relationships between water and paddlefish Polyodon spathula dentary elemental and stable-isotopic signatures: potential application for reconstructing environmental history.

    PubMed

    Bock, L R; Whitledge, G W; Pracheil, B; Bailey, P

    2017-02-01

    The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ(18) O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ(18) O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ(18) O were observed, although the relationship between water and dentary δ(18) O was weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ(18) O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ(18) O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.

  17. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Beeckman, H.; de Haulleville, T.; Kearsley, E.; Toirambe, B.; Stoffelen, P.; Boeckx, P. F.

    2012-12-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C and 18O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of 13C are influenced by fractionation through carboxylation and changes in stomatal conductance. Similarly, fractionation of 18O from soil water occurs at the leaf level through evapo-transipiration. As a consequence, δ18O values in tree cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, using both 13C and 18O stable isotopes might not only be valuable proxies of past climatic conditions but also serve as an important tool in understanding carbon and water relations within a forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope (13C / 18O) composition at two functionally similar, but geographically dissimilar, tropical humid forests in DR Congo. A first site, the Luki man and the biosphere (MAB) reserve, is located in the western part of DR Congo influenced by a tropical wet and dry climate. A second site, the Yangambi MAB reserve is located in the north

  18. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  19. Rooting depth and water source flexibility of Arundo donax across a wide and topographically varied floodplain inferred from stable isotopes

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; West, J. B.; Li, F.; Kui, L.

    2011-12-01

    Floodplain environments can exhibit strong gradients in soil moisture availability, from very dry to saturated, with important consequences for riparian vegetation transpiration and productivity and therefore ecohydrologic flowpaths. These gradients are often driven by geomorphic features that themselves can be affected by vegetation change over relatively short timescales. The Rio Grande has undergone substantial change in the past half century, including channel narrowing and significant expansion of non-native vegetation, often across previously unvegetated sandbars and natural levees. The objective of this study was to assess water sources for Arundo donax L. (giant reed), a now common invasive grass growing along the floodplains of the Rio Grande. Our hypotheses were: a) Arundo would switch from primarily shallow soil moisture to groundwater during periods of soil moisture deficit, but that this access would be limited by increasing groundwater depths, and b) transpiration would decline with floodplain elevation and decreasing surface soil moisture because of increasing depth to groundwater and surface soil moisture deficits. We used natural-abundance stable isotopes of oxygen (δ18O) and hydrogen (δ2H) to determine the water sources of Arundo along four approximately 100-meter transects arrayed perpendicular to the Rio Grande in southwest Texas. Surface soil water, river water, groundwater, precipitation and rhizome sections were collected every month from summer 2010 until summer 2011 to assess potential source water isotopic composition for Arundo. Mixing models were used to estimate Arundo dependence on surface soil moisture or groundwater. The isotopic compositions of groundwater and river water were similar throughout the year, indicating significant hyporheic exchange. As expected, the isotopic composition of precipitation events and a large flood event were distinct from the slowly-changing river and allowed an assessment of Arundo use of these

  20. Assessing site-specific spatio-temporal variations in hydrogen and oxygen stable isotopes of human drinking water

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Bowen, G. J.; Ehleringer, J. R.

    2008-12-01

    Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) are environmental forensic tracers that can be used to constrain the origin and movement of animals, people, and products. The fundamental assumption underlying this method is that water resources at different geographic locations have distinct and characteristic isotopic signatures that are assimilated into organic tissues. Although much is known about regional-scale spatio-temporal variability in δ2H and δ18O of water, few studies have addressed the question of how distinct these geographic and seasonal patterns are for any given site. To address this question, a 2-year survey of δ2H and δ18O in tap water from across the contiguous U.S. and Canada was conducted. The data show that seasonal variability in δ2H and δ18O of tap water is generally low (<10 ‰ for δ2H), and those with the highest variability can be classified as: a) cities or towns in areas of high climate seasonality, or b) large cities in arid or seasonally arid regions which access and switch among multiple water sources throughout the year. The data suggest that inter-annual variation in tap water isotope ratios is typically low, with a median difference for month-month pairs during the 2 sampling years of 2.7 (δ2H). The results from this study confirm the existence of temporal variability in δ2H and δ18O of tap water, but suggest that this variability in human-managed systems is highly damped and may be amenable to classification, modeling, and prediction. In all, the data provide the foundation for incorporating temporal variation in predictive models of water and organic δ2H and δ18O, leading to more robust and statistically defensible tests of geographic origin.

  1. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Bath, A. H.; Talbot, J. C.

    The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18

  2. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  3. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  4. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  5. Temporal and spatial variability of stable isotopes of the water molecule in the Ebro River basin, Spain

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Petelet-Giraud, Emmanuelle; Millot, Romain

    2014-05-01

    Variations in the stable-isotope O and H composition in a catchment's water balance are mainly caused by natural variations in the isotopic composition of rainfall, through the mixing with pre-existing waters and the influence of evaporation. Stable isotopes of water can be considered as conservative and as not being affected by exchanges with soil or rock. Stable isotopes were analysed in the surface waters along the course of the Ebro River, in main tributaries of the Ebro river, in some groundwater, and over a one year survey at the outlet. The global meteoric-water line is used to represent the meteoric input as well as the local rainwater characteristics measured in five stations, all surrounding the Ebro catchment. Mean weighted rain input showed enriched values for four stations and a depleted one for the latter (large continental circulation of air masses). The δ18O and δ2H relationships for surface- and ground waters collected in the Ebro catchment with other rivers draining the French side of the Pyrenees or along the Mediterranean Sea are compiled. Most of the points clearly plot close to the global and local meteoric-water lines reflecting a meteoric origin and a lack of significant evaporation or oxygen isotopes exchanges between water and the rock matrix. The tributaries present large variations in their δ18O and δ2H signatures but only the Guadalope river has an evaporated signal.ghe most depleted values are observed for the tributaries draining the Pyrenees agreeing with the Cauterets and Garonne river signatures on the French side. The Aragon, also draining the Pyrenees, has a more enriched signature that agree with the one observed in the Adour river on the French side. However, all tributaries have more depleted values than all mean rain water signal on the Ebro catchment as given by the local rain monitoring stations. If the Burgos station is considered as representative of long range continental transport, the depleted values in the

  6. [Fractionation of hydrogen stable isotopes in the human body].

    PubMed

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  7. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  8. The Western Ghat as the water tower of the South Indian Rivers : a stable isotope investigation on the origin of water and factors affecting the water cycle.

    NASA Astrophysics Data System (ADS)

    Lambs, Luc; Tripti, Muguli; Balakrishna, Keshava

    2014-05-01

    The long stretch (1600 km) of Ghats on the western side (Western Ghats) of Peninsular India separates relatively wetter west coast from drier eastern coast. The western and eastern sides of the Ghats are having distinct isotopic signatures indicating unequal distribution of the moisture sources. South India is characterized by having moisture source for southwest monsoon from Arabian Sea and northeast monsoon from Bay of Bengal. The wetter side of Peninsular region is covered by combination of evergreen tropical forest and grass lands, termed as Shola Forests which support higher vapor recycling process. Very few isotopic studies have been undertaken in these areas, except few places, mainly along the coast lines. This study presents the stable isotope results on rivers and groundwater of the Western Ghats covering Agumbe (Karnataka) to Ooty (Tamil Nadu) and its west coast river basins as observed for the three year period. The stable isotope results on the surface, subsurface and deep water pools show that the mean d18O value range from -4 o to -2 o on the west slope, and from -5 o to -4 o on the east slope, with quite no altitude or amount effect up to 2000 m asl. The more depleted values are found only in higher elevation, like the Doddabeta in the Nilgiri (2637m), with d18O close to -9 o which is exceptional for a tropical area. The hills on the west slope of the Western Ghats as well as in the mountainous Shola forest exhibit strong water vapor recycling as evidenced by high d-excess values. On the contrary on the eastern slope, the drier condition and the numerous impoundments and river damming support strong evaporation process. Thus, the study identifies the profound effect of tropical vegetation and anthropogenic factors on the recharge functioning of river and groundwater pools in Southern India.

  9. Synthesis on evaporation partitioning using stable isotopes

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Jonson Sutanto, Samuel

    2015-04-01

    Partitioning of evaporation into productive (transpiration) and non-productive evaporation (interception, soil evaporation) is of highest importance for water management practices, irrigation scheme design, and climate modeling. Despite this urge, the magnitude of the ratio of transpiration over total evaporation is still under debate and poorly understood due to measuring difficulties. However, with the current development in isotope measuring devices, new opportunities arise to untangle the partitioning of evaporation. In this paper we synthesize the opportunities and limitations using stable water isotopes in evaporation partitioning. We will analyze a set of field as well as laboratory studies to demonstrate the different evaporation components for various climate and vegetation conditions using stable isotopes 18O/16O and 2H/1H. Experimental data on evaporation partitioning of crops, grass, shrubs and trees are presented and we will discuss the specific experimental set-ups and data collection methods. The paper will be a synthesis of these studies.

  10. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Huabiao; Xu, Baiqing; Li, Zhen; Wang, Mo; Li, Jiule; Zhang, Xiaolong

    2017-02-01

    Climatic significance of ice core stable isotope record in the Himalayas and southern Tibetan Plateau (TP), where the climate is alternately influenced by Indian summer monsoon and mid-latitude westerlies, is still debated. A newly drilled Zuoqiupu ice core from a temperate maritime glacier on the southeastern TP covering 1942-2011 is investigated in terms of the relationships between δ18O and climate parameters. Distinct seasonal variation of δ18O is observed due to high precipitation amount in this area. Thus the monsoon (June to September) and non-monsoon (October to May) δ18O records are reconstructed, respectively. The temperature effect is identified in the annual δ18O record, which is predominantly contributed by temperature control on the non-monsoon precipitation δ18O record. Conversely, the negative correlation between annual δ18O record and precipitation amount over part of Northeast India is mostly contributed by the monsoon precipitation δ18O record. The variation of monsoon δ18O record is greatly impacted by the Indian summer monsoon strength, while that of non-monsoon δ18O record is potentially associated with the mid-latitude westerly activity. The relationship between Zuoqiupu δ18O record and Sea Surface Temperature (SST) is found to be inconsistent before and after the climate shift of 1976/1977. In summer monsoon season, the role of SST in the monsoon δ18O record is more important in eastern equatorial Pacific Ocean and tropical Indian Ocean before and after the shift, respectively. In non-monsoon season, however, the Atlantic Multidecadal Oscillation has a negative impact before but positive impact after the climate shift on the non-monsoon δ18O record.

  11. No influence of CO2 on stable isotope analyses of soil waters with off‐axis integrated cavity output spectroscopy (OA‐ICOS)

    PubMed Central

    Tetzlaff, Doerthe; Soulsby, Chris

    2017-01-01

    Rationale It was recently shown that the presence of CO2 affects the stable isotope (δ2H and δ18O values) analysis of water vapor via Wavelength‐Scanned Cavity Ring‐Down Spectroscopy. Here, we test how much CO2 is emitted from soil samples and if the CO2 in the headspace influences the isotope analysis with the direct equilibration method by Off‐Axis Integrated Cavity Output Spectroscopy (OA‐ICOS). Methods The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ2H and δ18O values) and CO2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. Results The experiment with the sparkling water showed that CO2 does not influence the stable isotope analysis by OA‐ICOS. CO2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO2 can be related to soil moisture and organic matter which both enhance microbial activity. Conclusions We found, despite the high CO2 emissions from soil samples, no need for a post‐correction of the pore water stable isotope analysis results, since there is no relation between CO2 concentrations and the stable isotope results of vapor samples obtained with OA‐ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:28024164

  12. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-07

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.

  13. Water use Efficiency in a Blue oak ( Quercus douglasii) Savanna - a Combined Analysis of Stable Isotopes and Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Tu, K. P.; Knohl, A.; Ma, S.; Baldocchi, D. D.; Dawson, T. E.

    2007-12-01

    Understanding the relationship between carbon assimilation and water consumption by natural vegetation is needed to assess how changes in climate will affect plant carbon and water exchange as well as the energy fluxes of ecosystems. While climate change is expected to cause significant warming, most models also suggest changes in the timing and amount of precipitation received; thus implications of this type of change are particularly acute in Mediterranean regions of the world. Blue oak savannas are already exposed to broad variation in water availability and to severe droughts during the summer months. Our objective was to evaluate the trade-off between carbon gain and water loss (Water Use Efficiency) in this ecosystem at both the leaf and at the ecosystem scales. We monitored the ratio of the partial pressures of CO2 inside the leaf (Ci) and in the outside air (Ca) or Ci/Ca, during the summer months of three subsequent years. This ratio is determined by the balance between photosynthetic capacity and stomatal conductance to water loss. Leaf-level estimates for individual trees were based on the carbon isotope composition (δ13C) of bulk leaf tissue and of recently fixed carbohydrates (leaf soluble sugars). These leaf and individual tree based estimates were then compared with canopy-level estimates derived from continuous eddy covariance measurements of fluxes of CO2, water vapor and meteorological variables from two eddy covariance systems, one above (23m) and one below (2m) the tree canopy. We found that savanna Blue oak trees cope with severe drought through coordinated down-regulation of carbon and water fluxes, i.e. the ratio Ci/Ca remained stable over four summer months, despite decreasing soil water content and leaf water potentials. Stable C isotope composition of leaf soluble sugars is the most robust measure of Ci/Ca because it reflects the initial discrimination of photosynthetic products, without the confounding effects ascribed to storage, tissue

  14. Deciphering Ecohydrological Interactions Using Stable Isotopes

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Evaristo, J. A.; Jasechko, S.

    2014-12-01

    Deciphering the nature of ecohydrological interconnections and scaling that knowledge gained at single points to watersheds is challenging. One tool that that has proved useful in this regard is stable isotope tracing. Single isotope studies have been used recently to quantify landuse change effects on streamflow source apportionment and ecological effects on transit time distributions of water at the catchment scale. However, most work to date has assumed that plant transpiration, groundwater recharge and streamflow are all sourced or mediated by the same well mixed reservoir—the soil. Recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater recharge and streamflow. However, these findings have not yet been widely tested. Here we assemble the first dual isotope database for δ2H and δ18O extracted from 47 globally-distributed stable isotopic datasets. We use these data to test the ecohydrological separation hypothesis. We combine this dual isotope dataset with global precipitation, streamwater, groundwater and soil water datasets. Our results show that precipitation, streamwater and groundwater from the 47 sites plot approximately along the δ2H/δ18O slope of eight, suggesting that local precipitation inputs supply streamwater and groundwater. Soil waters extracted from the 47 studies plot below the regression of local streamwater and groundwater with a slope of 6.6±0.05 ‰. Local plant xylem waters from our matched dataset plot on a slope 6.6±0.07 ‰ consistent with local soil waters. The tight association of soil water slopes and not that of local groundwater or streamflow suggests that plants use soil water that does not itself contribute to groundwater recharge or stream water. This ubiquity of subsurface water compartmentalization is surprising and has important implications for how we

  15. Stable isotopic characterisation of francolite formation

    NASA Astrophysics Data System (ADS)

    McArthur, J. M.; Benmore, R. A.; Coleman, M. L.; Soldi, C.; Yeh, H.-W.; O'Brien, G. W.

    1986-02-01

    Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values of δ 13C and δ 34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in 18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H 2S decreases the δ 34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.

  16. Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Vega, Carmen P.; Schlosser, Elisabeth; Divine, Dmitry V.; Kohler, Jack; Martma, Tõnu; Eichler, Anja; Schwikowski, Margit; Isaksson, Elisabeth

    2016-11-01

    Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42-) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr-1) was higher than at the KC site (0.24 mw. e. yr-1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958-2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant

  17. VeWa: Assessing Vegetation Effects on Water Flows and Mixing in Northern Mountain Environments using Stable Isotopes and Conceptual Runoff Models

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McDonnell, J.; McNamara, J. P.; Van Huijgevoort, M.; Spence, C.; Soulsby, C.

    2015-12-01

    The lack of comprehensive tracer data sets still hinders the development of a generalized understanding of how northern headwaters function hydrologically. As part of the ERC funded "VeWa" project, we combined a conceptual rainfall-runoff model and input-output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in in six high-latitude experimental catchments located in the UK, USA, Sweden and Canada. We used stable isotope records from precipitation and stream flow to examine the effects of soils and landcover. A meta-analysis was carried out using the HBV-model to estimate the main storage changes characterising annual water balances. Annual snowpack storage importance was ranked differently across the sites, and the subsequent rate and longevity of melt was reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; (iii) relative importance of near-surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near-surface runoff processes in wet riparian soils can mobilize isotopically-enriched water during summer and autumn. Given close soil-vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on hydrological functioning of northern environments.

  18. Effect of magnesium ions on the stable oxygen isotope equilibrium between dissolved inorganic carbon species and water.

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard

    2010-05-01

    Stable oxygen isotope (δ18O) values of foraminiferal calcites, which represent one of the most fundamental paleoceanographic tools to reconstruct ancient seawater temperatures, are influenced by seawater pH variations. Understanding the driving mechanism for such phenomenon requires precise knowledge of the equilibrium 18O fractionation factors between dissolved inorganic carbon (DIC) species and water. An experimental study by Beck et al. (2005) successfully refined the 18O fractionation factors between DIC components and water. Based on these results, the overall 18O fractionation between total DIC and water as a function of pH can be readily calculated (e.g., Zeebe, 2007). However, these calculations may not be applicable to seawater because the fractionation factors were measured in freshwater. Natural seawater contains numerous ionic species and other dissolved constituents, which may affect the fractionation factors. For example, it has been experimentally demonstrated that the presence of magnesium ions (Mg2+) in solutions affect equilibrium carbon isotope (13C) fractionation between aqueous CO2 and carbonate ions presumably due to the enrichment of 13C isotopes in Mg-CO30 complexes (Thode et al., 1965). This suggests that the presence of Mg2+ in solutions similarly affects the 18O fractionation factors between DIC species and water. On the other hand, Beck et al. (2005) concluded that the effect of ion pairs on the δ18O equilibrium appears to be negligible. However, this conclusion may not apply to ion paring in general, because experiments were not conducted for metal ions other than Na+. Given that Mg2+ has a marked effect on the equilibrium δ13C fractionation factors and Mg-CO30 is the most abundant form of metal-CO3-complexes in natural seawater, the potential effect of Mg2+ on the 18O fractionation factors between DIC components and water needs to be examined. Here, we will present preliminary results from quantitative carbonate precipitation

  19. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Kennedy, Casey D.; Stalker, Jeremy C.; Chesson, Lesley A.; Valenzuela, Luciano O.; Beasley, Melanie M.; Ehleringer, James R.; Bowen, Gabriel. J.

    2014-10-01

    In the western U.S., the mismatch between public water demands and natural water availability necessitates large interbasin transfers of water as well as groundwater mining of fossil aquifers. Here we identify probable situations of nonlocal water use in both space and time based on isotopic comparisons between tap waters and potential water resources within hydrologic basins. Our approach, which considers evaporative enrichment of heavy isotopes during storage and distribution, is used to determine the likelihood of local origin for 612 tap water samples collected from across the western U.S. We find that 64% of samples are isotopically distinct from precipitation falling within the local hydrologic basin, a proxy for groundwater with modern recharge, and 31% of samples are isotopically distinct from estimated surface water found within the local basin. Those samples inconsistent with local water sources, which we suggest are likely derived from water imported from other basins or extracted from fossil aquifers, are primarily clustered in southern California, the San Francisco Bay area, and central Arizona. Our isotope-based estimates of nonlocal water use are correlated with both hydrogeomorphic and socioeconomic properties of basins, suggesting that these factors exert a predictable influence on the likelihood that nonlocal waters are used to supply tap water. We use these basin properties to develop a regional model of nonlocal water resource use that predicts (r2 = 0.64) isotopically inferred patterns and allows assessment of total interbasin transfer and/or fossil aquifer extraction volumes across the western U.S.

  20. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.

  1. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  2. Food sources of wintering piscivorous waterbirds in coastal waters: A triple stable isotope approach for the southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Morkūnė, Rasa; Lesutienė, Jūratė; Barisevičiūtė, Rūta; Morkūnas, Julius; Gasiūnaitė, Zita R.

    2016-03-01

    This study uses a triple isotope approach (δ13C, δ15N, and δ34S) to quantify the main food sources for wintering piscivorous waterbirds in the coastal zone of the southeastern Baltic Sea. Significant differences of δ15N and δ34S values among pelagic fishes, benthic fishes, and benthopelagic European smelt (Osmerus eperlanus) were detected, while δ13C was similar among these sources. Using different combinations of δ13C, δ15N, and δ34S values in mixing models, we found that common guillemot (Uria aalge) and red-throated diver (Gavia stellata) mostly foraged on pelagic prey (50-70% and 51-56%, respectively), whereas great crested grebe (Podiceps cristatus) consumed benthic prey (48-53%). European smelt comprised a substantial proportion of the diet of studied birds (19-36%). A stable isotope approach can be recommended as a non-lethal method to study avian diets in the coastal waters of the Baltic Sea.

  3. Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone

    NASA Astrophysics Data System (ADS)

    Landon, M. K.; Delin, G. N.; Komor, S. C.; Regan, C. P.

    1999-10-01

    Soil water collected from suction lysimeters and wick samplers buried in the unsaturated zone of a sand and gravel aquifer and extracted from soil cores were analyzed for stable oxygen and hydrogen isotope values. Soil water isotopic values differed among the three sampling methods in most cases. However, because each sampling method collected different fractions of the total soil-water reservoir, the isotopic differences indicated that the soil water at a given depth and time was isotopically heterogeneous. This heterogeneity reflects the presence of relatively more and less mobile components of soil water. Isotopic results from three field tests indicated that 95-100% of the water collected from wick samplers was mobile soil water while samples from suction lysimeters and cores were mixtures of more and less mobile soil water. Suction lysimeter samples contained a higher proportion of more mobile water (15-95%) than samples from cores (5-80%) at the same depth. The results of this study indicate that, during infiltration events, soil water collected with wick samplers is more representative of the mobile soil water that is likely to recharge ground water during or soon after the event than soil water from suction lysimeters or cores.

  4. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  5. Using stable isotopes and integrated flow-tracer modeling to conceptualise vegetation influences on water partitioning, storage and runoff generation in high-latitude environments

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Buttle, Jim; Carey, Sean; Laudon, Hjalmar; McDonnell, Jeff; McNamara, Jim; Spence, Chris; Sprenger, Matthias; van Huijgevoort, Marjolein; Soulsby, Chris

    2016-04-01

    Stable isotopes tracers have been widely used as a means to assess the sources and flow paths of stream flow in a wide range of geographical environments. However, the paucity of high resolution isotope data sets from high latitude northern headwaters hinders the development of a generalized understanding of boreal watershed. As part of the ERC funded "VeWa" project, we use stable isotopes of different waters (that is precipitation, soil water, groundwater, streamwater, plant xylem water) to understand the role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water at six, long-term experimental sites across the wider North (in Scotland, Sweden, Canada and the US). We investigated the effects of vegetation on interception, precipitation partitioning and isotope inputs as well as evaporative losses and dynamics in soil water isotopes. We also used a tracer-aided, spatially distributed rainfall-runoff model to conceptualise and integrate flow paths, storage dynamics and mixing processes at the catchment scale. Whilst inter-site findings differ in detail, in general, vegetation canopy cover had a large influence on the quantity and distribution of interception and throughfall. However, the isotopic signature of throughfall was mainly driven by that of precipitation. Whilst temporal variability in soil water isotopes was mainly driven by throughfall or snowmelt in wet periods, the effects of soil evaporation was dominant in soils during the dry periods, with the effects of evaporative fractionation evident in in the upper 10cm of the soils. At some sites, this evaporative fractionation in the rooting zone seemed to explain the isotopic composition of xylem water. Despite these processes affecting the partitioning of isotopes in the soils, at the catchment scale modelling showed that these differences have limited influence on stream water isotopes. Using the coupled flow-tracer model, we could model stream and soil isotope

  6. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the U.S. Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta H-2 and as delta 0-18, respectively. The values in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respec- tively. The values in water from the 38 ground- water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  7. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-11-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  8. Ecological information and water mass properties in the Mediterranean recorded by stable isotope ratios in Pinna nobilis shells

    NASA Astrophysics Data System (ADS)

    GarcíA-March, Jose Rafael; Surge, Donna; Lees, Jonathan M.; Kersting, Diego K.

    2011-06-01

    Sclerochronologic and stable isotope records in Pinna nobilis shells potentially record ecological and oceanographic information. P. nobilis is a subtidal bivalve adapted to live in a variety of environments in the Mediterranean. We hypothesized that stable isotope ratios (δ18O and δ13C) and growth increment patterns from individuals living in different environments serve as ecological indicators. Using a new methodology for calcite sampling, we (1) identified annual growth features (nacre tongues) and (2) compared monthly resolved variations in δ18O and δ13C values and calcification temperatures recorded in animals located above and below the thermocline (16 and 30 m depth). The specimens from 16 m showed more negative δ18O values than the specimen from 30 m, likely reflecting differences in salinity. The specimens from 30 m recorded δ13C values less positive than the specimens from 16 m, which we interpreted as an ontogenetic effect observed in previous studies. Estimated calcification temperatures were offset relative to measured water temperature by ˜6.1°C (˜1.4‰). This finding is evident in earlier proxy studies of P. nobilis, although it was not discussed in those studies. Using the seasonal pattern of δ18O and δ13C values, we demonstrated that nacre tongues are deposited annually and that their formation is independent of temperature. Food availability rather than temperature may control nacre tongue formation. An alternative explanation for nacre tongue formation is gonad maturation during spring. Our findings support the idea that sclerochronology in P. nobilis can be used to reconstruct environmental, ecological, and climate archives of the Mediterranean.

  9. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  10. Tracing coalbed natural gas-coproduced water using stable isotopes of carbon

    SciTech Connect

    Sharma, S.; Frost, C.D.

    2008-03-15

    Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

  11. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  12. Quantifying uncertainty in stable isotope mixing models

    NASA Astrophysics Data System (ADS)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  13. Residence times and age distributions of spring waters at the Semmering catchment area, Eastern Austria, as inferred from tritium, CFCs and stable isotopes.

    PubMed

    Han, Liangfeng; Hacker, Peter; Gröning, Manfred

    2007-03-01

    The groundwater system in the mountainous area of Semmering, Austria, was studied by environmental tracers in several karst springs. The tracers used included stable isotopes ((18)O, (2)H), tritium ((3)H) and chlorofluorocarbons (CFCs). The tracers provided valuable information in regard to (1) the mean altitude of the spring catchment areas; (2) the residence time and age distribution of the spring waters; and (3) the interconnection of the springs to a sinkhole. The combination of the stable isotopic data and the topography/geology provided the estimates of the mean altitudes of the catchment areas. Based on the stable isotopic data the recharge temperature of the spring waters was estimated. The smoothing of precipitation's isotopic signal in spring discharge provided information on the minimum transit time of the spring waters. Due to short observation time, (3)H data alone cannot be used for describing the mean residence time of the karst waters. CFCs, though useful in recognizing the co-existence of young (post-1993) water with old (CFC-free) water, could not be used to resolve age distribution models. It is shown in this article, however, that the combined use of tritium and CFCs can provide a better assessment of models to account for different groundwater age distributions. In Appendix A, a simplified method for collecting groundwater samples for the analysis of CFCs is described. The method provides a real facilitation for fieldwork. Test data are given for this sampling method in regard to potential contamination by atmospheric CFCs.

  14. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration

    NASA Astrophysics Data System (ADS)

    Wenninger, Jochen; Beza, Desta Tadesse; Uhlenbrook, Stefan

    Irrigated agriculture is the largest user of freshwater worldwide and the scale of irrigated agriculture can be so large that it can have dramatic effects on the water cycle and even alter regional climates. Therefore, it is vital to improve the water use efficiency of irrigated lands in order to address the sustainable use of water resources, the growing need for agricultural products, and the health of ecosystems. Environmental isotopes have unique attributes that make them particularly suitable for tracing hydrological pathways and quantifying hydrological fluxes within the soil-vegetation-atmosphere system. The stable isotopic composition of soil water is mainly controlled by precipitation or irrigation inputs and evaporative losses. Because transpiration does not fractionate soil water isotopes, it is possible to estimate the relative proportions of evaporation and transpiration using isotopic mass balance calculations. In this study experimental investigations, combining classical hydrometric measurements, tracer hydrological methods and a soil water model were applied to laboratory lysimeters to study the transpiration processes of Teff ( Eragrostis tea (Zucc.) Trotter). Teff is an annual bunch cereal and an important aliment in Ethiopia and Eritrea and it is also gaining popularity in other countries. To determine the soil water contents, sensors using a capacitance/frequency domain technology were installed at different depths and soil water samples for the isotope analysis were taken using pore water samplers. Water contents in different depths and water fluxes, such as percolation and evaporation were modeled using the HYDRUS-1D software package. By using an isotope mass balance model the total evaporation and the fractions between soil evaporation and transpiration could be determined. The water losses which were estimated using the isotope mass-balance approach are in good agreement with the measured values using classical hydrometric measurements. The

  15. Uses of stable isotopes in fish ecology

    EPA Science Inventory

    Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...

  16. Understanding Patterns of Water Use in a Dryland Woodland Using Stable Isotopes of Water and High-Resolution Dendrometers

    NASA Astrophysics Data System (ADS)

    Page, G. F. M.; Skrzypek, G.; English, J.; Luccitti, S.; Archibald, R. D.; Grierson, P. F.

    2014-12-01

    Dryland ecoystems across inland Australia play a key role in the global carbon cycle owing to their extensive distribution and capacity to respond to highly episodic rainfall events. Understanding the pulse-response of vegetation to unpredictable and episodic rainfall also underpins mechanistic models of ecosystem function in dryland regions that can be used to assess vulnerability to altered hydrology, either from groundwater abstraction or climate change. Here, we used high resolution measurements of stem radius to understand diurnal and seasonal patterns of tree water-uptake in response to highly dynamic (cyclone driven) water availability. We also measured leaf water potential and δ2H and δ18O to validate assumptions about pulse water-use and the spatial and vertical distribution of soil water. We tested the hypotheses that (1) stem radius variation follows daily and seasonal patterns that reflect tree water use, and (2) trees are highly responsive to summer cyclone events that recharge the soil profile. We logged changes in stem radius of 11 Eucalyptus victrix trees every 20 minutes from November 2011 - November 2013 in the Hamersley Ranges of NW Australia. Pre-dawn and midday leaf water potential was also measured every three months between November 2011 and November 2012. We found that stem radius followed diurnal patterns of night-time rehydration and daytime water loss associated with transpiration. Periods with the largest Δψ corresponded with the largest measurements on maximum daily shrinkage (MDS) of the stem. Broader seasonal trends in trunk radius related to temperature, rainfall and VPD were also apparent. Rapid and extended periods (days) of stem expansion were associated with rehydration following cyclonic rainfall followed by prolonged periods (months) of gradual contraction associated with depletion of soil moisture. Cyclonic rainfall events had distinct isotopic composition and could be traced in stem water. Similarly, evaporation of

  17. Stable Isotope Spectroscopy for Diagnostic Medicine

    NASA Astrophysics Data System (ADS)

    Murnick, D. E.

    2000-06-01

    Isotopic tracers have been used in medical research for more than fifty years. Radioactive isotopes have been most used because of the high detection efficiencies possible. With increased awareness of the effects of low level radiation and radioactive waste management problems, the need for safe non radioactive tracers has become apparent. Rare stable isotopes of biologically active elements can be used for metabolic and pharmacokinetic studies provided that both sufficient detection sensitivity can be achieved and reliable cost effective instruments can be developed. High resolution optical spectroscopic methods which can determine isotopic ratios with high precision and accuracy are viable for research and clinical use. The study of 13C/12C ratios in CO2 for breath test diagnostics will be described in detail. Using the laser optogalvonic effect with isotopic lasers a specific medical diagnostic for h-pylori infection, has recently received FDA approval. Opportunities exist to study D/H ratios in water and 18O/16O ratios in CO2 and water for basic metabolism diagnostics and 15N/14N ratios in urine for liver function and related studies.

  18. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    SciTech Connect

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. )

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  19. Twelve Month Weekly Monitoring of Stable Isotopes of Water Associated to the Flooding of the Meirama Open Pit (NW Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, J.; Juncosa, R.; Vázquez, A.

    2009-04-01

    In December, 2007, after 30 years of extraction, the mine of Meirama stopped the production of brown lignite. Since April 2008, a controlled flooding process is taking place by which a large mining lake with nearly 150 cubic hectometers and a maximum depth of 180 meters will join the geography of Galicia in a few years. A weekly-based monitoring survey has been taking place in the lake since the beginning of the flooding process. Nearly 50 components and physico-chemical parameters of a series of sampling points located in the surface of the lake as well as in related tributaries, ground and rain waters are being recorded. Among the parameters analyzed, the stable isotopes of water (18-O and 2-H) are worth noting. The data collected so far help us to better understand the hydrological processes occurring in the first year of flooding and combined with different types of chemical constituents (conservative and non-conservative) put important constrains on the hydrochemical processes observed in the lake up to date.

  20. Ecological and dietary correlates of stable hydrogen isotope ratios in fur and body water of syntopic tropical bats.

    PubMed

    Voigt, Christian C; Schneeberger, Karin; Luckner, Anja

    2013-02-01

    Hydrogen stable isotope ratios of keratin (delta2H(K)) are increasingly used as endogenous markers to study animal movements, yet it is unclear what factors might influence delta2H(K) in free-ranging animals. We studied hydrogen stable isotope ratios of body water (delta2H(BW)) and fur keratin in 36 bat species (> 400 individuals) from a tropical forest assemblage to evaluate if delta2H(BW) and delta2H(K) are related to body size, trophic position, and movement ecology. We found a relatively large range of delta2H(BW) values (approximately 65 per thousand) across bat species. Our phylogenetically controlled analysis showed that delta2H(BW) was not related to body size, trophic position, or movement ecology of species. The analysis also indicated that delta2H(BW) of primary consumers (i.e., fruit-eating bats) was similar to that of fruit juice, and delta2H(BW) of secondary consumers (i.e., animalivorous bats) was similar to that of surface water. Across bat species, delta2H(K) tended to decrease with increasing delta2H(BW), suggesting that delta2H(K) is not directly linked to delta2H(BW). We further tested whether delta2H(K) varied with a species' trophic position (measured as delta15N) and movement ecology (local or regional species). In syntopic bats, delta2H(K) ranged over 73 per thousand, yet delta2H(K) was related neither to delta15N nor to the movement ecology of species. Fur keratin of secondary consumers was more enriched in 2H by 44 per thousand and in 15N by 3.7 per thousand compared with fur keratin of primary consumers. In an intraspecific analysis, we found that delta2H(K) of an insectivorous bat varied by 20 per thousand between colonies at 4 km distance. Within this species, deltaH(K) was not related to individual delta15N and body mass. Our data suggest that variation in delta2H(K) can be large in bats of tropical assemblages, both across species (range approximately 70 per thousand) and even within sedentary species (range approximately 20 per

  1. An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry.

    PubMed

    Koeniger, Paul; Marshall, John D; Link, Timothy; Mulch, Andreas

    2011-10-30

    The stable isotopes of water (hydrogen and oxygen isotopes) are of utmost interest in ecology and the geosciences. In many cases water has to be extracted directly from a matrix such as soil or plant tissue before isotopes can be analyzed by mass spectrometry. Currently, the most widely used technique for water is cryogenic vacuum extraction. We present a simple and inexpensive modification of this method and document tests conducted with soils of various grain size and tree core replicates taken on four occasions during 2010. The accuracies for sandy soils are between 0.4‰ and 3‰ over a range of 21‰ and 165‰ for δ(18)O and δ(2)H, respectively. Spiking tests with water of known isotope composition were conducted with soil and tree core samples; they indicate reliable precision after an extraction time of 15 min for sandy soils. For clayey soils and tree cores, the deviations were up to 0.63‰ and 4.7‰ for δ(18)O and δ(2)H, respectively. This indicates either that the extraction time should be extended or that mechanisms different from Rayleigh fractionation play a role. The modified protocol allows a fast and reliable extraction of large numbers of water samples from soil and plant material in preparation for stable isotope analyses.

  2. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate

    USGS Publications Warehouse

    Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C.

    2005-01-01

    To determine whether NO3- concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO 3-, we analyzed stream ??15N-NO 3- and ??18O-NO3- values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day-1 during snowmelt, and element concentrations increased from 33 to 71 ??mol L-1 for NO3-, 3 to 9 ??mol L-1 for total Al, and 330 to 570 ??mol L-1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day-1 during snowmelt. The highest NO3-, Al, and DOC concentrations were 52, 10, and 630 ??mol L -1, respectively, and dissolved Si decreased from 148 ??mol L -1 before to 96 ??mol L-1 during snowmelt. Values of ??15N and ??18O of NO3- in stream water were similar in both years. Stream water, atmospherically- derived solutions, and groundwaters had overlapping ??15N- NO3- values. In stream and ground water, ??18O-NO3- values ranged from +5.9 to +12.9??? and were significantly lower than the +58.3 to +78.7??? values in atmospheric solutions. Values of ??18O-NO3- indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3- by increasing contributions of forest floor and mineral soil NO3- during snowmelt. ?? Springer 2005.

  3. Variations in stable- isotope ratios of ground waters in seismically active regions of California.

    USGS Publications Warehouse

    O'Neil, J.R.; Chi-Yu, King

    1981-01-01

    Measurements of D and 18O concentrations of ground waters in seismically active regions are potentially useful in earthquake prediction and in elucidating mechanisms operative during earthquakes. Principles of this method are discussed and some preliminary data regarding a magnitude 5.7 earthquake at the Oroville Dam in 1975 and a series of events near San Juan Bautista in 1980 are presented to support the utility of such measurements. After earthquakes, the D content of nearby ground waters increased by several permil while the 18O content remained constant. This increase implies that H2O may have either decomposed or reacted to form molecular H2 at depth. It is emphasized that many areas must be investigated for these effects in order to find a sufficient number of 'sensitive' water wells and springs to permit a truly effective program of earthquake research. -Authors

  4. A Pilot Study of Watershed Flow Using Stable Water Isotopes in Support of the Development of the Lamprey River Watershed (Southeast New Hampshire) as a Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Frades, M.; Davis, J.; Bryce, J.; McDowell, W. H.

    2008-12-01

    The Lamprey River Watershed provides a suite of ecologic, geographic, geologic, and cultural characteristics that together provide an excellent opportunity to establish a convenient, unique, instructive, and informative natural laboratory. Researchers at the University of New Hampshire are establishing the Lamprey River Watershed, located in the seacoast region of New Hampshire, as a long term hydrologic observatory, where the instrumentation, data, and results from multi-disciplinary studies can be integrated to achieve greater understanding of the hydrologic system as a whole.One component of this proposed research is the establishment of a long term record of water isotope data. The results of a 1.5-year pilot study of stable water isotopes in the Headwaters of the Lamprey River Watershed (HLRW) are the focus of this presentation. In order to better understand groundwater flowpaths and residence times within the HLRW, we used stable water isotopes as natural tracers. For the period of June 2006 through October 2007, over 200 total water samples of groundwater, surface water, precipitation, and infiltration were collected and analyzed for stable hydrogen and oxygen isotopes. Based on analysis of isotopic and hydrometric data, the groundwater system is interpreted to be comprised of three distinct but interconnected reservoirs: a shallow groundwater reservoir which does not directly contribute to stream flow at the watershed outlet and has a mean residence time greater than 9 years; a near-surface groundwater reservoir, which is fed by the shallow system, flows through surface water bodies and wetlands with a mean residence time of approximately 1.5 months, and is the primary source of baseflow in the stream network; and a deep groundwater reservoir. The findings have significant implications for the interpretation of biogeochemical mass balance models of the Lamprey River Watershed and ongoing strontium isotope and trace element tracer studies. In a broader sense

  5. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  6. Stable isotope compositions of waters in the Great Basin, United States 3. Comparison of groundwaters with modern precipitation

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A.

    2002-01-01

    Groundwater samples from wells and springs, scattered over most of the Great Basin province, were collected and analyzed for their isotopic makeup. They were augmented by previously published isotopic data on groundwaters from southeast California and by several hundred unpublished isotopic analyses. The ratio of 2H (deuterium, D) to 1H, in water samples from valleys in parts of California, Idaho, Nevada, Oregon, and Utah, are here compared with the winter, summer, and annual isotopic compositions of precipitation falling in or near the sampled areas. The main goal of this study was to identify basins where the groundwaters have isotopic compositions that are "lighter" (depleted in the heavier isotope, D) relative to modern winter precipitation. Where these basins do not adjoin substantially higher terrain, we consider those light groundwaters to be of Pleistocene age and thus more than 10,000 years old. Where the groundwater is 10 to 19??? lighter than local winter precipitation, we consider it to be possibly an indication of Pleistocene water; where the ??D makeup is >20??? lighter, we consider it to be probably Pleistocene water. More than 80 sites underlain by waters of possible or probable Pleistocene age were identified.

  7. Stable Water Isotope Dynamics Can Constrain GCM Convective Processes during the MJO

    NASA Astrophysics Data System (ADS)

    Tuinenburg, O.; Risi, C. M.; Lacour, J. L.; Schneider, M.

    2014-12-01

    This research aims to improve the representation of convective processes during the Madden-Julian oscillation (MJO) and other modes of intra-seasonal variability in the LMDZ atmospheric models, by making use of joint δD and H2O (vapor) measurements. In addition to atmospheric drying and wetting derived from the humidity measurements, the additional δD measurements provide enrichment and depletion information. This information is used to distinguish between different moistening and drying processes. For example, moistening due to ocean surface evaporation and due to rain re-evaporation can be distinguished, as re-evaporating moisture is more depleted in δD than surface evaporation.We use mid-tropospheric IASI satellite δD and H2O measurements to determine the humidity and δD evolution during about eight MJO events from 2010-2012 (including those monitored during the CINDY/DYNAMO campaign). Moreover, these evolutions are compared to the standard isotope enabled LMDZ GCM, as well as to sensitivity tests of key parameters (cold pool representation, precipitation efficiency, droplet size and fall speed, etc.) in the convection scheme.The IASI measurements over the Indian ocean suggest that from 20 days to 5 days before the MJO peak, the main moisture source is oceanic surface evaporation, which is advected upwards by shallow convection. During the 5 days around the MJO peak, the moisture evolution is dominated by deep convection. Most inter-event variability occurs 5 to 10 days after the event, when 75% of the events are dominated by large scale condensation, while convection dominate the remaining quarter of the events. After this, the advection of relatively dry and enriched air brings back the state to the mean. Over the Maritime continent, similar δD-H2O dynamics occur, but the variability of advected moisture dominates the inter-event variability.The model captures the δD and H2O dynamics of the MJO reasonably well. However, over the Indian ocean, the timing

  8. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    USGS Publications Warehouse

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with

  9. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2009-01-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory

  10. Quality assurance and quality control in light stable isotope laboratories: a case study of Rio Grande, Texas, water samples.

    PubMed

    Coplen, Tyler B; Qi, Haiping

    2009-06-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory

  11. Stable isotopic analyses in paleoclimatic reconstruction

    SciTech Connect

    Wigand, P.E.

    1995-09-01

    Most traditional paleoclimatic proxy data have inherent time lags between climatic input and system response that constrain their use in accurate reconstruction of paleoclimate chronology, scaling of its variability, and the elucidation of the processes that determine its impact on the biotic and abiotic environment. With the exception of dendroclimatology, and studies of short-lived organisms and pollen recovered from annually varved lacustrine sediments, significant periods of time ranging from years, to centuries, to millennia may intervene between climate change and its first manifestation in paleoclimatic proxy data records. Reconstruction of past climate through changes in plant community composition derived from pollen sequences and plant remains from ancient woodrat middens, wet environments and dry caves all suffer from these lags. However, stable isotopic analyses can provide more immediate indication of biotic response to climate change. Evidence of past physiological response of organisms to changes in effective precipitation as climate varies can be provided by analyses of the stable isotopic content of plant macrofossils from various contexts. These analyses consider variation in the stable isotopic (hydrogen, oxygen and carbon) content of plant tissues as it reflects (1) past global or local temperature through changes in meteoric (rainfall) water chemistry in the case of the first two isotopes, and (2) plant stress through changes in plant respiration/transpiration processes under differing water availability, and varying atmospheric CO, composition (which itself may actually be a net result of biotic response to climate change). Studies currently being conducted in the Intermountain West indicate both long- and short-term responses that when calibrated with modem analogue studies have the potential of revealing not only the timing of climate events, but their direction, magnitude and rapidity.

  12. Transport of stable isotopes of water and sulphate within reclaimed oil sands saline-sodic mine overburden

    NASA Astrophysics Data System (ADS)

    Huang, Mingbin; Hilderman, Joel N.; Barbour, Lee

    2015-10-01

    The reclamation of shale overburden dumps from oil sands mining requires the placement of reclamation covers comprised of salvaged organic and mineral soils. The primary issues associated with the long-term performance of these covers are their ability to store sufficient water to meet transpiration demands and the potential threat of salt ingress into the cover from the underlying shale. The first issue has been addressed in previous studies, so the objective of this study was to evaluate controls on salt ingress through observations and modelling of the transport of the stable isotopes of water and salt within reclaimed profiles at the South Bison Hills overburden dump located north of Fort McMurray, Alberta. The water flow model was based on a dual porosity soil-vegetation-atmosphere model calibrated to observed field data. This model was then used to simulate deuterium and sulphate transport within the soil profiles. The optimized transport model for deuterium was used to estimate net percolation rates through the cover soil into the underlying shale. This model was then used to assess the controls on sulphate migration, including the rate of sulphate generation as a result of ongoing oxidation of the pyritic shale. The model results indicate that the average net percolation rate is a function of topographic location, ranging from 2.2 × 10-5 m/d at slope locations to 20.8 × 10-5 m/d at plateau locations during the unfrozen days. These rates of net percolation should have produced observable patterns of salt flushing from the cover and upper shale. However, the observed sulphate levels could only be simulated by including a production term related to pyrite oxidation of the shale. The simulated oxidation rates ranged from 0.4 to 5.65 mg/L/d, similar to those estimated from previous laboratory and field investigations.

  13. Validation of Heavy-Water Stable Isotope Probing for the Characterization of Rapidly Responding Soil Bacteria▿†

    PubMed Central

    Aanderud, Zachary T.; Lennon, Jay T.

    2011-01-01

    Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H218O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H218O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H218O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H218O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H218O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H218O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes. PMID:21551285

  14. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  15. Preliminary report on the stable isotope imaging and characterization of surface and ground water resources in the southern Sacramento Valley

    SciTech Connect

    Davisson, M.L.; Criss, R.E.; Campbell, K.R.

    1993-11-01

    This document contains information about the water resources in Sacramento. The project considers isotopic characterization of groundwater and the environmental effects of the misuse of water resources. In particular, the study looks at the effects extensive agriculture and the overdrafting of groundwater.

  16. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  17. In Equilibrium Stable Isotope Chemistry of The Deep Water Coral Stylaster Sp. From Rockall Trough: Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Mienis, F.

    Living corals, molluscs and associated water samples were collected from deep sea coral reefs along the margins of Rockall Trough (N. Atlantic). Oxygen (d18O) and carbon (d13C) isotope analyses of seawater and skeletal CaCO3 indicate that vari- ous organisms do not precipitate CaCO3 in isotopic equilibrium with host water. Par- ticularly the most abundant coral genera Lophelia sp and Madrepora sp fractionate markedly, as was already observed by a number of previous studies. However, our new data shows that the coral genus Stylaster, occuring in small numbers in the Rock- all Trough area, is in isotopic equilibrium with seawater. Like for the aragonitic bi- valves and gastropods inhabiting the same deep water reefs, microsampling of growth banded Stylaster specimens can be applied to obtain high resolution time series of in-equilibrium d13C and d18O data covering the life span of individual specimens.

  18. Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.; Johnson, C.A.; Moscati, R.J.

    2002-01-01

    Precipitation was collected between 1991 and 1997 at 41 locations within and adjacent to parts of the Great Basin lying in California, Oregon, Nevada, and Utah. These samples were analyzed for their deuterium (??D) and oxygen-18 (??18O) contents. Separate collections were made of summer and winter season precipitation at stations ranging in elevation from -65 m to 3246 m. The ??D per mil values of stations that were closely spaced but at different elevations showed an average ??D decrease of approximately 10???/km rise in elevation. Data for all samples representing winter precipitation, when plotted on a ??D versus ??18O plot, fall close to the Meteoric Water Line (??D = 8 ??18O + 10); samples representing summer precipitation define a line of slightly lower slope due to evaporation of the raindrops during their passage from cloud to ground. Comparison of our 1991-1997 ??D data with those from the same three stations reported by an earlier study in the southeastern California shows seasonal differences ranging from 0 per mil to 19??? (average: 15) and annual differences ranging from 0 to 13 per mil (average: 2), illustrating the degree of annual and seasonal variability in this region. When contoured, the ??D values display gradients indicating a north to northwest decrease in deuterium, with values ranging from -60 to -125??? in winter precipitation and from -40 to -110??? in summer precipitation. These gradient trends can be explained by the predominance of air mass trajectories originating in the tropical Pacific, the Gulf of California, and (in summer) the Gulf of Mexico.

  19. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  20. Stable Isotope Signatures for Microbial Forensics

    SciTech Connect

    Kreuzer, Helen W.

    2012-01-03

    The isotopic distribution of the atoms composing the molecules of microorganisms is a function of the substrates used by the organisms. The stable isotope content of an organism is fixed so long as no further substrate consumption and biosynthesis occurs, while the radioactive isotopic content decays over time. The distribution of stable isotopes of C, N, O and H in heterotrophic microorganisms is a direct function of the culture medium, and therefore the stable isotope composition can be used to associate samples with potential culture media and also with one another. The 14C content depends upon the 14C content, and therefore the age, of the organic components of the culture medium, as well as on the age of the culture itself. Stable isotope signatures can thus be used for sample matching, to associate cultures with specific growth media, and to predict characteristics of growth media.

  1. A comprehensive theory for the coupling between terrestrial carbon and water cycles, supported by stable carbon isotope measurements from leaves

    NASA Astrophysics Data System (ADS)

    Wang, H.; Cornwell, W.; Wright, I. J.; Prentice, I. C.

    2014-12-01

    Stomata actively regulate the CO2 concentration inside plant leaves, which co-determines the biochemical rate of photosynthesis. Stomatal behaviour thus controls leaf-level water-use efficiency and the 'exchange rate' between the terrestrial carbon and hydrological cycles. Least-cost theory (based on the hypothesis that plants minimize the combined unit costs of maintaining the capacities for water transport and carbon uptake) predicts that (a) long-term mean values of the ci/ca ratio, i.e. the ratio of leaf-internal to ambient CO2 concentration, should be independent of both photon flux density and ca; and (b) these values should vary systematically with growing-season vapour pressure deficit, growth temperature, and atmospheric pressure. Stable carbon isotope (δ13C) measurements provide an integrated measure of the ci/ca in C3 plants. A number of previous studies have focused on the aridity dependence of δ13C. The temperature dependence seems to have been overlooked, but the elevation dependence has been known for a long time: plants at high elevations have systematically lowered ci/ca, and correspondingly increased photosynthetic capacity (Vcmax). Why this should be is a long-standing puzzle: there are various speculative explanations in the literature, and a certain amount of controversy. By contrast, least-cost theory provides quantitative predictions of all three environmental effects. We have analysed a large (3652) set of δ13C measurements from C3 plants, spanning all latitudes and biomes, and shown that these predictions are quantitatively consistent with environmental dependences that can be shown in the measurements using a generalized linear model. This analysis implies the ability to predict ci/ca ratios for large-scale terrestrial ecosystem modelling. Combined with the long-standing 'co-ordination hypothesis' for the control of photosynthetic capacity, least-cost theory provides a basis for a remarkably simple global model for gross primary

  2. Long term changes in Intrinsic Water Use Efficiency, the palaoe record derived from stable carbon isotope measurements from tree rings.

    NASA Astrophysics Data System (ADS)

    Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain

    2015-04-01

    Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.

  3. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the

  4. Quantifying uncertainty in stable isotope mixing models

    DOE PAGES

    Davis, Paul; Syme, James; Heikoop, Jeffrey; ...

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  5. Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland

    NASA Astrophysics Data System (ADS)

    Rübel, André P.; Sonntag, Christian; Lippmann, Johanna; Pearson, F. J.; Gautschi, Andreas

    2002-04-01

    Pore water profiles of water, stable isotope, and dissolved noble gas content have been determined across the Opalinus Clay and adjacent formations at the rock laboratory at Mont Terri. We have found enhanced helium contents (up to [ 4He] = 1 × 10 -4 cubic centimeters at standard pressure and temperature per gram of pore water) and argon isotope ratios ( 40Ar/ 36Ar ratios up to 334) due to accumulation of 4He and 40Ar produced in situ. The helium profile was found to be in steady state with respect to in situ production and diffusive loss into the adjacent limestones where groundwater circulates. From this profile a representative mean value of the apparent diffusion coefficient for helium in the pore water of the whole formation was derived for the first time to be D a = 3.5 × 10 -11 m 2 · s -1, which is more than two orders of magnitude lower than the diffusion coefficient D 0 in free water. The stable isotope profile, however, indicates a component of fossil marine pore water, which has not yet been replaced by molecular diffusion of meteoric water from the adjacent limestone and shale formations over the past 10 million years.

  6. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    PubMed

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  7. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play

  8. Stable isotope (δ18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    Puerto Rico is located in the northeastern Caribbean Sea (18.2 °N, 66.3 °W), with the Atlantic Ocean on its northern coast. The U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program study area in which most of these data were collected comprises the El Yunque National Forest and surrounding area of eastern Puerto Rico. Samples were collected in two forested watersheds, the Rio Mameyes and the Rio Icacos/Rio Blanco, on opposite sides of a ridge in the Luquillo Mountains on the eastern end of the island (fig. 1). Elevation in both watersheds ranges from sea level to approximately 1,000 meters (m). Near sea level, land use is mixed pasture, moist forest, and residential, grading to completely forested within the boundaries of El Yunque National Forest. Forest type changes with elevation from tabonuco to palo colorado to sierra palm to cloud forest above approximately 950 m (Murphy and others, 2012). The Rio Mameyes watershed is oriented north-northeast, and the basin is underlain by volcaniclastic bedrock (basaltic to andesitic volcanic sandstone/mudstone/conglomerate/breccia). The Rio Icacos/Rio Blanco watershed is oriented south-southeast. The Rio Icacos is one of the headwaters of the Rio Blanco and is underlain by quartz diorite. The lower Rio Blanco basin is underlain by andesitic volcaniclastic bedrock. This report also contains a long-term rain isotope dataset from the San Agustin site, in north-central Puerto Rico (fig. 1). Puerto Rico has a tropical climate dominated by easterly trade winds, and seasonal climate patterns affect the hydrology of the study area. The summer wet season is characterized by convective precipitation from tropical easterly waves, troughs, and cyclonic low-pressure systems, including tropical storms and hurricanes; in contrast, the drier winter season is characterized by trade-wind showers and frontal systems. The highest single-event rainfall totals tend to be associated with tropical storms

  9. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  10. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  11. Using stable isotopes to determine seabird trophic relationships

    USGS Publications Warehouse

    Hobson, Keith A.; Piatt, John F.; Pitocchelli, Jay

    1994-01-01

    1. The stable isotopes of nitrogen (δ15N) and carbon (δ13C) were analysed in 22 species of marine birds from coastal waters of the northeast Pacific Ocean. Analyses confirm that stable nitrogen isotopes can predict seabird trophic positions.2. Based on δ15N analyses, seabird trophic-level inferences generally agree with those of conventional dietary studies, but suggest that lower trophic-level organisms are more important to several seabirds than was recognized previously.3. Stable-carbon isotope analysis may be a good indicator of inshore vs. offshore feeding preference.4. In general, stable-isotope analysis to determine trophic level offers many advantages over conventional dietary approaches since trophic inferences are based on time-integrated estimates of assimilated and not just ingested foods, and isotopic abundance represents a continuous variable that is amenable to statistical analysis.

  12. Stable Isotopic Composition of Columbia and Snake River Waters Over A 16-Year Period Yield Unexpected Contrasts With Discharge

    NASA Astrophysics Data System (ADS)

    Landwehr, J. M.; Coplen, T. B.

    2012-12-01

    Surface-water samples were collected from three U.S. Geological Survey National Stream Quality Accounting Network (NASQAN) sites in the Columbia River Basin: (1) on the Columbia River at Northport near the international boundary (12400520); (2) on the Columbia River at Vernita Bridge near Priest Rapids Dam (12472900), which is downstream from Northport, but above the confluence of the Snake River; and (3) on the Snake River at Burbank (13353200), which is just above the confluence with the Columbia River. Samples were collected bimonthly from 1984 through 1987 and monthly from 1997 through 2000. As expected, the average stable hydrogen and oxygen composition among the sites increased with decreasing latitude (with δ2HVSMOW-SLAP = -133, -130, and -123 ‰ and δ18OVSMOW-SLAP = -17.6, -17.2, and -16.2 ‰, respectively). During the two three-year sampling periods separated by a decade, the average δ2H and δ18O values for each site are identical within analytical uncertainty (± 1 ‰ and ± 0.1‰, respectively). However, all three sites experienced lower annual flows during the earlier (1980s) sampling period than during the latter one, as well as slightly more negative average LC-excess values and lower slopes of the respective water lines. All three sites are downstream from dams that affect annual discharges; nevertheless, at all three sites, maximum monthly flows occur in the May-June period and minimal flows in the August-September period, consistent with a hydrologic regime influenced by cold season precipitation. A model (OIPC) prediction of the isotopic composition of precipitation at each site suggests that the most negative delta values would occur in January (e.g. δ2H = -127 ‰ near the international boundary and -104 ‰ at the site near Burbank) and the most positive delta values in September (e.g. corresponding δ2H = -77‰ and -70‰). Consistent with the occurrence of highest flows during the May-June time period and with the prediction of

  13. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    PubMed

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  14. Using variances in hydrocarbon concentration and carbon stable isotope to determine the important influence of irrigated water on petroleum accumulation in surface soil.

    PubMed

    Zhang, Juan; Wang, Renqing; Yang, Juncheng; Hou, Hong; Du, Xiaoming; Dai, Jiulan

    2013-05-01

    Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ(13)C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ(13)C of the soil can be explained by the δ(13)C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ(13)C in the atmospheric deposition accounts for 28.2 % of the δ(13)C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ(13)C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.

  15. Stable strontium isotopes ( δ88/86Sr) in cold-water corals — A new proxy for reconstruction of intermediate ocean water temperatures

    NASA Astrophysics Data System (ADS)

    Rüggeberg, Andres; Fietzke, Jan; Liebetrau, Volker; Eisenhauer, Anton; Dullo, Wolf-Christian; Freiwald, André

    2008-05-01

    Zooxanthellate scleractinian corals are known as archives for temporal variations of climate variables, such as sea surface temperature, salinity or productivity. The use of azooxanthellate cold-water corals as potential archives for intermediate water mass properties and climate variability was tested recently. However, the correlation of established proxies such as δ18O and δ13C with temperature is difficult since there is no direct temperature equation applicable as in shallow-water corals. Other temperature proxies such as Sr/Ca, Mg/Ca and U/Ca are influenced by the complex microstructure of the aragonite skeleton, the rate of calcification, and other vital effects observed for coral species. For the first time we show that the stable strontium isotope ratio δ88/86Sr incorporated in the skeletons of the cold-water coral species Lophelia pertusa portrays the ambient seawater temperature. The temperature sensitivity from live samples collected along the European continental margin covering a temperature range from 6° to 10 °C is 0.026 ± 0.003‰/°C (2 σ standard error) which is a sensitivity similar to the tropical shallow-water coral record of Pavona clavata. This indicates a similar fractionation process of strontium for both, zooxanthellate and azooxanthellate corals. For coral aragonite the δ88/86Sr ratio may serve as a new paleo-temperature proxy and introduces new perspectives in paleoceanography with respect to intermediate water dynamics.

  16. Temporal Variation in the Stable Isotopic Composition of Water and Sediment in Seneca Lake, NY (USA): Implications for Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Curtin, T.; Finkelstein, D. B.; Gunn, P.

    2014-12-01

    Paleoclimatic studies often use stratigraphic changes in the oxygen isotope composition (δ18O) of lacustrine carbonate to infer changes in water temperature and/or the δ18O of lake water. To better understand the environmental factors that influence the isotopic composition of lacustrine carbonates and the assumptions that need to be made to infer past changes in climate, we undertook a four-year study of the water chemistry and sediment trap material in Seneca Lake (NY, USA), a large, monomictic, glacial, hardwater lake. Sediment trap material collected weekly between May 2009 and 2013 together with isotopic monitoring of surface and bottom water allow for analysis of the controls on calcite precipitation in the lake. We show that calcite mainly accumulates in traps July through September when the lake water column is stratified and epilimnetic water temperature exceeds 20°C. Up to ~70% of the sediment is comprised of calcite during summer and only ~10% of the sediment is calcite during autumn, winter, and spring. The δ18O of Seneca Lake epilimnetic water varies by only ~0.6 ‰ throughout the year whereas the δ18O of bulk carbonate varies by as much as 2.4‰. As calcite precipitates in the eplimnion, the δ18O declines. Likely due to the large volume and residence time of water, the δ18O of Seneca Lake water appears to track changes in temperature. Our temperature reconstruction using the δ18O of calcite and epilimnetic lake water reveals that calcite was a reasonable proxy for lake surface temperature from July through September. During the remainder of the year, reconstructed temperatures exceed actual temperatures by as much as 18°C. Sediment resuspension (including calcite) during isothermal conditions may explain why calcite is a poor predictor of lake surface temperature in late autumn though spring. The δ18O of calcite in this lake records summer temperatures rather than year-round conditions.

  17. Stable isotope evidence for carbon transformations in the water column and the sediments of the tropical Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Kowalski, Nicole; Dellwig, Olaf; Escher, Peter; Endler, Michael; Böttcher, Michael E.

    2013-04-01

    The depositional environment of the Beibu Gulf is highly complex, and sediments are formed under dynamic changes in hydrodynamics and sediment sources. It is an ideal natural laboratory to study biogeochemical transformation processes and its responses to changes in hydrography and depositional conditions in a tropical shelf environment. In the present study, several water column profiles and a number of short (MUC) and long (GC) sediment cores were taken during a joint German-Chinese expedition with R/V Sonne (Cruise 219; December 2011) in the Beibu Gulf. The sampling stations may be separated into three different depositional zones, namely Northern Coastal Beibu Gulf with sandy sediment, Delta Deposits in Vicinity to Qiongzhou Strait affected by strong currents, and Central Beibu Gulf with stable depositional environments. We measured the geochemical composition and carbon isotope composition of DIC in the water column and pore waters. In the sediments, the TOC, TIC, TN and TS contents, the C isotope composition of organic matter (OM), and the C and O isotope composition of carbonates were analyzed to follow the fate of organic matter during pelagic and benthic transformations. Pelagic OM transformations are already demonstrated by stable isotopes in the water column. The carbon isotopic composition of pore water DIC give further evidence for the mineralization of mainly marine OM with minor or no contributions from methane at most sites. The coupled pore water profiles indicate that sulfate reduction is the most important source for the DIC added to the pore waters. No correlation was observed between TOC contents and net sulfate reduction rates for the investigated sites. Lithostratigraphic marker and 14C age in different depositional zones indicated sedimentation rate plays an important role in determining the preservation and pathway of organic decomposition. In the central Beibu Gulf, where higher sedimentation rates dominate, pore water profiles exhibit the

  18. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  19. Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, cassia county, idaho; box elder county, Utah

    USGS Publications Warehouse

    Nathenson, M.; Nehring, N.L.; Crosthwaite, E.G.; Harmon, R.S.; Janik, C.; Borthwick, J.

    1982-01-01

    Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. The non-mixed waters have essentially a constant value of light-stable isotopes but show a large variation in chloride content. The variation of chloride composition is not the usual pattern for deep geothermal waters, where it is normally assumed that the deep water has a single chloride composition. Different mixed waters also have hot-water sources of varying chloride composition. Plots of chloride values on cross-sections show that water circulation patterns are confused, with non-mixed waters having different chloride concentrations located in close proximity. Three models can explain the characteristics of the deep geothermal water: (1) in addition to near-surface mixing of cold and hot water, there is deep mixing of two hot waters with the same enthalpy and isotopic composition but differing chloride concentrations to produce the range of chloride concentrations found in the deep geothermal water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in the sedimentary section above the basement) in which waters have different residence times or slightly different circulation paths; (3) the varying chloride concentrations in space have been caused by varying chloride concentrations in the deep feed water through time. Some of this older water has not been flushed from the system by the natural discharge. Although one model may seem more plausible than the others, the available data do not rule out any of them. Data for water samples from the Raft River and Jim Sage Mountains show that water from

  20. Movements of water, solutes, and stable isotopes in the unsaturated zones of two sand plains in the Upper Midwest

    USGS Publications Warehouse

    Komor, Stephen C.; Emerson, Douglas G.

    1994-01-01

    Four month-long field experiments investigated movements of water and solutes through unsaturated sand plains near Princeton, Minnesota, and Oakes, North Dakota. Atrazine and bromide were applied to bare soils and soils planted with corn. The field plots were irrigated according to local farming practices. At the end of each experiment, unsaturated soils were analyzed for atrazine and bromide concentrations and oxygen and hydrogen isotope compositions of soil water. Most soil water was affected by evaporation but groundwater beneath the plots had no evaporative isotopic signature. Therefore most recharge consisted of water that was unaffected by evaporation. Sources of such water may have included snowmelt, prolonged or high-intensity rainfalls that were not interrupted by periods of drying, and water that moved through preferential flow paths. Preferential flow also was suggested by the detection of atrazine, deethylatrazine, and bromide in groundwater shortly after each application of irrigation water at Princeton and by isolated concentrations of atrazine and bromide in soil well below the main masses of chemicals at Oakes.

  1. Evaluation of Ability to Determine Transpiration Fraction from Stable Water Isotopes by Synthesis of Models and Observations in an Alpine Forest

    NASA Astrophysics Data System (ADS)

    Wong, T.; Berkelhammer, M. B.; Noone, D. C.

    2013-12-01

    The partitioning of latent heat flux into contributions from ground evaporation and plant transpiration in land surface models is a key feature of any hydrological scheme, but notoriously difficult to resolve. Global scale models show significant differences in the terrestrial energy balance, which can be traced to poor constraints on the pathways of water that control evapotranspiration (ET). In addition, the depth of water uptake has been shown to be correlated with ecosystem ET partitioning, but vegetation rooting profiles are difficult to observe and therefore present a significant source of uncertainty. Stable isotope ratios in water from soil, leaves and water vapor have been used to help constrain the ET partitioning and to track water movement in ecosystems, but many previous studies have been limited in two regards: 1) lack of sufficient data to provide true closure, and 2) lack of an adequate modeling framework to incorporate many of the processes which control ET. We present results for the partitioning of ET from an isotopically-enabled land surface model (ISOLSM) that is driven by meteorological, hydrological and isotopic data collected at the Manitou Experimental Forest during the summer and autumn of 2011. An ensemble of 394 realizations has been produced, constrained by observations of latent heat, sensible heat and CO2 fluxes. Even when all three flux constraints are met, the transpiration fraction is not well-constrained. These experiments show that previous work using isotopic observations likely has significant uncertainty in their ET partitioning estimates. However, root-weighted soil isotope values have proven to sufficiently provide a final constraint on transpiration fraction, and an investigation of the time scales associated with this constraint is conducted. A sensitivity analysis of rooting profile and ET partitioning reveals the soil isotope ratios, and therefore the estimate of transpiration fraction, depend strongly on the rooting

  2. Stable Isotope Applications in Hydrologic Studies

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Doctor, D. H.

    2003-12-01

    The topic of stream flow generation has received considerable attention over the last two decades, first in response to concern about "acid rain" and more recently in response to the increasingly serious contamination of surface and shallow groundwaters by anthropogenic contaminants. Many sensitive, low-alkalinity streams in North America and Europe are already acidified (see Chapter 9.10). Still more streams that are not yet chronically acidic may undergo acidic episodes in response to large rainstorms and/or spring snowmelt. These acidic events can seriously damage local ecosystems. Future climate changes may exacerbate the situation by affecting biogeochemical controls on the transport of water, nutrients, and other materials from land to freshwater ecosystems.New awareness of the potential danger to water supplies posed by the use of agricultural chemicals and urban industrial development has also focused attention on the nature of rainfall-runoff and recharge processes and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. Dumping and spills of other potentially toxic materials are also of concern because these chemicals may eventually reach streams and other public water supplies. A better understanding of hydrologic flow paths and solute sources is required to determine the potential impact of contaminants on water supplies, develop management practices to preserve water quality, and devise remediation plans for sites that are already polluted.Isotope tracers have been extremely useful in providing new insights into hydrologic processes, because they integrate small-scale variability to give an effective indication of catchment-scale processes. The main purpose of this chapter is to provide an overview of recent research into the use of naturally occurring stable isotopes to track the movement of water and solutes in hydrological systems where the waters are relatively fresh: soils, surface waters, and shallow

  3. Use of stable isotopes of carbon, nitrogen, and sulfer to identify sources of nitrogen in surface waters in the Lower Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Cravotta, C.A.

    1995-01-01

    Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.

  4. Applications of stable isotopes in clinical pharmacology

    PubMed Central

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacokinetic profile or mode of action of a drug substance. Secondly, stable isotopes may be used for the assessment of drug products or drug delivery systems by determination of parameters such as the bioavailability or the release profile. Thirdly, patients may be assessed in relation to patient-specific drug treatment; this concept is often called personalized medicine. In this article, the application of stable isotope technology in the aforementioned three areas is reviewed, with emphasis on developments over the past 25 years. The applications are illustrated with examples from clinical studies in humans. PMID:21801197

  5. Stable isotopic compositions in Australian precipitation

    NASA Astrophysics Data System (ADS)

    Liu, Jianrong; Fu, Guobin; Song, Xianfang; Charles, Stephen P.; Zhang, Yinghua; Han, Dongmei; Wang, Shiqin

    2010-12-01

    Stable deuterium (δD) and oxygen-18 (δ18O) isotopes in 1962 to 2002 precipitation from the seven Australian stations of the Global Network of Isotopes in Precipitation (GNIP) were used to investigate isotope characteristics including temporal and spatial distributions across different regions of Australia. On the basis of 1534 samples, the local meteoric water line (LMWL) was established as δD = 7.10δ18O + 8.21. δ18O showed a depletion trend from north and south to central Australia (a continental effect) and from west to east. Precipitation amount effects were generally greater than temperature effects, with quadratic or logarithmic correlations describing δ/T and δ/P better than linear relationships. Nonlinear stepwise regression was used to determine the significant meteorological control factors for each station, explaining about 50% or more of the δ18O variations. Geographical control factors for δ18O were given by the relationship δ18O (‰) = -0.005 longitude (°) - 0.034 latitude (°)-0.003 altitude (m) - 4.753. Four different types of d-excess patterns demonstrated particular precipitation formation conditions for four major seasonal rainfall zones. Finally, wavelet coherence (WTC) between δ18O and SOI confirmed that the influence of ENSO decreased from east and north to west Australia.

  6. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model

    USGS Publications Warehouse

    Stets, Edward G.; Winter, T. C.; Rosenberry, Donald O.; Striegl, Robert G.

    2010-01-01

    Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen-18 stable isotope signature (δL) that was equally useful in open- and closed-basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed-basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed δL were highly correlated in all lakes (r = 0.84–0.98), suggesting that the model adequately described δL in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3 d−1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d−1, respectively. Water yields in this watershed were much higher, 0.23–0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies.

  7. Quantification of surface water and groundwater flows to open - and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model

    USGS Publications Warehouse

    Stets, E.G.; Winter, T.C.; Rosenberry, D.O.; Striegl, R.G.

    2010-01-01

    Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen-18 stable isotope signature (??L) that was equally useful in open- and closed-basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed-basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed ??L were highly correlated in all lakes (r = 0.84-0.98), suggesting that the model adequately described ??L in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3 d -1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d-1, respectively. Water yields in this watershed were much higher, 0.23-0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies. Copyright 2010 by the American Geophysical Union.

  8. Comparison of two stable hydrogen isotope-ratio measurement techniques on Antarctic surface-water and ice samples

    USGS Publications Warehouse

    Hopple, J.A.; Hannon, J.E.; Coplen, T.B.

    1998-01-01

    A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.

  9. Forensic applications of stable isotope analysis: case studies of the origins of water in mislabeled beer and contaminated diesel fuel.

    PubMed

    Papesch, Wolfgang; Horacek, Micha

    2009-06-01

    This paper describes the use of oxygen (18O) isotope analysis of water contained in two different materials--beer and diesel fuel--involved in the resolution of two separate cases. In the first case study, it was possible to demonstrate that a sample of beer labelled as premium brand in fact belonged to a cheap brand. The second case related to the contamination of diesel fuel from a service station. The diesel fuel contained visible amounts of water, which caused vehicles that had been filled up with it to become defective. For insurance purposes, it was necessary to determine the source of water. The delta18O values for the water of nearly all samples of diesel was close to the delta18O of local tap water at the filling station.

  10. Sulphur cycling in the drinking water catchment area of Torgau-Mockritz (Germany): insights from hydrochemical and stable isotope investigations

    NASA Astrophysics Data System (ADS)

    Knöller, K.; Trettin, R.; Strauch, G.

    2005-11-01

    The hydrochemical composition of groundwater and the isotopic composition of sulphur compounds in sediments (34S of sulphide, inorganic sulphate) and groundwater (34S, 18O of dissolved sulphate) have been investigated to reveal the reasons for elevated concentrations of dissolved groundwater sulphate in the drinking water catchment area of Torgau-Mockritz (Germany).The three most important anthropogenic sources of sulphate identified in this study are historic atmospheric sulphate deposition, predominantly of anthropogenic origin, inorganic fertilization, and dissolution of gypsum from waste dumps. Owing to their overlapping isotopic range, no clear differentiation between the individual anthropogenic sources is possible. Sulphate from the oxidation of sedimentary sulphides, however, was recognized by its negative sulphur isotope signature (34S < - 5).The mobilization of sulphate from different soil sulphur species is closely connected with variable isotopic fractionations, resulting in a wide isotopic variation range for the sulphate entering the saturated zone. Generally, sulphur and oxygen isotope ratios of the dissolved groundwater sulphate range from -19 to +37 (Vienna Cañon Diablo troilite) and from -2 to +19 (Vienna standard mean ocean water), respectively. Sulphate from the majority of groundwater samples can be assigned to anthropogenic sources. Sulphate from sulphide oxidation is especially present in samples from the upper sampling level and the groundwater surface. Sulphate concentrations above 700 mg l-1 are mostly caused by the oxidation of sulphide. Sulphate that occurs in low and moderate concentrations dominantly originates from anthropogenic sources.34S distribution patterns were used to locate the sources for the elevated sulphate concentrations in the raw water. It was shown that the sulphate is not mobilized in the immediate vicinity of the production wells. Rather, it originates in an area 1.5 km west of the intake. The main mobilization

  11. Seasonal variations in water uptake of summer maize under different fertilization treatments: A case study using stable isotopes in Beijing, China

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Sun, N.; Yang, L.; Zhang, B.

    2015-12-01

    Crop water use from soil horizons may be significantly affected by fertilization management practices. Based on stable water isotopes in crop stem and soil water, we investigated seasonal variations in water uptake patterns for summer maize influenced by amount of fertilization application during 2013 and 2014 in Beijing, China. The Bayesian stable isotope mixing model (MixSIAR) and direct inference method were used to determine water uptake depth and proportional soil water contribution to summer maize. The results showed that the main soil water source for summer maize was 0-20 cm at seeding (67.7%) and jointing stages (60.5%). Water at deep soil depths (50-90 cm and 90-200 cm) was tended to be extracted as crop grew, even up to 45.2% at grain filling stage. About 72.0% of crop water was sourced from soil water at 0-50 cm depth at maturity stage. However, pronounced differences of water uptake for summer maize with different nitrogen application rate were presented at depths of 0-20 and 20-50 cm during tasseling and grain filling stages, ranging from 5.4% to 68.9%. Comparing water uptake patterns in two experimental seasons, it was largely concentrated at 0-50 cm depth in 2013. This might be due to continuous rainfall before tasselling stage promoted crop root development in shallow soil depth. On the other hand, seasonal drought resulted in 27.2% more deep soil water contribution at grain filling stage in 2014 than that in 2013. These findings can provide quantitative implications for further studies on water flow and nitrate transport in agricultural filed.

  12. Tracing the sources of water using stable isotopes: first results along the Mangalore-Udupi region, south-west coast of India.

    PubMed

    Lambs, L; Gurumurthy, G P; Balakrishna, K

    2011-10-15

    The Mangalore and Udupi region on the south-west coast of India is characterized by small west-flowing rivers (150-250 km in length) originating in the Western Ghats (up to 1940 meters above sea level (m asl)) and joining the Arabian Sea. The area experiences a humid tropical climate with frequent, high-intensity rainfall (4000 mm annual average). Nevertheless, there is a shortage of water during the peak dry season immediately before the onset of monsoon because of a rapid fall in the groundwater level. From the humid high-altitude forests to the intense agriculture in the coastal area, there is an urgent need to understand the movement of water between evapotranspiration, rainfall, river systems and the groundwater compartments in order to achieve better water resource management. Demographic pressure on the area with over half a million inhabitants and industrial activity strongly influence this fragile ecosystem. The coastal area is characterized by shallow open wells, which are particularly sensitive to pollution and eutrophication. Stable water isotopes ((18)O and deuterium) were used for the first time in this region to determine the isotopic characteristics of the different waters. There is a clear seasonal difference in the isotopic ratios and d-excess values between the summer and winter monsoon periods, with a predominance of lighter isotopes in the latter period. No significant variations in isotopic ratios were observed in relation to altitude because of the possible role of mist formation at high altitude. Greater d-excess values were observed in the west-flowing streams than in rivers flowing east on account of the moist westerly oceanic winds and water vapour recycling.

  13. Chloride concentrations and stable isotopes of hydrogen and oxygen in surface water and groundwater in and near Fish Creek, Teton County, Wyoming, 2005-06

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.

    2010-01-01

    Fish Creek, an approximately 25-kilometer long tributary to the Snake River, is located in Teton County in western Wyoming near the town of Wilson. The U.S. Geological Survey, in cooperation with the Teton Conservation District, conducted a study to determine the interaction of local surface water and groundwater in and near Fish Creek. In conjunction with the surface water and groundwater interaction study, samples were collected for analysis of chloride and stable isotopes of hydrogen and oxygen in water. Chloride concentrations ranged from 2.9 to 26.4 milligrams per liter (mg/L) near Teton Village, 1.2 to 4.9 mg/L near Resor's Bridge, and 1.8 to 5.0 mg/L near Wilson. Stable isotope data for hydrogen and oxygen in water samples collected in and near the three cross sections on Fish Creek are shown in relation to the Global Meteoric Water Line and the Local Meteoric Water Line.

  14. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1991-04-01

    This is the final report which was a thirty-four month project conducted to develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish the source of carbon in products of coal/petroleum coprocessing. The work included assessing precision, accuracy, the range of application and the significance of selective isotopic fractionation effects. A method was devised to correct for selective isotopic fractionation errors. The method was demonstrated through application with samples from twelve continuous-unit coprocessing tests. A data base of carbon isotope analyses is appended. 21 refs.

  15. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the ;amount effect; is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  16. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain

    USGS Publications Warehouse

    Alt, Jeffrey C.; Garrido, Carlos J.; Shanks, Wayne C.; Turchyn, Alexandra; Padrón-Navarta, José Alberto; López Sánchez-Vizcaíno, Vicente; Gómez Pugnaire, María Teresa; Marchesi, Claudio

    2012-01-01

    We use the concentrations and isotope compositions of water, carbon, and sulfur in serpentinites and their dehydration products to trace the cycling of volatiles during subduction. Antigorite serpentinites from the Cerro del Almirez complex, Spain, contain 9–12 wt.% H2O and 910 ± 730 ppm sulfur, and have bulk δ18O values of 8.6 ± 0.4‰, δD = − 54 ± 5‰, and δ34S = 5.0‰, consistent with serpentinization at temperatures of ~ 200 °C by seawater hydrothermal fluids in a seafloor setting. The serpentinites were dehydrated to chlorite–harzburgite (olivine + orthopyroxene + chlorite) at 700 °C and 1.6–1.9 GPa during subduction metamorphism, resulting in loss of water, and sulfur. The chlorite–harzburgites contain 5.7 ± 1.9 wt.% H2O, and have bulk δ18O = 8.0 ± 0.9‰, and δD = − 77 ± 11‰. The rocks contain 650 ± 620 ppm sulfur having δ34S = 1.2‰. Dehydration of serpentinite resulted in loss of 5 wt.% H2O having δ18O = 8–10‰ and δD = − 27 to − 65‰, and loss of 260 ppm sulfur as sulfate, having δ34S = 14.5‰. The contents and δ13C of total carbon in the two rock types overlap, with a broad trend of decreasing carbon contents and δ13C from ~ 1300 to 200 ppm and − 9.6 to − 20.2‰. This reflects mixing between reduced carbon in the rocks (210 ppm, δ13C ≈ − 26‰) and seawater-derived carbonate (δ13C ≈ − 1‰). Our results indicate: 1) Serpentinized oceanic peridotites carry significant amounts of isotopically fractionated water, carbon and sulfur into subduction zones; 2) Subduction of serpentinites to high P and T results in loss of water, and sulfur, which can induce melting and contribute to 18O, D, and 34S enrichments and oxidation of the sub-arc mantle wedge; and 3) Isotopically fractionated water, carbon, and sulfur in serpentinite dehydration products are recycled deeper into the mantle where they can contribute to isotope heterogeneities and may be significant for volatile budgets of the deep Earth.

  17. Stable isotope ratios in rainfall and water vapour at Bangalore, Southern India during the monsoon period of 2013

    NASA Astrophysics Data System (ADS)

    Peethambaran, Rahul; Ghosh, Prosenjit

    2015-04-01

    Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and

  18. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  19. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Jeffries, D.; Yi, Y.

    2017-01-01

    Stable isotopes of water, oxygen-18 and deuterium, were measured in water samples collected from a network of 300 lakes sampled in six ∼100 km2 blocks (centred at 49.72°N, 91.46°W; 48.49°N, 91.58°W; 50.25°N, 86.62°W; 49.78°N, 83.98°W; 48.24°N, 85.49°W; 47.73, 84.52°W) within Precambrian shield drainages in the vicinity of Lake Superior, northern Ontario, Canada. Additional sampling was also conducted within the Turkey Lakes watershed (47.03°N, 84.38°W), a research basin situated in the Algoma region located 50 km north of Sault Saint Marie, Ontario. The studies were undertaken to gain a better understanding of hydrology and geochemistry of watersheds in the region in order to better predict acid sensitivity of lakes. The main objective of this paper is to describe the hydrologic variations observed based on stable isotope results. Evaporative isotopic enrichment of lake water was found to be systematic across the region, and its deviation from the isotopic composition of precipitation was used to estimate the evaporation/inflow to the lakes as well as runoff (or water yield) based on a simple isotope mass balance model. The analysis illustrates significant variability in the water yield to lakes and reveals a pattern of positively skewed distributions in all six widely spaced blocks, suggesting that a high proportion of lakes have relatively limited runoff whereas relatively few have greater runoff. Such basic information on the drainage structure of an area can be valuable for site-specific hydrologic assessments but also has significant implications for critical loads assessment, as low runoff systems tend to be less buffered and therefore are more sensitive to acidification. Importantly, the Turkey Lakes sampling program also suggests that isotope-based water yield is comparable in magnitude to hydrometric gauging estimates, and also establishes that uncertainty related to stratification can be as high as ±20% or more for individual lakes

  20. Compound-specific stable isotope analysis of herbicides in stream water: a combined monitoring and modeling approach to assess pollutant degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van der Velde, Ype; Elsayed, Omniea; Imfeld, Gwenael; Lefrancq, Marie; Payraudeau, Sylvain; Van Breukelen, Boris

    2014-05-01

    Compound-specific stable isotope analysis (CSIA) measures the isotopic composition of a compound, i.e. the relative abundance of light and heavy stable isotopes of an element contained in the compound (e.g. 12C and 13C). As degradation processes may induce a change in isotopic composition (i.e. isotope fractionation), CSIA allows distinguishing degradation from non-destructive processes such as dilution or sorption. CSIA can be combined with model-assisted interpretation to evaluate degradation of contaminants in the environment. Although CSIA methods have also been developed for diffuse pollutants such as pesticides and nitrate, they have not yet been continuously applied in monitoring of diffuse pollution in surface water. Results of a virtual experiment of isotope fractionation at hillslope scale have suggested that CSIA qualifies as a feasible and useful complement to concentration measurements of diffuse pollutants (Lutz et al., 2013). We now present the first continuously measured concentration and carbon CSIA data of herbicides from a 49-ha agricultural catchment (Alsace, France). Stream concentrations of two chloroacetanilide herbicides, i.e. S-metolachlor and acetochlor, were highest (65 μg/L) following an extreme rainfall event in the first month after herbicide application, and subsequently decreased to background concentration level (0.1 μg/L). This decrease was accompanied by an increase of more than 2 ‰ in carbon isotope ratios, which was also observed in surface runoff samples from a plot experiment in the study catchment. The increase of carbon isotope ratios over time indicates the occurrence of herbicide degradation during transport to the stream, and thus demonstrates the advantage of CSIA over pesticide concentration measurements only. Despite providing evidence of herbicide degradation, the field CSIA data do not allow for a comprehensive characterization of herbicide sources, fate and transport in the study catchment. Therefore, we

  1. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    EPA Science Inventory

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  2. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna.

  3. Assessing the Role of Sewers and Atmospheric Deposition as Nitrate Contamination Sources to Urban Surface Waters using Stable Nitrate Isotopes

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.

    2009-12-01

    Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by

  4. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  5. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation

    PubMed Central

    Broeckx, L.S.; Fichot, R.; Verlinden, M.S.; Ceulemans, R.

    2014-01-01

    Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m−2 s−1 depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi – Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops. PMID:25074859

  6. Stable Isotope Ratios and the Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Jarman, Kristin H.

    2007-06-01

    In the aftermath of the anthrax letters of 2001, researchers have been exploring various analytical signatures for the purpose of characterizing the production environment of microorganisms. One such signature is stable isotope ratios, which in heterotrophs are a function of nutrient and water sources. Here we discuss the use of stable isotope ratios in microbe forensics, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of 247 separate cultures of B. subtilis 6051 spores produced on a total of 32 different culture media. In the context of using stable isotope ratios as a signature for sample matching, we present an analysis of variation between individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times. Additionally, we correlate the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen for growth medium nutrients or water with those of spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures.

  7. Stable isotopes in Lithuanian bioarcheological material

    NASA Astrophysics Data System (ADS)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  8. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    PubMed

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world.

  9. Stable isotope dilution assays in mycotoxin analysis.

    PubMed

    Rychlik, Michael; Asam, Stefan

    2008-01-01

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

  10. Stable Chlorine Isotopes in Ocean Crust Processes

    NASA Astrophysics Data System (ADS)

    Bach, W.; Layne, G.; Kent, A.

    2003-12-01

    The study of natural variations of Cl isotopic composition in ocean crustal rocks has large potential to further our understanding of geochemical cycling of volatiles and elements soluble in saline aqueous solutions. Studies of oceanic basalt suites to date confirm that Cl abundances are highly sensitive to the addition of saline components - either from addition of subduction-related volatile fluxes in back-arc basins and volcanic arcs or via interaction between magmas and Cl-rich seawater-derived components during melting, magma storage and transport. Recent data suggest that δ 37Cl is much more variable in the marine environment than originally thought, with strongly negative δ 37Cl values (down to -7.5 ‰ ) in marine pore waters and positive values (up to +7 ‰ ) in hydrothermal fluids from oceanic spreading centers. Moreover, mantle-derived magmatic rocks reveal large variations in δ 37Cl (-3 to +11 ‰ ), reflecting mantle heterogeneity as well as assimilation of exogenic Cl by crystallizing magmas. The large isotopic variation in low-Cl basalts has been explained by isotopic heterogeneities of the mantle, with very light δ 37Cl values in rocks from the southwest Chile Ridge that have island arc geochemical affinities and heavy δ 37Cl values in Reykjanes Ridge samples (Stewart, 2000, PhD Thesis, Duke University). The inference is that a slab-flux carries a negative δ 37Cl signature while recycled ocean crust in mantle plumes carries a strongly positive δ 37Cl signature, although this is not well constrained at present. Preferential release of isotopically light Cl from the dewatering sediments is suggested by pore water data from the Barbados and Nankai accretionary prisms with δ 37Cl values down to -7.5 ‰ (Ransom et al. 1995, Geology, 23, 715). Volcanic fumaroles also appear to have negative δ 37Cl values. If this is the case then residual Cl in the subducting slab should become isotopically heavier as 35Cl is preferentially released in the

  11. Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Bhattacharya, S. K.; Krishnaswami, S.

    2002-12-01

    Water samples from the Yamuna and its tributaries, one of the major river systems draining the Himalaya, have been analysed for their stable oxygen and hydrogen isotopes during three seasons (summer, monsoon and post-monsoon). The data show clear seasonal and altitudinal variations; waters from higher altitudes and those collected during monsoon season are characterized by relatively depleted isotopic composition. Regression analysis of D-18O data of samples collected during summer and monsoon seasons shows that the slope of the best-fit lines are nearly identical to those of precipitation at New Delhi for the same period. The similarity in their slopes suggests that the isotopic composition of precipitation contributing water to these rivers are reasonably well preserved in both monsoon and non-monsoon seasons, however, during the non-monsoon period both rainfall and river waters carry signatures of evaporation. The deuterium excess in river waters during the three seasons though overlap with each other, the values during October are higher. This can be understood in terms of recycled moisture contributions to precipitation. The altitude effect for 18O in these waters is determined to be 0·11 per 100 m, a factor of about two less than that reported for the Ganga source waters from similar altitudinal range. The variability in altitude effects in rivers draining the Himalaya seems to be controlled by the amount effect associated with the monsoon. The significant spatial variability in altitude effect in these river basins, which are a few hundred kilometers apart, suggests that reconstruction of palaeoelevation in the Himalaya, based on 18O-altitude gradients, would depend critically on its proper assessment in the region. This study has established a relationship between total cation abundance and 18O in waters of the Yamuna mainstream; total cations (corrected for cyclic components) double for a 1·4 km decrease in altitude as the Yamuna flows downstream.

  12. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application an authentic continuous-unit products. The experimental details used for stable carbon isotope analyses by the organization that performs most of those analyses under this contract are described. A method was developed previously under this contract to correct the carbon sourcing calculations performed from stable carbon isotope analyses for selective isotopic fractionation. The method relies on three assumptions. This quarter, a study was completed to define the sensitivity of the carbon sourcing results to errors in the assumptions. Carbon contents and carbon isotope ratios were determined for the available feeds and product fractions from HRI bench-scale coprocessing Run 238-10 (Texas lignite/Hondo vacuum still bottoms (VSB), Texas lignite/Cold Lake VSB and Westerholt coal/Cold Lake VSB). These data were used for carbon sourcing calculations and individual feedstock conversion calculations. A previously devised means for correcting for selective isotope fractionation was applied. 6 refs., 30 figs., 16 tabs.

  13. Identifying hydrological pathways in the north basin of Lake Kivu using stable isotope ratios of meteoric recharge and surface water

    NASA Astrophysics Data System (ADS)

    Balagizi, Charles M.; Kasereka, Marcellin M.; Terzerand, Stefan; Cuoco, Emilio; Liotta, Marcello

    2016-04-01

    A rain-gauge network of 12 stations was installed at different altitudes at Nyiragongo volcano (DR Congo) and surroundings and sampled on monthly basis between December 2013 and June 2015 to evaluate the isotopic signature of the meteoric recharge. Additional samples were collected on monthly basis from 5 rivers, 7 springs, 3 profiles in Kabuno bay and 2 others in the Main Basin of Lake Kivu to determine their water isotope compositions (δ18O and δ2H). The precipitation, surface and groundwater δ18O and δ2H values were thereafter used to estimate the groundwater recharge area, surface and groundwater inflow level to Lake Kivu, and for modeling water circulation in the north basin of Lake Kivu. The monthly precipitation isotope composition varied in a large range, whereas mean precipitation-weighed values ranged between -12.39‰ and 6.52‰ for δ2H, and from -4.02‰ to -0.91‰ for δ18O. Monthly values allowed to define a Local Meteoric Water Line of equation δ2H=7.96δ18O + 16.96. Our dataset, the first time series in the Virunga, implies that the δ18O and δ2H of precipitation are predominantly determined by the recycled moisture source area, while their clearly defined seasonality is driven by wind direction and precipitation amount changes. The δ18O, δ2H and deuterium-excess values revealed a convergence zone around Nyiragongo where the N-NE and S-SW trade winds come together. Moisture from the Nile River basin brought by the N-NE originating winds yielded depleted precipitation at local highlands, while that from the Congo River basin brought by the S-SW wind yielded enriched precipitation at lowlands. Rivers and springs monthly are included in the range of monthly precipitation values, and are thus indicative of lack of significant evaporation during aquifer recharge. The mean rivers and springs δ2H and δ18O, and the mean precipitation-weighed values revealed the presence of shallow groundwater recharged between 2100 and 2700m a.s.l., and deep

  14. On the trophic ecology of Gammaridea (Crustacea: Amphipoda) in coastal waters: A European-scale analysis of stable isotopes data

    NASA Astrophysics Data System (ADS)

    Mancinelli, Giorgio

    2012-12-01

    Gammaridean amphipods are found throughout a diverse range of coastal and brackish environments and are generally considered macrophagous herbivores/detritivores. While predation and cannibalism have been shown to be common in freshwater species, motivating a revision of the group functional role, only qualitative information is available on marine Gammaridea. In this study, a survey was conducted of the available literature on stable C and N isotopic signatures of macrophagous, fully aquatic Gammaridea and their potential basal resources in European brackish and coastal environments. The contribution of intra- and inter-specific predation to the signatures of gammarideans was verified by a mixing model procedure where the diet-tissue enrichment constant was not set a priori. Specifically, for each study included in the survey the minimum and maximum diet-tissue nitrogen enrichment factors (Δ15Nmin and Δ15Nmax) providing a non-zero solution were calculated for a range of carbon enrichment factors, assuming that both metrics would increasingly differ from the values expected for a single trophic level as predation and/or cannibalism increased in the diet of the consumer. The minimum enrichment factors Δ15Nmin estimated for a Δ13C of -2.6‰ and +0.5‰ were found to be independent from resource-related artefacts and provided the highest number of successful model runs. Δ15Nmin values were consistent with a diet based on living or decaying primary producers and not compatible with cannibalism or intra-guild predation. However, they showed a bimodal distribution and were on average far below the range found in the literature, matching the enrichment factors of gammarideans measured under laboratory conditions. These results are discussed considering the interaction of the distinctive isotopic features of basal resources in coastal habitats and the biology and ecology of gammaridean amphipods. Particular emphasis is placed on the high variability of nitrogen

  15. Interstitial Water Chemistry From the Japan Trench Fast Drilling Project (JFAST): Results from Stable Isotopes and Dissolved Ions

    NASA Astrophysics Data System (ADS)

    Sample, J. C.; Ishikawa, T.; Takai, K.; Chester, F.; Mori, J. J.; Eguchi, N.; Toczko, S.

    2012-12-01

    In order to investigate the properties of the megathrust that ruptured during the 11 March 2011 Tohoku-Oki earthquake, the Integrated Ocean Drilling Program (IODP) recently completed three successful holes through the plate boundary interface. In one hole (C0019E) coring operations targeted depths between 648 mbsf and 837 mbsf where potential faults were identified from logging data. The incomplete coverage of coring depths makes it impossible to reconstruct detailed depth profiles of interstitial water compositions, but significant variations in concentrations at two important depth horizons can be identified. Most dissolved ions show either a small concentration maximum or minimum at an upper horizon (~699-705 mbsf) and a larger concentration maximum or minimum at a lower horizon (below 800 mbsf to the bottom of the hole). For many of the ions (chloride, sulfate, sodium, potassium, rubidium, magnesium, cesium) the similar maxima or minima are present at both horizons. For other constituents (minor and trace elements), the variations are more complex and in some cases are reversed at the two horizons. As examples of the magnitude of variation, relative chlorinity values decrease at the upper horizon by 1.3% and decrease at the lower horizon by 4.9%, indicating pore water freshening at these two depth intervals. Dissolved sulfate values increase by 97% and by 422% at the upper and lower horizons, respectively. The high sulfate concentration at the bottom of C0019E might indicate a source of fluid with a modified seawater composition, but most other constituents do not vary in a manner consistent with seawater influx. Crossplots of several ion pairs (e.g., strontium-barium, lithium-cesium) suggest mixing of three endmember components. The data do not show evidence for contamination by drilling fluid. Depth profiles of hydrogen and oxygen isotopes are similar to ion depth plots, but are more complex. Both hydrogen and oxygen isotopes show small minima in the upper

  16. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015.

    PubMed

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-17

    The water vapour isotopic composition ((1)H2(16)O, H2(18)O and (1)H(2)H(16)O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  17. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015

    NASA Astrophysics Data System (ADS)

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  18. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012–2015

    PubMed Central

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10–20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements. PMID:28094798

  19. Stable light isotope biogeochemistry of hydrothermal systems.

    PubMed

    Des Marais, D J

    1996-01-01

    The stable isotopic composition of the elements O, H, S and C in minerals and other chemical species can indicate the existence, extent, conditions and the processes (including biological activity) of hydrothermal systems. Hydrothermal alteration of the 18O/16O and D/H values of minerals can be used to detect fossil systems and delineate their areal extent. Water-rock interactions create isotopic signatures which indicate fluid composition, temperature, water-rock ratios, etc. The 18O/16O values of silica and carbonate deposits tend to increase with declining temperature and thus help to map thermal gradients. Measurements of D/H values can help to decipher the origin(s) of hydrothermal fluids. The 34S/32S and 13C/12C values of fluids and minerals reflect the origin of the S and C as well as oxygen fugacities and key redox processes. For example, a wide range of 34S/32S values which are consistent with equilibration below 100 degrees C between sulfide and sulfate can be attributed to sulfur metabolizing bacteria. Depending on its magnitude, the difference in the 13C/12C value of CO2 and carbonates versus organic carbon might be attributed either to equilibrium at hydrothermal temperatures or, if the difference exceeds 1% (10/1000), to organic biosynthesis. Along the thermal gradients of thermal spring outflows, the 13C/12C value of carbonates and 13C-depleted microbial organic carbon increases, principally due to the outgassing of relatively 13C-depleted CO2.

  20. Stable Isotope Evidence for Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Mao, W. L.; Schauble, E. A.; Caracas, R.; Reagan, M. M.; Gleason, A. E.

    2015-12-01

    Planetary differentiation occurred at high temperature and varying oxygen fugacity, on bodies with varying compositions and internal pressures. The specific conditions at which bodies differentiated and the chemical fingerprints left by differentiation can be investigated by measuring stable isotope ratios in natural samples. Much can be learned by combining those data with experiments that systematically investigate the chemical and physical conditions within differentiating bodies. In this talk we focus on one variable in particular that has not been well defined with respect to stable isotope fractionation: pressure. We will present new iron isotope data on how pressure affects isotope fractionation factors for a number of iron compounds relative to silicate. The processes governing iron isotope fractionation in igneous rocks have been debated extensively over the past decade. Analyses of natural samples show that iron isotopes are fractionated at both the whole rock and mineral scales. This fractionation has been interpreted to be a result of several processes including a possible signature of high pressure core formation. We have collected new high pressure synchrotron nuclear resonant inelastic x-ray scattering data from Sector 16-ID-D at the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C. Our data show clear trends with pressure implying that not only does pressure have an effect on the iron isotope beta factors but also a fractionation amongst the alloys. This suggests that depending on the light element in the core, there will be a different resulting signature in the iron isotope record. We will discuss the likelihood of different light elements in the core based on these results, as well as the theoretical predictions for the same phases. Finally, we will present the fractionation expected between metal and silicate at high pressure and high temperature in order to determine if core formation would indeed leave an isotopic signature in

  1. Declining water budget in a deep regional aquifer assessed by geostatistical simulations of stable isotopes: Case study of the Saharan "Continental Intercalaire"

    NASA Astrophysics Data System (ADS)

    Gonçalvès, Julio; Vallet-Coulomb, Christine; Petersen, Jade; Hamelin, Bruno; Deschamps, Pierre

    2015-12-01

    The stable isotopes of water were used to improve the determination of the groundwater budget of the deep Saharan "Continental Intercalaire" (CI), a deep confined aquifer. Mixing processes between the CI and shallower aquifers have been described in several regional studies over the last few decades, based on observed isotopic differences between local water masses. Here, we improve the quantitative determination of the discharge flux of this aquifer in one of its main outlet regions, the Djeffara plain in Tunisia, based on geostatistics and a simple mass balance mixing model, applied before and after the beginning of extensive pumping in the 1970s. First, the average values of δ18O and δ2H were precisely documented in the mixing zone between CI water and the local recharge, based on conditional simulations using spatially distributed isotopic data. Together with the available estimate of local recharge and conservative hypotheses on the isotopic end-members, we estimate the discharge flux of the CI in the Djeffara plain at 1.78 ± 1.03 m3 s-1 in 1970, probably near natural steady-state, reduced to 1.02 ± 0.58 m3 s-1 in 2004 under strong anthropogenic pressure, related to the drastic increase in pumping rates in the deep CI aquifer during this period. Considering the general groundwater budget over the entire CI aquifer, we estimate a recharge value of 5.13 m3 s-1, or 6.5 mm yr-1 over the 25,000 km2 of recharge area in the Saharan Atlas. This value is in line with the evaluation of 2.1 mm yr-1 obtained recently from the GRACE satellite gravity data for the overall outcrops considering that recharge occurs mostly in the Atlas region.

  2. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  3. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  4. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-12-31

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  5. Stable carbon isotopes of HCO3- in oil-field waters-implications for the origin of CO2

    USGS Publications Warehouse

    Carothers, W.W.; Kharaka, Y.K.

    1980-01-01

    The ??13C values of dissolved HCO3- in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The ??13C values of total HCO3- indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin. The range of ??13C values for the HCO3- of these waters is -20-28 per mil relative to PDB. This wide range of ??13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high ??13C values of HCO3- in the shallow production zones where the subsurface temperatures are less than 80??C. The extremely low ??13C values (< -10 per mil) are obtained in waters where concentrations of SO42- are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42- + CH3COO- ??? 2HCO3- + HS-). The high ??13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO- + H2O ai HCO3- + CH4). Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80??C. The ??13C values of HCO3- for waters from zones with temperatures greater than 100??C result from isotopic equilibration between CO2 and CH4. At these high temperatures, ??13C values of HCO3- decrease with increasing temperatures and decreasing concentrations of these acid anions. ?? 1980.

  6. Use of stable isotopes of nitrogen and water to identify sources of nitrogen in three urban creeks of Durham, North Carolina, 2011-12

    USGS Publications Warehouse

    McSwain, Kristen Bukowski; Young, Megan B.; Giorgino, Mary L.

    2014-01-01

    A preliminary assessment of nitrate sources was conducted in three creeks that feed nutrient impaired Falls and Jordan Lakes in the vicinity of Durham County, North Carolina, from July 2011 to June 2012. Cabin Branch, Ellerbe Creek, and Third Fork Creek were sampled monthly to determine if sources of nitrate in surface water could be identified on the basis of their stable isotopic compositions. Land use differs in the drainage basins of the investigated creeks—the predominant land use in Cabin Branch Basin is forest, and the Ellerbe and Third Fork Creek Basins are predominantly developed urban areas. Total nutrient concentrations were below 1 milligram per liter (mg/L). All measured nitrate plus nitrite concentrations were below the North Carolina standard of 10 mg/L as nitrogen with the highest concentration of 0.363 mg/L measured in Third Fork Creek. Concentrations of ammonia were generally less than 0.1 mg/L as nitrogen in all creek samples. More than 50 percent of the total nitrogen measured in the creeks was in the form of organic nitrogen. Total phosphorus and orthophosphate concentrations in all samples were generally less than 0.2 mg/L as phosphorus. The isotopic composition of surface water (δ2HH20 and δ18OH2O) is similar to that of modern-day precipitation. During July and August 2011 and May and June 2012, surface-water samples displayed a seasonal difference in isotopic composition, indicating fractionation of isotopes as a result of evaporation and, potentially, mixing with local and regional groundwater. The dominant source of nitrate to Cabin Branch, Ellerbe Creek, and Third Fork Creek was the nitrification of soil nitrogen. Two stormflow samples in Ellerbe Creek and Third Fork Creek had nitrate sources that were a mixture of the nitrification of soil nitrogen and an atmospheric source that had bypassed some soil contact through impermeable surfaces within the drainage basin. No influence of a septic or wastewater source was found in Cabin

  7. Stable isotopic analysis of porcine, bovine, and ovine heparins.

    PubMed

    Jasper, John P; Zhang, Fuming; Poe, Russell B; Linhardt, Robert J

    2015-02-01

    The assessment of provenance of heparin is becoming a major concern for the pharmaceutical industry and its regulatory bodies. Batch-specific [carbon (δ(13) C), nitrogen (δ(15) N), oxygen (δ(18) O), sulfur (δ(34) S), and hydrogen (δD)] stable isotopic compositions of five different animal-derived heparins were performed. Measurements readily allowed their differentiation into groups and/or subgroups based on their isotopic provenance. Principle component analysis showed that a bivariate plot of δ(13) C and δ(18) O is the best single, bivariate plot that results in the maximum discrimination ability when only two stable isotopes are used to describe the variation in the data set. Stable isotopic analyses revealed that (1) stable isotope measurements on these highly sulfated polysaccharide (molecular weight ∼15 kDa) natural products ("biologics") were feasible; (2) in bivariate plots, the δ(13) C versus δ(18) O plot reveals a well-defined relationship for source differentiation of hogs raised in the United States from hogs raised in Europe and China; (3) the δD versus δ(18) O plot revealed the most well-defined relationship for source differentiation based on the hydrologic environmental isotopes of water (D/H and (18) O/(16) O); and (4) the δ(15) N versus δ(18) O and δ(34) S versus δ(18) O relationships are both very similar, possibly reflecting the food sources used by the different heparin producers.

  8. The role of stable isotopes in understanding rainfall ...

    EPA Pesticide Factsheets

    The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent

  9. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1990-05-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Activities for this quarter include: method development -- investigation of selective fractionation. Three petroleum atmospheric still bottoms (ASBs) were separated by distillation and solubility fractionation to determine the homogeneity of the carbon isotope ratios of the separated fractions. These same three petroleum ASBs and three geographically distinct coals were pyrolyzed at 800{degree}F for 30 min and hydrogenated over a CoMo catalyst at 750{degree}F for 60 min to determine the effects of these treatments on the isotopic compositions of the produce fractions. Twelve coal liquefaction oils were analyzed for carbon isotope ratios. These oils were derived from subbituminous and bituminous coals from the first- and second-stage reactors in the thermal/catalytic and modes; validation and application, analysis. Carbon isotope analyses of samples from HRI bench unit coprocessing run 238-2 (Taiheiyo coal/Maya VSB) were analyzed. A method to correct for selective isotopic fractionation was developed and applied to the data. Five coprocessing samples were analyzed at the request of SRI International. 12 refs., 15 figs., 24 tabs.

  10. Assessing the hydraulic connection between fresh water aquifers and unconventional gas production using methane and stable isotopes

    NASA Astrophysics Data System (ADS)

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-04-01

    Unconventional gas developments pose a risk to groundwater quality and quantity in adjacent or overlying aquifers. To manage these risks there is a need to measure the background concentration of indicator groundwater chemicals and to map pathways of hydraulic connectivity between aquifers. This study presents methane (CH4) concentration and isotopic composition, dissolved organic carbon concentration ([DOC]) and tritium (3H) activity data from an area of expanding coal seam gas (CSG) exploration and production (Condamine Catchment, south-east Queensland, Australia). The target formation for gas production within the Condamine Catchment is the Walloon Coal Measures (WCM). This is a 700 m thick, low-rank CSG resource, which consists of numerous thin discontinuous lenses of coal separated by very fine-to medium-grained sandstone, siltstone, and mudstone, with minor calcareous sandstone, impure limestone and ironstone. The thickness of the coal makes up less than 10% of the total thickness of the unit. The WCM are overlain by sandstone formations, which form part of the Great Artesian Basin (GAB). The Condamine Alluvium fills a paleo-valley carved through the above formations. A combination of groundwater and degassing air samples were collected from irrigation bores and government groundwater monitoring boreholes. Degassing air samples were collected using an SKC 222-2301 air pump, which pumped the gas into 3 L Tedlar bags. The groundwater was analysed for 3H and [DOC]. A mobile CH4 survey was undertaken to continuously sample air in and around areas of agricultural and unconventional gas production. The isotopic signature of gas from the WCM was determined by sampling gas that was off-gassing from a co-produced water holding pond as it was the largest emission that could be directly linked to the WCM. This was used to determine the source signature of the CH4 from the WCM. We used Keeling plots to identify the source signature of the gas sampled. For the borehole

  11. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  12. Biogeochemistry of the stable hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Estep, Marilyn F.; Hoering, Thomas C.

    1980-08-01

    The fractionation of H isotopes between the water in the growth medium and the organically bonded H from microalgae cultured under conditions, where light intensity and wavelength, temperature, nutrient availability, and the H isotope ratio of the water were controlled, is reproducible and light dependant. All studies were based either on the H isotope ratios of the total organic H or on the lipids, where most of the H is firmly bonded to C. H bonded into other macromolecules, proteins, carbohydrates and nucleic acids, does not exchange with water, when algae are incubated in water enriched with deuterium. Only after the destruction of quaternary H bonds are labile hydrogens in macromolecules free to exchange with water. By growing algae (18 strains), including blue-green algae, green algae and diatoms, in continuous light, the isotope fractionations in photosynthesis were reproducibly -93 to -178 %. depending on the organism tested. This fractionation was not temperature dependent. Microalgae grown in total darkness with an organic substrate did not show the isotope fractionation seen in cells grown in light. In both light- and dark-grown algae, however, additional depletion of deuterium (-30 to -60%.) in cellular organic matter occurs during the metabolism of carbohydrates to form lipids. Plants from several natural populations also fractionated isotopes during photosynthesis by an average of -90 to -110%. In addition, the organically bonded H in nonsaponifiable lipids was further fractionated by -80%. from that in saponifiable lipids, isolated from two geographically distinct populations of marsh plants. This difference between H isotope ratios of these two groups of lipids provides an endogenous isotopic marker.

  13. Martian stable isotopes: volatile evolution, climate change and exobiological implications.

    PubMed

    Jakosky, B M

    1999-01-01

    Measurements of the ratios of stable isotopes in the martian atmosphere and crust provide fundamental information about the evolution of the martian volatile and climate system. Current best estimates of the isotope ratios indicate that there has been substantial loss of gases to space and exchange of gases between the atmosphere and the crust throughout geologic time; exchange may have occurred through circulation of water in hydrothermal systems. Processes of volatile evolution and exchange will fractionate the isotopes in a manner that complicates the possible interpretation of isotopic data in terms of any fractionation that may have been caused by martian biota, and must be understood first. Key measurements are suggested that will enhance our understanding of the non-biological fractionation of the isotopes and of the evolution of the martian volatile system.

  14. Compound specific stable isotope analysis vs. bulk stable isotope analysis of agricultural food products

    NASA Astrophysics Data System (ADS)

    Psomiadis, David; Horváth, Balázs; Nehlich, Olaf; Bodiselitsch, Bernd

    2015-04-01

    The bulk analysis of stable isotopes (carbon, nitrogen, sulphur, oxygen and hydrogen) from food staples is a common tool for inferring origin and/or fraud of food products. Many studies have shown that bulk isotope analyses of agricultural products are able to separate large geographical areas of food origin. However, in micro-localities (regions, districts, and small ranges) these general applications fail in precision and discriminative power. The application of compound specific analysis of specific components of food products helps to increase the precision of established models. Compound groups like fatty acids (FAMEs), vitamins or amino acids can help to add further detailed information on physiological pathways and local conditions (micro-climate, soil, water availability) and therefore might add further information for the separation of micro-localities. In this study we are aiming to demonstrate the power and surplus of information of compound specific isotope analysis in comparison to bulk analysis of agricultural products (e.g. olive oil, cereal crops or similar products) and discuss the advantages and disadvantages of such (labor intense) analysis methods. Here we want to identify tools for further detailed analysis of specific compounds with high powers of region separation for better prediction models.

  15. Water column distribution of stable isotopes and carbonate properties in the South-eastern Levantine basin (Eastern Mediterranean): Vertical and temporal change

    NASA Astrophysics Data System (ADS)

    Sisma-Ventura, G.; Yam, R.; Kress, N.; Shemesh, A.

    2016-06-01

    Water column distributions of the oxygen isotopic composition of sea-water (δ18OSW) and the stable carbon isotope ratio of dissolved inorganic carbon (δ13CDIC), total alkalinity (AT) and the pH (total scale) at 25 °C (25 °CpHTotal) were investigated along the Southeast Mediterranean (SE-Med) shelf and open water, during 2009-2010. While, the vertical profiles of δ18OSW lacked a clear depth signature, those of δ13CDIC were characterized by a structure that reflects the major water masses in the Levantine basin, with noticeable vertical gradients. The δ13CDIC Suess effect of the Levantine water column was estimated from the difference between the average profiles of 1988 and 2009-2010 (Δδ13CDIC). We observed δ13CDIC temporal change, which indicates propagation of anthropogenic CO2 (Cant) to depth of about 700 m. The Modified Atlantic Water (MAW; 0-200 m) and the Levantine Intermediate Water (LIW; 200-400 m) exhibited a depletion rate of - 0.13 ± 0.03 and - 0.11 ± 0.03‰ decade- 1, respectively, representing ~ 50% of the atmospheric change, while the deep water of the Adriatic source (700-1300 m) did not change during this period. A Δδ13CDIC depletion trend was also recognized below 1350 m, corresponding to the Aegean source deep water (EMDWAeg) and therefore associated to the Eastern Mediterranean Transient (EMT) event. Anthropogenic CO2 accumulation rate of 0.38 ± 0.12 mol C m- 2 yr- 1 for the upper 700 m of the SE-Med, over the last 22 yr, was estimated on the basis of mean depth-integrated δ13CDIC Suess effect profile. Our results confirm lower accumulation rate than that of the subtropical North Atlantic, resulting due to the super-saturation with respect to CO2 of the well-stratified Levantine surface water. High pCO2 saturation during summer (+ 150 μatm), in oppose to a small degree of under-saturation in winter (- 30 μatm) was calculated from surface water AT and 25 °CpHTotal data. However, the δ13CDIC depletion trend of the LIW and the

  16. USE OF SLACK-WATER ENVIRONMENTS BY COHO SALMON JUVENILES IN A COASTAL OREGON STREAM AS INDICATED BY 34S STABLE ISOTOPE ANALYSIS

    EPA Science Inventory

    Stable isotopes of sulfur are rarely used in studies of elemental cycling, trophic position or use of marine-derived nutrients by salmonids. The main reason for this probably is the reluctance on the part of isotope labs to expose their instruments to SO2 (because of its corrosi...

  17. Stable isotope compositions of carbonate and inclusion-hosted water of speleothems from the last interglacial - spatial patterns of climate fluctuations in Europe

    NASA Astrophysics Data System (ADS)

    Demény, Attila; Kern, Zoltán; Czuppon, György; Németh, Alexandra; Leél-Őssy, Szabolcs; Shen, Chuan-Chou; Vennemann, Torsten

    2016-04-01

    Studies on the last interglacial (LIG) can provide information on how our environment behaved in a period of slightly higher global temperatures at about 120 ka compared to the current climate conditions. This paper presents complex stable H-C-O isotope records obtained for carbonate and fluid inclusion hosted water of U-Th dated stalagmites from the Baradla Cave system in Central Europe. Comparing C and O isotope data with records reported for other speleothem (cave-hosted carbonate) deposits from Europe revealed the complex behavior of these climate proxies, with a concerted relative increase in 18O of carbonates from 128 to 120 ka and synchronized shifts in the opposite direction after 119 ka. The hydrogen isotope analyses of inclusion-hosted water extracted from the BAR-II stalagmite also correspond to the regional climate proxy records, with meaningful deviations from global temperature trends. Beside the well known 120 ka climate optimum and the subsequent cooling starting at about 118 ka, the δD values show a negative peak at about 124-125 ka that does not appear in the C-O isotope data. This negative peak fits well to temperature and humidity changes inferred from proxy records from the northern Atlantic to the eastern Mediterranean. Spatial distributions of these variables show, that while the northern Atlantic ocean experienced a cold phase (possibly also dry in NW Europe), the Mediterranean region was characterized by warm, humid conditions and enhanced seasonality, most probably related to a freshwater flux to the North Atlantic and consequent large-scale heat and moisture transport changes affecting the Mediterranean. The combined interpretation of H-C-O isotope data revealed that the Alpine and Mediterranean regions behaved differently again during Greenland Stadial 26 (GS26, ~119 to 115.5 ka). While the Alpine records fluctuated in close agreement with the Central Greenland ice core δ18O data, the BAR-II stalagmite and southern European records

  18. Use of 2H and 18O stable isotopes to investigate water sources for different ages of Populus euphratica along the lower Heihe River

    USGS Publications Warehouse

    Shubao Liu,; Yaning Chen,; Yapeng Chen,; Friedman, Jonathan M.; Gonghuan Fan,; Hati, Jarre Heng A.

    2015-01-01

    Investigation of the water sources used by trees of different ages is essential to formulate a conservation strategy for the riparian tree, P. euphratica. This study addressed the contributions of different potential water sources to P. euphratica based on levels of stable oxygen and hydrogen isotopes (δ18O, δ2H) in the xylem of different aged P. euphratica, as well as in soil water and groundwater along the lower Heihe River. We found significant differences in δ18O values in the xylem of different aged P. euphratica. Specifically, the δ18O values of young, mature and over-mature forests were −5.368(±0.252) ‰, −6.033(± 0.185) ‰ and −6.924 (± 0.166) ‰, respectively, reflecting the reliance of older trees on deeper sources of water with a δ18O value closer to that of groundwater. Different aged P. euphratica used different water sources, with young forests rarely using groundwater (mean <15 %) and instead primarily relying on soil water from a depth of 0–50 cm (mean >45 %), and mature and over-mature forests using water from deeper than 100 cm derived primarily from groundwater.

  19. Water budgets of Italian and Dutch gravel pit lakes: a study using a fen as a natural evaporation pan, stable isotopes and conservative tracer modeling.

    NASA Astrophysics Data System (ADS)

    Nella Mollema, Pauline; Antonellini, Marco

    2015-04-01

    Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form where the gravel pits are below the water table and fill with groundwater. Their presence changes the drainage patterns, water- and hydrochemical budgets of a watershed. We have studied the water budget of two gravel pit lakes systems using stable H and O isotopes of water as well as conservative tracer (Cl) modeling. The Dutch gravel pit lakes are a fluvial fresh water system of 70 lakes along the Meuse River and the Italian gravel pit lakes are a brackish system along the Adriatic coast. Surface water evaporation from the gravel pit lakes is larger than the actual evapotranspiration of the grass land and forests that were replaced. The ratio of evaporation to total flow into the Dutch lakes was determined by using a Fen as a natural evaporation pan: the isotope content of the Tuspeel Fen, filled with rain water and sampled in a dry and warm summer period (August 2012), is representative for the limiting isotopic enrichment under local hydro meteorological conditions. The Local Evaporation line (LEL) was determined δ2 H = 4.20 δ 18O - 14.10 (R² = 0.99) and the ratio of total inflow to evaporation for three gravel pit lakes were calculated to be 22.6 for the De Lange Vlieter lake used for drinking water production, 11.3 for the Boschmolen Lake and 8.9 for the Anna's Beemd lake showing that groundwater flow is much larger than evaporation. The Italian gravel pit lakes are characterized by high salinity (TDS = 4.6-12.3 g L-1). Stable isotope data show that these latter gravel pit lakes are fed by groundwater, which is a mix between fresh Apennine River water and brackish (Holocene) Adriatic Sea water. The local evaporation line is determined: δ2H = 5.02 δ18O - 10.49. The ratio of total inflow to evaporation is 5. Conservative tracer modeling indicates that the chloride concentration in the Italian gravel pit lakes stabilizes after a short period of rapid

  20. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff

    USGS Publications Warehouse

    Babiarz, C.L.; Hurley, J.P.; Krabbenhoft, D.P.; Gilmour, C.; Branfireun, B.A.

    2003-01-01

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (HgT), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 ??m). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes.

    PubMed

    Yao, F Y; Wang, G A; Liu, X J; Song, L

    2011-07-15

    This study assesses the effects of the atmospheric nitrogen (N) deposition on the N uptake and the long-term water-use efficiency of two C(3) plants (Agropyron cristatum and Leymus chinensis) and two C(4) plants (Amaranthus retroflexus and Setaria viridis) using N and C stable isotopes. In addition, this study explores the potential correlation between leaf N isotope (δ(15)N) values and leaf C isotope (δ(13)C) values. This experiment shows that the atmospheric N deposition has significant effects on the N uptake, δ(15)N and leaf N content (N(m)) of C(3) plants. As the atmospheric N deposition rises, the proportion and the amount of N absorbed from the simulated atmospheric deposition become higher, and the δ(15)N and N(m) of the two C(3) plants both also increase, suggesting that the rising atmospheric N deposition is beneficial for C(3) plants. However, C(4) plants display different patterns in their N uptake and in their variations of δ(15)N and N(m) from those of C(3) plants. C(4) plants absorb less N from the atmospheric deposition, and the leaf N(m) does not change with the elevated atmospheric N deposition. Photosynthetic pathways may account for the differences between C(3) and C(4) plants. This study also shows that atmospheric N deposition does not play a role in determining the δ(13)C and in the long-term water-use efficiency of C(3) and C(4) plants, suggesting that the long-term water-use pattern of the plants does not change with the atmospheric N input. In addition, this study does not observe any relationship between leaf δ(15)N and leaf δ(13)C in both C(3) and C(4) plants.

  2. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff.

    PubMed

    Babiarz, Christopher L; Hurley, James P; Krabbenhoft, David P; Gilmour, Cynthia; Branfireun, Brian A

    2003-03-20

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (Hg(T)), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 microm). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms.

  3. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    PubMed Central

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C.; Costa e Silva, Filipe; Pereira, Joao S.; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought. PMID

  4. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    PubMed

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  5. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1990-07-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. The program is designed to address a substantial, demonstrated need of coprocessing research (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique currently is in routine use for other applications. Progress is discussed. 7 refs., 7 figs., 12 tabs.

  6. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  7. Stable isotope tracers and exercise physiology: past, present and future.

    PubMed

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2016-09-09

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies.

  8. Deep water circulation in the eastern Mediterranean Sea for the last 95 kyr: new insights from stable isotopes and benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Cornuault, Marine; Vidal, Laurence; Tachikawa, Kazuyo; Licari, Laetitia; Rouaud, Guillaume; Sonzogni, Corinne; Revel, Marie

    2016-04-01

    The response of the Eastern Mediterranean Sea circulation to climate forcing over the last 95 kyr BP was studied using core MD04-2722 collected at 1780m water depth in the Levantine Sea. Foraminiferal stable isotopes and benthic foraminiferal assemblages were combined to reconstruct deep water ventilation and oxygenation in relation to surface water freshening. Over the last deglaciation, benthic foraminiferal δ13C values and benthic foraminiferal oxygen index decreased while δ18O gradient between benthic and planktonic foraminifera increased. These results testify respectively of slower ventilation, bottom water oxygen depletion and stronger stratification prior to S1 sapropel deposition. Similar conditions were deduced for S3 sapropel. Combination of deglacial sea level rise and fresher North Atlantic surface water contribution were evaluated to be a precondition of S1 formation in the Levantine Sea. Local Nile freshwater supply during the African Humid Period further strengthened the water column stratification. For the last glacial period, three events at around 53, 46 and 37 ka BP were marked by benthic δ13C decrease demonstrating deep water circulation reduction at the core location. Bottom water oxygenation was only slightly lowered. Considering the effect of North Atlantic surface water salinity to the Mediterranean Sea circulation, we propose the 46 and 37 ka BP events as responses to the Heinrich Events 4 and 5 that supplied fresher surface water to the Mediterranean Sea. Since the '53 ka event' is characterized by the appearance of an anoxic benthic foraminiferal species observed for S1 and S3 layers, we tentatively attributed it to the 'missing' sapropel S2. Our results indicate that intense stagnation in the Eastern Mediterranean Sea could occur when both local freshwater supply and fresher North Atlantic surface water contributed. The influence of North Atlantic condition was significant on the eastern Mediterranean circulation under warm and cold

  9. Stable strontium mass dependent isotopic fractionation in authigenic continental barite

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Widanagamage, I. H.; Scher, H. D.; Senko, J.

    2013-12-01

    The use of stable Sr-isotopic measurements (δ88Sr) of barite precipitates from terrestrial environments will be evaluated as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding similar ancient barite deposits. Stable Sr-isotope measurements of barite and waters from three warm artesian springs in the continental United States where barite precipitates under a variety of conditions (e.g., temperatures, saturation states, microbial communities) will be presented. Initial results show a large range of fractionation factors during barite precipitation from aqueous solution between and within some of the field sites of >0.6 permil. The waters range from δ88Sr = -0.04 to +0.50 permil. The solid barite precipitates that have been separated from the bulk sediment using a modified sequential leaching procedure range from δ88Sr = -0.43 to +0.16 permil. Average 2σ for the isotopic analyses is 0.05 permil, similar to previously published estimates for error on this measurement by MC-ICPMS. Barite is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Establishing the controlling parameters of stable Sr-isotopic fractionation in barite is important as barite may be an ideal vehicle to address critical questions in the earth sciences, including early earth biogeochemistry.

  10. Tracing Cadmium in the Environment: an Evolving Stable Isotope Approach

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bouse, R. M.; Brown, C. L.; Croteau, M.; Luoma, S. N.; Topping, B. R.

    2005-05-01

    Cadmium (Cd) is a trace constituent in rocks and waters, and like many transition metals is an essential dietary nutrient at low levels but highly toxic in elevated doses. In many respects, cadmium behaves chemically like calcium (Ca) and thus substitutes for Ca in liquid-solid partitioning reactions and generally follows Ca through biogeochemical cycles and metabolic processes. Cd is comprised of 8 stable isotopes, and given the isotopic systematics of environmental Ca it is likely that variations in the stable isotope composition of Cd in natural materials will result from both inorganic and biologic processes. In order to assess the potential of Cd isotope variations to reveal information about sources, metabolic and biogeochemical pathways and fates of environmental Cd, we have initiated a broad study of the stable isotope composition of Cd in a variety of natural and anthropogenically-influenced systems. As an example, here we report the results of the first systematic study of the stable isotope composition of Cd in biologic materials. We focused on the isotopic variability of Cd in tissues of two species of clam collected from the San Francisco Bay estuary, Potamocorbula amurensis which resides in brackish water and Corbicula fluminea which resides in fresh and slightly brackish water. Both clam species concentrate Cd in their soft and hard tissues. During both low-flow conditions in August and high-flow conditions in April, δ116Cd of soft tissues of Potamocorbula was consistently negative and increased down-estuary with increasing salinity (δ116Cd is defined as the per mil difference of the 116Cd/110Cd ratio between a sample and our standard, igneous rock BIR-1). Samples collected in August were systematically displaced to higher δ116Cd than those collected in April. Soft tissues of Corbicula collected in both August and April from upstream, fully fresh-water sampling sites had identical δ116Cd, while soft tissues of Corbicula collected from our site at

  11. Distribution and Migration of Ordnance-Related Compounds and Oxygen and Hydrogen Stable Isotopes in Ground Water near Snake Pond, Sandwich, Massachusetts

    USGS Publications Warehouse

    LeBlanc, Denis R.; Massey, Andrew J.; Cochrane, Jessica J.; King, Jonathan H.; Smith, Kirk P.

    2008-01-01

    Explosive compounds, such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and the propellant compound perchlorate are present in ground water near Snake Pond, a ground-water flow-through glacial kettle pond in the glacial sand and gravel aquifer on western Cape Cod near Camp Edwards on the Massachusetts Military Reservation. The contaminants originate from the J-3 Range ordnance training and testing area. Ground-water samples were collected at 10 sites near the pond to determine the paths of the contaminants as they underflow or completely or partially discharge into the pond. Water-quality profiles were developed for sites on opposite ends of a 200-foot-long intermittent island near the northern, upgradient end of the pond by collecting water samples from two temporary drive-point borings. RDX was detected at both locations between 60 and 90 feet below the pond level. The highest RDX concentration was 0.99 micrograms per liter. Perchlorate was detected at only one location on the island, between 95 and 100 feet below the pond level at a concentration of 0.61 micrograms per liter. Profiles of oxygen and hydrogen stable isotopes were developed for seven sites spaced 300 to 600 feet apart along the southern, downgradient shore of the pond. A transition from heavier to lighter oxygen and hydrogen isotopes was observed at an altitude of about -50 feet. This transition most likely is the boundary between evaporation-affected pond water that is seeping into the aquifer and ground water that has passed beneath the pond. RDX was not detected in the ground-water samples collected south of the pond. Perchlorate was detected only in one sample from a shallow depth in one boring. The results of these analyses indicate that the J-3 Range plume contains low concentrations of RDX and perchlorate (less than 1 microgram per liter) as it passes beneath the northern end of Snake Pond. Results of ground-water-flow modeling

  12. Impact of herbaceous understory vegetation to ecosystem water cycle, productivity and infiltration in a semi arid oak woodland assessed by stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Silva, Filipe Costa e.; Correia, Alexandra C.; Pereira, Joao S.; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    vegetation strongly increased rain infiltration, specifically during strong rain events. In conclusion, beneficial understory vegetation effects were dominant. However, the observed vulnerability of the understory vegetation to drought and competition for water with trees suggests, that increased drought and altered precipitation pattern as predicted in future climate change scenarios for the Mediterranean basin not only threaten understory development. They also very likely decrease rain infiltration and ground water recharge by decreasing understory vegetation cover and increasing amount of heavy precipitation events with high run-off from sealed bare soils. This in turn can severely diminish cork-oak productivity and hence the resilience of the ecosystem toward drought (Costa e Silva et al., in rev.). Dubbert, M; Cuntz, M; Piayda, A; Maguas, C; Werner, C: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol (2013) Dubbert, M; Piayda, A; Cuntz, M; Correia, AC; Costa e Silva, F; Pereira, JS; Werner, C: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange, Frontiers in Plant Science (2014a) Dubbert, M; Mosena, A; Piayda, A; Cuntz, M; Correia, AC; Pereira, JS; Werner, C: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork oak woodland., Acta Oecologica

  13. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    in nature ( Thiemens, 1999; see Chapter 4.06, and of triple stable isotopes in geochemistry (e.g., Blunier et al., 2002; Luz et al., 1999; Luz and Barkan, 2000) greatly extended the potential of stable isotope applications.The chemical and isotopic composition of the atmosphere has drawn particular attention in climate-related research both because it is the most accessible component in the tightly coupled land-ocean-atmosphere system, and because the chemical composition of the atmosphere influences climate, particularly via the concentrations of the radiatively active greenhouse gases, such as CO2, O3, CH4, N2O, and water vapor. Information obtained by measurements of the atmospheric concentration of these gases alone is limited; the additional measurements of the stable isotopic composition provide information that cannot be obtained otherwise. Isotopic fractionations during chemical, physical, and biological process in the ocean, land, and the atmosphere result in unique natural labels. Tracing these labels in time and space allows us both to identify specific fluxes of these gases, and to gain insights into the processes influencing the observed fluxes. Quantitative use of 18O and 13C in CO2 must rely on precise observations, on experimentation addressing the isotope effects underlying these observations, and on modeling that tests basic assumptions and extends applications beyond our measuring capabilities. Progress is still needed on all of these fronts. But the importance of this still developing science of stable isotopes in environmental research is indisputable.

  14. Origin and history of waters associated with coalbed methane: 129I, 36Cl, and stable isotope results from the Fruitland Formation, CO and NM

    NASA Astrophysics Data System (ADS)

    Snyder, Glen T.; Riese, Walter C."Rusty"; Franks, Stephen; Fehn, Udo; Pelzmann, William L.; Gorody, Anthony W.; Moran, Jean E.

    2003-12-01

    The Fruitland Formation of the San Juan Basin was deposited during the late Cretaceous and is associated with significant reservoirs of coalbed methane (CBM). The purpose of this study is to determine the origin and history of waters associated with the formation, using long-lived cosmogenic and stable isotope systems. Ratios of 129I/I and stable isotope values (δD and δ 18O) were determined in waters from close to 100 wells, 36Cl/Cl ratios for a subset of these samples. A significant group of samples has 129I/I ratios between 100 × 10 -15 and 200 × 10 -15, indicating minimum iodine ages close to 60 Ma. If these ages are corrected for the addition of fissiogenic 129I, they are compatible with the depositional age of the Fruitland Formation (Late Cretaceous). Several sets of waters are clearly present within the data. A group dominated by infiltration of recent surface waters is restricted to the uplifted basin margins, with a lateral extent of less than 5 km from outcrop, and is characterized by 129I/I ratios in excess of 1500 × 10 -15 and meteoric δD, δ 18O, and 36Cl/Cl signatures. The rest of the basin is characterized by several subsets of formation waters which have undergone variable degrees of iodine enrichment through diagenesis as well as variable degrees of dilution. The first subgroup is found in coals of relatively low vitrinite reflectance and moderate enrichment of iodine. This subgroup predominantly consists of entrapped pore fluids, although it may also contain waters which infiltrated the coals at the time of the Laramide uplift, between 25 and 30 Ma. A second subgroup consists of formation waters associated with coals of high vitrinite reflectance. Despite subsequent uplift, the high iodine concentrations and low 129I/I ratios of this subgroup, as well as a moderate depletion of deuterium relative to 18O, suggest that these waters were not significantly altered since the time when diagenetic reactions occurred in the deepest portion of the

  15. Do Interspecific Differences in the Stable Hydrogen Isotopic Composition of n-Alkanes Reflect Variation in Plant Water Sources or in Biosynthetic Fractionation?

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Tipple, B. J.; Ehleringer, J. R.; Betancourt, J. L.; Leavitt, S. W.; Monson, R. K.

    2015-12-01

    Normal alkanes (n-alkanes) are long-chain fatty acids that are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental water. At present, it is unclear whether a single biosynthetic fractionation factor can be used to reconstruct the δD of environmental water from the δD of n-alkanes derived from different plant species. To address this question, we studied the translation of the δD signal from environmental water into n-alkanes in a diverse plant community at Tumamoc Hill, Arizona, USA. Over the course of one annual cycle, we monitored δD of atmospheric water vapor, precipitation, soil water, xylem water, leaf water, and n-alkanes. We found that n-alkane δD varied substantially between species that were sampled concurrently, but that the observed range of variation was quantitatively consistent with the predictions of a Craig-Gordon-type model parameterized with a single biosynthetic fractionation factor. These findings indicate that the variability of n-alkane δD between co-occurring species could be primarily attributable to interspecific differences in water sources, rather than interspecific differences in the biosynthetic fractionation factor. Controlled experiments are needed to evaluate whether n-alkane biosynthesis is in fact adequately described by a single biosynthetic fractionation factor across species.

  16. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = < 30 (MDL) to 740 μg/L, I = 1 to 538 μg/L). The Cl/Br molar ratios were higher (171 to 574) at the recharge wetland, indicating meteoric sources, and had a tighter and lower range (33 to 320) at the down-gradient sites. The Cl/I molar ratios of waters throughout the site had a wide range (32 to 26,000). Lowest values occurred at the upgradient shore of P1 (32 to 43) due to low Cl concentrations and the center of P1 (196 to 213) where pore water of weathered till underlying 1.2 m of organic-rich sediment and silty clay soil is enriched in I to ~500 µg/L. Stable isotopes of water showed that evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  17. A stable isotope ( δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants

    NASA Astrophysics Data System (ADS)

    Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin

    fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.

  18. Stable water isotopes in pore water of Jurassic argillaceous rocks as tracers for solute transport over large spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Gimmi, T.; Waber, H. N.; Gautschi, A.; Rübel, A.

    2007-04-01

    In order to characterize the large-scale transport properties of the Opalinus Clay formation, the pore water isotope composition (δ18O and δ2H) was determined on samples from the deep borehole Benken (northeastern Switzerland) across Jurassic argillaceous rocks. The sequence of claystones and marls, delimited by two aquifers, is located at depth from about 400 to 700 m and exhibits very low hydraulic conductivities (below 10-13 m s-1). The isotope data of the pore water were obtained from core samples by diffusive vapor equilibration, vacuum distillation, and squeezing. Compared with the other methods, vacuum distillation led to too low values. To evaluate the large-scale transport properties of the formation, we performed a series of advective-dispersive model calculations and compared them with the experimental data. In accordance with the hydrogeological history, we varied initial and boundary conditions as well as model parameters. The main results can be summarized as follows: (1) Molecular diffusion to the underlying aquifer can explain the general features of the isotope profiles, (2) no signatures of advective flow could be detected, (3) the evolution time is of the order of 0.5-1 Ma (relying on laboratory diffusion coefficients) with a possible range of about 0.2-2 Ma, which is geologically plausible, and (4) parameters measured on small scales (centimeters or meters and months) are also plausible at the formation scale (tens of meters and millions of years) for the sediments investigated.

  19. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-02-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, when necessary, corrections are applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. Previously reported data on samples from HRI bench-scale coprocessing Runs 227-53 (Texas lignite/Maya ASB and Texas lignite/Maya VSB) and 238-1 (Westerholt coal/Cold Lake VSB) were corrected for selective isotopic fractionation. Carbon sourcing was performed on samples from HRI bench-scale coprocessing Run 227-60 (Texas lignite/Maya VSB) and samples from UOP bench-scale coprocessing Run 26 (Illinois 6 coal/Lloydminster vacuum resid); the latter data were corrected for isotopic fractionation, though the former could not be corrected. A paper presented at the 1990 DOE Direct Liquefaction Contractor's Review Meeting is appended. 15 refs., 21 figs., 22 tabs.

  20. The Effects of Summertime Melt on Stable Water Isotopes: Implications for Paleotemperature Reconstructions from Firn Core Records

    NASA Astrophysics Data System (ADS)

    Moran, T.; Marshall, S. J.

    2008-12-01

    A firn core was drilled on the Prince of Wales (POW) Icefield, Ellesmere Island, Nunavut, in the spring of 2001. While this firn core was drilled on the high northern plateau of the Icefield, its location is still prone to occasional summertime melt events. Annual δ18O amplitudes of 5.7±2.3‰ persist in the firn core stratigraphy indicating that the degree of melt at the site is insufficient to destroy annual isotopic signals. However the degree of isotopic modification resulting from meltwater and its effects on average annual temperature estimates from the site are not well understood. A series of four early melt-season snow and dye pits were established along an altitudinal gradient extending from 380 m a.s.l. to 1000 m on the Leffert Glacier of the POW Icefield. These snowpit sites are intended to serve as proxies for the degree of isotopic modification occurring at the firn core drill site. Two factors are considered potentially important in determining the degree of isotopic modification experienced at a site, 1) the absolute amount of melt, and 2) the percent melt. The two lowest elevation sites, TM380 and TM600, experience both absolute and percent melt values similar to those observed at the firn core drill site over the past 28 years, as determined from NARR 2-m surface air temperature data and firn core stratigraphies. Since TM380 and TM600 had average δ18O enrichments of 1.1 and 0.5‰ respectively, we infer that the average annual temperatures derived from the firn core drill site are overestimated by 0.5-0.2°C based on the local δ18O-temperature relationship. Results from this analysis suggest average annual temperatures are overestimated when derived from firn core records that experience even occasional melt events.

  1. Stable Strontium (δ88/86Sr) and U-Th isotope systematics of cold-water corals: A combined proxy for Holocene changes of the Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Liebetrau, V.; Rüggeberg, A.; Fietzke, J.; Eisenhauer, A.; Flögel, S.; Linke, P.; Schönfeld, J.

    2007-12-01

    The application of δ18O and Sr/Ca for temperature reconstruction on cold water corals has been shown to be restricted. Hence, the development and application of alternative proxies is highly desirable. This study combines the stable strontium isotope method (δ88/86Sr, Fietzke and Eisenhauer (2006)) as a potential paleotemperature proxy with MIC-ICP-MS (multi ion counting - inductively coupled plasma - mass spectrometry) U-Th geochronolgy on cold-water corals from the central Gulf of Cadiz. The sampled reef structure in 1325 m depth on top of the Captain Arutyunov Mud Volcano (MV) consists predominantly of dead Lophelia pertusa, accompanied rarely by living solitary corals ( Dendrophyllia sp.). Potentially recorded environmental influences on these archives are significant water mass changes, e.g. variation of depth and intensity of the Mediterranean Outflow Water (MOW) due to climate changes, time intervals of marine methane emanation (surface-near gas-hydrate occurre close to the coral site) and the mud volcano activity itself. Assuming a temperature dependent strontium isotope fractionation during calcium carbonate precipitation temperatures were determined for the living solitary corals, ranging from 9 to 11.5 ° C (typical error: about 1 ° C). During sampling the bottom water temperature was 8.96 ° C and the lower MOW reached from 1075 to 1188 m depth with 10 to 10.5 ° C. First U-Th age data reflect slow growth rates of 0.13 to 0.25 mm/year for the solitary corals. However, the temperature correlation implies the stable strontium approach, which was originally deduced from reef building corals, as suitable for solitary species as well. For the fossil Lophelia pertusa colonies the actual δ88/86Sr data set indicates a range from 7.5 to 13 ° C with a distinct U-Th age distribution over the last 10 ka, closely correlating with the water depth specific record of lower MOW published by Schönfeld and Zahn (2000). The implication of a lower MOW control on reef

  2. Rivers and Stable Isotopes as Indicators of Biogeochemical Gradients

    NASA Astrophysics Data System (ADS)

    Barth, J. A.

    2005-12-01

    Consideration of processes on very small (microbe) to large (catchment) scales become increasingly important in biogeochemical gradient work. In this context, rivers are ideal indicators of biogeochemical gradients for large continental scales when geochemical- and discharge data are combined for flux evaluations. If these are further combined with isotope measurements, sources and turnover of water and dissolved constituents can be quantified. An example study is the combination of GIS-, discharge- and water stable isotope data on the in Clyde River basin in Scotland. Here we determined transpiration with an annual average of 0.489 km3 a-1. When combining this rate with the water use efficiency, the CO2 uptake of the entire basin yielded an annual net primary production (NPP) of 185.2 g C m-2. Compared to other temperate areas this is about half the NPP than expected, which is most likely caused by the predominant cover of grasslands. Therefore, agricultural and forest vegetation schemes could influence continental water balances on time scales of years to decades. In another study on the Lagan River in N. Ireland, stable isotope methods were applied to evaluate the role of carbonate versus silicate dissolution. Of these two types of weathering only silicate dissolution withdraws atmospheric CO2 to be stored in the continental crust over long time periods. A downstream evolution with increasing pH- and δ13CDIC values revealed carbonate dissolution despite their minor abundance in the catchment of less than 5 %. This dominant carbonate signal on the riverine carbon cycle outlines the capacity of buffering anthropogenic influences and CO2 turnover. It should be even more pronounced in other rivers where carbonates usually occupy a larger proportion of the basin geology. Future biogeochemical gradient work on rivers should apply particulate and dissolved organic constituent fluxes. This includes more refined compound specific isotope work on selected pollutants such

  3. Stable Oxygen and Carbon Isotopes of Hypoxic Waters: Indicators of Fresh Water Sources and Benthic Respiration on the Texas-Lousiana shelf

    NASA Astrophysics Data System (ADS)

    Strauss, J.; Grossman, E. L.; Dimarco, S. F.

    2009-12-01

    by MARS discharge and correlates with salinity (r2 = 0.75). This trend is not seen on the Texas shelf during 2007 and 2008, which is likely a result of isotopic exchange with atmospheric CO2. Bottom waters show a decrease in δ13CDIC caused by the mineralization of isotopically light organic carbon being oxidized by bacteria. Salinity-corrected δ13CDIC values (where fresh water DIC influence is removed) exhibit a positive correlation with dissolved oxygen (DO) concentrations (r2 = 0.78) with a Y-intercept of -2.3‰, a value consistent with a mass balance prediction of -2.1‰. After bottom waters become anoxic, sulfate reduction further reduces δ13CDIC. Although the Mississippi-Atchafalaya River System accounts for 80-90% of fresh water influence in the Gulf of Mexico, oxygen isotope data suggest that local influence of smaller rivers, in this case the Brazos River can create hypoxia-favorable conditions. The carbon isotope data show that δ13CDIC can be used to track the bacterial respiration responsible for creating hypoxia.

  4. Spatial and vertical gradients in the stable carbon isotope composition of Lower Circumpolar Deep Water over the last 900 thousand years

    NASA Astrophysics Data System (ADS)

    Williams, T.; Hillenbrand, C. D.; Piotrowski, A. M.; Smith, J.; Hodell, D. A.; Frederichs, T.; Allen, C. S.

    2014-12-01

    Changes in stable carbon isotopes (δ13C) recorded in benthic foraminiferal calcite reflect that of the dissolved inorganic carbon (DIC) of ambient seawater, and thus are used to reconstruct past changes in water mass mixing. Records of benthic foraminiferal δ13C from the Atlantic Ocean have revealed the development of a sharp vertical δ13C gradient between 2300-2500m water depth during successive glacial periods throughout the Late Quaternary, with extremely negative δ13C values recorded below this depth. It had been hypothesised that this gradient resulted from an increased stratification of water masses within the glacial Atlantic Ocean, and that these extreme δ13C values originated in the Southern Ocean. However the mechanisms behind the formation of this gradient and extreme δ13C depletion have remained unclear. This is in part due to the poor preservation of calcareous microfossils in the corrosive waters below 2500-3000m found in the Southern Ocean, which hampers our understanding of this key region. Here we present a unique new δ13C deep water record measured on benthic foraminifera (Cibicidoides spp.) from a sediment core recovered from 2100m water depth in the Amundsen Sea, south-eastern Pacific sector of the Southern Ocean. The site is bathed in Lower Circumpolar Deep Water (LCDW) today, and combined palaeomagnetic and oxygen isotope stratigraphy show that the sediments continuously span at least the last 890 ka. A comparison of this new δ13C data with other LCDW records from ODP Sites 1089/1090 in the South Atlantic and ODP Site 1123 in the Southwest Pacific demonstrate a clear spatial gradient in circum-Antarctic LCDW during glacial periods. The pool of extremely depleted glacial deep marine δ13C is restricted to the Atlantic Sector of the Southern Ocean, with increasingly positive δ13C values found in the Southwest Pacific and the south-eastern Pacific sector of the Southern Ocean. This implies that the δ13C depletion in the deep glacial

  5. Modeling the dynamics of stable isotope tissue-diet enrichment.

    PubMed

    Remien, Christopher H

    2015-02-21

    Reconstructions of dietary composition and trophic level from stable isotope measurements of animal tissue rely on predictable offsets of stable isotope ratios from diet to tissue. Physiological processes associated with metabolism shape tissue stable isotope ratios, and as such the spacing between stable isotope ratios of diet and tissue may be influenced by processes such as growth, nutritional stress, and disease. Here, we develop a model of incorporation stable isotopes in diet to tissues by coupling stable isotope dynamics to a model of macronutrient energy metabolism. We use the model to explore the effect of changes in dietary intake, both composition and amount, and in energy expenditure, on body mass and carbon and nitrogen stable isotope ratios of tissue.

  6. Hydrologic connections and dynamics of water movement in the classical Karst (Kras) Aquifer: evidence from frequent chemical and stable isotope sampling

    USGS Publications Warehouse

    Doctor, Daniel H.

    2008-01-01

    A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to

  7. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  8. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    EPA Pesticide Factsheets

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  9. [Stable isotopes of carbon and nitrogen in soil ecological studies].

    PubMed

    Tiunov, A V

    2007-01-01

    The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.

  10. Stable isotopes in bivalves as indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama

    PubMed Central

    Grossman, Ethan L.; O’Dea, Aaron

    2016-01-01

    To examine N-isotope ratios (15N/14N) in tissues and shell organic matrix of bivalves as a proxy for natural and anthropogenic nutrient fluxes in coastal environments, Pinctada imbricata, Isognomon alatus, and Brachidontes exustusbivalves were live-collected and analyzed from eight sites in Bocas del Toro, Panama. Sites represent a variety of coastal environments, including more urbanized, uninhabited, riverine, and oceanic sites. Growth under differing environmental conditions is confirmed by δ18O values, with open ocean Escudo de Veraguas shells yielding the highest average δ18O (−1.0‰) value and freshwater endmember Rio Guarumo the lowest (−1.7‰). At all sites there is no single dominant source of organic matter contributing to bivalve δ15N and δ13C values. Bivalve δ15N and δ13C values likely represent a mixture of mangrove and seagrass N and C, although terrestrial sources cannot be ruled out. Despite hydrographic differences between end-members, we see minimal δ15N and δ13C difference between bivalves from the river-influenced Rio Guarumo site and those from the oceanic Escudo de Veraguas site, with no evidence for N from open-ocean phytoplankton in the latter. Populated sites yield relative 15N enrichments suggestive of anthropogenic nutrient input, but low δ15N values overall make this interpretation equivocal. Lastly, δ15N values of tissue and shell organic matrix correlate significantly for pterioideans P. imbricata and I. alatus. Thus for these species, N isotope studies of historical and fossil shells should provide records of ecology of past environments. PMID:27547578

  11. Stable isotopes in fish as indicators of habitat use

    EPA Science Inventory

    In our isotopic studies of fish in Oregon Coast Range streams we have found stable isotopes of carbon, oxygen and sulfur to be surprisingly useful in identifying and discriminating specific habitat or tributary use by a variety of fish species. Stable isotopes of carbon can be u...

  12. Stable Isotope Identification of Nitrogen Sources for United ...

    EPA Pesticide Factsheets

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  13. Embryotoxicity of stable isotopes and use of stable isotopes in studies of teratogenetic mechanisms

    SciTech Connect

    Spielmann, H.; Nau, H.

    1986-07-01

    Experiments on teratogenic effects of stable isotopes from our own and other laboratories are evaluated. In the first series of investigations, the enrichment of the stable isotope /sup 13/C derived from U-/sup 13/C-glucose was studied in mouse embryos at various stages of development, including limb buds in organ culture. Preimplantation mouse embryos incubated in vitro in /sup 13/C-enriched medium for 48 hours showed normal development during subsequent differentiation in vitro and also in vivo after embryo transfer to faster mothers. These embryos were 15% to 20% enriched in /sup 13/C. Administration of U-13-C-glucose to pregnant mice during organogenesis led to an increase of the absolute /sup 13/C content of the embryo for several days after the end of isotope administration, whereas the enrichment in maternal tissue decreased. No alterations of embryonic development were detected due to stable isotope enrichment. Development of cultured mouse limb buds was unaffected by incubation with 82 mol% U-/sup 13/C-glucose as judged from morphologic and biochemical criteria. The second part of the article describes the value of deuterium-labeled drugs as probes into the mechanism of activation of teratogenic metabolites. A comparison of the pharmacokinetics as well as the teratogenicity between cyclophosphamide and some specific deuterium-labeled analogues showed that the isotope effect observed can be related to a particular metabolic pathway crucial for teratogenic activation by this drug.

  14. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotopic composition (δ18O) of plant stem water: a model study

    USGS Publications Warehouse

    Zhai, Lu; Jiang, Jiang; DeAngelis, Don; Sternberg, Leonel d.S.L

    2016-01-01

    Sea level rise and the subsequent intrusion of saline seawater can result in an increase in soil salinity, and potentially cause coastal salinity-intolerant vegetation (for example, hardwood hammocks or pines) to be replaced by salinity-tolerant vegetation (for example, mangroves or salt marshes). Although the vegetation shifts can be easily monitored by satellite imagery, it is hard to predict a particular area or even a particular tree that is vulnerable to such a shift. To find an appropriate indicator for the potential vegetation shift, we incorporated stable isotope 18O abundance as a tracer in various hydrologic components (for example, vadose zone, water table) in a previously published model describing ecosystem shifts between hammock and mangrove communities in southern Florida. Our simulations showed that (1) there was a linear relationship between salinity and the δ18O value in the water table, whereas this relationship was curvilinear in the vadose zone; (2) hammock trees with higher probability of being replaced by mangroves had higher δ18O values of plant stem water, and this difference could be detected 2 years before the trees reached a tipping point, beyond which future replacement became certain; and (3) individuals that were eventually replaced by mangroves from the hammock tree population with a 50% replacement probability had higher stem water δ18O values 3 years before their replacement became certain compared to those from the same population which were not replaced. Overall, these simulation results suggest that it is promising to track the yearly δ18O values of plant stem water in hammock forests to predict impending salinity stress and mortality.

  15. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium.

  16. Results of chemical and stable isotopic analyses of water samples collected in the Patagonia Mountains, southern Arizona

    USGS Publications Warehouse

    Wanty, Richard B.; Shanks, Wayne C.; Lamothe, Paul; Meier, A.L.; Lichte, Fred; Briggs, Paul H.; Berger, Byron R.

    2001-01-01

    Water samples were collected in the Patagonia Mountains in February, 1997. Most of the samples were collected from portals of abandoned mines, or from stream drainages immediately downstream from abandoned mines. Most of the samples have low pH ( 1000 mg/L). Anion composition of the water samples is dominated by sulfate, while cation compositions range from calcium-dominated to mixed calcium-magnesium or calcium-sodium-dominated waters. Metals such as iron, manganese, copper, zinc, and aluminum contribute a significant portion (>10%) of the cation content to the water samples. Because of the low pH?s, protons contribute up to several percent of the cation character of the waters in some of the samples. The data are presented in tabular and graphical formats, with descriptions of data quality and brief descriptions of results.

  17. Stable isotope analyses reveal the importance of seagrass beds as feeding areas for juvenile Myrophis punctatus (Angulliformes: Ophichthidae) inthe coastal waters of Florida

    EPA Science Inventory

    The feeding habits and habitats of the speckled worm eel Myrophis punctatus were studied on the mangrove edge of the Indian River Lagoon (Florida) using stomach contents and stable isotope analyses of carbon (δ13C) and nitrogen (δ15N). Stomach dietary analyses identified four tax...

  18. Seasonal variations of cave conditions and drip water stable isotopes from a monitoring study of Raccoon Mountain Caverns, Tennessee, and its implications in interpreting speleothem record

    NASA Astrophysics Data System (ADS)

    Holtzclaw, C. L.; Gordon, R. D.; Feng, W.; Allard, J.

    2015-12-01

    A two-year monitoring study at Raccoon Mountain Caverns near Chattanooga, Tennessee was carried out in an attempt to establish quantitative relationships between climate signals and drip water stable isotopes for interpreting speleothem paleoclimate records from the cave. Eight field trips were made from Jan. 2014 to Jun. 2015, during which cave meteorological conditions (RH, temperature and cave air CO2 concentration) and drip rate were measured for 5 sites inside the cave. 63 cave drip and pool water samples were collected and analyzed for oxygen and hydrogen isotope compositions (δ18O and δD values). Cave air temperature varied throughout the study period, the temporal variations ranged at different sites from 2 to 8.4 °C (the greatest variation was observed at sites that are closer to the entrance or surface). These are significantly less than outside temperatures range of 24 °C, but more than observed in other monitored caves. Elevated cave-air CO2 concentration (3200 ppm) and slow drip rate during the summer indicated slowed or stalled growth of calcite. The overall range of δ18O values were -7.1‰ to -4.5‰. A δD vs δ18O diagram yields a slope of 6.1, which falls within the normal range of 6-8 for local Meteoric Water Line. The value is slightly above Global Meteoric Water Line, indicating lack of evaporative effect. Throughout the study period, the δ18O values varied from 0.6 ‰ at some sites to 1.9‰ at others. The largest changes were likely due to the close proximity of collection sites to the surface precipitation. Spatially, for samples collected at each cave trip, different sites displayed variations of δ18O values from 0‰ to 1.7‰. The difference could be attributed to different type of drip sites with varying types of flow paths rainwater takes to the drip sites. The significant seasonal shift of drip water δ18O values and growth conditions indicate importance of consideration of seasonality in interpreting speleothem δ18O record

  19. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    NASA Astrophysics Data System (ADS)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  20. Uncertainty in source partitioning using stable isotopes.

    PubMed

    Phillips, D L; Gregg, J W

    2001-04-01

    Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, or C3 and C4 plant inputs to soil organic carbon. Linear mixing models can be used to partition two sources with a single isotopic signature (e.g., δ(13)C) or three sources with a second isotopic signature (e.g., δ(15)N). Although variability of source and mixture signatures is often reported, confidence interval calculations for source proportions typically use only the mixture variability. We provide examples showing that omission of source variability can lead to underestimation of the variability of source proportion estimates. For both two- and three-source mixing models, we present formulas for calculating variances, standard errors (SE), and confidence intervals for source proportion estimates that account for the observed variability in the isotopic signatures for the sources as well as the mixture. We then performed sensitivity analyses to assess the relative importance of: (1) the isotopic signature difference between the sources, (2) isotopic signature standard deviations (SD) in the source and mixture populations, (3) sample size, (4) analytical SD, and (5) the evenness of the source proportions, for determining the variability (SE) of source proportion estimates. The proportion SEs varied inversely with the signature difference between sources, so doubling the source difference from 2‰ to 4‰ reduced the SEs by half. Source and mixture signature SDs had a substantial linear effect on source proportion SEs. However, the population variability of the sources and the mixture are fixed and the sampling error component can be changed only by increasing sample size. Source proportion SEs varied inversely with the square root of sample size, so an increase from 1 to 4 samples per population cut the SE in half. Analytical SD had little effect over the range examined since it was generally

  1. Elucidating the climate and topographic controls on stable isotope composition of meteoric waters in Morocco, using station-based and spatially-interpolated data

    NASA Astrophysics Data System (ADS)

    Ait Brahim, Yassine; Bouchaou, Lhoussaine; Sifeddine, Abdelfettah; Khodri, Myriam; Reichert, Barbara; Cruz, Francisco W.

    2016-12-01

    Understanding the main controls on stable isotope variations in precipitation is fundamental for the interpretation of the hydrological cycle. However, spatio-temporal variations in δ18Op are poorly known in Morocco. Herein, we explore the relative influence of meteorological variables, spatial and orographic (altitudinal) effects, atmospheric circulation and moisture sources on precipitation stable isotopes in Morocco. Precipitation events and two-years-long monthly records from 17 rain-gauge stations in Morocco are investigated and compared in this study to global gridded records of monthly and annual stable isotopes in precipitation. We highlight that the main spatial controls on precipitation stable isotopes are the topography and the distance from marine source. The most depleted mean annual isotopes are located in the High Atlas Mountains (δ18Op = -9.56‰ and δ2Hp = -59.3‰), while the most enriched isotope ratios exist in southwestern Morocco (δ18Op = -2.35‰ and δ2Hp = -7.47‰). The well-constrained relationship between δ18Op and altitude describes a gradient of 0.11-0.18‰ per 100 m. The seasonal variation is expressed by a general enrichment that reaches -4.8‰ during the dry season, related to the recycled vapor contained within the summer precipitation. Notwithstanding the scarcity of temperature and precipitation measurements, the amount effect is observed in multiple stations during several rain events and precipitation seems to have more influence on δ18Op than temperature. Backward moisture trajectories indicate a distinct depletion in δ18Op in extreme events originating from the Atlantic Ocean. The presence of a rain shadow effect is also revealed on the lee side of High Atlas Mountains, southeastern Morocco.

  2. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species.

    PubMed

    Cao, X; Jia, J B; Li, H; Li, M C; Luo, J; Liang, Z S; Liu, T X; Liu, W G; Peng, C H; Luo, Z B

    2012-07-01

    Although fast-growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE(i) ), stable carbon isotope composition (δ(13) C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE(i) and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE(i) /δ(13) C, whereas P. × euramericana had a considerable growth increment and the highest WUE(i) /δ(13) C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g(s) ) and lowest WUE(i) /δ(13) C. Moreover, significant correlations were observed between WUE(i) and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE(i) and δ(13) C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE(i) . It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water-limited regions and others, e.g. P. cathayana, may be better for water-abundant areas.

  3. Using stable water isotopes in a two-layer soil moisture conceptual framework to understand transpiration dynamics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Szutu, D. J.; Papuga, S. A.; Wehr, R.

    2014-12-01

    Semiarid shrublands and other dryland ecosystems are highly sensitive to precipitation pulses. Because the frequency and magnitude of precipitation events have been projected to change for these ecosystems, the nature of these pulses and how they are distributed as moisture in the soil profile are also expected to change. Previous research has suggested that transpiration dynamics in drylands are associated with deep soil moisture, which accumulates after large rainfall events. Because transpiration is the productive component of evapotranspiration in that it is water used toward biomass accumulation, a hypothetical decrease in large rainfall events would have major consequences for the health and functioning of dryland ecosystems. Furthermore, as drylands account for nearly 40% of terrestrial biomes, these cascading changes have the potential to impact global water and carbon budgets. Still, in pulse-dependent dryland ecosystems, the relative contribution of transpiration to evapotranspiration and the temporal dynamics of this contribution are not well understood. The objective of this research is to better characterize the temporal dynamics of transpiration in dryland ecosystems. We present the relative contribution of transpiration to evapotranspiration over the course of a year from eddy covariance and sap flow measurements taken at a creosotebush-dominated shrubland ecosystem in southern Arizona. We analyze soil moisture and stable water isotopes within the context of a two-layer soil moisture conceptual framework in an attempt to identify the source water for transpiration. We use these results to explain the temporal dynamics of transpiration in this semiarid shrubland. Finally, we put our results in the context of regional climate projections to suggest how this dryland ecosystem might be impacted in the future. We expect our study will contribute to understanding where precipitation pulses are distributed in the soil moisture profile and when these pulses

  4. Stable isotopes and volatile organic compounds along seven ground-water flow paths in divergent and convergent flow systems, southern California, 2000

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Belitz, Kenneth; Land, Michael; Danskin, Wesley R.

    2003-01-01

    Ground water is a major source of drinking water in southern California. In an effort to understand factors influencing the susceptibility of ground water tapped by public supply wells, the U.S. Geological Survey has undertaken studies in cooperation with the California State Water Resources Control Board. The vertical and lateral distribution of stable isotopes (deuterium and oxygen-18) and volatile organic compounds (VOC) were examined along seven ground-water flow paths in three urban ground-water basins in southern California: Central Basin in Los Angeles County, Main Basin in Orange County, and Bunker Hill Basin in San Bernardino County. Forty-seven monitoring wells and 100 public supply wells were sampled. The results of this study suggest that the direction of flow and perhaps the degree of confinement in an aquifer system are important controls on the distribution of VOCs. Ground-water flow in the Central and Main Basins in the southern California coastal plain is characterized as radially divergent, with ground-water flow directions moving outward from focused areas of recharge in the unconfined part of the aquifer system toward dispersed areas of discharge in the more confined part. In these basins, there is a volume of water containing VOCs that extends out into a volume of water containing no VOCs. This pattern suggests that radially divergent flow systems disperse VOCs in distal areas. The overall pattern also suggests that ground water in the pressure area is generally insulated from compounds introduced at land surface. These two factors?dispersion of VOCs due to divergence of flow and insulation from land-surface inputs?suggest that the susceptibility of public supply wells to surface contamination decreases with distance in radially divergent, well confined ground-water flow system. In the inland Bunker Hill Basin, ground-water flow is characterized as radially convergent; ground-water flow directions move inward from dispersed recharge areas in

  5. A five year view on the contribution of snowmelt to flow in the Willamette River using water stable isotopes

    EPA Science Inventory

    Much of the water that people in Western Oregon rely on come from the snowpack in the Cascade Mountains, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of n...

  6. Applications of stable isotope analysis in mammalian ecology.

    PubMed

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  7. Water and carbon stable isotope records from natural archives: a new database and interactive online platform for data browsing, visualizing and downloading

    NASA Astrophysics Data System (ADS)

    Bolliet, Timothé; Brockmann, Patrick; Masson-Delmotte, Valérie; Bassinot, Franck; Daux, Valérie; Genty, Dominique; Landais, Amaelle; Lavrieux, Marlène; Michel, Elisabeth; Ortega, Pablo; Risi, Camille; Roche, Didier M.; Vimeux, Françoise; Waelbroeck, Claire

    2016-08-01

    Past climate is an important benchmark to assess the ability of climate models to simulate key processes and feedbacks. Numerous proxy records exist for stable isotopes of water and/or carbon, which are also implemented inside the components of a growing number of Earth system model. Model-data comparisons can help to constrain the uncertainties associated with transfer functions. This motivates the need of producing a comprehensive compilation of different proxy sources. We have put together a global database of proxy records of oxygen (δ18O), hydrogen (δD) and carbon (δ13C) stable isotopes from different archives: ocean and lake sediments, corals, ice cores, speleothems and tree-ring cellulose. Source records were obtained from the georeferenced open access PANGAEA and NOAA libraries, complemented by additional data obtained from a literature survey. About 3000 source records were screened for chronological information and temporal resolution of proxy records. Altogether, this database consists of hundreds of dated δ18O, δ13C and δD records in a standardized simple text format, complemented with a metadata Excel catalog. A quality control flag was implemented to describe age markers and inform on chronological uncertainty. This compilation effort highlights the need to homogenize and structure the format of datasets and chronological information as well as enhance the distribution of published datasets that are currently highly fragmented and scattered. We also provide an online portal based on the records included in this database with an intuitive and interactive platform (http://climateproxiesfinder.ipsl.fr/), allowing one to easily select, visualize and download subsets of the homogeneously formatted records that constitute this database, following a choice of search criteria, and to upload new datasets. In the last part, we illustrate the type of application allowed by our database by

  8. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    USGS Publications Warehouse

    Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  9. Paleoclimate and Amerindians: evidence from stable isotopes and atmospheric circulation.

    PubMed

    Lovvorn, M B; Frison, G C; Tieszen, L L

    2001-02-27

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at approximately 11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C(4) plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from approximately 12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  10. The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea

    NASA Astrophysics Data System (ADS)

    Peeters, Frank J. C.; Brummer, Geert-Jan A.; Ganssen, Gerald

    2002-11-01

    Hydrographic changes in the NW Arabian Sea are mainly controlled by the monsoon system. This results in a strong seasonal and vertical gradient in surface water properties, such as temperature, nutrients, carbonate chemistry and the isotopic composition of dissolved inorganic carbon ( δ13C DIC). Living specimens of the planktic foraminifer species Globigerina bulloides and Globigerinoides ruber, were collected using depth stratified plankton tows during the SW monsoon upwelling period in August 1992 and the NE monsoon non-upwelling period in March 1993. We compare their distribution and the stable isotope composition to the seawater properties of the two contrasting monsoon seasons. The oxygen isotope composition of the shells ( δ18O shell) and vertical shell concentration profiles indicate that the depth habitat for both species is shallower during upwelling (SW monsoon period) than during non-upwelling (NE monsoon period). The calcification temperatures suggest that most of the calcite is precipitated at a depth level just below the deep chlorophyll maximum (DCM), however above the main thermocline. Consequently, the average calcification temperature of G. ruber and G. bulloides is lower than the sea surface temperature by 1.7±0.8 and 1.3±0.9 °C, respectively. The carbon isotope composition of the shells ( δ13C shell) of both species differs from the in situ δ13C DIC found at the calcification depths of the specimens. The observed offset between the δ13C shell and the ambient δ13C DIC results from (1) metabolic/ontogenetic effects, (2) the carbonate chemistry of the seawater and, for symbiotic G. ruber, (3) the possible effect of symbionts or symbiont activity. Ontogenetic effects produce size trends in Δ δ13C shell-DIC and Δ δ18O shell-w: large shells of G. bulloides (250-355μm) are 0.33‰ ( δ13C) and 0.23‰ ( δ18O) higher compared to smaller ones (150-250 μm). For G. ruber, this is 0.39‰ ( δ13C) and 0.17‰ ( δ18O). Our field study shows

  11. Stable isotopes differentiate bottlenose dolphins off west-central Florida

    USGS Publications Warehouse

    Barros, Nélio B.; Ostrom, P. H.; Stricker, Craig A.; Wells, R.S.

    2010-01-01

    Distinguishing discrete population units among continuously distributed coastal small cetaceans is challenging and crucial to conservation. We evaluated the utility of stable isotopes in assessing group membership in bottlenose dolphins (Tursiops truncatus) off west-central Florida by analyzing carbon, nitrogen, and sulfur isotope values (δ13C, δ15N, and δ34S) of tooth collagen from stranded dolphins. Individuals derived from three putative general population units: Sarasota Bay (SB), nearshore Gulf of Mexico (GULF), and offshore waters (OFF). Animals of known history (SB) served to ground truth the approach against animals of unknown history from the Gulf of Mexico (GULF, OFF). Dolphin groups differed significantly for each isotope. Average δ13C values from SB dolphins (−10.6‰) utilizing sea grass ecosystems differed from those of GULF (−11.9‰) and OFF (−11.9‰). Average δ15N values of GULF (12.7‰) and OFF (13.2‰) were higher than those of SB dolphins (11.9‰), consistent with differences in prey trophic levels. δ34S values showed definitive differences among SB (7.1‰), GULF (11.3‰), and OFF (16.5‰) dolphins. This is the first application of isotopes to population assignment of bottlenose dolphins in the Gulf of Mexico and results suggest that isotopes may provide a powerful tool in the conservation of small cetaceans.

  12. Geographic variation of stable isotopes in African elephant ivory

    NASA Astrophysics Data System (ADS)

    Ziegler, S.; Merker, S.; Jacob, D.

    2012-04-01

    In 1989, the international community listed the African elephant in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) thus prohibiting commercial ivory trade. Recent surveillance data show that the illegal trade in ivory has been growing worldwide. Long-term preservation of many of the African elephant populations can be supported with a control mechanism that helps with the implementation of remedial conservation action. Therefore, setting up a reference database that predicts the origin of ivory specimens can assist in determining smuggling routes and the provenance of illegal ivory. Our research builds on earlier work to seek an appropriate method for determining the area of origin for individual tusks. Several researchers have shown that the provenance of elephant ivory can be traced by its isotopic composition, but this is the first attempt to produce an integrated isotopic reference database of elephant ivory provenance. We applied a combination of various routine geochemical analyses to measure the stable isotope ratios of hydrogen, carbon, nitrogen, oxygen, and sulphur. Up to now, we analysed 606 ivory samples of known geographical origin from African range states, museums and private collections, comprising 22 African elephant range states. The isotopic measurements were superimposed with data layers from vegetation, geology and climate. A regression function for the isotope composition of the water isotopes in precipitation and collagen in ivory was developed to overcome the problem of imprecise origin of some of the sampled material. Multivariate statistics, such as nearest neighborhood and discriminate analysis were applied to eventually allow a statistical determination of the provenance for ivory of unknown origin. Our results suggest that the combination of isotopic parameters have the potential to provide predictable and complementary markers for estimating the origin of seized elephant ivory.

  13. INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS

    EPA Science Inventory

    Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source li...

  14. INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS

    EPA Science Inventory

    Stable isotopes are frequently used to quantify the contributions of multiple sources to a mixture; e.g., C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model ass...

  15. Stables isotopes in submarine explosive volcanism

    NASA Astrophysics Data System (ADS)

    Pineau, F.; Shilobreeva, S.; Hekinian, R.; Bideau, D.; Javoy, M.

    2003-04-01

    The carbon and water contents and the corresponding isotopic compositions have been measured on a set of glassy samples collected by dives on the Mid-Atlantic Ridge (MAR) near 34^o50'N where volcanoclastic deposits are present. The volatile phases have been extracted by crushing under vacuum and step heating up to fusion. The δ18O of the glasses have been measured and it is shown that N-MORB are depleted in 18O (down to 5.2 ppm) whereas all the other lavas fall in the mantle range, 5.4 to 5.8 ppm. These data preclude strong interaction between seawater and magmas before eruption. The post-eruptive contents of dissolved water and carbon measured on N, T, E MORB and alkalic rocks range from 1125 up to 5253 ppm and from 20 up to 119 ppm respectively. The vesicle gas is dominated by CO_2 in N- and T-MORB. Water is very scarce in E-MORB vesicles but represents up to 17 vol% of the total gas in alkali-basalt vesicles. The pre-eruptive water and carbon concentrations of these magmas have been.They range from 1130 up to 8497 for water and from 343 up to 15677 ppm for carbon. The isotopic data demonstrate that seawater contamination is significant only in samples where most vesicles have been disrupted during eruption and quenching. Otherwise, all the δ13C and δD values of the volatiles phases expressed in vesicles or dissolved in glasses, fall in a typical mantle range, -4 to -7 ppm and -60 to -88 ppm, respectively. Degassing conditions were close to chemical equilibrium in the vesicle-rich samples (E- MORB and alkali-basalt) but kinetic fractionation occured during the last eruptive event, indicating that the enriched magmas travelled very fast impeding the attainment of isotopic equilibrium. Taking into account the crystal fractionation of the magmas, the primitive magmas had initial concentrations of water ranging from 1100 to 8000 ppm. The water-enriched magmas reached water saturation at about 1.5 km below the seafloor. Because of the important CO_2 degassing (80

  16. Stable isotope customer list and summary of shipments, FY 1986

    SciTech Connect

    Tracy, J.G.

    1987-02-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  17. Use of stable isotope analysis in determining aquatic food webs

    EPA Science Inventory

    Stable isotope analysis is a useful tool for describing resource-consumer dynamics in ecosystems. In general, organisms of a given trophic level or functional feeding group will have a stable isotope ratio identifiable different than their prey because of preferential use of one ...

  18. The separation of stable isotopes of carbon

    NASA Astrophysics Data System (ADS)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  19. Stable isotope data from deep-water antipatharians: 400-Year records from the southeastern coast of the United States of America

    USGS Publications Warehouse

    Williams, B.; Risk, Michael J.; Ross, S.W.; Sulak, K.J.

    2007-01-01

    In this study, time-series stable isotope results (δ13C and δ15N) from three deep-water Leiopathes glaberrima(Esper, 1788) specimens Collected off the southeastern Coast of the United States of America and one specimen from the Gulf of Mexico are presented. The specimens were Collected live in 2004 and are estimated to be 200–500 yrs old based on 210Pb measurements and band Counts. The δ13C and δ15N long-term trends are reproducible within and among specimens from a similar location, suggesting a common environmental influence. Three western Atlantic specimens have average δ13C values of −15.7‰, −16.3‰, and −16.1‰, with the most depleted values from the oldest specimen. The oldest specimen records an enrichment in 13C of 0.5‰ corresponding to the Little Ice Age. All three specimens show a depletion of 13C over the past 150 yrs Corresponding to the δ13C Suess Effect. The fourth specimen from the Gulf of Mexico has an average δ13C value of −16.4‰ and shows no trend in13C value with time. All four specimens Contain an enrichment in 15N over the most recent 75 yrs, with the largest enrichment (3‰) in the Gulf of Mexico specimen. This enrichment is likely a result of increased terrestrial effluent (sewage and manure) reaching the offshore specimens.

  20. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  1. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  2. Growth, Survival, and Death of Bacteria and Fungi Following Wet-up of Seasonally Dried Soil Revealed by Heavy Water Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Blazewicz, S.; Nuccio, E. E.; Lim, H.; Schwartz, E.; Brodie, E.; Firestone, M.

    2013-12-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown due to the technical difficulties associated with such measurements. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR and high throughput sequencing of bacterial 16S rRNA genes to characterize taxonomic composition of bacteria and to describe new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Total microbial abundance revealed little change throughout the 7-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49 and 52% respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi with average growth rates of 2.3 x 108 bacterial 16S rRNA gene copies gdw-1 h-1 and 4.3 x 107 fungal ITS copies gdw-1 h-1. While bacteria and fungi differed in their mortality and survival characteristics during the 7-day incubation, mortality that occurred within the first 3 hours was similar with 25 and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding 5 months) or during the rapid change in water-potential due to wet-up, generates a significant pool of available C that likely contributes to the large pulse in CO2 associated with wet-up. Sequential bacterial growth patterns observed at the phylum and order levels suggest that an ecologically coherent response was observable at coarse taxonomic levels with

  3. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    NASA Astrophysics Data System (ADS)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    preference was rate determining. Our findings are in contrast to previously reported results for the degradation of α-hexachlorocyclohexane (Badea et al., 2012), where isotope fractionation, but no enantiomeric fractionation was observed. Hence the two lines of evidence seem to be independent of each other. Enhanced insight maybe provided when both effects appear simultaneously, as shown downstream of a landfill site under anaerobic conditions for the chiral herbicide 4-CPP (Milosevic et al., 2013). Buser HR, Muller MD (1998): Occurrence and transformation reactions of chiral and achiral phenoxyalkanoic acid herbicides in lakes and rivers in Switzerland. Environmental Science & Technology 32 (5):626-633. Badea S-L, Vogt C, Gehre M, Fischer A, Danet A-F, Richnow H-H (2011): Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of alpha-hexachlorocyclohexane in the environment. Rapid Communications in Mass Spectrometry 25 (10):1363-1372. Milosevic N, Qiu S, Elsner M, Einsiedl F, Maier MP, Bensch HKV, Albrechtsen HJ, Bjerg PL (2013): Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a eterogeneous geologic setting at an old landfill. Water Research 47 (2): 637-649.

  4. Stable isotopes (δ 18O and δ 13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Correa, Matthias López; Montagna, Paolo; Vendrell-Simón, Begoña; McCulloch, Malcolm; Taviani, Marco

    2010-03-01

    The aragonitic skeletons of bathyal cold-water corals have a high potential as geochemical in situ archives for paleoceanography. Oxygen isotopes and stable carbon isotopes (δ 18O and δ 13C) have been analyzed, as well as trace and minor element compositions (e.g. Mg/Ca, Sr/Ca, U/Ca, B/Ca and P/Ca) in Lophelia pertusa, one of the most important frame-builders at the Santa Maria di Leuca (SML) deep-water coral hotspot in the Central Mediterranean. The Apulian Bank is swept by strong currents of the Adriatic Deep Water Outflow. The temperature of 13.9 °C is the highest temperature recorded for L. pertusa and provides an important end-member of environmental conditions for geochemical analyses on living Atlantic and Mediterranean cold-water corals. Temperature and salinity (38.77 PSU) are stable throughout the year, and thus virtually no changes should be observed in the stable oxygen isotope signal—if the coral precipitates its skeleton in equilibrium with seawater. We measured various marine properties, such as the seawater oxygen isotope composition (δ 18O sw), stable carbon isotope composition (δ 13C DIC) of dissolved inorganic carbon (DIC), and dissolved inorganic nutrient concentrations (PO 4, NO 3, NO 2, NH 3 and SiO 2). Bottom water at the coral sites shows a mean oxygen isotope composition of 1.47‰ δ 18O sw-VSMOW, and δ 13C DIC showed a mean of 1.1‰ VPDB. A section of a living L. pertusa with a thick theca calcification was probed with a Merchantek MicroMill at a high spatial sampling resolution with 10 samples per 1 mm. This reduced the signal-smoothing inherent to conventional sampling. The δ 18O ag of coral aragonite ranges between -2.0‰ and +2.8‰ VPDB and the δ 13C ag ranges between -7.77‰ and +1.47‰ VPDB. The Gaussian data distribution for both parameters, including heavy equilibrium values, suggests the completeness of the captured isotopic variability. The strict linear correlation of δ 13C and δ 18O displays a strong 'kinetic

  5. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    NASA Astrophysics Data System (ADS)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  6. Manus Water Isotope Investigation Field Campaign Report

    SciTech Connect

    Conroy, Jessica L; Cobb, Kim M; Noone, David

    2016-03-01

    The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of the site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.

  7. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapor equilibration laser spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-06-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapor equilibration and laser spectroscopy (DVE-LS) was first described in 2008, and has since been widely adopted by others. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement and accuracy is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g., water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g., clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g., sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents < 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas sampling bags were determined to be as good as, if not better, than other, more expensive bags. Sample storage in gas tight sample bags provides acceptable results for up to 10 days of storage; however, measureable water loss and evaporitic isotopic enrichment occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high resolution pore water

  8. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-11-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapour equilibration and laser spectrometry (DVE-LS) was first described in 2008, and has since been rapidly adopted. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement, as well as accuracy, is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g. water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g. clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g. sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents > 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas-sampling bags were determined to be as good as, if not better than, other, more expensive specialty bags. Sample storage in sample bags provides acceptable results for up to 10 days of storage; however, measurable water loss, as well as evaporitic isotopic enrichment, occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high-resolution pore water

  9. USE OF COMPOUND-SPECIFIC STABLE CARBON ISOTOPE ANALYSES TO DEMONSTRATE NATURAL BIODEGRADATION OF MTBE IN GROUND WATER AT A GASOLINE RELEASE SITE

    EPA Science Inventory

    Methyl tertiary butyl ether (MTBE) has been used as an additive in gasoline to enhance
    octane rating and to improve combustion efficiency. It is also a commonly detected contaminant in both surface water and ground water systems. This study presents concentration and stable ...

  10. STABLE ISOTOPES IN ECOLOGICAL STUDIES: EXPANDING THE SCOPE OF MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One common application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for an...

  11. Hydrograph separation using stable isotopes: Review and evaluation

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McDonnell, J. J.

    2013-11-01

    We reviewed isotope hydrograph separation studies.We examine methods, applications, and limitations.We summarize factors that control the event/pre-event water contributions.We outline new possible research avenues in isotope hydrograph separation.

  12. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.

    PubMed

    Ogée, J; Cuntz, M; Peylin, P; Bariac, T

    2007-04-01

    This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-exchange parameters. We therefore developed a two-dimensional model of isotopic leaf water enrichment that incorporates new features, compared with previous models, such as radial diffusion in the xylem, longitudinal diffusion in the mesophyll, non-uniform gas-exchange parameters and non-steady-state effects. The model reproduces well all published measurements of Delta(lw) along monocot leaf blades, except at the leaf tip and given the uncertainties on measurements and model parameters. We show that the longitudinal diffusion in the mesophyll cannot explain the observed reduction in the isotope gradient at the leaf tip. Our results also suggest that the observed differences in Delta(lw) between C(3) and C(4) plants reflect more differences in mesophyll tortuosity rather than in leaf length or interveinal distance. Mesophyll tortuosity is by far the most sensitive parameter and different values are required for different experiments on the same plant species. Finally, using new measurements of non-steady-state, spatially varying leaf water enrichment we show that spatial patterns are in steady state around midday only, just as observed for bulk leaf water enrichment, but can be easily upscaled to the whole leaf level, regardless of their degree of heterogeneity along the leaf.

  13. Seasonal trends in stable water isotopes and estimation of mean transit times for mesoscale catchments with mixed landuse in northeastern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chutko, Krys; James, April; McConnell, Chris; Yao, Huaxia

    2015-04-01

    Northern Ontario Precambrian shield basins include considerable surface water (large lakes, wetlands), moderate relief (e.g. 400 m), variation in surficial geology (clay belt soils, glacial tills), and increasingly, the influence of human landuse impact (e.g. urban, agriculture) that are characteristic of northern Ontario, Quebec and parts of Scandinavia. In northeastern Ontario, Lake Nipissing and the French River are part of an important headwater tributary that flows into Georgian Bay, Lake Huron. Lake Nipissing and its 13,000 km2 watershed is the source of water to local municipalities and First Nation communities, home to a First Nations fishery and 5{%} of Ontario's recreational angling, and contributes an estimated 100 million/year to Ontario's economy. In 2012, in response to increasing concerns over water quality and its implications for ecological and economic systems, and limited study of water quality and quantity in the Sturgeon River-Lake Nipissing-French River (SNF) basin, we initiated a stable water isotope (SWI) study to examine how landscape characteristics influence streamflow generation at scales where both natural landscape variation (e.g. surface reservoirs, clay belt soils, forested headwaters) and anthropogenic stressors (urbanization, agriculture) are anticipated to influence water quantity and quality. Bi-weekly to monthly monitoring of SWI in precipitation and streamflow began in January 2013. Catchments range in size from 35 to 6,875 km^2, with a median size of 197 km2 and median gradients from 1 to 8{%}. Landcover includes considerable agricultural (0-18{%}) and/or urban (0-47{%}) area. Lakes and wetlands together cover 10-25{%} of catchment area, with large individual lakes (e.g. Lake Temagami) acting as important reservoir storage for hydropower generation. The existing SWI dataset includes 2 years of streamflow data for 5 of the larger catchments, > 1 year for an additional 2 catchments, and 2 years of seasonal ice-off data for the

  14. Metal stable isotopes in low-temperature systems: A primer

    USGS Publications Warehouse

    Bullen, T.D.; Eisenhauer, A.

    2009-01-01

    Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.

  15. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  16. Precipitation regime and stable isotopes at Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Dittmann, Anna; Schlosser, Elisabeth; Masson-Delmotte, Valérie; Powers, Jordan G.; Manning, Kevin W.; Werner, Martin; Fujita, Koji

    2016-06-01

    A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55° S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the

  17. First stable isotope analysis of Asiatic wild ass tail hair from the Mongolian Gobi.

    PubMed

    Horacek, Micha; Sturm, Martina Burnik; Kaczensky, Petra

    Stable isotope analysis has become a powerful tool to study feeding ecology, water use or movement pattern in contemporary, historic and ancient species. Certain hair and teeth grow continuously, and when sampled longitudinally can provide temporally explicit information on dietary regime and movement pattern. In an initial trial, we analysed a tail sample of an Asiatic wild ass (Equus hemionus) from the Mongolian Gobi. We found seasonal variations in H, C and N isotope patterns, likely being the result of temporal variations in available feeds, water supply and possibly physiological status. Thus stable isotope analysis shows promise to study the comparative ecology of the three autochthonous equid species in the Mongolian Gobi.

  18. A biomarker based on the stable isotopes of nickel

    PubMed Central

    Cameron, Vyllinniskii; Vance, Derek; Archer, Corey; House, Christopher H.

    2009-01-01

    The new stable isotope systems of transition metals are increasingly used to understand and quantify the impact of primitive microbial metabolisms on the modern and ancient Earth. To date, little effort has been expended on nickel (Ni) isotopes but there are good reasons to believe that this system may be more straightforward, and useful in this respect, than some others. Here, we present Ni stable isotope data for abiotic terrestrial samples and pure cultures of methanogens. The dataset for rocks reveals little isotopic variability and provides a lithologic baseline for terrestrial Ni isotope studies. In contrast, methanogens assimilate the light isotopes, yielding residual media with a complementary heavy isotopic enrichment. Methanogenesis may have evolved during or before the Archean, when methane could have been key to Earth's early systems. Our data suggest significant potential in Ni stable isotopes for identifying and quantifying methanogenesis on the early planet. Additionally, Ni stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for methanogens. PMID:19553218

  19. Micronutrient Cadmium in the Oceans, Distribution and Stable Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Andreae, M. O.; de Baar, H.; Middag, R.; Klunder, M.; Laan, P.

    2012-12-01

    Recent breakthroughs in ultra-clean seawater sampling, analytical instrumentation and chemical separation of trace metals have led to significant improvement in both sensitivity and accuracy of concentration measurements of some key bio-limiting metals such as Zn, Cd and Fe. Stable isotope fractionations of these transition metal elements have added a further new dimension to our understanding of the marine biogeochemical cycling of trace nutrients. Improving our understanding of the latter is essential for assessing the impact of climate changes on the global carbon cycle, given the control of oceanic nutrient inventories on the efficiency of the "biological pump" and hence, its strength in regulating the sequestration of atmospheric CO2. The first reliable vertical distribution profiles of trace metal element cadmium (Cd) in the oceans [1, 2] showed a correlation with the major nutrient phosphate. This apparent involvement of Cd in the ocean biological cycle was unexpected, as Cd was known to be toxic, notably at high Cd abundance where it interferes with the true biological function of zinc (Zn), due to their similar chemistry. The novel ability to measure accurately the stable isotope fractionation of Cd in seawater may now help unravel the apparent role of Cd in the ocean biological cycle, akin to the classical breakthroughs and numerous applications of the ratio 13C/12C for understanding the ocean carbon cycle. We have examined the distribution of Cd concentration and isotope ratios in depth profiles from the High Nutrients Low Chlorophyll (HNLC) Southern Ocean, collected within the framework of the international GEOTRACES program. The first surface water transect along the Greenwich Meridian in the Southern Ocean revealed a strong meridional isotope gradient and two major biogeochemical provinces with distinctive Cd isotope fractionation factors, apparently related to phytoplankton community compositions and cellular uptake mechanisms [3]. Here we focus on

  20. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-03

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  1. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    PubMed Central

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-01-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions. PMID:27151563

  2. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-05-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions.

  3. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  4. Stable isotope customer list and summary of shipments:

    SciTech Connect

    Tracy, J.G.

    1988-03-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical lists of domestic and foreign customers;alphabetical lists of isotopes and services;alphabetical lists of states and countries;tabulation of the shipments, quantities, and dollars for each isotope and dollars for services divided into domestic, foreign, and DOE project categories. During FY 1987 sales of stable isotope products and services were made to 272 differnt customers, of whom 159 were domestic and 113 were foreign, representing 18 different foreign countries. The total revenue was $3,785,609 of which 12.3% was from sales to DOE project customers, 60.4% was from sales to other domestic customers, and 27.3% was from sales to foreign customers. this represented sales of 189 different stable isotopes plus associated services and was a 16.5% increase over FY 1986.

  5. Novel silver tubing method for quantitative introduction of water into high temperature conversion systems for stable hydrogen and oxygen isotopic measurements

    USGS Publications Warehouse

    Qi, Haiping; Groning, Manfred; Coplen, Tyler B.; Buck, Bryan; Mroczkowski, Stanley J.; Brand, Willi A.; Geilmann, Heike; Gehre, Matthias

    2010-01-01

    A new method to seal water in silver tubes for use in a TC/EA reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of δ2H and &delta18O measurements of 1.0 ‰ and 0.06 ‰, respectively. These silver tubes containing reference waters may be preferred for calibration of H- and O-bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer controlled stepping motor to produce silver tubes identical in length. The reproducibility of mass of water sealed in tubes (in a range of 200 to 400 µg) can be as good as 1 percent. Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110 °C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all water will be lost. They should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but they are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blank.

  6. Beam delivery for stable isotope separation

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Strydom, Hendrick J.; Botha, Lourens R.; Ronander, Einar

    2002-10-01

    In the multi-photon dissociation process of Carbon isotope enrichment, IR photons are used to selectively excite a molecule with the given isotopic base element. This enrichment process is very sensitive to the beam's intensity and wavelength. Because the intensity is determined by the propagation of the field, the enrichment factors are also very dependent on the field propagation. In this paper, the influence of the wavelength and intensity of the beam, on the isotope selective dissociation of a CFC compound is investigated both experimentally and theoretically. Consideration is also given to some of the factors that influence the delivery of various beams to the reactor chamber, and their subsequent propagation through the reactor. The results show that suitable beam forming can lead to an improved isotope separation process.

  7. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-03-01

    Research on coprocessing materials/products continued. Major topics reported here are described below. Microautoclave runs are described in which gases and insoluble organic matter produced from five coals and gases produced from three petroleum resids were analyzed to study feedstock/product selective isotopic fractionation. Selective isotopic fractionation was further explored through isotope analysis of the feed New Mexico coal and products from a continuous coal liquefaction run (HRI CC-10 or 227-68). Feeds (Texas lignite/Maya VSB) and products from two HRI continuous coprocessing runs (227-54 and 238-12) were analyzed. The results were corrected for selective isotopic fractionation and carbon sourcing was performed for the product fractions. {sup 1}H-NMR and phenolic -OH determinations are reported for all continuous unit samples obtained under this contract. 13 refs., 17 figs., 40 tabs.

  8. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  9. Stable Isotope Systematics of Martian Perchlorate

    NASA Astrophysics Data System (ADS)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  10. Carbon stable isotopes as indicators of coastal eutrophication.

    PubMed

    Oczkowski, Autumn; Markham, Erin; Hanson, Alana; Wigand, Cathleen

    2014-04-01

    Coastal ecologists and managers have frequently used nitrogen stable isotopes (delta15N) to trace and monitor sources of anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of delta15N data can often be challenging, as the isotope values fractionate substantially due to preferential retention and uptake by biota. There is a growing body of evidence that carbon isotopes may be a useful alternative indicator for eutrophication, as they may be sensitive to changes in primary production that result from anthropogenic nutrient inputs. We provide three examples of systems where delta13C values sensitively track phytoplankton production. First, earlier (1980s) mesocosm work established positive relationships between delta13C and dissolved inorganic nitrogen and dissolved silica concentrations. Consistent with these findings, a contemporary mesocosm experiment designed to replicate a temperate intertidal salt marsh environment also demonstrated that the system receiving supplementary nutrient additions had higher nutrient concentrations, higher chlorophyll concentrations, and higher delta13C values. This trend was particularly pronounced during the growing season, with differences less evident during senescence. And finally, these results were replicated in the open waters of Narragansett Bay, Rhode Island, USA, during a spring phytoplankton bloom. These three examples, taken together with the pre-existing body of literature, suggest that, at least in autotrophic, phytoplankton-dominated systems, delta13C values can be a useful and sensitive indicator of eutrophication.

  11. USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES

    EPA Science Inventory

    Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...

  12. Carbon Stable Isotopes as Indicators of Coastal Eutrophication

    EPA Science Inventory

    Coastal ecologists and managers have frequently used nitrogen stable isotopes (δ15N) to trace and monitor anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of δ15N data can often be challenging, if not confounding, as the isotope values fractionate su...

  13. ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...

  14. SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...

  15. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  16. Chlorine stable isotopes in sedimentary systems: does size matter?

    NASA Technical Reports Server (NTRS)

    Coleman, Max

    2004-01-01

    Stable isotope abundances vary because of size differences. The chlorine stable isotope system was one of the first described theoretically, but had a slow, disappointment strewn development, relative to other elements. Method improvement gave only small, but significant, differences in compositions of geological materials. Eventually, brines and groundwater chlorides gave larger differences. Physical processes like diffusion and adsorption, probably are the main controls of groundwater compositions. Recent work on anthropogenic groundwater contaminants shows variations resulting from manufacturing processes; implying possibilities of tracing sources.

  17. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    SciTech Connect

    Van de Velde, K.; Nowell, C.; Marley, M.C.

    1994-12-31

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to {minus}110 per mil ({per_thousand}) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope `theory` recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed.

  18. Isotope tracers help manage water resources

    SciTech Connect

    Smith, D.; Hudson, B.; Davisson, L.

    1997-11-01

    Livermore isotope scientists are using stable and radioactive isotopes to learn about groundwater sources, ages, travel times, and flow paths and to determine the path and extent of contaminant movement in the water. These studies started at the Nevada Test Site because of concern about the transport in groundwater of contaminants from underground nuclear testing. When water managers can accurately predict where contaminated groundwater will be, they can avoid using it. Groundwater studies have also been performed for the Orange County Water District, Contra Costa County, and other public agencies, as well as at the Livermore site. Livermore scientists are some of the first to marry isotope tracing techniques and numerical groundwater models, using data from the former to verify and validate the predictions of the latter and thus provide a powerful forecasting tool for water managers.

  19. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters

    USGS Publications Warehouse

    Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.

  20. Tracking Movement of Plant Carbon Through Soil to Water by Lignin Phenol Stable Carbon Isotope Composition in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Crooker, K.; Filley, T.; Six, J.; Frey, J.

    2005-12-01

    Few studies integrate land cover, soil physical structure, and aquatic physical fractions when investigating the fate of agricultural carbon in watersheds. In crop systems that involve rotations of soy (a C3 plant) and corn (a C4 plant) the large intrinsic differences in stable carbon isotope values and lignin plus cutin chemistry enable tracking of plant carbon movement from soil fractions to DOM and overland flow during precipitation events. In a small (~3Km2) agricultural basin in central Indiana, we studied plant carbon dynamics in a soy/corn agricultural rotation (2004-2005) to determine the relative inputs of these two plants to soil fractions and the resultant contributions to dissolved, colloidal, and particulate organic matter when mobilized. Using bulk isotope values the fraction of carbon derived from corn in macroaggregates (>250 micron), microaggregates (53-250 mm), and silts plus clays (<53 mm) ranged from 39, 49, to 42%, respectively. Unlike bulk analyses, compound specific isotope analysis of lignin in the soil fractions revealed a wide range of relative inputs among the monomers with cinnamyl phenols being almost exclusively (~ 93%) derived from corn. Syringyl phenols ranged from 75-56% corn and vanillyl phenols ranged from 37-40% corn carbon. The relative input among the fractions mirrors closely the comparative plant chemistry abundances between soy and corn. During export of DOM from the land to the stream the relative abundance of plant source varied with discharge (0.05-1.8 m3/sec) as increases in flow increased the relative export of corn-derived C from the fields. Over the full range of flows lignin phenols varied from 0.05 to 82% corn-derived with the greatest relative corn input for cinnamyl and syringyl carbon. The trend with stream discharge indicates a progressive movement of particulate corn residues with overland flow. Ongoing studies look to resolve contributions of algae, bacteria and terrestrial plants to soil fractions and their

  1. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    USGS Publications Warehouse

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant

  2. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  3. Stable isotope composition of human fingernails from Slovakia.

    PubMed

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ(13)C and δ(15)N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in (13)C and (15)N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ(13)C and δ(15)N values. These data were compared to previously published δ(13)C and δ(15)N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking.

  4. Stable isotope ecology in the Omo-Turkana Basin.

    PubMed

    Cerling, Thure E; Levin, Naomi E; Passey, Benjamin H

    2011-01-01

    Stable isotopes provide an independent assessment of paleoenvironments in the Omo-Turkana Basin. Stable isotopes track the flow of oxygen and carbon through ecosystems and accordingly are not directly related to changes in mammalian faunal composition or sedimentology. Therefore, isotope studies give insight into the paleoenvironmental conditions in which human evolutionary trends have been recorded. The development of stable isotopes as indicators of continental environmental conditions has proceeded in parallel with questions about the conditions of human environment. What was the vegetation? How hot was it? How dry? What were the diets of animals living among early humans? And most persistently, how important were "savannas" to early hominids? In this review, we take the opportunity to provide extensive background on the use of isotopes in anthropological sites. The application of stable isotope ecology to anthropological sites in the Turkana Basin has a long history, but in many ways the Omo-Turkana Basin has been a proving ground for the development of new proxy methods for understanding tropical terrestrial environments in the Neogene and Quaternary. For that reason, we also describe some of the fundamental aspects of isotope ecology that developed outside the field of paleoanthropology.

  5. Fractionation of metal stable isotopes by higher plants

    USGS Publications Warehouse

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  6. Stable Isotope Ratios as Biomarkers of Diet for Health Research.

    PubMed

    O'Brien, Diane M

    2015-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest.

  7. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  8. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-06-01

    The program is designed to address a substantial, demonstrated need of the coprocessing community (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique is currently in routine use for other applications. Results achieved this quarter include: Feed and product fractions from a Kentucky 9 coal/Kentucky tar sand bitumen coprocessing bench unit run at the Kentucky Center for Applied Energy Research (CAER) were analyzed for carbon isotope ratios. Corrections were made to the coal carbon recoveries and selectivities from the products of HRI Run 227-53. Feeds (Westerholt coal/Cold Lake VSB) and products from two periods of HRI coprocessing Run 238-1 were analyzed. Three petroleum samples and three coal samples were pyrolyzed at 800{degree}F for 30 min to determine the effect of pyrolysis on the isotopic homogeneity of each petroleum and coal sample. Products from each pyrolysis test were separated into five fractions; an additional set of coprocessing samples and a set of two-stage coal liquefaction samples were obtained from HRI for future work; work performed by the Pennsylvania State University show that microscopy is a promising method for distinguishing coal and petroleum products in residual coprocessing materials; and coal and petroleums that have large differences in carbon isotope ratios were identified for Auburn University. 7 refs., 2 figs., 12 tabs.

  9. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  10. Novel silver-tubing method for quantitative introduction of water into high-temperature conversion systems for stable hydrogen and oxygen isotopic measurements.

    PubMed

    Qi, Haiping; Gröning, Manfred; Coplen, Tyler B; Buck, Bryan; Mroczkowski, Stanley J; Brand, Willi A; Geilmann, Heike; Gehre, Matthias

    2010-07-15

    A new method to seal water in silver tubes for use in a TC/EA (thermal conversion/elemental analyzer) reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of delta(2)H and delta(18)O measurements of 1.0 per thousand and 0.06 per thousand, respectively. These silver tubes containing reference