Science.gov

Sample records for stable water isotope

  1. Stable water isotopes in the MITgcm

    NASA Astrophysics Data System (ADS)

    Völpel, Rike; Paul, André; Krandick, Annegret; Mulitza, Stefan; Schulz, Michael

    2017-08-01

    We present the first results of the implementation of stable water isotopes in the Massachusetts Institute of Technology general circulation model (MITgcm). The model is forced with the isotopic content of precipitation and water vapor from an atmospheric general circulation model (NCAR IsoCAM), while the fractionation during evaporation is treated explicitly in the MITgcm. Results of the equilibrium simulation under pre-industrial conditions are compared to observational data and measurements of plankton tow records (the oxygen isotopic composition of planktic foraminiferal calcite). The broad patterns and magnitude of the stable water isotopes in annual mean seawater are well captured in the model, both at the sea surface as well as in the deep ocean. However, the surface water in the Arctic Ocean is not depleted enough, due to the absence of highly depleted precipitation and snowfall. A model-data mismatch is also recognizable in the isotopic composition of the seawater-salinity relationship in midlatitudes that is mainly caused by the coarse grid resolution. Deep-ocean characteristics of the vertical water mass distribution in the Atlantic Ocean closely resemble observational data. The reconstructed δ18Oc at the sea surface shows a good agreement with measurements. However, the model-data fit is weaker when individual species are considered and deviations are most likely attributable to the habitat depth of the foraminifera. Overall, the newly developed stable water isotope package opens wide prospects for long-term simulations in a paleoclimatic context.

  2. Inferring foliar water uptake using stable isotopes of water.

    PubMed

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-07-22

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  3. Tritium and stable isotopes of magmatic waters

    NASA Astrophysics Data System (ADS)

    Goff, F.; McMurtry, G. M.

    2000-04-01

    To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parı´cutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1-5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO 2, S total, HCl, HF, B, Br, 3He R/ RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/ δ18O and 3H/ δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H 2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).

  4. Using stable isotopes to examine watershed connectivity to downstream waters

    EPA Science Inventory

    Water bodies within the USA are protected by the US Clean Water Act when they have a significant nexus to downstream navigable waters. As a research scientist with the US Environmental Protection Agency, I have used water stable isotopes to examine hydrologic connectivity dynami...

  5. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  6. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  7. Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    PubMed Central

    O'Grady, Shannon P.; Wende, Adam R.; Remien, Christopher H.; Valenzuela, Luciano O.; Enright, Lindsey E.; Chesson, Lesley A.; Abel, E. Dale; Cerling, Thure E.; Ehleringer, James R.

    2010-01-01

    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis. PMID:20657736

  8. Stable isotopes in leaf water of terrestrial plants.

    PubMed

    Cernusak, Lucas A; Barbour, Margaret M; Arndt, Stefan K; Cheesman, Alexander W; English, Nathan B; Feild, Taylor S; Helliker, Brent R; Holloway-Phillips, Meisha M; Holtum, Joseph A M; Kahmen, Ansgar; McInerney, Francesca A; Munksgaard, Niels C; Simonin, Kevin A; Song, Xin; Stuart-Williams, Hilary; West, Jason B; Farquhar, Graham D

    2016-05-01

    Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water. © 2016 JohnWiley & Sons Ltd.

  9. Stable isotopic composition of bottled mineral waters from Romania

    NASA Astrophysics Data System (ADS)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  10. Modelling of stable water isotopes in Central Europe with COSMOiso

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Pfahl, Stephan; Schädler, Gerd

    2016-04-01

    Atmospheric water in form of vapor or clouds is responsible for ˜75 % of the natural greenhouse effect and carries huge amounts of latent heat. For this reason, a best possible description of the hydrological cycle is a prerequisite for reliable climate modelling. As the stable isotopes H216O, H218O and HDO differ in vapor pressure, they are fractionated during phase changes and contain information about the formation of precipitation, evaporation from the ground, etc. Therefore, the isotopic composition of atmospheric water is an useful tracer to test and improve our understanding of the extremely complex and variable hydrological cycle in Earth's atmosphere. Within the project PalMod the isotope-enabled limited-area model COSMOiso will be used for high-resolution isotope simulations of paleo-climates. For validation with modern observations we compare 12 years of modelled isotope ratios from Central Europe to observations of the Global Network of Isotopes in Precipitation (GNIP) and to observations of isotope ratios of water vapor at different locations in Germany. We find a good agreement of modelled and observed isotope ratios in summer. In winter, we observe a systematic overestimation of modelled isotope ratios in precipitation and low-level water vapor. We relate those differences to specific circulation regimes with predominantly easterly moisture transport and the corresponding strong dependence of modelled isotope ratios on lateral boundary data. Furthermore, we investigate the dependence of modelled isotope ratios in winter on the type of isotope fractionation during surface evaporation at skin temperatures close to the freezing point.

  11. Stable isotope geochemistry of East African waters. [Abstract only

    SciTech Connect

    Sayer, M.D.; Cerling, T.E.; Bowman, J.R.

    1983-03-01

    Lakes and Rivers in East Africa have varied stable isotopic compositions. Lakes exhibit enriched delta13-C values (-2 to +5%), while their inflowing rivers show depleted values (-15 to -8%). Hot springs and standing pools of water have intermediate values. Some small lakes are extremely variable in delta18-0 or deltaD (+2 to +8% and +20 to +40%, respectively for Lake Naivasha), whereas larger lakes are relatively constant for long periods of time (+5.6 to 6.1 and +36 to 40, respectively for Lake Turkana). Isotopic values are unrelated to salinity for comparison between lakes. Stable isotopes also reveal the sources of hot spring discharges: the Kapedo hot springs probably originate from Maralel and not from Lake Baringo as local legend has it; the hot springs north of Lake Naivasha are of meteoric origin while those to the south of Lake Naivasha have similar isotopic compositions to Lake Naivasha.

  12. Intraseasonal variability in South America recorded in stable water isotopes

    NASA Astrophysics Data System (ADS)

    Sturm, Christophe; Vimeux, FrançOise; Krinner, Gerhard

    2007-10-01

    The recent number isotopic records extracted from Andean ice cores (South America) has illustrated the key role such archives can play in past climate reconstructions. Nevertheless, interpreting isotopic archives as quantified climate proxies requires an understanding of which climate parameters control the stable isotopic composition of water. Mesoscale modeling sheds new light on the meteorological mechanisms dominant during austral summer. Here we focus on the variability of the South Atlantic Convergence Zone (SACZ) and its repercussions on upstream regions. The SACZ is a major component of the South American Monsoon System (SAMS). The present study uses the isotopic signature of the SAMS, as simulated by the stable water isotope enabled regional circulation model REMOiso to answer the question: how does the SAMS affect the isotopic composition of precipitation during the wet season? In order to analyze the internal, purely atmospheric variability mode, the model was forced by climatological sea-surface temperatures. We investigate the concurrent intraseasonal variability of meteorological and isotopic parameters at pentad (5 days) interval using empirical orthogonal functions (EOFs). REMOiso reproduces the main meteorological characteristics of the SAMS consistent with observations as well as previous modeling studies. Furthermore, we demonstrate that δ18O integrates both circulation and precipitation variability. This new evidence contributes to the comprehension of the δ18O signal in tropical South America, highlighting the internal atmospheric variability, as opposed to external forcing by Pacific and Atlantic sea-surface temperature.

  13. Divergence of stable isotopes in tap water across China

    NASA Astrophysics Data System (ADS)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-03-01

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical “continental effect”. (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale.

  14. Divergence of stable isotopes in tap water across China

    PubMed Central

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-01-01

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical “continental effect”. (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. PMID:28252670

  15. Divergence of stable isotopes in tap water across China.

    PubMed

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang

    2017-03-02

    Stable isotopes in water (e.g., δ(2)H and δ(18)O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ(2)H = 7.72 δ(18)O + 6.57 (r(2) = 0.95). (2) SITW spatial distribution presents typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale.

  16. Stable isotope values of North Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje

    2013-04-01

    A comprehensive study of seawater stable isotope properties in the mid-latitude North Atlantic is still missing, especially for the intermediate and deep-water masses. To fill this gap seawater samples were collected since 2006 along various transects in the Northeast Atlantic. During the Atlantic Meridional Transect (AMT) 18 expedition the upper 300 m were sampled between 46.6 and 24.7°N. RV Poseidon cruises POS334, POS349, POS377, and POS383 to the Azores Front region (38.3-30°N; 22-20°W) generally yielded samples down to 2000 m. High-resolution sampling over the whole water column was performed during the OVIDE 2010 (Portugal to Reykjanes ridge) and KN199-4 cruises. Cruise KN199-4 implemented the section from Lisbon to the Cape Verde Islands of the US GEOTRACES North Atlantic transect. Additional stations collected samples along the Iberian margin during the EUROFLEETS Iberia-Forams cruise on RV Garcia del Cid in September 2012. The isotope results clearly indicate the different water masses and hydrographic fronts, although variability in some regions is higher than expected, potentially an affect of the different years and seasons sampled and/ or meandering of the Azores Current. Higher isotope values are observed in the surface waters of the central subtropical gyre and on the southern side of the Azores Front, i.e. within the Azores Current. Lower isotope values are observed in the North Atlantic Deep Water and the Antarctic Intermediate Water upwelled off NW Africa. Mediterranean Outflow Water is best depicted in the Deuterium values because the salinity signal is less rapidly diluted than temperature. Combining the isotope with the respective station's CTD data will allow establishing regional relationships between isotope and temperature/ salinity.

  17. Assessing the Amazon Basin Circulation with Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    McGuffie, K.; Henderson-Sellers, A.

    2004-05-01

    The isotopic abundances of Oxygen-18 (δ 18O) and Deuterium (δ D) over the Amazon are used to constrain simulations of the water cycle in this, the largest river basin in the world. Tracking the two stable but rare isotopes of water (1HD16O and 1H218O) makes it possible to trace Amazonian regional evaporative and condensation processes. This offers isotopic constraints on regional to global-scale atmospheric moisture budgets. Based on data in the Global Network on Isotopes in Precipitation (GNIP) database, we analyse the simulation of the land surface hydrology and water cycling. Temporal changes between 1965 and 2000 in stable water isotopic signatures in the Amazon have been used to evaluate global climate model (GCM) predictions revealing notable anomalies. For example, the differences in the wet season deuterium excess between Belem and Manaus are consistent with recent GCM simulations only if there has been a relative increase in evaporation from non-fractionating water sources over this period. Despite earlier predictions that land-use change signals would be found, late twentieth century data reveal no significant change in dry season isotopic characteristics. On the other hand, more recent isotopic data do show trends at stations in the Andes, where as much as 88% of the rainfall is thought to be derived from recycled moisture. At Izobamba the wet season depletions are enhanced (greater depletion) and the dry season ones decreased (less depletion). At Bogota only the wet months show statistically significant changes - also an enhancement. More depletion in the wet months is consistent with reductions in non-fractioning recycling such as through transpiration and in full re-evaporation of canopy-intercepted rainfall. These data might be linked to deforestation impacts. Results of GCM and simpler model simulations of the Amazon suggest that the recent stable isotope record is consistent with the predicted effects of forest removal, perhaps combined with

  18. Surface hydrological cycle in Atlantic surface waters from stable isotopes

    NASA Astrophysics Data System (ADS)

    Benetti, Marion; Reverdin, Gilles; Aloisi, Giovanni; Erla Sveinbjörnsdóttir, Árný

    2017-04-01

    We explore the potential of seawater stable isotope data (δ18O and δD) to investigate the surface hydrological cycle in surface waters of the Atlantic Ocean and the Mediterranean Sea during the period 2010-2016. Our approach which combines these seawater observations with salinity and stable isotope measurements in the atmospheric water vapor, identifies large scale mixing processes between different water masses. Moreover, based on reasonable assumptions on seawater sources, as well as properties of evaporative and precipitating water, the δ-S distribution gives qualitative indications on the dominant contribution of evaporation (E) and meteoric water input (MW). To provide quantitative estimates of the E:MW ratio, we use the box model from Craig and Gordon (1965) which identifies the subtropical gyre as a region where E:MW 2 and the tropical ocean as a region were MW:E 2. Finally, we show that the δ18O-δD distribution is better represented by a linear fit than the δ-S relationship, even in basins governed by different hydrological processes. In the tropical region where MW exceeds E, the δ18O-δD distribution identifies the MW inputs from their kinetic signature, whereas in regions where E exceeds MW, the δ18O-δD distribution traces the humidity at the sea surface.

  19. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Treesearch

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  20. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  1. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  2. Continuous in situ measurements of stable isotopes in liquid water

    NASA Astrophysics Data System (ADS)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  3. Future stable water isotope projection with an isotope-AGCM driven by CMIP5 SSTs

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2016-12-01

    Stable water isotope ratios (dD and d18O) are widely used as proxy of past climate changes, and it is extremely important to understand and predict the mechanism of current isotopic spatio-temporal behavior with regard to the on-going climate change. However, as compared many studies on reproduction of isotopes for the past, there are few studies on future projection of isotopes. Therefore, in this study, a set of experiments using an isotope-incorporate AGCM (IsoGSM) with SST and sea ice field simulated from multiple CMIP5 models, namely MIROC5, CCSM4, and MRI-CGCM3, were conducted for the end of 20th century (1980-1990) and the end of 21st century (2080-2090) under RCP2.6 and RCP8.5 scenarios. Thus the responses in stable water isotope ratio in precipitation and water vapor in accordance to the global warming were investigated. As results, the changes in global surface air temperature were about +1K and +3K with RCP2.6 and RCP8.5, respectively. Similarly, the global precipitation changes were about +0.07mm/day (about +2%) and +0.18mm/day (about +5%), and the global precipitable water changes were about +2mm (+7%) and +6mm (+24%), respectively. The moisture was increased in accordance to the Clausius-Clapayron theory (7%/K), but the increase in precipitation is not that large. This indicates that the global hydrological cycle was slowed down in the globally warmed experiments. On the other hand, for the isotopic signals, the changes in globally averaged d18O in precipitation were about 0.2‰ and 0.4‰, and those in precipitable water were 0.2‰ and 0.5‰, in RCP2.6 and RCP8.5, respectively. It is well-known that there are temperature effect (positive correlation in air temperature and precipitation isotopes) and amount effect (negative correlation in precipitation amount and isotopes), but in the globally warmed world, these effects were offset, and only weaker temperature effect was appeared in the global mean isotope signals. Regional details will be shown

  4. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  5. Tracing the source of bottled water using stable isotope techniques.

    PubMed

    Rangarajan, Ravi; Ghosh, Prosenjit

    2011-11-15

    The Indian Summer Monsoon (ISM) precipitation recharges ground water aquifers in a large portion of the Indian subcontinent. Monsoonal precipitation over the Indian region brings moisture from the Arabian Sea and the Bay of Bengal (BoB). A large difference in the salinity of these two reservoirs, owing to the large amount of freshwater discharge from the continental rivers in the case of the BoB and dominating evaporation processes over the Arabian Sea region, allows us to distinguish the isotopic signatures in water originating in these two water bodies. Most bottled water manufacturers exploit the natural resources of groundwater, replenished by the monsoonal precipitation, for bottling purposes. The work presented here relates the isotopic ratios of bottled water to latitude, moisture source and seasonality in precipitation isotope ratios. We investigated the impact of the above factors on the isotopic composition of bottled water. The result shows a strong relationship between isotope ratios in precipitation (obtained from the GNIP data base)/bottled water with latitude. The approach can be used to predict the latitude at which the bottled water was manufactured. The paper provides two alternative approaches to address the site prediction. The limitations of this approach in identifying source locations and the uncertainty in latitude estimations are discussed. Furthermore, the method provided here can also be used as an important forensic tool for exploring the source location of bottled water from other regions. Copyright © 2011 John Wiley & Sons, Ltd.

  6. System for high throughput water extraction from soil material for stable isotope analysis of water

    USDA-ARS?s Scientific Manuscript database

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  7. Water budget determination for Northern groundwater dependent lakes using stable isotopes of water

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2013-04-01

    Understanding groundwater - surface water interaction is crucial in numerous water resources management problems. Stable isotopes of water can bring understanding of this interaction especially in catchment scale questions. In this study stable isotopes were used in a Finnish esker aquifer (Lat 64.58° , Lon 26.50° ) where groundwater dependent lakes have suffered from seasonal water level declines. Esker aquifers are the main groundwater reserves in Finland used in water abstraction. In order to determine how hydrology of the lakes is dependent on groundwater, the isotopic composition of oxygen and hydrogen was studied from 36 sampling points during years 2010 to 2012. Samples were taken from 13 groundwater pipes, 11 lakes and 11 streams during winter, spring, summer and autumn. Additionally local precipitation was sampled. The CRDS-method (Picarro L2120-i analyzer) was used to analyze δ18O- and δ2H-values. The data from the study was used to define the Local Meteoric Water Line of the site (δ2H = 7.60 δ18O + 6.70) and the groundwater line of the esker aquifer (δ2H = 7.59 δ18O + 4.79). The groundwater line of the esker aquifer differs from the groundwater line of Finnish groundwaters (δ2H = 8.51 δ18O + 16.65) based on previous studies. This emphasizes the importance of using local isotopic values when stable isotopes of water are used in hydrological studies. Furthermore, the isotopic compositions of the examined lakes differed enough from the isotopic composition of the local groundwater to separate groundwater component in the lake hydrology. The results also verified that evaporation from lakes in Northern Finland can be high enough to utilize isotopic method for determination of groundwater and surface water interactions.

  8. Isotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach.

    PubMed

    Houhou, J; Lartiges, B S; France-Lanord, C; Guilmette, C; Poix, S; Mustin, C

    2010-01-01

    This paper investigates the potential of stable isotopes of both water (deltaD and deltaOH(2)O18) and dissolved sulfate (delta(34)S and deltaOSO(4)18) for determining the origin and the amount of clear waters entering an urban sewer. The dynamics of various hydrological processes that commonly occur within the sewer system such as groundwater infiltration, rainwater percolation, or stormwater release from retention basins, can be readily described using water isotope ratios. In particular, stable water isotopes indicate that the relative volumes of infiltrated groundwater and sewage remain approximately constant and independent of wastewater flow rate during the day, thus demonstrating that the usual quantification of parasitic discharge from minimal nocturnal flow measurements can lead to completely erroneous results. The isotopic signature of dissolved sulfate can also provide valuable information about the nature of water inputs to the sewage flow, but could not be used in our case to quantify the infiltrating water. Indeed, even though the microbial activity had a limited effect on the isotopic composition of dissolved sulfate at the sampling sites investigated, the dissolved sulfate concentration in sewage was regulated by the formation of barite and calcium-phosphate mineral species. Sulfate originating from urine was also detected as a source using the oxygen isotopic composition of sulfate, which suggests that deltaOSO(4)18 might find use as a urine tracer.

  9. Lake Louise Water (USGS47): A new isotopic reference water for stable hydrogen and oxygen isotope measurements

    USGS Publications Warehouse

    Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve

    2014-01-01

    RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "

  10. Advances in the Study of Surface Water Stable Isotope on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Di, D.

    2016-12-01

    Advances in the Study of Surface Water Stable Isotopes on the Tibetan Plateau Di DAI, Jing GAO, Tandong YAO Institute of Tibetan PlateauResaech,Chinese Academy of Sciences,China Abstract: Water stable isotopes are ideal tools to study hydrologic processes. Because of the unique surface processes, Tibetan Plateau (TP) is a perfect geographic union to study regional hydrologic cycle. In this study, we reviewed recent advances of surface water (river and lake) stable isotopes studies on the TP and its surroundings, their relationships with precipitation stable isotopes, meteorological variables, geographic elements, regional hydrologic processes, and human activities. Furthermore, we summarized the common approaches and models used in spatiotemporal analysis of surface water isotopes. We expect to establish TP surface water isotope spatiotemporal distribution maps by combining the isotope data with the Geographic Information System (GIS) and geostatistical synthetical method. These maps can integrate regional hydrologic processes including glacier melt, precipitation, and river runoff. Moreover, these maps are basic input data for the isotope-enabled land-atmosphere models. Key Words: Tibetan Plateau (TP), surface water stable isotopes, spatiotemporal distribution spatial model

  11. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  12. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    PubMed

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  13. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  14. Stable hydrogen and oxygen isotope ratios of bottled waters of the world.

    PubMed

    Bowen, Gabriel J; Winter, David A; Spero, Howard J; Zierenberg, Robert A; Reeder, Mathew D; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential

  15. Worldwide Interlaboratory Comparison of Cryogenic Water Extraction Systems for Soil Water Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Orlowski, N.; Breuer, L.; McDonnell, J.

    2016-12-01

    For more than two decades, research groups from around the world have performed cryogenic water extractions for the analysis of 2H and 18O isotopes of soil water. Here we present results from a worldwide round robin lab intercomparison test. We test the null hypothesis that with identical soils, standards, and isotope analyses, cryogenically extracted stable water isotope across all labs are identical. We shipped 16 laboratories two different standard soils along with reference water of known isotopic composition. Participants oven-dried and rewetted the soils to two different gravimetric water contents with reference water. One batch of soil samples was extracted via predefined extraction conditions common to all laboratories and the second batch via conditions considered routine in the respective laboratory. Extracted water was isotopically analyzed using both a laser spectroscope and a mass spectrometer. Our results indicate large differences among participating laboratories and applied extraction approaches, soil types, and water contents. Mean differences from the added reference water range from 18.1 to -108.4 for δ2H and 11.8 to -14.9 for δ18O. While recent studies have shown that extraction conditions (time, temperature, vacuum) along with physicochemical soil properties can affect extracted soil water isotope composition, our results show that lab-to-lab differences can be an even greater factor. While the type of cryogenic extraction set-up varied from manifold systems to single chambers, we did not see any clear trends between facility construction and extraction efficiency. Our results generate questions regarding the usefulness of cryogenic extraction as a standard for water extraction since results are difficult to compare across labs. Correction factors for labs to get back to known standards may be one approach, but our preliminary analysis suggests that this may be too complex and too multi-faceted to be useful.

  16. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen D.; Strauss, Josiah; McCabe, Matthew F.; Evans, Jason P.; Griffiths, Alan D.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (∼1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  17. Forest Canopy Water Cycling Responses to an Intermediate Disturbance Revealed Through Stable Water Vapor Isotopes

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.

    2016-12-01

    Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.

  18. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales

    NASA Astrophysics Data System (ADS)

    Werner, C.; Schnyder, H.; Cuntz, M.; Keitel, C.; Zeeman, M. J.; Dawson, T. E.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T. E. E.; Kayler, Z. E.; Lakatos, M.; Lee, X.; Máguas, C.; Ogée, J.; Rascher, K. G.; Siegwolf, R. T. W.; Unger, S.; Welker, J.; Wingate, L.; Gessler, A.

    2012-08-01

    Stable isotope analysis is a powerful tool for assessing plant carbon and water relations and their impact on biogeochemical processes at different scales. Our process-based understanding of stable isotope signals, as well as technological developments, has progressed significantly, opening new frontiers in ecological and interdisciplinary research. This has promoted the broad utilisation of carbon, oxygen and hydrogen isotope applications to gain insight into plant carbon and water cycling and their interaction with the atmosphere and pedosphere. Here, we highlight specific areas of recent progress and new research challenges in plant carbon and water relations, using selected examples covering scales from the leaf to the regional scale. Further, we discuss strengths and limitations of recent technological developments and approaches and highlight new opportunities arising from unprecedented temporal and spatial resolution of stable isotope measurements.

  19. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  20. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  1. Spatial and temporal analysis of stable isotopes in tap water across China

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hu, H.; Tian, F.; Tie, Q.

    2015-12-01

    Stable isotopes in water (δ2H and δ18O) are important indicators of hydrological and ecological pattern and process. Water isotopes have been used to trace atmospheric moisture source, identify source of groundwater and surface water charge, reconstruct paleoclimate, and so on. Tap water appears to reflect pervasive features of regional integrated hydrological process. China is a large-size country with high variations in both environmental and geographical factors including temperature, precipitation amount, relative humidity, latitude, altitude et al. Here we present a first national-scale survey on stable isotope of tap water across China. More than 1000 tap water samples have been collected from 93 cities across China by monthly between December 2014 and November 2015. Stable isotope composition of tap water ranged from -132.1‰ to -25.6‰ (δ2H) and from -17.5‰ to -4.2‰ (δ18O). The Meteoric Water Line is δ2H = 7.77 δ18O + 5.79 (r2 = 0.95) and the LMWL of Chinese precipitation is δ2H =7.6δ18O+ 9.94 (r2= 0.97). Spatial distribution of stable isotopes present typical "continental effect", isotope values generally decrease from coastal regions to inland. Isotopes in different regions present different correlations with temperature, precipitation amount, latitude and altitude as a result of varied moisture source and local water supply. The results of the study could provide mapping information of tap water for fundamental isotope hydrological studies in different regions of China.

  2. Deuterium stable isotope ratios as tracers of water resource use: an experimental test with rock doves.

    PubMed

    McKechnie, Andrew E; Wolf, Blair O; Martínez del Rio, Carlos

    2004-07-01

    Naturally-occurring deuterium stable isotope ratios can potentially be used to trace water resource use by animals, but estimating the contribution of isotopically distinct water sources requires the accurate prediction of isotopic discrimination factors between water inputs and an animal's body water pool. We examined the feasibility of using estimates of water fluxes between a bird and its environment with a mass-balance model for the deuterium stable isotope ratio of avian body water (deltaDbody) to predict isotopic discrimination factors. Apparent fractionation and thus discrimination factors were predicted to vary with the proportion of an animal's total water losses than could be attributed to evaporative processes. To test our ability to predict isotopic discrimination, we manipulated water intake and evaporative water loss in rock doves (Columba livia) by providing them with fresh water or 0.15 M NaCl solution in thermoneutral or hot environments. After we switched the birds from drinking water with deltaD=-95 per thousand VSMOW (Vienna Standard Mean Ocean Water) to enriched drinking water with deltaD=+52 per thousand VSMOW, steady-state deltaDbody was approached asymptotically. The equilibrium deltaDbody was enriched by 10-50 per thousand relative to water inputs. After isotopic equilibrium was reached, the degree of enrichment was positively related (r2=0.34) to the fraction of total water loss that occurred by evaporation (revap/rH2O)supporting the major prediction of the model. The variation we observed in discrimination factors suggests that the apparent fractionation of deuterium will be difficult to predict accurately under natural conditions. Our results show that accurate estimates of the contribution of different water sources to a bird's body water pool require large deuterium isotopic differences between the sources.

  3. Spatial distribution and temporal variability of stable water isotopes in a large and shallow lake.

    PubMed

    Xiao, Wei; Wen, Xuefa; Wang, Wei; Xiao, Qitao; Xu, Jingzheng; Cao, Chang; Xu, Jiaping; Hu, Cheng; Shen, Jing; Liu, Shoudong; Lee, Xuhui

    2016-01-01

    Stable isotopic compositions of lake water provide additional information on hydrological, meteorological and paleoclimate processes. In this study, lake water isotopic compositions were measured for more than three years in Lake Taihu, a large and shallow lake in southern China, to investigate the isotopic spatial and seasonal variations. The results indicated that (1) the whole-lake mean δ(2)H and δ(18)O values of the lake water varied seasonally from -48.4 ± 5.8 to -25.1 ± 3.2 ‰ and from -6.5 ± 0.9 to -3.5 ± 0.8 ‰, respectively, (2) the spatial pattern of the lake water isotopic compositions was controlled by the direction of water flow and not by local evaporation rate, and (3) using a one-site isotopic measurement to represent the whole-lake mean may result in unreasonable estimates of the isotopic composition of lake evaporation and the lake water residence time in poorly mixed lakes. The original data, documented here as an online supplement, provides a good reference for testing sensitivity of lake water budget to various isotopic sampling strategies. We propose that detailed spatial measurement of lake water isotopic compositions provides a good proxy for water movement and pollutant and alga transports, especially over big lakes.

  4. Estimating plant water uptake source depths with optimized stable water isotope labeling

    NASA Astrophysics Data System (ADS)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  5. Distribution of stable isotopes in ground water in the Rialto-Colton basin, California

    USGS Publications Warehouse

    Woolfenden, Linda R.

    1993-01-01

    Since 1982, imported water originating in the Sierra Nevada has been used to recharge the Rialto-Colton ground-water basin, about 100 km east of Los Angeles. Stable isotopes of oxygen (oxygen-18) and hydrogen (deuterium) were used to determine the disposition of artificially recharged, imported water within the basin. Delta oxygen-18 ratios in water from wells sampled in spring and summer 1992 ranged from -7.65 to -10 permil. Delta deuterium ratios ranged from -46.5 to -65.0 permil. The imported water is isotopically lighter than the native ground water in the basin. For the imported water, delta oxygen- 18 ratios ranged from -8.6 to -10.1 permil, and delta deuterium ratios ranged from -65 to -75 permil. The isotope data show no evidence of mixing between the imported water and the native ground water in the sampled wells. Statistical analyses show that the difference in the isotopic composition of the imported water and the native ground water is highly significant and that the stable isotopes of oxygen and hydrogen can be used to determine the fate and movement of the imported water in the Rialto-Colton basin.

  6. The use of stable isotopes in quantitative determinations of exogenous water and added ethanol in wines

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Moldovan, Z.; Cristea, G.

    2012-02-01

    The application of oxygen isotope ratios analysis to wine water according to EU regulation no. 822/97 to determine wine's origin and also, the possible water addition to wines, gained great importance in wines authenticity control. In the natural cycle of water isotopic fractionation, during water evaporation process, the water vapors are depleted in heavy isotopes. On the other hand inside the plants take place an isotope enrichment of heavy stable isotopes of water compared with meteoric water due to photosynthesis and plants transpiration. This process makes possible the detection of exogenous water from wines 18O/16O ratios. Carbon isotopic ratios were used to estimate the supplementary addition of ethanol obtained from C4 plants (sugar cane or corn). This work presents the way in which the isotopic fingerprints (δ13C and δ18O) were used to determine the content of exogenous water from wines and the added supplementary ethanol coming from C4 plants. By using this method, the calculated values obtained for the degree of wine adulteration were in a good agreement with the real exogenous percent of water and ethanol from investigated samples.

  7. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water—USGS50 Lake Kyoga Water

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.

    2015-01-01

    This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.

  8. A direct measurement of the stable isotopes of transpired water vapor in a northern Michigan forest

    NASA Astrophysics Data System (ADS)

    Aron, P.; Poulsen, C. J.; Fiorella, R.

    2016-12-01

    The stable isotopes of oxygen and hydrogen in water vapor track hydrologic processes as phase changes of water preferentially partition heavy isotopes (18O and 2H) into the condensate and light isotopes (16O and 1H) into the vapor phase. As a result, the isotopic composition of water vapor can be used to identify water fluxes and cycling through natural environments. Forest water vapor is comprised of terrestrial (evaporation and transpiration) and atmospheric (tropospheric mixing, precipitation, and condensation) components. Within the isotopic record of forest water vapor, stable isotopes of transpired water (δT) comprise an important component but is typically either assumed to be non-fractionating or estimated indirectly. However, on small time scales (minutes to hours), non-steady state forest systems experience isotopic enrichment during early morning and late afternoon when transpiration rates are low. We deployed two Picarro Cavity Ring-Down spectrometers (L2120-i and L2130-i, respectively) in the University of Michigan Biological Station (UMBS) forest near Pellston, MI to measure the isotopic composition of near-surface ambient water vapor and the transpired vapor component directly. Both ambient and transpired water vapor were measured at three heights above the forest floor (2, 10, and 20 m) during August 2016. To measure species-specific water use, δT was measured on red maple (Acer rubrum) and northern red oak (Quercus rubra), two of the dominant tree types in the UMBS forest. This work represents the first direct measurement of δT in the UMBS forest and will help decouple local and species-specific hydrologic cycling. Beyond UMBS, this measurement will allow for a better understanding of species-specific plant hydraulics and help identify when the steady state approximation of transpiration is valid, which can be used to study water use and forest health.

  9. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  10. Investigating surface water-well interaction using stable isotope ratios of water

    USGS Publications Warehouse

    Hunt, R.J.; Coplen, T.B.; Haas, N.L.; Saad, D.A.; Borchardt, M. A.

    2005-01-01

    Because surface water can be a source of undesirable water quality in a drinking water well, an understanding of the amount of surface water and its travel time to the well is needed to assess a well's vulnerability. Stable isotope ratios of oxygen in river water at the City of La Crosse, Wisconsin, show peak-to-peak seasonal variation greater than 4??? in 2001 and 2002. This seasonal signal was identified in 7 of 13 city municipal wells, indicating that these 7 wells have appreciable surface water contributions and are potentially vulnerable to contaminants in the surface water. When looking at wells with more than 6 sampling events, a larger variation in ??18O compositions correlated with a larger fraction of surface water, suggesting that samples collected for oxygen isotopic composition over time may be useful for identifying the vulnerability to surface water influence even if a local meteoric water line is not available. A time series of ??18O from one of the municipal wells and from a piezometer located between the river and the municipal well showed that the travel time of flood water to the municipal well was approximately 2 months; non-flood arrival times were on the order of 9 months. Four independent methods were also used to assess time of travel. Three methods (groundwater temperature arrival times at the intermediate piezometer, virus-culture results, and particle tracking using a numerical groundwater-flow model) yielded flood and non-flood travel times of less than 1 year for this site. Age dating of one groundwater sample using 3H-3He methods estimated an age longer than 1 year, but was likely confounded by deviations from piston flow as noted by others. Chlorofluorocarbons and SF6 analyses were not useful at this site due to degradation and contamination, respectively. This work illustrates the utility of stable hydrogen and oxygen isotope ratios of water to determine the contribution and travel time of surface water in groundwater, and

  11. Tritium and Stable Isotopes of Precipitation and Surface Water in California

    NASA Astrophysics Data System (ADS)

    Harms, P.; Moran, J. E.; Visser, A.; Esser, B. K.

    2014-12-01

    Tritium (3H) and stable isotopes (2H and 18O) are effective natural tracers of water molecules through the hydrologic system. The strong topographic gradient in California results in distinct isotopic signatures that are particularly effective in watershed studies. Past studies of meteoric tritium distribution within the United States have focused on large-scale trends, at low spatial resolution. Globally, tritium in precipitation is monitored by the International Atomic Energy Agency contributing to the Global Network of Isotopes in Precipitation (GNIP) database. The two tritium monitoring stations in California contributing to the GNIP database were discontinued in 1976 (Santa Maria) and 1993 (Menlo Park). Surface water studies have focused on time series in major rivers nationwide or localized studies. Our study focuses on high spatial resolution water isotope data collection in California. Over 140 tritium and stable water isotope samples were collected from surface water and direct precipitation during the 2013 Summer/Fall and 2014 Winter/Spring flow regimes and analyzed by helium accumulation and noble gas mass spectrometry. Surface water samples are collected as a proxy for precipitation and to investigate trends related to water residence times. Tritium concentrations in precipitation show strong spatial trends, with higher concentrations at inland high elevation locations. Surface water tritium trends with spatial location (latitude and longitude) and elevation (reflecting the precipitation signal) and distance downstream (reflecting water residence times). A local meteoric water line (MWL) for California is developed from stable isotope data and analyzed in comparison to the global MWL. Results have implications for tritium tracer and water provenance studies.

  12. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    PubMed

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher.

  13. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  14. Effect of accumulation rate on water stable isotopes of near-surface snow in inland Antarctica

    NASA Astrophysics Data System (ADS)

    Hoshina, Yu; Fujita, Koji; Nakazawa, Fumio; Iizuka, Yoshinori; Miyake, Takayuki; Hirabayashi, Motohiro; Kuramoto, Takayuki; Fujita, Shuji; Motoyama, Hideaki

    2014-01-01

    changes in water stable isotopes in polar firn were investigated at three sites characterized by different accumulation rates along the East Antarctic ice divide near Dome Fuji. Water stable isotopes, major ion concentrations, and tritium contents of three 2-4 m deep pits were measured at high resolution (2 cm). Temporally, the snow pits cover the past 50 years with snow accumulation rates in the range of 29-41 kg m-2 a-1 around Dome Fuji. Oxygen isotopic profiles in the three pits do not show annual fluctuations, but instead exhibit multiyear cycles. These multiyear cycles are lower in frequency at Dome Fuji as compared with the other two sites. Peaks of water stable isotopes in the multiyear cycles correspond to some ion concentration minima in the pits, although such relationships are not observed in coastal regions. We propose that the extremely low accumulation environment keeps the snow layer at the near surface, which result in postdepositional modifications of isotopic signals by processes such as ventilation and vapor condensation-sublimation. We estimate that oxygen isotopic ratios could be modified by >10‰ and that the original seasonal cycle could be completely overprinted under the accumulation conditions at Dome Fuji. Moreover, stake measurements at Dome Fuji suggest that the large variability in snow accumulation rate is the cause of the multiyear cycles.

  15. The Importance of Plant Growth and Unsaturated Zone Mixing for Modeling Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    Knighton, J.; Saia, S. M.; Morris, C. K.; Walter, M. T.

    2016-12-01

    Simulation of naturally occurring stable water isotopes (e.g. δ18O and δ2H) has allowed watershed engineers to make inferences on hydrologic model calibration, precipitation patterns, flow pathways, watershed mixing, and watershed transit times. We propose that several ecohydrologic concepts can be incorporated into these models to improve simulation of watershed fractionation. We modify the existing hydrologic model JoFlo to track stable water isotopes for an infiltration excess watershed in Pennsylvania, USA. We demonstrate that incorporation of unsaturated zone mixing is an important consideration for proper simulation of groundwater and streamflow isotopic composition. We next demonstrate that proper partitioning of evaporation and transpiration is critical to proper representation of the isotopic signature of water held in the unsaturated zone, plant xylem, and evaporated water. Though stable water isotopes provide hydrologists with additional information, the use of these data is improved greatly when we incorporate ecohydrologic concepts such as plant growth, evapotranspiration partitioning, and unsaturated zone mixing to properly simulate the dynamics and seasonality of δ18O throughout the hydrologic cycle.

  16. Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders

    PubMed Central

    McCluney, Kevin E.; Sabo, John L.

    2010-01-01

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change. PMID:21209877

  17. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2010-12-31

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  18. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology

    NASA Astrophysics Data System (ADS)

    Sturm, C.; Zhang, Q.; Noone, D.

    2009-06-01

    Stable water isotopes have been measured in a wide range of climate archives, with the purpose of reconstructing regional climate variations. Yet the common assumption that the isotopic signal is a direct indicator of temperature proves to be misleading under certain circumstances, since its relationship with temperature also depends on e.g. atmospheric circulation and precipitation seasonality. The present article introduces the principles, benefits and caveats of using climate models with embedded water isotopes as a support for the interpretation of isotopic climate archives. A short overview of the limitations of empirical calibrations of isotopic proxy records is presented, with emphasis on the physical processes that infirm its underlying hypotheses. The simulation of climate and its associated isotopic signal, despite difficulties related to downscaling and intrinsic atmospheric variability, can provide a "transfer function" between the isotopic signal and the considered climate variable. The multi-proxy data can then be combined with model output to produce a physically consistent climate reconstruction and its confidence interval. A sensitivity study with the isotope-enabled global circulation model CAM3iso under idealised present-day, pre-industrial and mid-Holocene is presented to illustrate the impact of a changing climate on the isotope-temperature relationship.

  19. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for

  20. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  1. Selenium stable isotope ratios in California agricultural drainage water management systems.

    PubMed

    Herbel, Mitchell J; Johnson, Thomas M; Tanji, Kenneth K; Gao, Suduan; Bullen, Thomas D

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  2. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  3. Continual in-situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2013-11-01

    The stable isotope signature of pore water provides an integral fingerprint of water origin, flow path, transport processes, and residence times and can thus serve as a powerful tracer of hydrological processes in the unsaturated and saturated zone. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive detailed and continual measurements of spatiotemporally variable pore water signatures. With the development of field-deployable laser-based isotope analyzers, such measurements are now becoming feasible. This study presents the development and application of a functional, automatable, and cost-efficient system for non-destructive continual in-situ monitoring of pore water stable isotope signatures with high resolution. The monitoring system uses automatic-controllable valve arrays to continuously extract diluted soil air water vapor via a branching network of multiple small microporous probes into a commercial isotope analyzer. Soil temperature observations are used to convert obtained vapor phase into liquid phase water isotope signatures, but these can also be obtained based on vapor concentration measurements. In-situ sampling was conducted at six depths for each of three plots planted with varying vegetation on an experimental site in SW Germany. Two different methods based on advective and diffusive soil water vapor probing were employed suitable under unsaturated and all (including saturated) moisture conditions, respectively. The advective sampling method was applied using multiple permanently installed probes (continual mode) and using a single probe subsequently inserted to sample the various locations (push-in mode), while the diffusive sampling method was applied in push-in mode only. Using a specific identical treatment onsite calibration approach along with basic corrections for instrument bias and temperature dependent free water

  4. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  5. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, Jelka; Knohl, Alexander

    2017-04-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements for investigating fluxes of stable isotopologues became feasible. So far very few case studies have applied the EC method to measure stable isotopes in water vapor. We continuously measure fluxes of water vapor isotopologues with the EC method in a managed beech forest in Thuringia, Germany, since autumn 2015 using the following setup: An off-axis integrated cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument, that was optimized for high flow rates (app. 4slpm) to generate high frequency (2Hz) measurements, showed sufficient precision with Allan Deviations of app. 0.12 ‰ for δD and 0.06 ‰ for δ18O for averaging periods of 100s. The instrument was calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers strong concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. In the used setup, the high-flow and high-frequency optimized water vapor isotope analyzer (WVIA) showed suitable characteristics (Allan deviation and spectral energy distribution) to perform Eddy covariance measurements of stable isotopes in H2Ov. Thus, this novel instrument for EC measurements of water vapor isotopologues provides a new opportunity for studying the hydrological cycle in long

  6. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential

  7. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential

  8. Winds, Water Budgets and Stable Isotopes in Tropical Cyclones using TRMM and QUICKSCAT

    NASA Technical Reports Server (NTRS)

    Lawrence, James R.

    2004-01-01

    Water vapor is the most abundant greenhouse gas in the atmosphere. Changes in its concentration and distribution are controlled by the hydrologic cycle. Because of its capacity to absorb and emit long wave radiation, release latent heat during condensation in storms and reflect short wave radiation when clouds form it has a major impact on Global climate change. The stable isotope ratios of water are H20 H2l6O and H0 H2l6O. These ratios change whenever water undergoes a phase change. They also change in both rain and water vapor whenever an air parcel is exposed to rain. In addition the relative changes in the two ratios differ as a &nction of the relative humidity. In short, the stable isotope ratios in water vapor in the atmosphere contain an integrated history of the processes affecting the concentration and distribution of water vapor in the atmosphere. Therefore the measurement and interpretation of changes in these stable isotope ratios are a powerful tool matched by no other method in tracing the transport history of water in the atmosphere. Our initial studies under this grant focused on the changes of the stable isotope ratios of precipitation and water vapor in tropical cyclones. The changes in time and space were found to be very large and to trace the transport of water in the storms reflecting changes in basic structural features. Because the stable isotope ratios of rains from tropical cyclones are so low flooding associated with land falling tropical cyclones introduces a negative isotopic spike into the coastal surface waters. In addition the stable isotope ratios of water vapor in the vicinity of tropical cyclones is anomalously low. This suggests that carbonate shelled organisms such as ostracoda living in coastal waters have the potential to record the isotopic spike and thereby provide a long term record of tropical storm activity in sediment cores containing fossil shells. Likewise, tree rings in coastal environments offer a similar potential

  9. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Volkmann, T. H. M.; Blume, T.; Weiler, M.

    2014-10-01

    Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last two decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by numerically solving the Richards equation with the finite-element code of Hydrus-1D. The transport of deuterium was simulated with the advection-dispersion equation, and the Hydrus code was modified to allow for deuterium loss during evaporation. The Mualem-van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a) using only the pore water isotope content cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics, but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c) using both, the isotope profiles and the soil moisture time series resulted in satisfying model performances and good parameter identifiability. However, approach (b) has the

  10. Temporal and Spatial Variation of Surface Water Stable Isotopes in the Marys River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Nickolas, L. B.; Segura, C.; Brooks, J. R.

    2015-12-01

    Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed "rainout effect", which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the Oregon Coastal Range. We hypothesize that catchment orientation, drainage area, geology, and topography act as controlling factors on groundwater flow, storage, and atmospheric moisture cycling, which explain variations in source water contribution. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Preliminary results indicate a significant difference (p<0.001) in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation is the most distinct during the summer when low flows likely reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall & winter) show a greater degree of similarity between the two lithologies. These findings indicate that the more permeable sandstone formations may be hydrologically connected to enriched water sources on the windward side of the Coastal Range that sustain baseflow within catchments on the leeward side, while streams draining basalt catchments are fed by a more depleted source of water (e.g. precipitation originating within the Marys River Basin).

  11. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  12. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes

    SciTech Connect

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    2000-06-01

    Oxygen and hydrogen stable isotope values of precipitation, irrigation water, soil water, and ground water were used with soil-moisture contents and water levels to estimate transit times and pathways of recharge water in the unsaturated zone of a sand and gravel aquifer. Nitrate-nitrogen (nitrate) concentrations in ground water were also measured to assess their relation to seasonal recharge. Stable isotope values indicated that recharge water usually had a transit time through the unsaturated zone of several weeks to months. However, wetting fronts usually moved through the unsaturated zone in hours to weeks. The much slower transit of isotopic signals than that of wetting fronts indicates that recharge was predominantly composed of older soil water that was displaced downward by more recent infiltrating water. Comparison of observed and simulated isotopic values from pure-piston flow and mixing-cell water and isotope mass balance models indicates that soil water isotopic values were usually highly mixed. Thus, movement of recharge water did not occur following a pure piston-flow displacement model but rather follows a hybrid model involving displacement of mixed older soil water with new infiltration water. An exception to this model occurred in a topographic depression, where movement of water along preferential flowpaths to the water table occurred within hours to days following spring thaw as result of depression-focused infiltration of snow melt. In an adjacent upland area, recharge of snow melt occurred one to two months later. Increases in nitrate concentrations at the water table during April-May 1993 and 1994 in a topographic low-land within a corn field were related to recharge of water that had infiltrated the previous summer and was displaced from the unsaturated zone by spring infiltration. Increases in nitrate concentrations also occurred during July-August 1994 in response to recharge of water that infiltrated during May-August 1994. These results

  13. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    2000-01-01

    Oxygen and hydrogen stable isotope values of precipitation, irrigation water, soil water, and ground water were used with soil-moisture contents and water levels to estimate transit times and pathways of recharge water in the unsaturated zone of a sand and gravel aquifer. Nitrate-nitrogen (nitrate) concentrations in ground water were also measured to assess their relation to seasonal recharge. Stable isotope values indicated that recharge water usually had a transit time through the unsaturated zone of several weeks to months. However, wetting fronts usually moved through the unsaturated zone in hours to weeks. The much slower transit of isotopic signals than that of wetting fronts indicates that recharge was predominantly composed of older soil water that was displaced downward by more recent infiltrating water. Comparison of observed and simulated isotopic values from pure-piston flow and mixing-cell water and isotope mass balance models indicates that soil water isotopic values were usually highly mixed. Thus, movement of recharge water did not occur following a pure piston-flow displacement model but rather follows a hydrid model involving displacement of mixed older soil water with new infiltration water. An exception to this model occurred in a topographic depression, where movement of water along preferential flowpaths to the water table occurred within hours to days following spring thaw as result of depression-focused infiltration of snow melt. In an adjacent upland area, recharge of snow melt occurred one to two months later. Increases in nitrate concentrations at the water table during April-May 1993 and 1994 in a topographic lowland within a corn field were related to recharge of water that had infiltrated the previous summer and was displaced from the unsaturated zone by spring infiltration. Increases in nitrate concentrations also occurred during July-August 1994 in response to recharge of water that infiltrated during May-August 1994. These results

  14. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    PubMed

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  15. Linking carbon and water cycles using stable isotopes across scales: progress and challenges

    NASA Astrophysics Data System (ADS)

    Werner, C.; Badeck, F.; Brugnoli, E.; Cohn, B.; Cuntz, M.; Dawson, T.; Gessler, A.; Ghashghaie, J.; Grams, T. E. E.; Kayler, Z.; Keitel, C.; Lakatos, M.; Lee, X.; Máguas, C.; Ogée, J.; Rascher, K. G.; Schnyder, H.; Siegwolf, R.; Unger, S.; Welker, J.; Wingate, L.; Zeeman, M. J.

    2011-03-01

    Stable isotope analysis is a powerful tool for tracing biogeochemical processes in the carbon and water cycles. One particularly powerful approach is to employ multiple isotopes where the simultaneous assessment of the D/H,18O/16O and/or 13C/12C in different compounds provide a unique means to investigate the coupling of water and carbon fluxes at various temporal and spatial scales. Here, we present a research update on recent advances in our process-based understanding of the utilization of carbon, oxygen and hydrogen isotopes to lend insight into carbon and water cycling. We highlight recent technological developments and approaches, their strengths and methodological precautions with examples covering scales from minutes to centuries and from the leaf to the globe.

  16. Stable isotopes in obesity research.

    PubMed

    Dolnikowski, Gregory G; Marsh, Julian B; Das, Sai Krupa; Welty, Francine K

    2005-01-01

    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.

  17. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  18. Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada

    NASA Astrophysics Data System (ADS)

    Holdsworth, G.; Fogarasi, S.; Krouse, H. R.

    1991-04-01

    The stable isotopes of water, measured in melt samples taken from snow pits and cores at locations between 1750- and 5930-m altitude on Mount Logan (5951 m) and between 2900 and 4900 m on Mount Steele (5079 m), in the Saint Elias Mountains, Yukon, show a distinctive altitudinal distribution. Several delta O-18 and delta-D versus altitude profiles indicate the general persistence of a nearly iso-delta step, or staircase structure, separating a lower region of altitude-dependent isotopic fractionation between 1750 and 3350 m from another apparent fractionation sequence appearing above about 5300 m. Both of these sequences, but especially the lower one, indicate orderly processes. On the one hand, postdepositional changes to isotope ratios in snow at different altitudes may cause distortions to an otherwise nearly monotonic isotope fractionation sequence, but the main anomaly appears to be far too large to be explained in this way. On the other hand, an explanation linked to processes occurring in the lower and midtroposphere is based on established meteorological principles as well as on upper air data. This hypothesis is proposed as the primary one to explain the gross features of the observed isotope profiles. It is compatible with the concept of secondary-source moisture arriving via the upper troposphere, and it does not exclude the effects of postdepositional stratigraphic and stable isotope ratio changes.

  19. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  20. Trees growing through impervious surfaces use shallower water sources: a stable isotope study

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ryu, Y.; Lee, D.

    2015-12-01

    Trees growing through impervious surfaces can give an impact on hydrological cycle in urban areas by increasing ground permeability. Even though depth and distribution of the root can substantially alter the hydrological cycle, only a few studies have dealt with rooting depth and water use of trees growing through impervious surfaces. We compared the water sources of trees growing through impervious and pervious surfaces using a non-destructive stable isotope approach. We measured oxygen and hydrogen isotopic compositions from stem water and other potential water sources before and during the wet season. Oxygen and hydrogen isotopic compositions of stem water were measured, indicating that trees growing through the impervious surfaces used isotopically enriched water in both periods. An IsoSource model applied in the wet season showed that trees growing through impervious surfaces took most of their water from depths of around 20 cm, while the control trees took the greatest portion from a depth of 100 cm. Our results imply that urban trees growing through impervious surfaces might be vulnerable to drought and show the distinctive effect of urban plants on the redistribution of hydrological components.

  1. Identifying drivers of leaf water and cellulose stable isotope enrichment in Eucalyptus in northern Australia.

    PubMed

    Munksgaard, N C; Cheesman, A W; English, N B; Zwart, C; Kahmen, A; Cernusak, L A

    2017-01-01

    Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ(18)O and δ(2)H values in eucalypt leaf and stem water and δ(18)O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig-Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed (18)O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while (2)H enrichment is driven mainly by variation in the water vapour-source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig-Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric-leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ(18)O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ(18)O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.

  2. Stable isotopes in river waters in the Tajik Pamirs: regional and temporal characteristics.

    PubMed

    Meier, Christiane; Knoche, Malte; Merz, Ralf; Weise, Stephan M

    2013-01-01

    The Gunt River catchment in the Central Pamirs is a representative of the headwater catchments of the Aral Sea Basin. It covers 14,000 km(2), spanning altitudes between 2000 and 6700 m a.s.l. In a monitoring network, water samples were taken at 30 sampling points every month and analysed for the stable water isotopes ((18)O and (2)H). Our first results show δ(2)H values in the range from-131.2 to-94.9 ‰ and δ(18)O values from-18.0 to-14.0 ‰. The stable isotope patterns in the catchment seem to follow a systematic way, dominated by an altitude effect with a mean Δ δ(2)H=-3.6 ‰/100 m. The observed seasonal variations can be explained by geographical aspects such as the influence of different wind systems as well as melting processes.

  3. Comparative Hydrology Over Monsoonal Regions Using Seasonal Distributions of Stable Water Isotopes.

    NASA Astrophysics Data System (ADS)

    Brown, D. P.; Worden, J.; Noone, D. C.

    2007-12-01

    The hydrologic regimes of monsoonal regions contain complex balances of large-scale advective supply of water, surface exchange and atmospheric condensation, which are important for the regional energy balance and climate. Stable water isotopes are powerful tools for studying such processes, as isotopic fractionations occurring during evaporation and condensation give rise to measurable variations in the isotopic composition that reflects the history of moist processes for each observed air parcel. The HDO/H2O data set from the Tropospheric Emission Spectrometer (TES) on NASA's Aura spacecraft offers a unique global view of the isotopic composition of water vapor. The TES data set, and the analysis here, is complimentary to previous work using isotopic ratios in precipitation; however it need not be that the simple relationships found in the precipitation data hold for the atmospheric vapor case because of the variability induced by atmospheric mixing and convection. Over tropical continents, the intensity of water vapor recycling, precipitation rates and circulation patterns are thought to dominate the seasonal isotopic composition of water vapor and rainfall. By examining and contrasting the isotopic budgets of the Amazon, north Australia, and Asian monsoon regions, we gain insight into these hydrological processes, show which processes are regionally robust, and expose those processes that are regionally unique. To establish the importance of local processes on the regional isotopic composition, we first examine the relationship between the measured isotopic composition and meteorological parameters that capture the strength of the local processes. Secondly, we use the history of condensation, evaporation and air mass mixing during transport from five-day origin locations to the local TES observations, and the isotopic ratios of vapor at both locations, to examine isotopic changes that occur upstream. Using this information, as well as a simple isotopic exchange

  4. Late Cretaceous bottom waters in south Atlantic using benthonic foraminifera and stable isotopes

    SciTech Connect

    Gilmour, W.B.; Douglas, R.G.

    1987-05-01

    Benthonic foraminifera and stable isotopes were used to evaluate the history of bottom water 70-74 Ma in the south Atlantic. Site 355 was above the CCD at a backtracked depth of 3400 +/- 300 m. The assemblages are interpreted as autochthonous and contain a mixture of upper-to-middle bathyal species (e.g., Gavelinella whitei, Gyroidinoides bandyi, and G. goudkoffi) and abyssal species. In the Argentine basin, Site 358 was below the CCD at a backtracked depth of 3700 + 300 m. Unlike Site 355, bathyal foraminifera present at Site 358 are interpreted as redeposited below the CCD. The different foraminiferal dissolution depths in the Brazil and Argentine basins indicate different bottom water chemistries and are reflected in oxygen and carbon isotope ratios of foraminiferal tests. Average oxygen isotope ratios at Site 355 are heavier than those at Site 358 by 3.3 per thousand, in part as the result of secondary calcite overgrowths on tests at Site 358. Average carbon isotope ratios at Site 355 are heavier than those at Site 358 by 0.9 per thousand. Bottom waters in the Brazil basin were different from those in the Argentine basin and may have been warm saline bottom waters (WSBW) like those proposed by Brass et al in 1982. This is supported by broad foraminiferal distributions, light oxygen ratios (warm water mass), heavy carbon ratios (young water mass), and a deeper calcite compensation depth in the Brazil basin.

  5. Evapotranspiration partitioning in a semi-arid African savanna using stable isotopes of water vapor

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Good, S. P.; O'Connor, M.; King, E. G.; Caylor, K. K.

    2012-04-01

    Evapotranspiration (ET) represents a major flux of water out of semi-arid ecosystems. Thus, understanding ET dynamics is central to the study of African savanna health and productivity. At our study site in central Kenya (Mpala Research Centre), we have been using stable isotopes of water vapor to partition ET into its constituent parts of plant transpiration (T) and soil evaporation (E). This effort includes continuous measurement (1 Hz) of δ2H and δ18O in water vapor using a portable water vapor isotope analyzer mounted on a 22.5 m eddy covariance flux tower. The flux tower has been collecting data since early 2010. The isotopic end-member of δET is calculated using a Keeling Plot approach, whereas δT and δE are measured directly via a leaf chamber and tubing buried in the soil, respectively. Here we report on a two recent sets of measurements for partitioning ET in the Kenya Long-term Exclosure Experiment (KLEE) and a nearby grassland. We combine leaf level measurements of photosynthesis and water use with canopy-scale isotope measurements for ET partitioning. In the KLEE experiment we compare ET partitioning in a 4 ha plot that has only seen cattle grazing for the past 15 years with an adjacent plot that has undergone grazing by both cattle and wild herbivores (antelope, elephants, giraffe). These results are compared with a detailed study of ET in an artificially watered grassland.

  6. Dew water effects on leaf water using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lee, X.

    2009-12-01

    The presence of dew is a common meteorological phenomenon in field conditions and takes into account for significant portion of hydrologic processes in terrestrial ecosystems. The isotope composition of leaf water plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. However, the consequence of dew formation in the plant-atmosphere relations has been ignored in many studies. The objective of this study is to improve our understanding of environmental and biological controls on the leaf water in equilibrium with dew water through laboratory experiments. Five species of plants (soybean, corn, sorghum, wheat, cotton) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. Humidity inside the container was saturated to mimic dew events in field conditions. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of the isotopic ratio of leaf water in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of the isotopic ratio of leaf water differ between the C3 and C4 photosynthesis pathways.

  7. Precipitation water stable isotope measurements and analyses in Middle and Polar Ural

    NASA Astrophysics Data System (ADS)

    Stukova, Olga; Gribanov, Konstantin; Zakharov, Vyacheslav; Cattani, Olivier; Jouzel, Jean

    2015-11-01

    In this paper, we present results of precipitation (rain, snow) water stable isotope measurements, which were collected on two places. Measuring was made on laser spectroscopy analyzer PICARRO L2130-i equipped with liquid auto sampler. We describe method of sample collecting, preparing, measuring and continuing analysis of experimental data. Stored data include results of 177 samples measuring from Kourovka collected from November 2012 to March 2014 and 73 samples from Labytnangi collected from March 2013 to December 2013.

  8. Characterizing different spring systems in the Berchtesgaden Alps using stable water isotopes

    NASA Astrophysics Data System (ADS)

    Garvelmann, Jakob; Warscher, Michael; Franz, Helmut; Lotz, Annette; Kunstmann, Harald

    2016-04-01

    An extensive sampling campaign was started in January 2012 in the Berchtesgaden Alps located in the southeast of Germany. Monthly samples at 8 springs, 5 stream gauges and bulk samples of precipitation at 7 sites were collected since then. The samples were analyzed for the stable water isotopes oxygen-18 and deuterium. The sampled water systems are characterized by very different dynamics of the stable isotope signatures. Time series of precipitation stable isotope signatures were derived from the GNIP dataset in order to extend the dataset beyond the start of the sampling campaign. Mean residence times (MRT) of the spring systems and surface water streams were calculated using the exponential model and the sine curve approach. Both approaches yield very similar MRT for the studied water systems. Based on this analysis two groups of spring systems could be identified. One group with relatively short MRT of 1-2 years and another group with longer MRT of about 10-12 years. Those results were consequently discussed and interpreted in the context of a large body of literature existing on the hydrogeology in the Berchtesgaden Alps area. The springs characterized by short MRT are located in geological situations with karstified limestone, dolomite or shell limestone. Previous dye tracer experiments in those areas revealed very efficient drainage systems with fast flowpaths. The spring systems with longer MRT are located in areas with large bodies consisting of quaternary debris and talus material and can be considered as porous aquifers with relatively long flow paths with low flow velocities. The influence of the stable isotope signature and hence the MRT observed at the springs is also reflected in the downstream surface water stable isotope signatures showing the importance of the spring water for river discharge in the study area. The results of the study provide interesting insights into the different dynamics of spring systems and surface water bodies controlled by

  9. Ground cover influence on evaporation and stable water isotopes in soil water

    NASA Astrophysics Data System (ADS)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  10. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Volkmann, T. H. M.; Blume, T.; Weiler, M.

    2015-06-01

    Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem-van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling-Gupta efficiency and good parameter

  11. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from

  12. Eddy Covariance measurements of stable isotopes (δD and δ18O) in water vapor

    NASA Astrophysics Data System (ADS)

    Braden-Behrens, J.; Knohl, A.

    2016-12-01

    Stable isotopes are a promising tool to enhance our understanding of ecosystem gas exchanges. Studying 18O and 2H (D) in water vapour (H2Ov) can e.g. help partitioning evapotranspiration into its components. With recent developments in laser spectroscopy direct Eddy Covariance (EC) measurements to investigate fluxes of stable isotopologues became feasible. But so far only very few case studies applying the EC method to stable isotopes in water vapor have been carried out worldwide At our micrometeorological EC tower in a managed beech forest in Thuringia, Germany, we continuously measure fluxes of water vapor isotopologues using EC since autumn 2015. The set-up is based on an off-axis cavity output water vapor isotope analyzer (WVIA, Los Gatos Research. Inc, USA) that measures the water vapour concentration and its isotopic composition (δD and δ18O). The instrument is optimized for high flow rates (app. 4slpm) to generate high frequent (2Hz) measurements. The HF-optimized WVIA showed sufficient precision with a minimal Allan Deviation of 0.023 ‰ for δD and 0.02 ‰ for δ18O for averaging periods of app. 700 s and 400 s resp. The instrument is calibrated hourly using a high-flow optimized version of the water vapor isotope standard source (WVISS, Los Gatos Research. Inc, USA) that provides water vapor with known isotopic composition for a large range of different concentrations. Our calibration scheme includes a near continuous concentration range calibration instead of a simple 2 or 3-point calibration to face the analyzers large concentration dependency within a range of app. 6 000 to 16 000 ppm in winter and app. 8 000 to 23 000 ppm in summer. We evaluate the calibration approach, present specific aspects of the set-up such as the HF optimization and compare the measured and averaged spectra and cospectra of the isotopologue analyzer with those of the longterm EC installation (using a LI-6262 as well as a LI-7200 infrared gas analyzer at 10 Hz). Furthermore

  13. Water masses along the OVIDE 2010 section as identified by oxygen and hydrogen stable isotope values

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Thierry, Virginie

    2016-04-01

    The OVIDE transect between the western Iberian Peninsula and the southern tip of Greenland is one of the hydrographic sections in the North Atlantic that is measured regularly to identify changes in water mass formation and transport and thus to evaluate the state of the Atlantic Meridional Overturning Circulation (Mercier et al., 2015; García-Ibáñez et al., 2015; both in Progr. in Oceanography). During the OVIDE 2010 campaign seawater samples covering the complete water column were collected on the section between Portugal and the Reykjanes ridge for stable isotope analyses. Oxygen (δ18O) and hydrogen (δD) stable isotope values were measured simultaneously by cavity ring-down laser spectroscopy using a L1102-i Picarro water isotope analyser at the Godwin Laboratory for Paleoclimate Research (Univ. Cambridge, UK). Within the upper water column the stable isotope values clearly mark the positions of the Portugal Current (40.3°N 11°W), the North Atlantic Drift (46.2°N 19.4°W) and of the subarctic front (51°N 23.5°W). Up to Station 36 (47.7°N 20.6°W) an upper (around 600 m) and lower (around 1000 m) branch of the Mediterranean Outflow water (MOW) can clearly be distinguished by high oxygen (0.5-0.7‰) and hydrogen (3-5‰) values. At Station 28 (42.3°N 15.1°W) strong MOW influence is also indicated between 1400 and 1600 m. In the west European Basin, lower oxygen isotope values reveal the presence of Labrador Sea Water (LSW) below the MOW (down to 2200 m). Close to and west of the subarctic front this water mass shallows and occupies the complete interval between 1000 and 2000 m water depth. In the Iceland basin, two additional levels with lower oxygen isotope values are observed. The deeper level (2200-3500 m) marks Iceland Scotland Overflow Water (ISOW) that based on its distinct isotopic signature (δ18O ≤ 0.25‰) can be traced as far east as 18.5°W (down to at least 3500 m). Close to the Reykjanes ridge both, the ISOW and LSW, are also

  14. Stable isotopes of water in estimation of groundwater dependence in peatlands

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2016-04-01

    Peatland hydrology and ecology can be irreversibly affected by anthropogenic actions or climate change. Especially sensitive are groundwater dependent areas which are difficult to determine. Environmental tracers such as stable isotopes of water are efficient tools to identify these dependent areas and study water flow patterns in peatlands. In this study the groundwater dependence of a Finnish peatland complex situated next to an esker aquifer was studied. Groundwater seepage areas in the peatland were localized by thermal imaging and the subsoil structure was determined using ground penetrating radar. Water samples were collected for stable isotopes of water (δ18O and δ2H), temperature, pH and electrical conductivity at 133 locations of the studied peatland (depth of 10 cm) at approximately 100 m intervals during 4 August - 11 August 2014. In addition, 10 vertical profiles were sampled (10, 30, 60 and 90 cm depth) for the same parameters and for hydraulic conductivity. The cavity ring-down spectroscopy (CRDS) was applied to measure δ18O and δ2H values. The local meteoric water line was determined using precipitation samples from Nuoritta station located 17 km west of the study area and the local evaporation line was defined using water samples from lake Sarvilampi situated on the studied peatland complex. Both near-surface spatial survey and depth profiles of peatland water revealed very wide range in stable isotope composition, from approximately -13.0 to -6.0 ‰ for δ18O and from -94 to -49 ‰ for δ2H, pointing to spatially varying influence of groundwater input from near-by esker aquifer. In addition, position of the data points with respect to the local meteoric water line showed spatially varying degree of evaporation of peatland water. Stable isotope signatures of peatland water in combination with thermal images delineated the specific groundwater dependent areas. By combining the information gained from different types of observations, the

  15. A stable isotope study of water movements with typical vegetation cover in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Li, Jing

    2015-04-01

    The stable isotope 2H and 18O are often used as natural tracers in subsurface water pathways in semi-arid areas. The stable isotopic compositions in precipitation, soil water and groundwater were observed to assess the temporal variations in soil water flow at three sites covered by grass (Carex humili and Carex lanceolata) (site A), poplar (Ponulus hopeiensis) (site B) and winter wheat (Triticum asetivum) and summer maize (Zea mays) (site C) in the shallow groundwater area in the North China Plain (NCP) from April 2012 to October 2013. Precipitation isotopes resulted in a meteoric water line of δ2H =7.6δ18O -3.7 and showed a typical seasonal variation for δ2H (-98.9 to -13.3) and δ18O (-12.0 to -1.7). The seasonality in the shallow groundwater was further subdued due to the evaporation and mixing and diffusional exchange with stored water held in the soil pores within the unsaturated zone. Shallow groundwater was mainly recharged by precipitation in the rainy season. Soil water isotope profiles were sampled at depths of 10 cm down to 150 cm every 10 cm for the three sites. The vertical profiles of soil water δ18O showed large variations in the superficial 10 cm layer under the precipitation input and evapotranspiration effects. The soil water δ18O decreased and soil moisture increased with depth ( 70 cm) due to continuously evapotranspiration for the three sites though that at site B showed more positive δ18O values and smaller soil moisture than those at site A and C. The signal of individual rainstorm event in the summer with low δ18O values could be traced down to a depth of 40 cm that mixed with antecedent mobile soil water and to 120 cm due to a fast and direct preferential infiltration of the input rainwater that bypassed the upper soil layer at sites B and C. Keywords: stable isotopes; soil water pathways; groundwater recharge; North China Plain

  16. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  17. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues

    PubMed Central

    Hobson, Keith A.; Atwell, Lisa; Wassenaar, Leonard I.

    1999-01-01

    Despite considerable interest in using stable-hydrogen isotope ratio (δD) measurements in ecological research, it was previously unknown whether hydrogen derived from drinking water, in addition to that derived from diet, contributed to the nonexchangeable hydrogen in animal tissues. We raised four experimental groups of quail (Coturnix coturnix japonica) from hatch on two isotopically distinct diets (mean nonexchangeable δD: −146 and −60‰, Vienna Standard Mean Ocean Water Standard) and drinking waters (mean δD: −130 and +196‰, Vienna Standard Mean Ocean Water Standard). Here we show that both dietary and drinking water hydrogen are incorporated into nonexchangeable hydrogen in both metabolically active (i.e., muscle, liver, blood, fat) and inactive (i.e., feather, nail) tissues. Approximately 20% of hydrogen in metabolically active quail tissues and 26–32% of feathers and nail was derived from drinking water. Our findings suggest environmental interpretations of δD values from modern and fossil animal tissues may need to account for potentially large isotopic differences between drinking water and food and require a good understanding of the physiological ecology of study organisms. PMID:10393937

  18. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues.

    PubMed

    Hobson, K A; Atwell, L; Wassenaar, L I

    1999-07-06

    Despite considerable interest in using stable-hydrogen isotope ratio (deltaD) measurements in ecological research, it was previously unknown whether hydrogen derived from drinking water, in addition to that derived from diet, contributed to the nonexchangeable hydrogen in animal tissues. We raised four experimental groups of quail (Coturnix coturnix japonica) from hatch on two isotopically distinct diets (mean nonexchangeable deltaD: -146 and -60 per thousand, Vienna Standard Mean Ocean Water Standard) and drinking waters (mean deltaD: -130 and +196 per thousand, Vienna Standard Mean Ocean Water Standard). Here we show that both dietary and drinking water hydrogen are incorporated into nonexchangeable hydrogen in both metabolically active (i.e., muscle, liver, blood, fat) and inactive (i.e., feather, nail) tissues. Approximately 20% of hydrogen in metabolically active quail tissues and 26-32% of feathers and nail was derived from drinking water. Our findings suggest environmental interpretations of deltaD values from modern and fossil animal tissues may need to account for potentially large isotopic differences between drinking water and food and require a good understanding of the physiological ecology of study organisms.

  19. Stable water isotopes and large-scale vertical motions in the tropics

    NASA Astrophysics Data System (ADS)

    Torri, Giuseppe; Ma, Ding; Kuang, Zhiming

    2017-04-01

    A complete understanding of the interaction between convection and the large-scale circulation in the tropics remains an outstanding problem. Although there is evidence that the vertical structure of convective heating has great influence in the large-scale response and that this structure also presents considerable geographical variations, more need to be done. One of the questions that are still unanswered is how the vertical structure of the convective heating, or, similarly, of vertical velocity, varies across the tropical Pacific. Here it is suggested that some light can be shed on this debate by considering stable water isotopes. Because these tend to be progressively less abundant with increasing height, precipitation associated with top heavy profiles should be expected to be more depleted than that associated with bottom heavy profiles. This claim is verified with a variety of data: first, using observations from IAEA/WMO Global Network of Isotopes in Precipitation stations; then, using a simple model based on the budget of water isotopes in precipitation; finally, using a more complex isotope-enabled general circulation model. Evidence provided by these sources confirms that different structures of vertical velocities are associated with different isotopic abundances, with top heavy profiles giving rise to more depleted rainfall. Finally, the data from over the Pacific, although scarce, seem to suggest that precipitation in the eastern part is more enriched than in the western, thus hinting at velocity profiles over the East being more bottom heavy than over the West Pacific.

  20. High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock

    NASA Astrophysics Data System (ADS)

    Barbour, S. Lee; Hendry, M. Jim; Carey, Sean K.

    2016-03-01

    Characterization of the rate of water migration through unsaturated mine waste rock dumps is an essential element in assessing the chemical loading from these landforms; yet our understanding of how water moves into, through and out of waste rock is incomplete. To further understand the rates and magnitude of percolation through waste rock, deep high-resolution (every 0.1-4.5 m) depth profiles of the stable isotopes of water (δ2H and δ18O) at two coal waste rock dumps and a natural alluvial deposit down-gradient of one of the dumps were collected in the Elk Valley, British Columbia, Canada. The profiles were generated using vapor equilibrium techniques applied to continuous core samples collected using dry sonic drilling methods. Elevated core temperatures (up to 80 °C) were measured during sonic coring. The isotopic values of pore waters measured in the core samples were corrected for water loss to the atmosphere attributed to the elevated core temperatures. The average isotopic composition of the core samples were compared to water collected from rock drains discharging from the base of the dumps. The results indicate that high-resolution profiles of δ2H and δ18O can be measured to depths of 86 m in coal waste rock dumps and, based on the seasonal cycles in the isotopic composition of recharging water, can be used to characterize the migration of recharge water within these dumps. These profiles also suggest that recharge into these dumps occurs from both rain as well as snow melt and may be as high as 400-600 mm/yr (60-75% of annual precipitation). Combined with the relatively low volumetric water contents of these dumps (5-10%) the rates of water migration through the dumps are tens of meters each year.

  1. A vastly improved method for in situ stable isotope analysis of very small water samples.

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.

    2016-12-01

    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  2. Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

    USGS Publications Warehouse

    Scholl, M.A.; Giambelluca, T.W.; Gingerich, S.B.; Nullet, M.A.; Loope, L.L.

    2007-01-01

    Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume-weighted average cloud water and rain samples was 1.4??? ??18O and 12??? ??2H for the windward site and 2.8??? ??18O and 25??? ??2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end-member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

  3. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    USGS Publications Warehouse

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  4. A stable isotope approach to assessing water loss in fruits and vegetables during storage.

    PubMed

    Greule, Markus; Rossmann, Andreas; Schmidt, Hanns-Ludwig; Mosandl, Armin; Keppler, Frank

    2015-02-25

    Plant tissue water is the source of oxygen and hydrogen in organic biomatter. Recently, we demonstrated that the stable hydrogen isotope value (δ(2)H) of plant methoxyl groups is a very reliable and easily available archive for the δ(2)H value of this tissue water. Here we show in a model experiment that the δ(2)H values of methoxyl groups remain unchanged after water loss during storage of fruits and vegetables under controlled conditions, while δ(2)H and δ(18)O values of tissue water increase. This enhancement is plant-dependent, and the correlation differs from the meteoric water line. The δ(18)O value is better correlated to the weight decrease of the samples. Therefore, we postulate that the δ(2)H value of methoxyl groups and the δ(18)O value of tissue water are suitable parameters for checking postharvest alterations of tissue water, either addition or loss.

  5. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    PubMed

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  6. [Monitoring and Analysis of Stable Isotopes of the Near Surface Water Vapor in Changsha].

    PubMed

    Xie, Yu-long; Zhang, Xin-ping; Yao, Tian-ci; Huang, Huang

    2016-02-15

    Based on the monitored atmospheric water vapor stable isotopes and observed meteorological elements at Changsha during the period from November 12, 2014 to April 13, 2015, the variations of water vapor stable isotopes and the relationships between isotope ratios and temperature, absolute humidity, precipitation amount were analyzed in this paper. The results indicated that: (1) Seasonal variations of delta18O and 82H in atmospheric water vapor at Changsha were remarkable, with high values in winter. delta18O and delta2H in atmospheric water vapor were positively correlated with absolute humidity in winter. There were some fluctuations of the delta18O and delta2H in atmospheric water vapor, especially when the precipitation events occurred. Precipitation events had a significant effect on the variations of delta18O and delta2H in atmospheric water vapor, and low values were often accompanied with precipitation events; (2) Diurnal Variations of delta18O and delta2H in atmospheric water vapor had a close correlation with the atmospheric water vapor content, whereas the absolute humidity was mainly controlled by the strength of the local evapotranspiration and atmospheric turbulence. The "precipitation amount effect" was observed during the process of a single precipitation event; (3) Values of delta18O and delta2H in atmospheric water vapor were always lower than those of precipitation in Changsha, but he variation trends were completely consistent, the average difference values were 8.6% per hundred and 66.82% per hundred, respectively; (4) The meteoric vapor line (MVL) in cold months was delta2H =7.18 delta18O + 10.58, the slope and intercept of MVL were always lower than those of MWL, and the slope and intercept of MVL in spring were significantly higher than those of winter.

  7. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  8. Marine bivalve feeding strategy, radiocarbon ages and stable isotopes in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    Lo Giudice Cappelli, Elena; Austin, William

    2017-04-01

    microhabitats, as all measured bivalve shells are the same age within the ± 2sigma error. Thus, the main conclusion that can be drawn from our results is that stable isotopes measured in marine bivalve shells can be a very useful source of palaeoenvironmental information in coastal and continental shelf waters, while radiocarbon dating of the same shells provides a reliable chronology of environmental change, regardless of vital effects and differences in microhabitats, feeding strategies and sample location.

  9. Stable isotope investigation of water sources for shrubs in naturally regenerating hillslope farmland

    NASA Astrophysics Data System (ADS)

    Dudley, Bruce; Marttila, Hannu; Graham, Scott; Evison, Ryan; Srinivasan, Mathirimangalam

    2017-04-01

    Shrub encroachment into grasslands is a globally represented process, but resulting changes to catchment water fluxes and stores are not yet well understood. We examined how regenerating woody shrubs into a marginal sub-alpine farmland might alter streamflow that support fertile farmlands downstream. We compared isotope values of shrub stem water to soil water pools at various depths within the vadose zone, groundwater, and stream water, to better understand the temporal patterns of water sources for these plants. We also compared our results with soil moisture and meteorological data, and plant water uptake measured using sapflow sensors. Stable isotope data indicated that the shrubs derived the majority of their water from shallow soils (0-10cm depth), during the summer growing season, and the shrub water use found to be negligible in winter. In contrast, groundwater and streams were fed primarily by precipitation that fell during winter months, and passed quickly to deeper soils. The reliance of shrubs on shallow soil water was also supported by reduced sapflow rates as these soils dried intermittently during late summer. Our results indicate that water loss to streams as a result of the early stages of shrub regeneration is likely to be minor. This is important because the same shrubs are costly to remove but have measureable benefits for sediment retention and soil fertility in sub-alpine farms.

  10. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument.

    PubMed

    Skrzypek, Grzegorz; Ford, Douglas

    2014-01-01

    The analysis of the stable hydrogen and oxygen isotope composition of water using cavity ring-down spectroscopy (CRDS) instruments utilizing infrared absorption spectroscopy have been comprehensively tested. However, potential limitations of infrared spectroscopy for the analysis of highly saline water have not yet been evaluated. In this study, we assessed uncertainty arising from elevated salt concentrations in water analyzed on a CRDS instrument and the necessity of a correction procedure. We prepared various solutions of mixed salts and separate solutions with individual salts (NaCl, KCl, MgCl2, and CaCl2) using deionized water with a known stable isotope composition. Most of the individual salt and salt mixture solutions (some up to 340 g L(-1)) had δ-values within the range usual for CRDS analytical uncertainty (0.1‰ for δ (18)O and 1.0‰ for δ (2)H). Results were not compromised even when the total load of salt in the vaporizer reached ∼38.5 mg (equivalent to build up after running ∼100 ocean water samples). Therefore, highly saline mixtures can be successfully analyzed using CRDS, except highly concentrated MgCl2 solutions, without the need for an additional correction if the vaporizer is frequently cleaned and MgCl2 concentration in water is relatively low.

  11. Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios.

    PubMed

    Brencic, Mihael; Vreca, Polona

    2006-01-01

    Bottled water is a food product that considerably depends on the environment from which it originates, not only at the place where it is produced, but predominantly on the conditions in the recharge area of the wells captured for bottling. According to their source and the bottling process, bottled waters can be divided into natural and artificially sparkling waters, still and flavoured waters. These waters originate from various parts of the hydrological cycle and their natural origin is reflected in their hydrogen and oxygen stable isotopic compositions (delta(2)H and delta(18)O). A total of 58 domestic and foreign brands and 16 replicates of bottled waters, randomly collected on the Slovene market in September 2004, were analysed for delta(2)H and delta(18)O. The isotopic composition varied between -83 per thousand and -46 per thousand with an average of -66 per thousand for hydrogen, and between -11.9 per thousand and -7.5 per thousand with an average of -9.6 per thousand for oxygen. This investigation helped (1) to determine and test the classification of bottled waters, (2) to determine the natural origin of bottled water, and (3) to indicate differences between the natural and production processes. The production process may influence the isotopic composition of flavoured waters and artificially sparkling waters. No such modification was observed for still and natural sparkling waters. The methods applied, together with hydrological knowledge, can be used for the authentication of bottled waters for regulatory and consumer control applications. Copyright (c) 2006 John Wiley & Sons, Ltd.

  12. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  13. Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Barth, Johannes A. C.

    2013-04-01

    Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024

  14. Results from stable isotope investigations of river waters in Western Croatia

    NASA Astrophysics Data System (ADS)

    Häusler, H.; Frančišković-Bilinski, S.; Rank, D.; Stadler, P.; Bilinski, H.

    2012-04-01

    During a campaign lasting from 27 October to 21 November 2010, sixty-one water samples were taken from the Kupa River, the catchment of which is about ten thousand square kilometres in size. Due to the fact that the upper tributaries of e.g. the Čabranka-, Dobra-, Korana-, Mrežnica- and Petrinjčica River comprise karstified Mesozoic carbonate formations, the hydrogeologic catchment of Kupa River extends the hydrologic one by far. The upper Kupa River is mainly charged by springs from big karst reservoirs in the Gorski Kotar mountain range, where a mean groundwater residence time of up to one year has to be considered. The rapid increase of discharge of these tributary rivers results from the rapid increase of discharge of karst wells after melting in springtime as well as from storm events. In general, the minimum mean discharge for all hydrographs in July reveals a dry summer season, with the maximum discharge in August/September resulting from an increase in precipitation. We interpret the d O-18 values of the Čabranka River (of about -8, 07‰) as signals from maritime precipitation in this karstified catchment area. The d O-18 value of upper Kupa River diminishes along its course from -8,09‰ near Osilnica to -9,06‰ west of Karlovac. After the inflow of tributaries south of Karlovac, the oxygen isotope ratio of Kupa River water reveals a significant change because the d O-18 values of the Dobra-, Korana- and Mrežnica River range from -10,45‰ to -9,58‰ . Due to the fact that the catchment of Dobra- and Korana River rises between 400 and 880 metres, we interpret the lower d O-18 values of river waters from recharge areas at those low mean altitudes as not caused by an altitude effect, but instead by precipitation out of more continental air masses. Our interpretation of stable isotope ratios in river waters is based on the relation between the weighted mean d O-18 and the altitude obtained from stations of the Global Network of Isotopes in

  15. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    Water is a key factor driving ecosystem productivity, especially in water-limited ecosystems. A separation of the component fluxes is needed to gain a functional understanding on the development of net ecosystem water fluxes and their coupling with biogeochemical cycles. Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of the distinct isotopic compositions of water in soil and vegetation. In the past, determination of isotopic signatures of evaporative or transpirational fluxes has been challenging since measurements of water vapor isotopes were difficult to obtain using cold-trap methods, delivering data with low time resolution. Recent developments in laser spectroscopy now enable direct high frequency measurements of the isotopic composition of atmospheric water vapor (δv), evapotranspiration (δET), and its components and allow validations of common modeling approaches for estimating δE and δT based on Craig and Gordon (1965). Here, a novel approach was used, combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediteranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We aimed at 1) testing the Craig and Gordon equation for soil evaporation against directly measured δE and 2) quantifying the role of non-steady-state transpiration under natural conditions. Thirdly, we used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of

  16. The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Troch, P. A. A.

    2016-12-01

    Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.

  17. Preliminary identification of ground-water nitrate sources using nitrogen and carbon stable isotopes, Kansas

    USGS Publications Warehouse

    Townsend, M.A.; Macko, S.A.

    2007-01-01

    Increasing nitrate-N in ground water is a problem in areas with limited ground-water supplies, such as central Kansas. Nitrate-N concentrations in ground water in the study area in Ellis County range from 0.9 to 26 mg/L. Calculated mean values observed in soil cores are 1.2-15 mg/kg. The ??15N signatures of the ground waters are more enriched (+16.8 to +28.7???) than those of the soils (+8.4 to +1 3.7???), strongly suggesting that nitrate-N sources are not from mineralized and labile nitrogen present in the unsaturated zone. Soil cores were collected near municipal wells to determine if soil nitrogen was a contributing source to the ground water. Increased ??15N of total nitrogen with depth suggests that microbial mineralization processes and possible denitrification or volatilization isotope enrichments have affected the observed ?? 15N signatures in the soil. However, the observed soil-nitrogen values are not of sufficient magnitude to explain the nitrate-N concentrations or associated ??15N values observed in the ground water. Stable carbon isotopes provide some supporting evidence that soils are not a major contributor to the observed nitrate-N concentration in the ground water. ?? 13C values of the dissolved organic carbon (DOC) in soils generally become more enriched with depth while corresponding ground-water ??13C (DOC) values are more depleted than in the overlying soils. Carbon isotope values of the soils are indicative of a C4 plant source that is enriched by microbial processes. The ??13C (DOC) of ground water indicates C3 values that may reflect impacts from animal-waste sources.

  18. Stable isotope ratios in irrigation water can estimate rice crop evaporation

    NASA Astrophysics Data System (ADS)

    Simpson, H. J.; Herczeg, A. L.; Meyer, W. S.

    1992-02-01

    Irrigated crops provide about one third of world food production, and the total area under irrigation has increased by more than a factor of three since 1950 [Brown, 1988]. Possibilities for further geographical expansion are limited; therefore future production increases are likely to require higher efficiency of water use. Of the major grain crops, lowland rice requires the most water, with total demand per unit area at least twice that for wheat and maize. Stable isotope abundance changes in irrigation water can provide direct indication of integrated evaporation losses exclusive of transpiration and thus provide a new tool to monitor a key parameter relevant to water use efficiency. Large enrichments of deuterium and oxygen-18 in rice field water compared to initial input water in a semi-arid region of southeastern Australia indicate high evaporation rates (7 mm day-1) during the first month following flooding. This contrasts with semi-mature rice crops which had small heavy isotope enrichments of field water, indicating low evaporation (<1 mm day-1), compared to transpiration (6 to 7 mm day-1). Over the entire rice-cropping season, evaporation accounted for about 40 per cent of total losses to the atmosphere, with transpiration providing the remainder.

  19. Investigating drought vulnerability using stable water isotopes and tritium in a montane system

    NASA Astrophysics Data System (ADS)

    Thaw, Melissa; Visser, Ate; Deinhart, Amanda; Bibby, Richard; Everhart, Anthony; Sharp, Mike; Conklin, Martha

    2017-04-01

    We combined measurements of water stable isotopes (d18O and d2H) with measurements of tritium (3H) to track water from precipitation through the subsurface and vegetation. Our study examined drought vulnerability in terms of vegetation water sources and subsurface storage in two montane sites, seasonally, using stable isotopes and tritium. Relative proportions of evapotranspiration sources were determined using two-tracer (d18O and 3H), three component mixing models. The two sites, located in the Southern Sierra Critical Zone Observatory, California, USA, are Mediterranean in climate, straddling the rain-snow transition zone where the upper elevation site receives most of its precipitation as winter snow. Over the study period, summer 2015 followed four years of severe snow drought; summer 2016 followed a slightly below average winter. The lower elevation site experienced severe drought-induced tree mortality over this time. Preliminary results show severe snow drought conditions and summer precipitation affected the proportions of source water used by vegetation due to the ability of vegetation to change sources when new water became available. Both stable isotopes and tritium reflect seasonal shifts in vegetation water sources, as well as species vulnerability and tolerance to drought. Xylem water sampled from Abies concolor (white fir) and Arctostaphylos patula (manzanita) responded the most quickly to changes in available water sources compared to Pinus jeffreyi (Jeffrey pine) and Calocedrus decurrens (incense cedar). Abies concolor and Arctostaphylos patula responded more dramatically to summer soil evaporation by accessing summer rain and deep water sources more quickly. Abies concolor also responded more dramatically to changes in snowpack during winter. During severe drought conditions, Arctostaphylos's ability to tap into a wide range of water sources coincided with drought tolerance (100% survival rate), while mortality for Pinus ponderosa and Calocedrus

  20. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    USDA-ARS?s Scientific Manuscript database

    The stable isotope ratios of hydrogen (H) and oxygen (O) are valuable tracers of the origin of biological materials and water sources. Application of these environmental tracers is largely based on the distinct and pervasive spatial patterns of precipitation isotopes, which are preserved in many hy...

  1. A new stable water isotope-salinity dataset from the central tropical Pacific

    NASA Astrophysics Data System (ADS)

    Conroy, J. L.; Cobb, K.; Lynch-Stieglitz, J.

    2013-12-01

    The central tropical Pacific is home to key water isotope-based paleoclimate proxies that reveal past interannual to millennial-scale ocean variability. In particular, the stable oxygen isotope ratio of seawater (henceforth δ18Osw), which is strongly correlated with salinity, is often interpreted as a proxy for past surface forcing (precipitation-evaporation). However, very few modern δ18Osw measurements exist in this region, and a clear understanding of the drivers of δ18Osw variability on mean, seasonal, and interannual timescales needs to be investigated. This is a particularly important region to understand these dynamics: central tropical Pacific oceanography is complex, defined by three surface currents, upwelling, and zonal shifts in the boundary defining the fresher waters of the western tropical Pacific and the more saline waters of the central tropical Pacific. In addition, this region also experiences the seasonal migration of the intertropical convergence zone and associated changes in precipitation-evaporation. Here we present 177 paired stable water isotope and salinity measurements taken in May 2012 from the Line Islands Ridge, tripling the number of available stable isotope observations from the region. We find a δ18Osw-salinity slope of 0.35 across the main surface currents as well as water masses of the surface and subsurface. The May 2012 δ18Osw-salinity relationship is not significantly different from previous measurements in the region, supporting the integrity of these datasets. The highest δ18Osw-salinity values of the new dataset occur in the core of the Equatorial Undercurrent. Salinity and δ18Osw values throughout the North Equatorial Countercurrent (NECC) are higher compared to previous data from the region. This may be due to a weaker NECC during the boreal spring, as the previous data are biased toward boreal winter, but more data are needed to understand temporal δ18Osw-salinity variability. We have also increased the number of

  2. Stable isotopes in tree rings

    NASA Astrophysics Data System (ADS)

    McCarroll, Danny; Loader, Neil J.

    2004-04-01

    Stable isotopes in tree rings could provide palaeoclimate reconstructions with perfect annual resolution and statistically defined confidence limits. Recent advances make the approach viable for non-specialist laboratories. The relevant literature is, however, spread across several disciplines, with common problems approached in different ways. Here we provide the first overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies. Stable carbon isotopes record the balance between stomatal conductance and photosynthetic rate, dominated at dry sites by relative humidity and soil water status and at moist sites by summer irradiance and temperature. Stable oxygen and hydrogen isotopic ratios record source water, which contains a temperature signal, and leaf transpiration, controlled dominantly by vapour pressure deficit. Variable exchange with xylem (source) water during wood synthesis determines the relative strength of the source water and leaf enrichment signals. Producing long Holocene chronologies will require a change in emphasis towards processing very large numbers of samples efficiently, whilst retaining analytical precision. A variety of sample preparation and data treatment protocols have been used, some of which have a deleterious effect on the palaeoclimate signal. These are reviewed and suggestions made for a more standardised approach.

  3. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene

    NASA Astrophysics Data System (ADS)

    Cook, Mea S.; Ravelo, A. Christina; Mix, Alan; Nesbitt, Ian M.; Miller, Nari V.

    2016-03-01

    As the largest ocean basin, the Pacific helps to set the global climate state, since its circulation affects mean ocean properties, air-sea partitioning of carbon dioxide, and the distribution of global oceanic poleward heat transport. There is evidence that during the Last Glacial Maximum (LGM) the subarctic Pacific contained a better-ventilated, relatively fresh intermediate water mass above ~2000 m that may have formed locally. The source and spatial extent of this water mass is not known, nor do we know how formation of this water mass varied during Pleistocene glaciations with different orbital and ice sheet boundary conditions. Here we present a 0.5 My multi-species benthic stable isotope record from Site U1345 (1008 m) on the northern Bering slope and a 1.0 My record from U1339 (1868 m) from the Umnak Plateau in the southeastern basin. We find that the relatively well-ventilated low-δ18O intermediate water reaches 1000 m in the Bering Sea during MIS2, but that the hydrographic divide between this water mass and poorly-ventilated deep water was shallower than 1000 m for earlier glaciations. We also compare Bering Sea piston core and IODP Expedition 323 Uvigerina data from the Holocene and LGM with the modern hydrography, and to previously published profiles from the Okhotsk Sea and Emperor Seamounts. We find that the carbon and oxygen stable isotope signatures of well-ventilated water in the Bering and Okhotsk Seas are distinct, suggesting that there may have been intermediate water formation in both basins during the LGM.

  4. Reconstruction of groundwater formation in the Baltic Artesian basin through water stable isotopes

    NASA Astrophysics Data System (ADS)

    Babre, A.; Delina, A.; Retike, I.

    2012-04-01

    Subsurface hydrology of the Baltic Artesian basin has changed rapidly during the Quaternary period. Glacial and several interglacial phases as well as the change in the sea level led to complicated subsurface hydrology and a large difference in groundwater chemical as much as isotopic content. Baltic artesian basin fully covers territory of Latvia, Lithuania and Estonia; also parts of Poland, Russia, and Belarus are included. This work aims to give better overview of the complexity of the groundwater recharge and discharge dynamics beyond country borders, taking into account only shared geological framework, common climate conditions and development during the Quaternary period. To maintain better understanding of the processes that took part in the formation of groundwater that can be observed nowadays several methods were applied placing major emphasis on the new oxygen and hydrogen stable isotope ratio results. Additionally large scale modeling as well as hydrochemistry and trace element concentrations was used. Paleowaters usually are isotopically lighter, that facilitate to detect their presence. Earlier investigations in the northern part of the basin indicated glacial melt water intrusion in the Cambrian-Vendian aquifer corrected radiocarbon age suggests that this meltwater intrusion took place during the late Weichelian. Several radiocarbon and stable isotope studies in groundwater have been done at the southern part of the basin as well reporting extensive groundwater recharge during the Late Pleistocene in the Devonian aquifers; authors suggest that recharge took place under different recharge mechanisms compared with the northern part. So far no similar studies were accomplished in the central part of the basin, thus to make clearer picture and possibility to find the mixing line between groundwater bodies of different origin, the new groundwater samples were collected from more than 200 wells mainly in the territory of Latvia. New stable isotope samples

  5. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    NASA Astrophysics Data System (ADS)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  6. Plant Water Use and Environmental Stress on Two Opposite Slopes: from Water and Carbon Stable Isotopic Perspective

    NASA Astrophysics Data System (ADS)

    Guan, H.; Xu, X.; Skrzypek, G.; Simmons, C. T.

    2014-12-01

    Climate-soil-vegetation dynamics are among key research focuses in the emerging ecohydrology discipline. Topographic relieves on landscapes provide various hydroclimatic conditions to examine vegetation functions and its responses to climate variation and changes in a short distance. In this study, we investigate ecohydrologic processes on two slopes of contrasting orientation and soil conditions in a native vegetation catchment with mean annual precipitation of 716 mm in South Australia, using water and carbon stable isotopes. Throughfall, soil water, twig water, and groundwater stable isotopes were measured and integrated into an isotope incorporated soil-plant-atmosphere model to examine different plant water use patterns on two slopes with different environmental conditions. The focuses are on how ecosystems on the two slopes receive, store, and use soil moisture in different manners. On these two slopes, trees are under different water stresses. Both leaf and soil 13C/12C ratio were measured for the two slopes to examine if δ13C can be used as an water stress indicator in this small catchment, and if the potential difference in δ13C can be observed in the soil organic matter. We monitored one-year leaf δ13C of two tree species, Eucalyptus leucoxylon and Acacia pycnantha. Our results indicate that leaf δ13C reflects different water stress conditions between slopes, seasons, and different locations on the slopes.

  7. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  8. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  9. Determining the Hydrological Importance of Coastal Fog in Northern California Using Stable Isotopes of Water

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Torregrosa, A.; Coplen, T. B.

    2014-12-01

    Fog and cloud water can be an important part of the water cycle in mountainous coastal areas. In coastal California's Mediterranean climate, fog is the predominant precipitation source during the summer months. Here we report initial results of a study utilizing stable hydrogen and oxygen isotopes of water to investigate the role of fog in the hydrology of two ecosystems in Sonoma County, CA. The two study sites were the Bodega Marine Laboratory (BML) at 13 m elevation at the coast, and the Pepperwood Preserve at 375 m elevation in the North Coast Range, 44 km inland to the northeast. During a 1-week period in July 2014, fog samples were collected at 30-minute intervals using small active-strand cloudwater collectors (mini-CASCCs) and automated precipitation samplers. Four overnight fog events were collected at the Pepperwood site, while at the BML site, the liquid water content of the fog was very low, and only one cumulative sample was obtained. Groundwater samples from five wells and seven springs, and surface water samples from two streams were collected in and around the Pepperwood Preserve and on Bodega Head near BML. Droplet size distribution of the fog at BML was monitored, and at both sites, air temperature was measured at 10-minute intervals to assess variation in the δ 18O and δ 2H values of fog related to temperature. Relative humidity, wind speed, and wind direction were obtained from weather stations at each site. Previous work in this area (Coplen et al., in prep) documented the isotopic signatures of winter precipitation from frontal systems and landfalling Pacific storms. These results will be combined with the isotopic signature of summer fog water to determine whether fog contributes to shallow groundwater recharge or streamflow at the two sites.

  10. Understanding patterns of water use in a subtropical woodland using stable isotopes

    NASA Astrophysics Data System (ADS)

    Grierson, Pauline; Page, Gerald; Skrzypek, Grzegorz; Dogramaci, Shawan; Luccitti, Samuel; O'Donnell, Alison

    2015-04-01

    Vegetation structure in the arid subtropics is often highly variable across the landscape, reflecting at least in part the high spatial and temporal heterogeneity of rainfall, groundwater and soil moisture. Here, we investigated how patterns of water uptake by trees and shrubs differed across landscape positions in the Pilbara region of northwest Australia and assessed the responsiveness of trees and shrubs to large (cyclonic) rainfall events. We sampled water stable isotope compositions of xylem, soil, rain and groundwater as well as soil water content and root distributions of eucalypt and mulga woodlands in the Pilbara region over three years. Based on the 18O results, we found that the sampled plant taxa (mulga, Eucalyptus victrix) were using water originally derived from a large rainfall event (Cyclone Heidi), both at lowland and upland sites. Trees and shrubs such as mulga were accessing shallow soil water of meteoric origin. Eucalyptus victrix accessed water deeper in the profile (8-10 m) as surface soils dried out. Mulga appeared to store water for many months after the recharge event. This ability to take up and likely store a large proportion of shallow soil water after rainfall is a key feature enabling mulga to survive through the period of greatest water demand and to acclimate to the spatiotemporal changes to water conditions in the soil profile. Alternatively, episodic cyclonic recharge maintains deep soil and groundwater resources that maintain deeper-rooted species such as E. victrix throughout the prolonged drought periods.

  11. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    PubMed

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2017-07-10

    Stable isotopes of hydrogen ((2)H) and oxygen ((18)O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  12. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  13. Water uptake depth analyses using stable water isotopes in rice-based cropping systems in Southeastern Asia

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Orlowski, Natalie; Racela, Healthcliff S. U.; Breuer, Lutz

    2017-04-01

    Rice is one of the most water-consuming crop in the world. Understanding water source utilization of rice-based cropping systems will help to improve water use efficiency (WUE) in paddy management. The objectives of our study were to (1) determine the contributions of various water sources to plant growth in diversified rice-based production systems (wet rice, aerobic rice) (2) investigate water uptake depths at different maturity periods during wet and dry conditions, and (3) calculate WUE of the cropping systems. Our field experiment is based on changes of stable water isotope concentrations in the soil-plant-atmosphere continuum due to transpiration and evaporation. Soil samples were collected together with root sampling from nine different depths under vegetative, reproductive, and matured periods of plant growth together with stem samples. Soil and plant samples were extracted by cryogenic vacuum extraction. Groundwater, surface water, rain, and irrigation water were sampled weekly. All water samples were analyzed for hydrogen and oxygen isotope ratios (δ2H and δ18O) via a laser spectroscope (Los Gatos DLT100). The direct inference approach, which is based on comparing isotopic compositions between plant stem water and soil water, were used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These estimations were used to determine the proportion of water from upper soil horizons and deep horizons for rice in different maturity periods during wet and dry seasons. Shallow soil water has the higher evaporation than from deeper soil water where the highest evaporation effect is at 5 cm depth (drying front). Water uptake is mostly taking place from surface water in the vegetative and between 5-10 cm in the reproductive period, since roots have grown widely and deeper in the reproductive stage. This will be

  14. A lab in the field: real-time measurements of water quality and stable isotopes

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; von Freyberg, J.

    2015-12-01

    Hydrological and bio-geochemical processes in catchments are largely determined by the flow pathways of water through the subsurface. While the properties of the input (precipitation) and the output (streamflow) can be monitored with relatively low expenditure, subsurface flow processes and travel times remain difficult to quantify. A comprehensive understanding of these physical mechanisms is, however, crucial for a sustainable management of water resources. Natural tracers, such as stable isotopes of water (18O and 2H), in combination with other water quality parameters allows for studying various hydrological and associated processes in great detail. To follow the dynamics in rapidly changing hydrologic systems, high temporal resolution measurements of water isotopes and other constituents is required. Here, we present first results from an extensive field experiment in Switzerland where rain- and river water samples are sampled and analyzed directly in the field every 30 minutes. With this, sample degradation during storage and transportation can be minimized. At the same time, errors due to the collection and handling of numerous water samples are avoided. The fully automated monitoring system is comprised of the newly developed Continuous Water Sampler Module (CoWS), which was coupled to a Picarro L2130-i Cavity Ring-Down Spectrometer (Picarro Inc., USA), to continuously measure 18O and 2H. Optical and electrochemical sensors together with a spectrometer probe monitor NO3-, DOC and physico-chemical parameters, such as oxygen content, pH, electrical conductivity (s::can Messtechnik GmbH, Vienna). An ion chromatograph (Metrohm, Switzerland) allows for precise measurements of the major anions and cations. For quality control, additional water samples are taken automatically at the same frequency and analyzed in the laboratory.

  15. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water - USGS50 Lake Kyoga Water.

    PubMed

    Coplen, Tyler B; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M

    2015-11-15

    As a result of the need for isotopic reference waters having high δ(2) HVSMOW-SLAP and δ(18) OVSMOW-SLAP values for daily use, especially for tropical and equatorial-zone freshwaters, a new secondary isotopic reference material for international distribution was prepared from water collected from Lake Kyoga, Uganda. This isotopic reference lakewater was filtered through a membrane with 0.2-µm pore size, homogenized, loaded into glass ampoules that were sealed with a torch and autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available in a case of 144 glass ampoules each containing 5 mL of water. The δ(2) H and δ(18) O values of this reference material are +32.8 ± 0.4 and +4.95 ± 0.02 mUr (milliurey = 0.001 = 1 ‰), respectively, relative to VSMOW, on scales normalized such that the δ(2) H and δ(18) O values of SLAP reference water are, respectively, -428 and -55.5 mUr. Each uncertainty is an estimated expanded uncertainty (U = 2uc ) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy.

    PubMed

    Chesson, Lesley A; Bowen, Gabriel J; Ehleringer, James R

    2010-11-15

    Hydrogen (δ(2)H) and oxygen (δ(18)O) stable isotope analysis is useful when tracing the origin of water in beverages, but traditional analytical techniques are limited to pure or extracted waters. We measured the isotopic composition of extracted beverage water using both isotope ratio infrared spectroscopy (IRIS; specifically, wavelength-scanned cavity ring-down spectroscopy) and isotope ratio mass spectrometry (IRMS). We also analyzed beer, sodas, juices, and milk 'as is' using IRIS. For IRIS analysis, four sequential injections of each sample were measured and data were corrected for sample-to-sample memory using injections (a) 1-4, (b) 2-4, and (c) 3-4. The variation between δ(2)H and δ(18)O values calculated using the three correction methods was larger for unextracted (i.e., complex) beverages than for waters. The memory correction was smallest when using injections 3-4. Beverage water δ(2)H and δ(18)O values generally fit the Global Meteoric Water Line, with the exception of water from fruit juices. The beverage water stable isotope ratios measured using IRIS agreed well with the IRMS data and fit 1:1 lines, with the exception of sodas and juices (δ(2)H values) and beers (δ(18)O values). The δ(2)H and δ(18)O values of waters extracted from beer, soda, juice, and milk were correlated with complex beverage δ(2)H and δ(18)O values (r = 0.998 and 0.997, respectively) and generally fit 1:1 lines. We conclude that it is possible to analyze complex beverages, without water extraction, using IRIS although caution is needed when analyzing beverages containing sugars, which can clog the syringe and increase memory, or alcohol, a known spectral interference. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen

    USGS Publications Warehouse

    Hitchon, B.; Friedman, I.

    1969-01-01

    Stable isotopes of hydrogen and oxygen, together with chemical analyses, were determined for 20 surface waters, 8 shallow potable formation waters, and 79 formation waters from oil fields and gas fields. The observed isotope ratios can be explained by mixing of surface water and diagenetically modified sea water, accompanied by a process which enriches the heavy oxygen isotope. Mass balances for deuterium and total dissolved solids in the western Canada sedimentary basin demonstrate that the present distribution of deuterium in formation waters of the basin can be derived through mixing of the diagenetically modified sea water with not more than 2.9 times as much fresh water at the same latitude, and that the movement of fresh water through the basin has redistributed the dissolved solids of the modified sea water into the observed salinity variations. Statistical analysis of the isotope data indicates that although exchange of deuterium between water and hydrogen sulphide takes place within the basin, the effect is minimized because of an insignificant mass of hydrogen sulphide compared to the mass of formation water. Conversely, exchange of oxygen isotopes between water and carbonate minerals causes a major oxygen-18 enrichment of formation waters, depending on the relative masses of water and carbonate. Qualitative evidence confirms the isotopic fractionation of deuterium on passage of water through micropores in shales. ?? 1969.

  18. Using Water Vapor Isotope Observations from above the Greenland Ice Sheet to improve the Interpretation of Ice Core Water Stable Isotope Records

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Risi, C. M.; Yoshimura, K.; Werner, M.; Butzin, M.; Brun, E.; Landais, A.; Bonne, J. L.; Dahl-Jensen, D.

    2014-12-01

    Water stable isotope data from Greenland ice cores provide key paleoclimatic information. For the purpose of improving the climatic interpretation from ice core records, a monitoring of the isotopic composition δ18O and δD at several height levels (up to 13 meter) of near-surface water vapor, precipitation and snow in the first 0.5 cm surface layer has been conducted during three summers (2010-2012) at NEEM, NW Greenland. We compare the observed water vapor isotopic composition with model outputs from three isotope-enabled general circulation models: LMDZiso, isoGSM, ECHAM-wiso. This allows us to benchmark the models and address effect of model resolution, effect of transport, effect of isotope parameterization, and representation of significant source region contributions. We find for all models that the simulated isotopic value δD are significantly biased towards too enriched values. A bias, which is only partly explained by the air temperature. The simulated amplitude in d-excess variations is ~50% smaller than observed and the simulated average summer level is ~10‰ lower than in observations. Using back trajectories we observe water vapor of Arctic origin to have a high d-excess fingerprint. This fingerprint is not observed in the GCMiso simulations indicating a problem of simulating accurately the Arctic hydrological cycle. The bias in the simulated δD and d-excess water vapor is similar to the already-documented bias in the simulated δD and d-excess of Greenland ice core records. This suggests that if we improve the simulation of the water vapor isotopic composition we might also improve the simulation of the ice core isotope record. During periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is

  19. Identifying Hydrological Controls in the Lower Nelson River Basin utilizing Stable Water Isotopes

    NASA Astrophysics Data System (ADS)

    Delavau, C. J.; Smith, A. A.; Stadnyk, T.; Koenig, K.

    2012-12-01

    In 2010 a Stable Water Isotope (SWI) Monitoring Network was established within the lower Nelson River Basin (LNRB) (approximately 90,000 km2) in northern Manitoba, Canada, through a joint collaboration between the University of Manitoba and Manitoba Hydro (MH). The monitoring network encompasses over 60 sites where surface waters are regularly sampled, four sites sampling isotopes in precipitation, two sites utilizing drive point piezometers for the isotopic sampling of baseflow waters, and one site collecting evaporatively enriched water samples from an evaporation pan. In addition, two synoptic surveys have been completed in June 2011 and July 2012 to obtain annual snapshots of the monitoring network at a point in time. Currently, over 700 samples have been collected and analyzed. The LNRB contains approximately 9% of the total Nelson River Basin (NRB) drainage area, which encompasses an area of over 1 million km2. A diversion from the Churchill River through the Rat/Burntwood system routes an additional portion of flow into the northwest portion of the LNRB. The LNRB is significant to MH's network as it represents 75% of their power generation potential through six generating stations, thus resulting in a large portion of the basin being regulated. The watershed is topographically flat, therefore the movement and runoff of water, as well as isotopic composition of streamflow, is suspected to be highly impacted by changes in landscape and hydrography. The LNRB is a coniferous and wetland dominated basin, with almost 35% of the land cover composed of coniferous forest and 40% comprised of wetlands and lakes. Interpretation of the LNRB isotope framework shows that the major water sources (rainfall, snowfall, groundwater and surface waters) and rivers are isotopically distinct from one another. The main stem of the Nelson River shows little spatial or temporal variability, with an average δ18O of -10.6‰ and a standard deviation of 0.5‰ throughout the sampling

  20. Constraints in calculations of evaporative losses in arid climates using the stable isotope composition of water

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Mydlowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J. J.; Grierson, P. F.

    2014-12-01

    Accurate quantification of evaporative losses to the atmosphere from surface water bodies is essential for calibration and validation of hydrological models, particularly in remote arid and semi-arid regions, where rivers and lakes are generally minimally gauged. In this study, we reviewed and combined the most recent equations for estimation of evaporative losses based on the revised Craig-Gordon model. We designed new software, called Hydrocalculator, which allows quick and robust estimation of evaporative losses based on the isotopic composition of water. We validated Hydrocalculator by testing the range of uncertainty in the estimation of evaporative losses in arid climates by cross-validating a simplified stable isotope model with field pan evaporation experiments. The use of standardized pans (1.2 m diameter, volume 300 dm3) in hot and dry climates (temperature 29°C and relative humidity between 19 and 26%) allowed simulation of fast evaporation from shallow water bodies. Several factors may contribute to the uncertainty in the evaporative loss calculations. The analytical uncertainty in the determination of the stable isotope composition of water may contribute to ~0.6% for δ18O and ~1.4% for δ2H. The model is less sensitive to uncertainty in climatic variables and an uncertainty of 1°C in air temperature will result only in the ~0.1% uncertainty in δ18O and δ2H. However, uncertainty in relative humidity of 10% will result in an uncertainty in the final outcome of 0.4% (δ18O) and 1.0% (δ2H). Significantly higher uncertainty in evaporative loss estimation is thus associated with uncertainty in ambient air moisture estimation or analysis. An error of 20‰ in δ2H and 5.0‰ in δ18O will result in a maximum difference of 2.4% (δ2H) and 1.7% (δ18O) in the final calculations. Hydrocalculator can thus provide accurate, rapid and cost-effective insight into the water balance of surface water pools. We used the new software to determine the origin of

  1. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    NASA Astrophysics Data System (ADS)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  2. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against (18) O and (2) H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Using initial field campaigns for optimal placement of high resolution stable water isotope and water chemistry measurements

    NASA Astrophysics Data System (ADS)

    Sahraei, Amirhossein; Kraft, Philipp; Windhorst, David; Orlowski, Natalie; Bestian, Konrad; Holly, Hartmut; Breuer, Lutz

    2017-04-01

    Understanding hydrological processes and flow paths is of major importance for the management of catchment water resources. The power of stable isotopes as a tracer and to encoder environmental information provides the opportunity to assess hydrological flow paths, catchment residence times, landscape influences, and the origin of water resources in catchments. High resolution isotope sampling of multiple sources ensures detailed comprehension of hydrological and biogeochemical interactions within catchments. Technical advances over the last years have made it feasible to directly measure stable water isotope signatures of various sources online in a high temporal resolution during field campaigns. However, measuring long time series in a high temporal resolutions are still costly and can only be performed at few places in a study area. The identification of locations where measurements should be implemented is still challenging. Our study is conducted in the developed landscape of the Schwingbach catchment located in central Germany. A reconnaissance assessment of the spatial distribution of runoff generating areas was performed in a short time frame prior to the selection of the final sampling site. We used a combination of: water quality snapshot sampling to identify spatial differences and potential hot spots, event-based hydrograph separation to differentiate possible flow paths, consecutive runoff measurements by salt dilution to identify gaining and loosing reaches, field reconnaissance mapping of potentially variable source areas in the riparian zone, infrared imagery of stream surface temperatures to locate potential concentrated groundwater discharge to the stream, and groundwater table mapping to identify sites where different dominant processes (e.g., groundwater flow, groundwater-surface water interactions and runoff generation) can be expected. First results indicated that precipitation and stream water are significantly different in isotopic

  4. The use of stable isotope to evaluate water mixing and water use by flood plain trees along the Garonne valley

    USGS Publications Warehouse

    Lambs, L.; Loubiat, M.; Richardson, W.

    2003-01-01

    Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.

  5. Effects of distilled water rinsing on stable isotope ratios of acid-treated marine invertebrate (Paguridae) samples.

    PubMed

    Guerin, Andrew J; Jensen, Antony C; McGill, Rona A R

    2013-09-30

    Stable isotope ratios are widely used to infer trophic relationships, although a growing number of studies show that sample pre-treatments (such as acidification to remove carbonates) can cause changes in isotope ratios. Samples are often rinsed in distilled water after acidification, and we examine the effects of this step in particular on the isotope ratios of marine invertebrate samples. Samples of whole hermit crabs (Paguridae) were subjected to one of three treatments: acidification using dilute hydrochloric acid without subsequent distilled water rinsing; acidification with rinsing; and rinsing with no acidification. Continuous-flow isotope ratio mass spectrometry was used to compare the mean carbon and nitrogen stable isotope ratios of treated and untreated material. Acidification (both with and without subsequent distilled water rinsing) resulted in reductions in mean δ(13)C values (1.939 and 3.146‰, respectively), while rinsing without prior acidification led to a smaller (but still significant) increase. Nitrogen isotope ratios were not affected by acidification, but subsequent rinsing with distilled water caused a decrease of approximately 1‰. Acidification of samples is clearly necessary in the presence of carbonates to obtain useful carbon isotope ratio data. However, post-acidification rinsing can result in further (potentially undesirable) changes to both carbon and nitrogen isotope ratios. Ideally, rinsing should be avoided, but the impacts are small enough to be of little concern in many studies. Rinsing (or not) should be considered carefully on the basis of the aims of a study. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; Feng, Xiahong; Graham, David E.; O'Malley, Daniel; Vesselinov, Velimir V.; Young, Jessica; Wullschleger, Stan D.; Wilson, Cathy J.

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.

  7. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; Feng, Xiahong; Graham, David E.; O'Malley, Daniel; Vesselinov, Velimir V.; Young, Jessica; Wullschleger, Stan D.; Wilson, Cathy J.

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.

  8. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measuredmore » in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  9. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  10. Constraining water uptake depths in semiarid environments using water stable isotopes

    NASA Astrophysics Data System (ADS)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  11. Seasonal variation of water level, water and soil temperature, chemistry, and stable isotopes in hyporheic zone of Korea

    NASA Astrophysics Data System (ADS)

    Jeon, W. H.; Lee, J. Y.

    2015-12-01

    The purpose of study was to evaluate interaction between groundwater and stream water in hyporheic zone using water level, water temperature, soil temperature, chemistry, and stable isotopes. We installed seven piezometers (IYHW1 to 7) in the streambed that across stream in every 10 m and in depth of 0.85 to 1.54 m, a device that measure stage level nearby IYHW1, and devices that measure soil temperature in every 10 cm down to 50 cm nearby each piezometer was installed. We monitored water level and water temperature every hour from automatic transducers at the piezometers and the stage level, and soil temperatures were monitored every two hours. We took samples from the hyporheic water, stream water, and nearby groundwater to analysis chemical and isotopic compositions. The water level difference between stream water and hyporheic waters indicated that groundwater was downwelling in wet season and upwelling in dry season. The groundwater temperature remained steady in different seasons, but the stream water represented a frequent fluctuation with large amplitude. The hyporheic waters and soil temperature represented intermediate variation characteristics. The chemical compositions were not able to indicate in interaction of groundwater and stream water because no distinctive difference in seasonal variation in waters. The quantity of isotopic compositions of oxygen and hydrogen determined from using mixing ratio indicated that downwelling in wet season and upwelling in dry season. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2011-0007232).

  12. Methane carbon stable isotope signatures in waters and sediments of the Laptev Sea Shelf

    NASA Astrophysics Data System (ADS)

    Samarkin, V.; Semiletov, I. P.; Finke, N.; Shakhova, N. E.; Joye, S. B.

    2012-12-01

    There are a number of areas characterized high water column methane concentrations and active seafloor methane seepage zones along the shelf of the Laptev Sea. Degrading subsea permafrost, which is rich in organic carbon and possibly containing metastable methane gas hydrates, is considered a potent source of methane in this area. To better understand possible methane sources generating high methane areas of the Laptev Sea, carbon stable isotope signatures of water column methane and in surface and deep drill core sediment samples were obtained during summer 2011 and spring 2012 field campaigns. The δ13C values of methane dissolved in seawater at the drill site varied from -37.8 to -75.7 ‰. The range of δ13C values of methane in the surface sediments was from -51.3 to -58.2 ‰ and in drill core samples (up to 26.5 m depth) values ranged from -77.8 to -100 ‰. Methane carbon isotope signatures in seawater reflect various sources of methane and the influence of active aerobic methane oxidation in seawater and surface sediments. Significant depletion of methane from drill core with δ13C (to -100‰) is characteristic of hydrogenotrophic methanogenesis at cold near 0°C in situ temperatures, which was confirmed with δ14C-radiotracer rate incubations.

  13. A stable isotopic view on lianas' and trees' below ground competition for water

    NASA Astrophysics Data System (ADS)

    De Deurwaerder, Hannes; Hervé-Fernández, Pedro; Stahl, Clément; Bonal, Damien; Burban, Benoît; Petronelli, Pascal; Boeckx, Pascal; Verbeeck, Hans

    2017-04-01

    Various studies highlight an increase in liana abundance and biomass in the neotropics in the last decades. To date, the reason why this growth form expresses this trend is still unclear. One of the proposed hypotheses ascribes tropical lianas, in comparison to tropical trees, of being able to adapt better to increased drought conditions resulting from climate change. Moreover, lianas presumably have a deeper root system, providing access to deeper soil layers less susceptible for dehydration during drought events. A dual stable water isotopic approach (δ18O and δ2H) enables studying vegetation below ground competition and in combination with Bayesian mixing models can provide insight in the fractional contribution of distinct soil layer depths. In this perspective, precipitation (bulk and through fall), bulk soil (at different depths), stream and xylem water of both lianas and trees were sampled between October 7-13, 2015. The study focusses on two distinct plots differing in soil texture (sand and clay), localized in close vicinity of the Guyana flux tower at Paracou (French Guyana). Our study highlights the erroneous of the deep tap root hypothesis and provides new insights in water and nutrient competition between tropical lianas and trees during dry season. Lianas isotopic signature is enriched compared to those of trees. This can be linked to water source depth and soil seasonal replenishment. Moreover, liana displaying a very active soil surface root activity, efficiently capturing the low amount of dry season precipitation, while trees show to tap the deeper and less drought susceptible soil layers. A strategy, which not only results in a spatial niche separation in the underground competition for water, but it also provides lianas with a definite advantage in nutrient competition.

  14. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  15. Constraints on water cycling in a deep mountain valley from stable water isotope and sap flux measurements

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    The stable isotopes of oxygen and hydrogen in water are unequally partitioned during phase changes, with environmental conditions controlling the degree of partitioning. As a result, the isotopic composition of water reflects the thermodynamic history of water parcels in the water cycle. Recent advances in cavity ringdown spectrometry allow for the continuous measurement of water vapor isotope compositions, and provide insight into the processes influencing the concentration of near-surface water vapor at high resolution. We used stable water isotopes to investigate the processes controlling water vapor cycling in a deep mountain valley in northwestern Wyoming. A Picarro L2120-i Cavity Ring-Down spectrometer was deployed to measure the isotopic composition of atmospheric water vapor at the University of Michigan Camp Davis Field Station near Jackson, WY for three consecutive summers (2012-2014) and during winter 2013. We also constructed a network of Granier-style sap flux probes to estimate the local transpiration flux from regionally dominant tree species in July 2014. A prominent diurnal cycle was observed during the summer that was mostly absent in the winter. Summer specific humidity, δD, δ18O, and sap flux all reach daily maximum values in the mid-to-late morning that we associate with the onset of transpiration. The mountain valley is capped by an inversion, which limits atmospheric mixing during the morning. After the breakup of the inversion, the atmospheric boundary layer develops quickly and results in decreases in near-surface specific humidity and δ18O. δD appears to be less affected following the inversion breakup, resulting in a strong diurnal cycle in d-excess. Specific humidity, δD, and δ18O all return to their morning values rapidly near sunset, marking the cessation of mixing and atmospheric stratification. This absence of this diurnal cycle in the winter is consistent with reduced transpiration and atmospheric mixing anticipated for the

  16. Tribochemical investigation of DLC coating in water using stable isotopic tracers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Ohana, T.; Tanaka, A.; Kubo, T.; Nanao, H.; Minami, I.; Mori, S.

    2008-03-01

    Tribochemical reaction of DLC coating in water was investigated by using a stable isotopic tracer, 18O labeled water (H 218O), to carry out the friction test of DLC coating and 440C ball pair, and using ToF-SIMS to analyze the worn surfaces. The result showed that DLC coating tribochemically reacted with water to form hydrophilic hydroxyl and carboxyl groups on surface, and suggested that the formed hydroxyl mainly combined with the secondary or tertiary carbons on the surface. The surface layer on the counter ball mainly consisted of C from the coating, Cr, Fe from the ball and 18O from water, and was rich in 18OH. It is thought that the hydrophilic groups formed at the interfaces play an important role in low friction and wear behaviors of DLC coating and the counter part in a water environment. Comparing with that obtained from the test in D 2O, the result also suggests that hydrogen/deuterium exchange is easy to occur between the products containing OD on the mated ball and some adsorbates in an ambient air environment.

  17. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  18. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  19. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  20. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Yao, Tandong; Xie, Shiyou; He, You

    2017-02-01

    Constraining temporal and spatial variability in water stable isotopes (δ18O and δD) is requested for interpreting proxy records of paleoclimate/paleoaltimetry. The southeastern Tibetan Plateau (TP) receives large amounts of precipitation in both summer (JJAS) and spring (MAM) and this makes it different from most other parts of the TP where annual precipitation concentrates only in summer. However, our knowledge of controls on precipitation and surface runoff generation in this region is still far from sufficient. In this study, the δ18O and δD of precipitation and stream waters across the southeastern TP were analyzed to investigate moisture sources and empirical isotope-elevation relationships. Herein, seasonal precipitation patterns, moisture trajectories and precipitation isotopes suggest this region is seasonally dominated by the monsoon in summer and the southerlies (from the Bay of Bengal) or a mix of southerlies and westerlies in spring. Spatially, vertical variations in precipitation seasonality exert profound influences on isotopic variability for stream waters. Larger contributions of spring precipitation (with higher δ18O and d-excess (d-excess = δD-8δ18O) compared to summer precipitation) vs. summer precipitation in the surface runoff generation at lower elevations account for the uncommon altitudinal decrease in streamwater d-excess. Such a cause also contributes to the slightly greater vertical lapse rates of streamwater δ18O (-0.28 to -0.48‰/100 m) relative to the Himalayan front. In addition, although a robust δ18O-elevation relationship is demonstrated based upon our measured and other published data on a broad spatial scale (over a 5200 m elevation range), this relationship is found to deviate from the empirical/theoretical pattern in the Himalayan front, which is also caused by the substantial spring precipitation in the southeastern TP. It is suggested that long-term changes in δ18O or δD of paleowater in this region actually

  1. The Influence of Weather Systems on Interannual Isotopic Variability in a 10-Year High Resolution Simulation of Stable Water Isotopes over Europe

    NASA Astrophysics Data System (ADS)

    Duetsch, M.; Pfahl, S.; Wernli, H.

    2016-12-01

    Weather systems can strongly influence the isotopic composition of water vapor and precipitation. For example, passages of cold fronts often lead to a rapid decrease of δ2H and δ18O in precipitation, due to the change of air masses and progressive depletion during rainout. Such signals are also imprinted on long-term records of stable water isotopes in paleo-archives. However, apart from the positive correlation of the δ values with temperature, it is not yet perfectly clear how. To decipher these signals, a good understanding of the impact of weather systems on interannual isotopic variability is necessary, which is where numerical models can be helpful. We used the isotope-enabled version of the non-hydrostatic numerical weather prediction and climate model COSMO to perform a high-resolution simulation of stable water isotopes over Europe during the years 2002 - 2011, with the aim to identify the influence of cyclones and fronts on long-term isotopic variability. Both weather systems were detected in the model output using objective cyclone and front identification algorithms. Furthermore, the isotopes were traced along backward trajectories, which were started every 6 hours uniformly across the model domain. This allowed quantifying isotopic changes experienced by air parcels when they encountered a cyclone or a front. We found that most trajectories (especially those arriving over the Atlantic) have a lower δ2H and a higher deuterium excess, but a similar temperature, if they have passed through the core of a cyclone on their way, most likely due to depletion during rainout and below cloud evaporation of rain. This means that the occurrence of cyclones can lead to variations of δ2H that are not related to variations of temperature, which may have implications for the interpretation of isotope records in paleo-archives and the application of stable water isotopes as climate proxies.

  2. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2017-09-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  3. Effect of trans-reservoir water supply on carbon and nitrogen stable isotope composition in hydrologically connected reservoirs in China

    NASA Astrophysics Data System (ADS)

    Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping

    2016-10-01

    Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.

  4. Stable isotopes reveal ecotypic variation of water uptake patterns in Aleppo pine

    NASA Astrophysics Data System (ADS)

    Ferrio, Juan Pedro; Lucabaugh, Devon; Chambel, Regina; Voltas, Jordi

    2014-05-01

    Aleppo pine (Pinus halepensis Mill.) has a large natural distribution range that encompasses a multitude of thermal and moisture conditions found in the Mediterranean basin. We hypothesized that due to the recurrent incidences of drought stress and high temperatures that occur at varying degrees along its distribution range, populations of Aleppo pine have undergone ecotypic differentiation in soil water uptake patterns. This study analyzed stable isotopic compositions (δ18O and δ2H) of xylem water to identify adaptive divergence associated to the pattern of soil water consumption by roots of Aleppo pine populations originating from the Mediterranean region. The results from this study show that genetic diversity in the extraction pattern of soil water can be found among populations and ecological regions of Aleppo pine under common garden conditions. However, the ability to detect such differences depended on the period of the year examined. In particular, data collection in full summer (end of July) proved to be the most adequate in revealing genetic divergence among populations, while end of spring and, to a lesser extent, end of summer, were less successful for this purpose. Both water uptake patterns (as estimated by δ18O and δ2H) and above-ground growth, exhibited significant relationships with both climatic and geographical variables. This suggests that the underlying variation among populations can be explained by certain characteristics at origin. In addition, we used a bayesian mixing model (SIAR package for R) that incorporated isotopic signatures from xylem and soil water in order to determine the predominant soil layer of water source consumption at the aforementioned periods of the growing season, where water availably ranged from lowest to highest. This allowed us to gain some understanding of Aleppo pines' differential reaction to drought, at the intraspecific level, across the fluctuating conditions of the growing season by comparing the

  5. Stable Isotope Analysis of Water Indicates that Mixing Occurs between Mobile and Tightly-Bound Soil Water

    NASA Astrophysics Data System (ADS)

    Vargas, A. I.; Schaffer, B.; Yuhong, L.; Sternberg, L. O.

    2016-12-01

    Stable oxygen (δ18O) and hydrogen (δ2H) isotope composition of precipitation, soil and plants have been studied over the years to understand the mechanism of soil water movement and the depth of plant water uptake in the soil water profile. Recent studies have suggested that in soil during the wet season, tightly bound water does not mix with mobile water but is retained in the soil until the dry season when it is taken up by plants via the force of transpiration. To test this, we sampled δ18O and δ2H in plant stems as a proxy for wet season mobile water and dry season bound water in two types of soils to determine if mixing occurs between mobile and tightly bound soil water. Plastic pots were filled with clay or very gravelly loam soil and a Persea americana tree was planted in each pot. Soil in each pot was first saturated with tap water to fully label the bound water with the isotopic identity of tap water and then fully saturated with either tap water (T) or isotopically-enriched pool water (P) and covered with white polyethylene to prevent evaporation. After saturating the soil, δ18O and δ2H of water draining from each pot were similar to those of water added to each pot for both the T and P treatments. For each treatment, δ18O and δ2H in plant stems were sampled 2-3 days after soil was initially saturated (simulated wet season; soil tension < 0.10 kPa) representing the mobile water and again 7-9 days after soil was saturated representing the bound water (simulated dry season; soil tension > 80.0 kPa). During the "dry season", there was a significant difference between T and P treatments for δ18O and δ2H in plant stems, indicating that bound water accessed by plants in the P treatment did not retain the tap water label and mixing occurred between mobile and bound water in the soil. Comparing P-T in the wet season with P-T in the dry season indicated that as much as 95% of water freely exchanged between the mobile and bound components of the soil

  6. Stable isotope laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Becker, J. F.; Yaldaei, Ramil; Mckay, Christopher P.

    1989-01-01

    Recent advances in semiconductor laser technology have produced a reliable lightweight device ideally suited for a spacecraft high resolution molecular spectrometer. Lead-salt tunable diode lasers (TDL) emit in several spectral modes, each with a very narrow linewidth of -0.0003/cm. This spectral resolution is much narrower than typical Doppler broadened molecular linewidths in the mid-IR range. Thus it is possible to detect individual rotational lines within the vibrational band and measure their intensity, which can be used to determine gas concentration. The narrow spectral lines of any impurity gas tend to lie between the narrow lines of the gas of interest. This represents a major advantage over the accepted gas chromatograph mass spectrometer (GCMS) technique for measuring gas concentrations and isotope ratios. The careful and extensive gas purification procedures required to remove impurities for reliable GCMS measurements will not be required for an IR laser gas analysis. The infrared laser gas analysis technique is being developed to measure stable isotopic ratios of gases such as CO2, CH4, N2O, and NH3. This will eventually lead to development of instruments capable of in situ istopic measurements on planets such as Mars. The carbon (C-12, C-13) isotope ratio is indicative of the type of carbon fixation mechanisms (e.g., photosynthesis, respiration) in operation on a planet, while the nitrogen (N-14, N-15) isotope ratio can probably be used to date nitrogen-bearing Martian samples. The absorbance ratio of two adjacent lines of CO2 in the 2300/cm (4.3 micron) region of the spectrum was measured. The precision of the measurement is presently better than 1 percent and significant improvement is anticipated as rapid sweep-integration techniques and computer controlled data acquistion capabilities are incorporated.

  7. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    DOE PAGES

    Oerter, Erik; Malone, Molly; Putman, Annie; ...

    2017-01-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designedmore » for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. Here, we assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. But, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.« less

  8. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    SciTech Connect

    Oerter, Erik; Malone, Molly; Putman, Annie; Drits-Esser, Dina; Stark, Louisa; Bowen, Gabriel

    2017-01-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. Here, we assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. But, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  9. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Malone, Molly; Putman, Annie; Drits-Esser, Dina; Stark, Louisa; Bowen, Gabriel

    2017-07-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  10. Every Apple has a Voice: Using Stable Isotope Hydrology to Teach about Food Sourcing and the Water Cycle

    NASA Astrophysics Data System (ADS)

    Oerter, E.; Malone, M.; Putman, A.; Stark, L. A.; Bowen, G. J.

    2016-12-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue ("fruit water") during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a one-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source on-line geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. The introductory lecture and demonstration components were received, on average, uniformly well by the various participant groups. However, the computer lab exercise needs to be more specifically tailored to the abilities of each demographic group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  11. Reconstructing Water Column Hydrography Using Individual Shell Stable Isotope Data From Multiple Planktic Foraminifera Species

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Fehrenbacher, J. S.; Davis, K. V.; Griffin, J. M.; Grimm, B. L.; Kercher, P.; Kostlan, M.; Menicucci, A. J.; Santare, L.; Starnes, J.; Vetter, L.; Wilbanks, E.; Wildgoose, M.

    2012-12-01

    , ontogeny, and the depth-dependent variation of the carbonate ion effect, water column light levels, temperature and salinity. In the context of these variables, stable isotope datasets from multiple foraminifera species may be accurately interpreted for paleoceanographic reconstructions of upper water column structure.

  12. Use of stable lead isotopes to characterize the sources of anthropogenic lead in North Atlantic surface waters

    SciTech Connect

    Veron, A.J. Univ. of Delaware, Newark, DE ); Church, T.M. ); Patterson, C.C. ); Flegal, A.R. Univ. of California, Santa Cruz, CA )

    1994-08-01

    Stable lead isotopes are used to illustrate the impact of surface water circulation on dissolved lead distribution in North Atlantic surface waters during oligotrophic conditions. Using stable lead isotopic signatures from (1) the Sargasso Sea and (2) direct tropospheric deposition to the North Atlantic, the authors estimate that 10-40% of the lead accumulated in surface waters of the European Basin is transported from the western North Atlantic by the North Atlantic Current. South of 50[degrees]N, lead appears to be primarily distributed by the Subtropical North Atlantic Gyre that extends well beyond the western basins to 30[degrees]W in the North African Basin (at 30-40[degrees]N). There are different lead isotopic signatures between the subtropical gyre of the Guiana and western Guinea Basins, which suggests that the Inter Tropical Convergence Zone acts as an efficient barrier limiting chemical exchanges between the gyre and the equatorial currents.

  13. Simulation of stable isotopic pools and fluxes by a land-surface scheme forced with observed isotopic ratios in precipitation and atmospheric water vapour.

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Griffith, D.; Irannejad, P.; Williams, A.; Stone, D.

    2004-12-01

    Stable isotopes provide independent tools for evaluating key components of the hydrological and carbon cycles as simulated by land-surface schemes (LSS). The Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS http://www.pilps.mq.edu.au) is initiating a new type of experiment (IPILPS) to assess the ability of LSSs to reproduce isotopic components of water and mass (carbon) budgets. The project aims to intercompare LSS simulations of diurnal and annual cycles of isotopic pools and fluxes, and to evaluate the performance of isotope-enabled LSSs under varying environmental conditions. The need for evaluation data is driving a new experimental effort concentrating on the measurement of stable water isotopes (SWI), in precipitation, atmospheric and canopy water vapour, soil water and leaf/stem water, on annual and diurnal time scales at three sites in the GEWEX CSE Amazon, Murray-Darling and Baltic Sea basins. We present diurnal and annual cycles of stable isotopes in the ecosystem as simulated by an isotope enabled LSS (ISOLSM)1 over an agricultural pasture in Wagga Wagga (SE Australia). Climatological values of SWI in precipitation and water vapour, as well as continuous in situ D/H ratios of atmospheric water vapour obtained during a three-week field campaign, are used to force the LSS. The D/H ratio was measured using a fully automated and mobile Fourier Transform Infrared (FTIR)2 spectrometer. The sensitivity of simulated isotopes (in soil water, plants and canopy air space, as well as isotopic exchanges between the land surface and the atmosphere) to the atmospheric forcing is analysed. The results highlight the importance of intensive field campaigns for measuring SWI in the environment as both forcing and evaluation data for land surface simulations. 1. A. Henderson-Sellers et al., 2004, Using stable water isotopes to evaluate basin-scale simulations of surface water budgets, in press, J. Hydrometeorol. 2. D.W.T. Griffith et al., 2002

  14. Hydrogeochemical and stable isotope geochemical characterization of shallow ground waters and submarine ground water discharge in North-Eastern Germany

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Schmiedinger, Iris; Böttcher, Gerd; Schwerdtfeger, Beate; Lipka, Marko; Westphal, Julia

    2017-04-01

    The evolution and hydrochemical composition of ground waters in Mecklenburg-Western Pommerania (North-Eastern Germany) is controlled by different natural and anthropogenic factors. In the present study, the hydrogeochemistry and stable isotope geochemistry (H, C, O, S) of shallow ground waters was investigated in 2014 and 2015. A mass balance approach is combined with physico-chemical modeling to define the mineral dissolution/precipitation potential as well as the processes taking place during the ground water development. The dissolved inorganic carbon system of the ground waters is controlled by the dissolution of biogenic carbon dioxide, the dissolution of (marine) carbonates and the oxidation of anthropogenically introduced DOC and at a few sites biogenic methane. The sulfur isotope composition of dissolved sulfate indicates the substantial impact from the oxidation of sedimentary pyrite using oxygen or nitrate as electron acceptor. The combined results are the base for a quantitative reaction path analysis. The composition of ground water is discussed with respect to its role as a source for fresh waters forming SGD and in a re-wetting wetland area (Hütelmoor) at the southern Baltic Sea coast line. Acknowledgements: The SGD/Hütelmoor part of this study is supported by German Science Foundation during DFG research training group BALTIC TRANSCOAST.

  15. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany--evidence from stable and radiogenic isotopes.

    PubMed

    van Geldern, Robert; Baier, Alfons; Subert, Hannah L; Kowol, Sigrid; Balk, Laura; Barth, Johannes A C

    2014-10-15

    Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.

  16. A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models

    PubMed Central

    Buttle, James; Carey, Sean K.; van Huijgevoort, Marjolein H. J.; Laudon, Hjalmar; McNamara, James P.; Mitchell, Carl P. J.; Spence, Chris; Gabor, Rachel S.; Soulsby, Chris

    2015-01-01

    Abstract We combined a conceptual rainfall‐runoff model and input–output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow‐influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta‐analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek > Krycklan > Dorset > Baker Creek > Dry Creek > Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near‐surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near‐surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil–vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on

  17. A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models.

    PubMed

    Tetzlaff, Doerthe; Buttle, James; Carey, Sean K; van Huijgevoort, Marjolein H J; Laudon, Hjalmar; McNamara, James P; Mitchell, Carl P J; Spence, Chris; Gabor, Rachel S; Soulsby, Chris

    2015-12-15

    We combined a conceptual rainfall-runoff model and input-output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow-influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta-analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek > Krycklan > Dorset > Baker Creek > Dry Creek > Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near-surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near-surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil-vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on hydrological functioning of

  18. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  19. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    SciTech Connect

    Hunt, R.J.; Krabbenhoft, D.P.; Bullen, T.D.; Kendall, C.

    1998-05-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that the authors attribute to the presence or absence of peat. In the peat-rich natural wetland, {delta}{sup 87}Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peak thickness was thin and Fe concentrations in water were negligible, {delta}{sup 87}Sr did not increase along the flowline. The source of the pea (on-site or off-site derived) applied in the constructed wetland controlled the {delta}{sup 87}Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic endmember sources.

  20. Stable isotope systematics in ground water from the Edwards aquifer, south-central Texas

    SciTech Connect

    Blake, R.E. . Div. of Earth and Physical Sciences)

    1992-01-01

    The Cretaceous Edwards aquifer in the Balcones fault zone of south-central Texas consists of a fresh-water zone to the north and a saline-water zone to the south. Isotopic analyses of water and rock samples collected from the fresh and saline zones, combined with additional chemical data, were used to examine regional variations in isotopic and chemical signatures. The fresh-water zone contains Ca-HCO[sub 3] water under oxidizing conditions. Water in the saline zone varies from Ca-SO[sub 4] to Na-Cl water under generally reducing conditions. The [delta] O-18 and [delta] D values of water from both zones have a meteoric signature. Mineral saturation indices suggest that water compositions are buffered by the predominant aquifer minerals; calcite (dedolomite) in the fresh-water zone and dolomite in the saline-water zone. Covariant linear trends in major element data indicate conservative mixing of a dilute end member with Na-rich and Ca-rich saline end members. Variation of delta C-13 of dissolved inorganic carbon (DIC) with conservative element and TDS concentrations does not suggest simple mixing, but rather that equilibrium processes are controlling the [delta] C-13 signature of DIC. Isotopic equilibrium is observed between DIC and late, pore-lining calcite cements in the fresh-water zone. Carbon isotopic equilibrium between saline-zone dolomite and DIC would imply a dolomite-HCO[sub 3] fractionation of up to 7[per thousand].

  1. Using Stable Isotopes to Understand Degradation of Organic Contaminants in Ground Water

    EPA Science Inventory

    Stable isotopes are a powerful tool to understand biodegradation. However, there are two interactions that can substantially confuse the interpretation of CSIR data: heterogeneity in flow paths in the aquifer and proximity to NAPL or other source of contamination to ground wate...

  2. Using Stable Isotopes to Understand Degradation of Organic Contaminants in Ground Water

    EPA Science Inventory

    Stable isotopes are a powerful tool to understand biodegradation. However, there are two interactions that can substantially confuse the interpretation of CSIR data: heterogeneity in flow paths in the aquifer and proximity to NAPL or other source of contamination to ground wate...

  3. Stable isotope techniques to investigate cloud water in forested mountain watersheds in the trade wind latitudes - Hawaii and Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Giambelluca, T. W.

    2010-07-01

    Fog and cloud water can contribute to stream flow, soil moisture, groundwater recharge and plant uptake in mountain watersheds in the trade wind latitudes. Results from three island sites, two in Hawaii and one in Puerto Rico, are discussed to evaluate the utility of isotopic methods in studies of fog and cloud water in watersheds. In forests that are immersed in orographic clouds, the precipitation consists of a range of droplet sizes from fog to rain. Stable isotopes distinguish precipitation source to a greater extent than precipitation size, and isotopic composition of fog-sized droplets may be similar to the smallest raindrops in a cloud. Therefore, results from isotopic methods can differ from estimates using fog collectors, canopy water balances, eddy covariance, and other methods. Examples from study sites in Hawaii and Puerto Rico illustrate these differences. East Maui in Hawaii rises 3054 m above the ocean, and clouds intercept the mountain slopes between 600 and 2200 m on both windward and leeward sides of the island. The eastern mountains of the island of Puerto Rico receive cloud water input at their highest altitudes, between 900-1100 m. In both study areas, stable isotopes of fog/cloud water and rain were measured monthly using passive fog and rain collectors. The sites on Maui were instrumented with weather stations and throughfall gages to estimate cloud water input with canopy water balance methods. Estimates of cloud water as a fraction of total precipitation input from isotopic mixing models and the canopy water balance calculations were 29% and 15%, respectively, on leeward Maui and 27% and 32% on windward Maui, using the most conservative mixing model end member for fog. Cloud water input at Pico del Este in Puerto Rico was estimated to be 45-56% of total precipitation from isotope mixing model results, compared with 10-16% from previous studies using various methods. Sources of uncertainty in using isotope mixing model analyses to

  4. Identifying Controls on the Stable Water Isotope Composition of Precipitation in the Southwestern Yukon Using GCMs

    NASA Astrophysics Data System (ADS)

    Field, R.; Moore, K.

    2007-12-01

    The goal of our work is to better understand what controls the stable water isotope (SWI) composition of precipitation in the southwestern Yukon, and in particular, to better-interpret the SWI signal from the Mount Logan ice core. To this end, we are conducting experiments with the GISS ModelE general circulation model, which is equipped with SWI diagnostics. One feature of interest in the Mt. Logan ice core record is a significant drop in d18O in the 1850's towards more depleted values. The current explanation for this shift is a transition in the North Pacific circulation towards a deeper Aleutian Low, with the stronger meridional flow bringing moisture from more southerly sources. Because of their greater arrival times, these air masses would have undergone a greater isotopic depletion than moisture from closer, colder sources under a more zonal flow regime. Although physically plausible, it is possible that the d18O drop caused by this proposed shift in circulation might be offset by warmer source evaporation conditions and integrated air mass trajectories, both of which would be associated with less depleted precipitation. To test the physical plausibility of the meridional hypothesis, we conducted numerical experiments with the NASA GISS ModelE isotopically-equipped general circulation model. In the Yukon, SWI variability is influenced, via the regional temperature, by the Pacific North America pattern and ENSO. We found that positive d18O anomalies in the SW Yukon region were in fact associated with a deeper Aleutian Low; it would appear that the effect of a longer transit time is offset by a warmer moisture transport pathway, in disagreement with the current moisture shift explanation. Our results are in agreement, however, with recent tree-ring reconstructions of the North Pacific Index, which suggest an 1850's shift towards a weaker Aleutian Low. We also found that the degree of Pacific control on the SW Yukon isotope signal is highly dependant on

  5. Modeling Stable Water Isotopes in Monsoon Precipitation during the Previous Interglacial

    NASA Astrophysics Data System (ADS)

    Sjolte, J.; Hoffmann, G. P.

    2012-12-01

    Changes in the hydrological cycle have been recorded throughout the tropical regions in speleothem records dating back more than 200.000 years for some areas. The intensity of the northern hemisphere monsoon has been found to be correlated to the precessional cycle (~23.000). Here we present a model study of the changes in the monsoon during the previous interglacial, the Eemian using a general circulation model with stable water isotopes embedded in the hydrological cycle. Analysis of a number of tropical areas show that the main control on the depletion of 18-O in precipitation varies regionally. The main control on 18-O for the Indian summer monsoon is the precipitation amount, in accordance with the traditional interpretation, while the main control of 18-O for East Asia is the path of moisture transport. Over Africa a strong gradient in the 18-O anomalies exists for the Eemian climatic optimum, with depleted values in the east and high 18-O content in the west. This pattern is the result of a combination of the "amount effect" and an anomalous zonal moisture transport. The influence of the sea surface temperature anomalies on the placement of the Intertropical Convergence Zone (ITCZ) is found to be of major importance for the precipitation amount in the coastal regions of tropical South America. For the western part of South America a decrease in precipitation is seen for the Eemian climatic optimum, while an increase is seen for the eastern part. Our results underline the importance of reviewing the mechanisms causing isotopic changes in proxy records and further investigating the causes for past shifts in the ITCZ.

  6. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L. 1

    PubMed Central

    Flanagan, Lawrence B.; Comstock, Jonathan P.; Ehleringer, James R.

    1991-01-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  7. Effects of Mild Water Stress and Diurnal Changes in Temperature and Humidity on the Stable Oxygen and Hydrogen Isotopic Composition of Leaf Water in Cornus stolonifera L. 1

    PubMed Central

    Flanagan, Lawrence B.; Ehleringer, James R.

    1991-01-01

    In this paper we make comparisons between the observed stable isotopic composition of leaf water and the predictions of the Craig-Gordon model of isotopic enrichment when plants (Cornus stolonifera L.) were exposed to natural, diurnal changes in temperature and humidity in a glasshouse. In addition, we determined the effects of mild water stress on the isotopic composition of leaf water. The model predicted different patterns of diurnal change for the oxygen and hydrogen isotopic composition of leaf water. The observed leaf water isotopic composition followed qualitatively similar patterns of diurnal change to those predicted by the model. At midday, however, the model always predicted a higher degree of heavy isotope enrichment than was actually observed in leaves. There was no effect of mild water stress on the hydrogen isotopic composition of leaf water. For the oxygen isotopic composition of leaf water, there was either no significant difference between control and water-stressed plants or the stressed plants had lower δ18O values, despite the enriched stem water isotopic composition observed for the stressed plants. PMID:16668385

  8. Landscape-scale observations of plant water use using continuous stable isotope monitoring

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K. K.; Good, S. P.; Villegas, J. C.; Breshears, D. D.

    2009-12-01

    Water vapor isotopes (δ2H and δ18O) are useful for resolving the dynamics of the near-surface atmospheric water cycle across a range of temporal and spatial scales. Previously, insight was limited by the temporal resolution of available measurement and sampling techniques. In recent years, with the development of laser-based spectroscopy techniques, continuous monitoring of δ2H and δ18O compositions in water vapor has become feasible. In this study, we reported two experiments, one conducted within a sealed mega-scale chamber (Biosphere 2) and another in an African savanna ecosystem. These studies were conducted to examine the feasibility of continuously monitoring the isotopic composition of surface evapotranspiration by coupling isotope and eddy covariance techniques. Results from the Biosphere 2 glasshouse facility provided clear evidence of the method’s ability to track the impact of diurnal cycles in plant transpiration on atmospheric isotope composition. In addition, patterns of isotopic vapor composition were well-correlated to experimental manipulations of vegetation cover, which we related to changes in the relative amounts of evaporation and transpiration. Preliminary results for the field experiment conducted in a Kenyan savanna revealed a rapid, dramatic shift in the isotopic composition of near-surface water vapor after a very small rainfall event (~1 mm), which was likely caused by the canopy/soil evaporation. Our field observations also indicated that soil moisture/potential may play a role in determining the evaporation signals. Taken as a whole, these experiments confirm the potential of laser based continuous isotope monitoring as a means for greatly expanding the use of isotope flux measurements to address a wide range of research topics related to landscape-scale plant water use in drylands.

  9. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study

    NASA Astrophysics Data System (ADS)

    Gierke, Casey; Newton, B. Talon; Phillips, Fred M.

    2016-06-01

    In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water `compartments', from which trees extract water for transpiration as a function of the season. The results indicate that "immobile" or "slow" soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. "Mobile" or "fast" soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.

  10. Interaction of a river with an alluvial basin aquifer: Stable isotopes, salinity and water budgets

    NASA Astrophysics Data System (ADS)

    Eastoe, Christopher J.; Hutchison, William R.; Hibbs, Barry J.; Hawley, John; Hogan, James F.

    2010-12-01

    SummaryDetailed sets of tracer data (isotopes, salinity) and the results of MODFLOW modeling of water budgets provide an unprecedented opportunity for comparing modeling with field data in the area where the Rio Grande enters the Hueco Bolson basin of Texas and Chihuahua. Water from the Rio Grande has recharged the Hueco Bolson aquifer to a depth of 300 m below the surface in the El Paso-Ciudad Juárez area, the depth of infiltration corresponding to the depth of ancestral Rio Grande fluvial sediments. Groundwater beneath the river exhibits complex isotope and salinity stratification. Post-dam (post -1916, type A) river water has infiltrated to depths up to 80 m. Pre-dam (type B) river water has infiltrated to 300 m depth near downtown El Paso, and has mixed with, or been displaced further downstream by high-salinity native Hueco Bolson groundwater (type C, present in the basin north of the river). Salinity and isotope boundaries do not correspond precisely. Isotope stratification corresponds to water residence time and (for type C) to degree of evaporation; the highest salinities are associated with the most evaporated water. Modeling of water budgets in the basin fill beneath the river predicts present-day mixing of water types B and C where changing rates of pumping have caused a reversal of groundwater flow direction between El Paso and Ciudad Juárez, and deep recharge of type B water under conditions prevailing in the 1960s.

  11. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas

  12. Mesozooplankton stable isotope composition in Cyprus coastal waters and comparison with the Aegean Sea (eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Hannides, Cecelia C. S.; Zervoudaki, Soultana; Frangoulis, Constantin; Lange, Manfred A.

    2015-03-01

    Here we use bulk and amino acid-specific stable nitrogen (N) isotope analysis (AA-CSIA) to evaluate seasonal and regional change in mesozooplankton dynamics for the first time in coastal waters of the eastern Mediterranean. Cyprus mesozooplankton δ15N values were significantly higher in late winter (2.3‰) than in summer (1.2‰), and in all cases were less than the δ15N values of mesozooplankton in the northeast Aegean Sea (NEA; 3.4‰). AA-CSIA indicates that these differences can primarily be attributed to seasonal and regional change in mesozooplankton community trophic structure, with overall trophic position increasing by 0.2-0.3 in winter as compared to summer around Cyprus, and trophic position higher in the NEA than in Cyprus by 0.3-0.6. Such differences are most likely related to the larger contribution of carnivorous mesozooplankton observed in winter around Cyprus and in the NEA. Overall, our findings indicate change in bulk mesozooplankton δ15N value in the eastern Mediterranean is primarily driven by change in community trophic position, rather than variability in δ15N value at the base of the food web.

  13. Stable isotopic studies on chitin

    SciTech Connect

    Schimmelmann, A.

    1985-01-01

    Carbon, nitrogen, oxygen, and hydrogen stable isotope ratios of the poly-amino-sugar chitin isolated from exo-skeletons of 75 arthropod species collected in 59 locations were determined. The objectives were to understand the environmental, climatic, and biological influences on the isotope ratios and to develop a data base for interpreting isotope ratios of archaeological and fossil chitins. Measurements of stable isotope ratios in chitin isolates showed large variations which reflect intrinsic compositional and isotopic heterogeneities as well as differences caused by methods of preparation.

  14. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  15. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria.

    PubMed

    Aanderud, Zachary T; Lennon, Jay T

    2011-07-01

    Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H2(18)O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H2(18)O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H2(18)O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H2(18)O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H2(18)O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H2(18)O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.

  16. Groundwater Ages and Stable Isotope Fingerprints of Contaminated Water to Examine Potential Solute Sources at a Uranium Processing Mill

    NASA Astrophysics Data System (ADS)

    Hurst, T. G.; Solomon, D. K.

    2007-12-01

    To evaluate sources of high solute concentrations in groundwater near a uranium processing facility, groundwater recharge dates are correlated to specific solute concentrations and depth in the water column. Stable isotopes are also used as potential fingerprints of water sourced from mill tailing cells. Passive diffusion samplers, to be analyzed for 3He/4He ratio, were deployed in 15 different wells with samplers at two depths in the saturated interval. Low-flow purging and sampling was then conducted to isolate sampling points at different depths in the wells, with sampling at multiple depths being completed in 4 of the 15 wells sampled. Laboratory analyses were conducted for CFC recharge age, as well as T/3He recharge age. Contract laboratories analyzed for: deuterium and oxygen-18 isotopes of water; sulfur-34 and oxygen-18 isotopes of sulfate; trace metals uranium, manganese, and selenium; and nitrate and sulfate. Analysis for 235U/238U isotope ratios will be conducted to further identify fingerprint signals of source water. Groundwater recharge ages determined using CFC analysis show some vertical stratification in ages across the water column. Upon initial data processing and analysis, measured CFC ages ranged from 30 to 40 years within the water column of one well to only several years difference in another well. Additional results for trace metal concentrations, stable isotope ratios, and T/3He recharge ages will be reported when results are received. Further post-processing of CFC laboratory analysis and noble gas analyses will provide greater clarity as to groundwater ages within the aquifer and, combined with field pumping data, will allow for a comprehensive groundwater model to be constructed. This study provides great insight to potential mine tailings leakage problems and using isotopes and groundwater age dating techniques as a means of tracing contaminated groundwater to the leakage source. Utilizing stable isotopes of water and sulfate, combined

  17. The stable hydrogen and oxygen isotope variation of water stored in polyethylene terephthalate (PET) bottles.

    PubMed

    Spangenberg, Jorge E; Vennemann, Torsten W

    2008-01-01

    A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.

  18. Stable isotope research pool inventory

    SciTech Connect

    Not Available

    1988-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  19. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Magaritz, Mordeckai; Gat, Joel R.

    1989-12-01

    Day-to-day and within-day (diel) variations in δD and δ18O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished: 1) on rain days, snail water becomes isotopically depleted approximately in the direction of the rain isotope values, but always less depleted in D as is atmospheric water vapor; 2) during the 1-3 days following a rain, the snail water becomes isotopically enriched along a line with slope < 8, in δD vs. δ18O space (this relates to an increasing influence of humidity derived from the Mediterranean Sea); 3) a period of relative stability of the isotopic composition persists until the next rain event. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in 18O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in 18O by ca. 1-2%. relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate 18O should provide a reliable indication of rainfall 18O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  20. Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin

    2017-04-01

    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.

  1. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work

  3. High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment

    NASA Astrophysics Data System (ADS)

    Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

    2013-04-01

    Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water

  4. On-line technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water

    NASA Technical Reports Server (NTRS)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K. Jr; Gibson EK, J. r. (Principal Investigator)

    1999-01-01

    Detailed here is a method for extracting and analyzing oxygen and hydrogen isotopes from 10 microL-sized water samples. Based on the traditional CO2-H2O equilibration technique, the oxygen isotope exchange reaction is done exclusively in sealed 6-mm (o.d.) Pyrex tubes at 25 degrees C, with full isotope exchange completed in at least 28 h. Using the same water sample employed in the 18O equilibration, D/H extractions are done in separate sealed 6-mm (o.d.) Pyrex tubes by reaction with Zn at 450 degrees C to form H2(g). Provided that a correction factor is applied to 18O analyses, accuracy and precision for both 18O and D/H are comparable to standard techniques using much larger samples.

  5. Processes governing the stable isotope composition of water in the St. Lawrence river system, Canada.

    PubMed

    Rosa, Eric; Hillaire-Marcel, Claude; Hélie, Jean-François; Myre, Alexandre

    2016-01-01

    Linkages between δ(18)O-δ(2)H and hydrological processes have been investigated from isotopic time series recorded in the St. Lawrence River basin. Three stations were monitored from 1997 to 2008. They include the Ottawa River, the St. Lawrence River main channel at Montreal and the fluvial estuary. All sites depict seasonal isotopic cycles characterized by heavy isotope depletions during the snowmelt period and heavy isotope enrichments throughout the ice-free period. The data define δ(2)H-δ(18)O regression lines falling below the meteoric water line. In the Ottawa River, calculations suggest that approximately 8 % of the total inflow to the basin is lost through evaporation. In the St. Lawrence River main channel, seasonal isotopic fluctuations most likely reflect hydrological processes occurring within the Great Lakes and mixing with tributaries located downstream. In the St. Lawrence River fluvial estuary, isotopic data allow partitioning streamflow components and suggest that the recorded seasonal variations mainly respond to mixing processes.

  6. Stable isotopes in surface waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic mixing processes

    NASA Astrophysics Data System (ADS)

    Benetti, M.; Reverdin, G.; Aloisi, G.; Sveinbjörnsdóttir, Á.

    2017-06-01

    The surface ocean hydrological cycle is explored based on ˜300 new δ18O and δD measurements from surface waters of the Atlantic Ocean and the Mediterranean Sea over the period 2010-2016. Our approach combines these surface observations with salinity (S) and stable isotope measurements of atmospheric water vapor. The distinct regional S-δ distributions are used to identify different surface water masses and their horizontal advection. Moreover, based on assumptions on the δ-S characteristics of seawater sources and the isotope composition of the evaporative (δe) and meteoric water (δMW) fluxes, the δ-S distribution is used to indicate the relative importance of evaporation (E) and meteoric water inputs (MW). Here δe is estimated from the Craig and Gordon's equation using 120 days of measurements of the ambient air above the Atlantic Ocean collected during three cruises. To provide quantitative estimates of the E:MW ratio, we use the box model from Craig and Gordon (1965). This identifies the subtropical gyre as a region where E:MW ˜2 and the tropical ocean as a region were MW:E ˜2. Finally, we show that the δ18O-δD distribution is better represented by a linear fit than the δ-S relationship, even in basins governed by different hydrological processes. We interpret the δ18O-δD distribution considering the kinetic fractionation processes associated with evaporation. In the tropical region where MW exceeds E, the δ18O-δD distribution identifies the MW inputs from their kinetic signature, whereas in regions where E exceeds MW, the δ18O-δD distribution traces the humidity at the sea surface.

  7. Utilizing Present-Day Stable Water Isotopes to Improve Paleoclimate Records from the Southeast (USA)

    NASA Astrophysics Data System (ADS)

    McKay, K. K.; Lambert, W. J.

    2015-12-01

    Present-day water isotope data are used to help interpret climate (paleo-rainfall) proxies archived in the geologic record, which can then aid in the creation of General Circulation Models (GCM). The Southeast (USA) is under-represented with respect to present-day measurement of water isotopes and high-resolution paleoclimate records, thus GCMs must extrapolate data for the region. We will evaluate water isotope data (δ18O, δD) collected and analyzed at The University of Alabama (33°13'N, 87°33'W) since June 2005. The monitoring station, central to the Southeast, was established to provide long-term water isotope data needed for reconstructing paleo-rainfall records of the region. Proxy data (e.g., δ18Ocalcite) archived in speleothems have been demonstrated to provide trustworthy information about past climate conditions; however, present-day monitoring of both local rainfall and cave dripwater are crucial. The decade-long (June 2005 - May 2015) rainfall record allows for the establishment of the relationship between water isotopes (δ18O, δD) and monthly air temperature, rainfall amount, as well as the general differences between summer and winter rainfall. Dripwater from Cathedral Caverns (34°34'N, 86°13'W), located in northeastern Alabama, has been sampled at a monthly resolution since January 2015 to determine if the water chemistry in the cave represents an annual mean for the rainfall or if it is seasonally biased. The ultimate goal of this study is to better understand how atmospheric air currents (specifically the strength/position of the Polar Jet Stream, PJS), and hence rainfall in the Southeast, varied during past periods of relative warming (e.g., Dansgaard-Oeschger events) and cooling (e.g., Heinrich events) of the Northern Hemisphere atmosphere. Future GCMs will be improved if a reliable high-resolution paleo-rainfall record can be produced for the Southeast.

  8. Metal Stable Isotopes in Paleoceanography

    NASA Astrophysics Data System (ADS)

    Anbar, Ariel D.; Rouxel, Olivier

    2007-05-01

    Considered esoteric only a few years ago, research into the stable isotope geochemistry of transition metals is moving into the geoscience mainstream. Although initial attention focused on the potential use of some of these nontraditional isotope systems as biosignatures, they are now emerging as powerful paleoceanographic proxies. In particular, the Fe and Mo isotope systems are providing information about changes in oxygenation and metal cycling in ancient oceans. Zn, Cu, Tl, and a number of other metals and metalloids also show promise. Here we review the basis of stable isotope fractionation as it applies to these elements, analytical considerations, and the current status and future prospects of this rapidly developing research area.

  9. Stable isotopes of water used to trace relationships between vegetation and streamflow in a semi-arid catchment

    NASA Astrophysics Data System (ADS)

    McCutcheon, R.; Benner, S. G.; Kohn, M. J.; Flores, A. N.; McNamara, J. P.

    2012-12-01

    Natural abundances of the stable isotopes found in water (δ2H and δ18O) vary over time and space in natural watersheds as a result of varying input signals and subsequent isotopic enrichment or depletion processes (e.g. varying wind directions or evaporative enrichment of shallow soil moisture). As a result, unique isotopic compositions can be identified within the soil column, vegetation, and streams. Assuming that plants do not discriminate between water molecules of varying isotopic composition, δ2H and δ18O data from plants, adjacent soil at multiple depths, and stream water can reveal valuable information about the relationships between plant water uptake and streamflow. What are the interactions between plant water uptake and streamflow in a semi-arid watershed? We know that many streams exhibit a diurnal streamflow pattern, but what plants are contributing to this pattern? And how does each plant's influence on streamflow change temporally? Monthly samples were collected from dominant plant species, adjacent soil (at depths of 1, 10, 25, 45, 75, and 100 cm when available), and two streams, at three locations in Dry Creek Experimental Watershed (Boise, ID) during the 2011 and 2012 growing seasons. Initial isotope analyses show that local shrubs, trees, and soils plot well to the right of the local meteoric water line (likely due to evaporative enrichment), while local streams plot near the line (suggesting groundwater may be the dominant stream water source). Samples plotted farther to the right as the climate dried in the late summer. Also, some shrubs (Rabbitbrush and Sagebrush) appear to uptake shallow soil source water in the summer when hillslope trees only uptake deeper source water. However, further investigation is needed, as many plants exhibit δ18O concentrations greater than adjacent soil water samples, suggesting the existence of an additional plant water source.

  10. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  11. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, K.; Poeter, E.

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (??18O and ??2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  12. Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs

    USGS Publications Warehouse

    Walton-Day, Katherine; Poeter, Eileen

    2009-01-01

    Turquoise Lake is a water-supply reservoir located north of the historic Sugarloaf Mining district near Leadville, Colorado, USA. Elevated water levels in the reservoir may increase flow of low-quality water from abandoned mine tunnels in the Sugarloaf District and degrade water quality downstream. The objective of this study was to understand the sources of water to Dinero mine drainage tunnel and evaluate whether or not there was a direct hydrologic connection between Dinero mine tunnel and Turquoise Lake from late 2002 to early 2008. This study utilized hydrograph data from nearby draining mine tunnels and the lake, and stable isotope (δ18O and δ2H) data from the lake, nearby draining mine tunnels, imported water, and springs to characterize water sources in the study area. Hydrograph results indicate that flow from the Dinero mine tunnel decreased 26% (2006) and 10% (2007) when lake elevation (above mean sea level) decreased below approximately 3004 m (approximately 9855 feet). Results of isotope analysis delineated two meteoric water lines in the study area. One line characterizes surface water and water imported to the study area from the western side of the Continental Divide. The other line characterizes groundwater including draining mine tunnels, springs, and seeps. Isotope mixing calculations indicate that water from Turquoise Lake or seasonal groundwater recharge from snowmelt represents approximately 10% or less of the water in Dinero mine tunnel. However, most of the water in Dinero mine tunnel is from deep groundwater having minimal isotopic variation. The asymmetric shape of the Dinero mine tunnel hydrograph may indicate that a limited mine pool exists behind a collapse in the tunnel and attenutates seasonal recharge. Alternatively, a conceptual model is presented (and supported with MODFLOW simulations) that is consistent with current and previous data collected in the study area, and illustrates how fluctuating lake levels change the local water

  13. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants

    USGS Publications Warehouse

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.

    1991-01-01

    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  14. Application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park.

    PubMed

    Ingraham, N L; Zukosky, K; Kreamer, D K

    2001-04-01

    Waters on, and below, the South Rim of the Grand Canyon were sampled for stable isotopic analysis to determine the hydrologic effects of the transcanyon pipeline. The transcanyon pipeline transports North Rim water discharging at Roaring Spring across the Grand Canyon to South Rim. Ultimately this water is discharged through the sewage treatment plant at the Clearwell Overflow wash on the surface expression of the Bright Angel Fault. The North Rim water is some 8 per mil more depleted in deltaD than most of the water issuing from springs on the South Rim except for that from Indian Garden Spring which lies below the Clearwell Overflow wash. Such a composition of Indian Garden Spring must come from discharged wastewater onthe rim, percolating downward approximately 1,000 m vertically through the Bright Angel Fault. The difference in stable isotopic composition of the North Rim water renders it not only traceable in Indian Garden Spring water, but the proportions may be determined as well which result in projecting an admixture of up to half the total discharge. Curiously however, Indian Garden Spring contains no appreciable amounts of the anions associated with wastewater. More recently, a leak in the transcanyon pipeline was discovered above Indian Garden Spring, suggesting that a portion of that spring's discharge may have its origin in water directly from the pipeline. Nevertheless, these data provide information relevant to the National Park Service policy of precluding anthropomorphic forces impacting national parks. In addition, the stable isotopic ratios of park water provide a mechanism to assess the potential for future degradation, as well as the origin of any future degradation, of the water quality of Indian Garden Spring.

  15. Use of Stable Isotopes to Follow Intracellular Water Dynamics in Living Cells

    SciTech Connect

    Kreuzer, Helen W.; Hegg, Eric L.

    2012-01-28

    Despite the importance of water to cell structure and function, intracellular water dynamics are poorly understood. A new method based on isotope ratio measurements has revealed that a substantial portion of the O and H atoms in the intracellular water of rapidly-dividing cultured cells is derived from metabolic activity, and not from environmental water. These findings have led to a dynamic model of intracellular water composition: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis. Data from gram-positive and gram-negative bacteria as well as cultured mammalian cells are consistent with the model.

  16. Tellurium Stable Isotope Fractionation in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Fehr, M. A.; Hammond, S. J.; Parkinson, I. J.

    2014-09-01

    New Te double spike procedures were set up to obtain high-precision accurate Te stable isotope data. Tellurium stable isotope data for 16 chondrite falls are presented, providing evidence for significant Te stable isotope fractionation.

  17. Water-Use Efficiency and Stable Carbon Isotopes: Accounting for Photosynthetic Refixation

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Marshall, J. D.

    2007-12-01

    Three processes are performed by every green plant tissue: photosynthesis, respiration and refixation. Each of these affects the ratio of stable isotopes, 12C and 13C. Refixation allows plants to fix a portion of the CO2 produced via respiration prior to releasing the remaining CO2 back into the atmosphere. The process begins with a pool of CO2 already depleted in 13C and subsequently depletes it further, resulting in two simultaneous effects: enrichment of CO2 released into the atmosphere and depletion of biomass that is formed. Recently, considerable research has concentrated on identifying processes that determine the isotopic composition of a given plant tissue. A convincing explanation for the observed enrichment of stems versus leaves has still not been derived. We advocate that refixation can explain currently inexplicable patterns. We hypothesized that leaves re-fix carbon during their entire lifespan when light intensity is below the light compensation point and above total darkness. We grew Idaho hybrid poplars under controlled conditions in a growth chamber. Light intensity was regulated to create three different treatments: (1) Light (PAR=270 μmol/m2s), (2) Shade (PAR=89 μmol/m2s) and (3) Dark (PAR=0 μmol/m2s). For each treatment we modified respiration values by regulating the light environment between total darkness and the light compensation point. For the light treatment group, leaf respired CO2 was collected at 5% (PAR=14) and 22% (PAR=59) of the light growing environment. For the shade treatment group, leaf respired CO2 was collected at 22% (PAR=20) of the light growing environment. We estimated the amount of refixation as (Ddark- Dlight)/Ddark, where Ddark represents dark respiration (μmol/gs) and Dlight respiration during light periods (μmol/gs). Light treatments plants exhibited a maximum refixation level of 53% at PAR=59, with an associated enrichment of leaf respired C isotopic composition (δ13CLR) of 3.3‰. At PAR=14, refixation rate

  18. Modeling of water stable isotopes in the ECHAM6 atmospheric general circulation model: current status and perspectives

    NASA Astrophysics Data System (ADS)

    Cauquoin, Alexandre; Werner, Martin; Lohmann, Gerrit

    2017-04-01

    We present here the first results for present-day conditions of the ongoing implementation of water stables isotopes in the latest version of the ECHAM atmospheric general circulation model, ECHAM6, enhanced by the JSBACH interactive land surface scheme (ECHAM6-wiso). Major changes with respect to its predecessor ECHAM5 have to do with the treatment of shortwave radiative transfer, the development of a new surface albedo representation, a new aerosol climatology, the height of the model top, and a more complex representation of the land surface [1]. Besides, a new five-layer soil hydrology scheme can be used instead of the single soil moisture reservoir in ECHAM5/JSBACH [2]. Our first analyses of the ECHAM6-wiso results concentrate on a detailed comparison to the previous model release, ECHAM5-wiso, and potential improvements in simulating the water stable isotopes signal due to overall model enhancements. This study represents the first step of the incorporation of water stable isotope tracers in all components of the fully coupled Earth system model MPI-ESM. The project is part of the PalMod initiative ("Paleo Modelling: A national paleo climate modelling initiative"), funded by the German Federal Ministry of Education and Science (BMBF). [1] Stevens et al., 2013, JAMES, 5, 146-172. [2] Hagemann and Stacke, 2015, Clim. Dyn., 44, 1731-1750.

  19. Stable isotope study of precipitation and cave drip water in Florida (USA): implications for speleothem-based paleoclimate studies.

    PubMed

    Onac, Bogdan P; Pace-Graczyk, Kali; Atudirei, Viorel

    2008-06-01

    Stable isotopes of hydrogen and oxygen were used to examine how the isotopic signal of meteoric water is modified as it travels through soil and epikarst into two caves in Florida. Surface and cave water samples were collected every week from February 2006 until March 2007. The isotopic composition of precipitation at the investigated sites is highly variable and shows little seasonal control. The delta18O vs. delta2H plot shows a mixing line having a slope of 5.63, suggesting evaporation effects dominate the isotopic composition of most rainfall events of less than 8 cm/day, as indicated by their low d-excess values. The delta18O values of the drip water show little variability (<0.6 per thousand), which is loosely tied to local variations in the seasonal amount of precipitation. This is only seen during wintertime at the Florida Caverns site. The lag time of over two months and the lack of any relationship between rainfall amount and the increase in drip rate indicate a dominance of matrix flow relative to fracture/conduit flow at each site. The long residence time of the vadose seepage waters allows for an effective isotopic homogenisation of individual and seasonal rainfall events. We find no correlation between rainfall and drip water delta18O at any site. The isotopic composition of drip water in both caves consistently tends to resemble the amount-weighted monthly mean rainfall input. This implies that the delta18O of speleothems from these two caves in Florida cannot record seasonal cycle in rainfall delta18O, but are suitable for paleoclimate reconstructions at inter-annual time scales.dagger.

  20. Refining Isotopic Parameterization Choices Using Stable Water Isotope Profiles In Surface Layer And Soil To Improve Modeling Of Mid-Latitude Continental Moisture Cycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D. C.

    2015-12-01

    The moisture balance of the continental boundary layer plays an important role in regulating the exchange of water and energy between the land surface and atmosphere. The surface layer moisture balance is controlled by a number of factors including precipitation, infiltration, evaporation and transpiration. Measurements of stable isotope ratios in water can be exploited to better understand the mechanisms controlling atmosphere-land surface water fluxes. We present three years of in situ tower-based measurements of stable isotope ratios of water (δD and δ18O) in vapor, precipitation, vegetation and soil from the Boulder Atmospheric Observatory, a semi-arid 300 meter tall-tower site in Erie, Colorado. Co-located meteorological and disdrometer measurements at the surface and 300m allow us to explore key aspects of continental moisture cycling in a semi-arid environment such as the important contribution of sub-surface vapor diffusion to the surface water vapor budget and its implications for partitioning in dry ecosystems, and the role of rain evaporation during precipitation events on inter-event and seasonal time scales. We use our observations to constrain a Craig-Gordon evaporation model at the land surface to weight the contributions of rainfall, surface water vapor exchange and sub-surface vapor diffusion to soil water isotope values. A multi-season in situ time series of surface vapor isotope profiles in conjunction with soil and precipitation allows us to field-validate choices for parameters such as the kinetic fractionation factor for each process. This has implications both for modeling short-term gas exchange at the land surface in modern-day climate models as well as for refining paleoclimate interpretations of stable oxygen and hydrogen isotope-based proxies. Tall-tower precipitation and vapor isotope profile data can also be analyzed in conjunction with disdrometer data on inter-event and seasonal time scales to quantify the role of rain evaporation

  1. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    USDA-ARS?s Scientific Manuscript database

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  2. A soil water distillation technique using He-purging for stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Ignatev, A.; Velivetckaia, T.; Sugimoto, A.; Ueta, A.

    2013-08-01

    A new method of soil water extraction for oxygen and hydrogen isotopic analysis has been developed; this method uses a helium flow system as an alternative to the conventional vacuum extraction method. The method significantly increases the efficiency of sample preparation and simplifies the extraction. During the water distillation, a helium carrier gas transfers water vaporized at 95 °C from the soil sample to a cold trap at liquid nitrogen temperature. An extraction time of 180 min is used to distill the water from the fine-grained soil completely. The proposed He-purging distillation technique makes it possible to distill approximately a dozen samples simultaneously. The method was tested using liquid water samples and clayey soil samples hydrated with water of known isotopic composition. The standard deviations for these tests were 0.08‰ for δ18O and 0.7‰ for δD. An intercomparison test was conducted for the helium and vacuum extraction methods using natural soil samples. The correlation coefficients between the methods were 0.9926 and 0.9939 for δD and δ18O, respectively. The proposed He-purging distillation method can achieve high precision for clayey soil samples with low water content and has the potential to provide adequate isotopic data in hydrological and ecological studies. The method is relatively fast, efficient, and inexpensive. We also recommend using the method to distill salt solutions (sea water, mineralized water) before determining the δD and δ18O values using a chromium or carbon reduction method to avoid “salt effects”.

  3. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  4. Stable isotope composition of Earth's large lakes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Gibson, J. J.; YI, Y.; Birks, S. J.; Sharp, Z. D.

    2011-12-01

    Lakes cover about three percent of Earth's continental area. Large lakes can significantly influence lake shore and regional climates by increasing specific humidity during evaporation and by moderating air temperatures. Stable isotopes of oxygen and hydrogen can be used to quantify lake evaporation, providing a supplementary and often cost-advantageous alternative to conventional hydrologic approaches that require over lake monitoring. Further, stable isotopes in lake sediments are an established tool in paleolimnology; however, interpreting changes to a lake's past isotope composition requires a comprehensive understanding of contemporary controls. Here, δ18O and δ2H values of water in modern lakes exceeding roughly five hundred square kilometres are compiled (n > 35). Voluminous and seasonally mixed lakes - such as the North American Great Lakes - have the most homogenous stable isotope compositions, while perennially-stratified and shallow lakes show greater variability. A rudimentary stable isotope mass balance is used to assess evaporation fluxes from large lakes on Earth. The approach taken simultaneously constrains evaporation outputs for both oxygen and hydrogen stable isotopes by accounting for lake effects on the overlying atmosphere. Model development highlights important considerations such as isotopic stratification (Tanganyika), disequilibrium isotopic mass balances (Baikal), and non-steady hydrologic balances. Further, the isotope composition of Earth's continental surface water reservoir is calculated. This value - weighted to volume - is δ18O = -7.5±1.7 per mille relative to standard mean ocean water. The compiled data may be a useful tracer of continental evaporate in global atmospheric water cycle studies and could be coupled to climate models capable of incorporating oxygen-18 and deuterium tracers to improve or validate calculations of lake effects on regional water cycling.

  5. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau

    NASA Astrophysics Data System (ADS)

    Bershaw, John; Saylor, Joel E.; Garzione, Carmala N.; Leier, Andrew; Sundell, Kurt E.

    2016-12-01

    Environmental parameters that influence the isotopic composition of meteoric water (δ18O and δD) are well characterized up the windward side of mountains, where orographic precipitation results in a predictable relationship between the isotopic composition of precipitation and elevation. The topographic and climatic evolution of the Andean Plateau and surrounding regions has been studied extensively by exploiting this relationship through the use of paleowater proxies. However, interpretation on the plateau itself is challenged by a poor understanding of processes that fractionate isotopes during vapor transport and rainout, and by the relative contribution of unique moisture sources. Here, we present an extensive dataset of modern surface water samples for the northern Andean Plateau and surrounding regions to elucidate patterns and causes of isotope fractionation in this continental environment. These data show a progressive increase in δ18O of stream water west of the Eastern Cordillera (∼1‰/70 km), almost identical to the rate observed across the Tibetan Plateau, attributed to a larger fraction of recycled water in precipitation and/or increased evaporative enrichment downwind. This may lead to underestimates of paleoelevation, particularly for sites deep into the rainshadow of the Eastern Cordilleran crest. That said, elevation is a primary control on the isotopic composition of surface waters across the entire Andean Plateau and its flanks when considering the most negative δ18O values, highlighting the need for sufficiently large datasets to distinguish minimally evaporated samples. There is a general increase in δ18O on the plateau from north to south, concomitant with an increase in aridity and decrease in convective moistening (amount effect). Lastly, stable isotope and seasonal precipitation patterns suggest easterlies provide the vast majority of moisture that falls as precipitation across the Andean Plateau and Western Cordillera, from Peru to

  6. Study of mineral water resources from the Eastern Carpathians using stable isotopes.

    PubMed

    Magdas, Dana A; Cuna, Stela M; Berdea, Petre; Balas, Gabriela; Cuna, Cornel; Dordai, Edina; Falub, Mihaela C

    2009-08-30

    The Eastern Carpathians contain many mineral water springs that feed famous Romanian health resorts such as Borsec, Biborteni and Vatra Dornei. These waters have been used for their different therapeutic effects. In this work, mineral and spring waters from these Romanian regions were investigated by means of chemical and isotopic (deltaD and delta(18)O) analyses in order to understand the recharge mechanisms and also to determine their origins. Most of the investigated springs are of meteoric origin, having the average deuterium content of the local meteoric water. The higher (18)O content with respect to the Meteoric Water Line (MWL) indicated an exchange reaction with crystalline igneous rocks at depth and with other rocks that the water encounters on its journey back to the surface. 2009 John Wiley & Sons, Ltd.

  7. Using stable isotopes to resolve transit times and travel routes of river water: a case study from southern Finland.

    PubMed

    Niinikoski, Paula I A; Hendriksson, Nina M; Karhu, Juha A

    2016-01-01

    The stable isotopic composition of two rivers, the Vantaanjoki River and the Kokemäenjoki River, in southern and southwestern Finland was studied to resolve the transit times and travel routes of the river water in the two different catchments. The Kokemäenjoki River is dominated by great lake basins whereas the Vantaanjoki River has been reported having a significant groundwater component. The mean residence time of the young surface flow component could be resolved by sine function fitting onto the annual fluctuations of the isotopic signal, and the amount of base flow was estimated by using the isotopic composition of the river and groundwater. In this study, we found that the methods work for simple two component catchments. In more complex cases with three different components mixing, the solution becomes increasingly difficult and requires more study.

  8. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    PubMed

    Wallace, Michael P; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H E; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices.

  9. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia

    PubMed Central

    Wallace, Michael P.; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H. E.; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  10. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    USGS Publications Warehouse

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  11. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  12. The impact of snowpack decline on high elevation surface-water flow in the Willamette River: a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.

    2015-12-01

    Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.

  13. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages.

    PubMed

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin

    2015-10-28

    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required.

  14. Perfluorinated chemicals infiltrate ocean waters: link between exposure levels and stable isotope ratios in marine mammals.

    PubMed

    Van de Vijver, Kristin Inneke; Hoff, Philippe Tony; Das, Krishna; Van Dongen, Walter; Esmans, Eddy Louis; Jauniaux, Thierry; Bouquegneau, Jean-Marie; Blust, Ronny; de Coen, Wim

    2003-12-15

    This is the first study to report on concentrations of perfluorinated organochemicals (FOCs) in marine mammals stranded along the southern North Sea coast in relation to stable nitrogen and carbon isotope ratios (delta15N and delta13C). The presence of FOCs in top predators such as marine mammals would indicate a potential biomagnification of these compounds and their widespread occurrence. Liver and kidney tissues of nine marine mammal species have been sampled. Among all the measured FOCs compounds, PFOS (perfluorooctane sulfonate) was predominant in terms of concentration. The highest PFOS concentrations were found in the liver of harbor seal compared to white-beaked dolphin, harbor porpoise, gray seal, sperm whale, white-sided dolphin, striped dolphin, fin whale, and hooded seal. PFOS concentrations differed significantly between sexes and age classes in harbor porpoises. Stable isotope measurements (delta13C and delta15N) were used in this study to describe the behavior of contaminants in food webs. We found a significant (p < 0.05) linear relationship between PFOS concentrations in livers of harbor porpoises and both muscle delta13C and delta15N measurements. Harbor and gray seals and white-beaked dolphin, which displayed the highest trophic position, contained the highest PFOS levels, while offshore feeders such as sperm whales, fin whales, striped dolphin, and white-sided dolphin showed lower PFOS concentrations than inshore species.

  15. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  16. Groundwater circulation between volcanic fissure systems evidenced by water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sveinbjornsdottir, Arny

    2016-04-01

    The divergent boundary between the European and American plates in Iceland, generally called the Neovolcanic zone, is characterized by well defined volcanic systems, each consisting of a central volcano, fissure swarm and a high temperature hydrothermal activity. Isotopic studies within the Northern part of the Neovolcanic zone, where five NNE striking left-stepping en echelon volcanic systems have been identified indicate both a very complex groundwater inflow and geological structure of the thermal areas. The isotopic values of the thermal waters vary considerably both within and between systems. The fluids are a mixture of precipitation, either local or from far away, and older groundwater with a pre-Holocene component. Observed oxygen shift is highly variable from less than 1‰ to about 7‰. On surface the volcanic systems and fissure swarms are very distinct and well separated. Groundwater flow is mainly fissure/fracture controlled and thus assumed to be only along the fissure swarms with little or no flow connection between the volcanic systems. However recent isotopic studies have shown some evidence that at depth the thermal water can flow from one volcanic fissure system to the next. This is in accordance with recent observations of a segmented dyke intrusion in one of the volcanic system (Bárdarbunga) that grew laterally for more than 45 km at a relatively shallow depth (5-8 km) and ended in an effusive fissure eruption within the nearby Askja volcanic system (Sigmundsson et al., 2015). Isotopic data on the thermal waters within the Northern part of the Neovolcanic zone will be presented and fluid circulation within the volcanic systems constructed.

  17. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  18. Investigating Residential History Using Stable Hydrogen and Oxygen Isotopes of Human Hair and Drinking Water.

    PubMed

    Mant, Madeleine; Nagel, Ashley; Prowse, Tracy

    2016-07-01

    The relationship between isotopic signals in human hair and geographic region has potential forensic applications for identifying unknown individuals' place of recent residence. This study analyzes δ(2) H and δ(18) O isotopes in residential tap water and bulk hair samples from 17 volunteers representing 12 locations in Ontario, Canada. There is a strong correlation (R(2) = 0.9) between δ(2) H and δ(18) O values of the water samples. In contrast, the δ(2) H and δ(18) O values of the hair samples are weakly correlated (R(2) = 0.3), and the greater variability in the data is linked to dietary factors. This study demonstrates that the δ(2) H and δ(18) O values of hair and drinking water can be used to help identify potential place of residence in forensic cases, particularly in relation to proximity to large bodies of water such as the Great Lakes, but interpretations are complicated by the contribution of both water and diet to δ(2) H and δ(18) O values in hair.

  19. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters.

    PubMed

    Matthies, Romy; Aplin, Andrew C; Boyce, Adrian J; Jarvis, Adam P

    2012-03-15

    Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III)(aq). The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long

  20. Baboons, water, and the ecology of oxygen stable isotopes in an arid hybrid zone.

    PubMed

    Moritz, Gillian L; Fourie, Nicolaas; Yeakel, Justin D; Phillips-Conroy, Jane E; Jolly, Clifford J; Koch, Paul L; Dominy, Nathaniel J

    2012-01-01

    Baboons regularly drink surface waters derived from atmospheric precipitation, or meteoric water. As a result, the oxygen isotope (δ(18)O) composition of their tissues is expected to reflect that of local meteoric waters. Animal proxies of the oxygen isotope composition of meteoric water have practical applications as paleoenvironmental recorders because they can be used to infer aridity and temperature in historic and fossil systems. To explore this premise, we measured the δ(18)O values of hair from two baboon species, Papio anubis and Papio hamadryas, inhabiting Awash National Park, Ethiopia. The hybridizing taxa differ in their ranging behavior and physiological response to heat. Papio hamadryas ranges more widely in the arid thornbush and is inferred to ingest a greater proportion of leaf water that is enriched in (18)O as a result of evaporative fractionation. It is also better able to conserve body water, which reduces its dependence on meteoric waters depleted in (18)O. Taken together, these factors would predict relatively higher δ(18)O values in the hair (δ(18)O(hair)) of P. hamadryas. We found that the δ(18)O(hair) values of P. hamadryas were higher than those of P. anubis, yet the magnitude of the difference was marginal. We attribute this result to a common source of drinking water, the Awash River, and the longer drinking bouts of P. hamadryas. Our findings suggest that differences in δ(18)O values among populations of Papio (modern or ancient) reflect different sources of drinking water (which might have ecological significance) and, further, that Papio has practical value as a paleoenvironmental recorder.

  1. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems [Urban ecohydrologic dynamics revealed by in situ monitoring of H and O stable isotopes in soil water

    DOE PAGES

    Oerter, Erik J.; Bowen, Gabriel

    2017-04-12

    The water cycle in urban and hydrologically managed settings is subject to perturbations that are dynamic on small spatial and temporal scales; the effects of which may be especially profound in soils. We deploy a membrane inlet-based laser spectroscopy system in conjunction with soil moisture and temperature sensors to monitor soil water dynamics and H and O stable isotope ratios (δ2H and δ18O values) in a seasonally irrigated urban-landscaped garden soil over the course of 9 months between the cessation of irrigation in the autumn and the onset of irrigation through the summer. Here, we find that soil water δ2Hmore » and δ18O values predominately reflect seasonal precipitation and irrigation inputs. A comparison of total soil water by cryogenic extraction and mobile soil water measured by in situ water vapor probes reveals that initial infiltration events after long periods of soil drying (the autumn season in this case) emplace water into the soil matrix that is not easily replaced by, or mixed with, successive pulses of infiltrating soil water. Tree stem xylem water H and O stable isotope composition did not match that of available water sources. Our findings suggest that partitioning of soil water into mobile and immobile “pools” and resulting ecohydrologic separation may occur in engineered and hydrologically managed soils and not be limited to natural settings. Furthermore, the laser spectroscopy method detailed here has potential to yield insights in a variety of critical zone and vadose zone studies, potential that is heightened by the simplicity and portability of the system.« less

  2. Hydrologic Activity of Deciduous Agroforestry Tree : Observed through Monitoring of Stable Isotopes in Stem Water, Solar Radiation Attenuation, and Sapflow

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Parlange, M. B.

    2012-12-01

    The net benefit of agroforestry trees for small scale farmers in dryland agricultural systems is debatable because while they provide significant direct and indirect services, they also consume considerable amounts of scare water resources. In this study we monitor the stable isotopes of water to improve a water budget of a Sclerocarya birrea tree in a millet field in South Eastern Burkina Faso. Data obtained from air temperature and humidity, surface temperature, solar radiation, and soil moisture sensors attached to a wireless sensor network uniquely configured around the agroforestry tree provided the initial calculation of the local water balance. Isotopic ratios were determined from water extracted from stems and sub canopy soil, and from nearby ground water, precipitation, and surface water that was sampled weekly. A linear mixing model is used to predict when the tree switched between water sources. The results from the linear mixing model coupled with a tree water balance demonstrate the extreme seasonality of the annual cycle of water use by this deciduous species.

  3. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    NASA Astrophysics Data System (ADS)

    Yang, L.; Song, X.; Zhang, Y.; Han, D.; Zhang, B.; Long, D.

    2012-11-01

    The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers) and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl- in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells) based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3) seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60-70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  4. Stable isotope assessment of water quality, primary productivity, nutrient sources, and food web structure in Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Wassenaar, L. I.

    2008-12-01

    Lake Winnipeg (Canada) is a shallow great lake currently undergoing extensive eutrophication. A 4-year stable isotope project is currently underway to examine water quality, primary productivity, nutrient sources, and food web structure in the lake. The isotope hydrology (18O, 2H) of Lake Winnipeg is needed in order to gain a picture of spatial isotopic patterns in the lake that can be related to the unique fingerprints imposed by contributing watersheds, and to verify hydrodynmamic mixing models. Stable isotope assays of key nutrients (nitrate, phosphate), particulate organic matter (POM), and dissolved oxygen in Lake Winnipeg are being applied to assess (1) the sources of nutrients, (2) the sources of the organic matter (internal vs external), (3) the biogeochemical cycling of nutrients and organic matter that lead to algal formation and enhanced biological oxygen demand and 4) quantify the rates of aquatic photoautotrophic activity, respiration and gas exchange. Altogether, these assays will allow us to better link nutrient sources and cycling to enhanced aquatic productivity. Foodweb structure and function is being examined using 13C and 15N while DH and 34S are being evaluated as tracer of inter basin fish migration. Only if the current foodweb structure is well understood can predictions regarding the negative impacts of eutrophication and invasive species on the foodweb be possible.

  5. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology

  6. Quantitative Microbial Ecology through Stable Isotope Probing

    PubMed Central

    Mau, Rebecca L.; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa A.; Marks, Jane C.; Morrissey, Ember M.; Price, Lance B.

    2015-01-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in 18O and 13C composition after exposure to [18O]water or [13C]glucose. The addition of glucose increased the assimilation of 18O into DNA from [18O]water. However, the increase in 18O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  7. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and

  8. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were

  9. Stable carbon and oxygen isotopes reveal Sahel drought events and ground water fluctuations in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gebrekirstos, Aster

    2014-05-01

    Tree rings are important proxies for paleoclimate studies because they contain continuous historical records of inter-annual and intra-annual time resolutions, which range over hundreds of years. This study uses stable carbon and oxygen isotopes in tree rings to understand the drivers and impacts of climate change in sub-Saharan Africa and their ability to reconstruct past regional climate variability and climatic trends. Our approach considers large scale climate gradients and different temporal scales (inter-annual and intra-annual variations) and combines multi- parameter measurements (carbon and oxygen isotopes, whole wood and cellulose measurements). The study species are Faidherbia albida and Sclerocarya birrea from south and West Africa, respectively. Both are very important deciduous trees, and widely distributed in sub-Saharan Africa. Particularly, F. albida has a distinctive phenology; it bears leaves and flowers during the dry season and sheds its leaves during the rainy season. Stable carbon (δ13C) and oxygen (δ18O) mean values showed similar inter annual patterns. In general, both δ13C and δ18O show negative correlations with rainfall, humidity and PDSI. On the contrary, they are positively correlated with sunshine hours, maximum temperature and evaporation. The reverse phenology of Faidherbia and intra seasonal resolution measurements reveals seasonal ground water fluctuations. Both carbon and oxygen stable isotopes showed strong climatic signals including the long Sahel drought events and climatic recovery phases.

  10. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  11. Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters

    NASA Technical Reports Server (NTRS)

    Bauer, J. E.; Haddad, R. I.; Des Marais, D. J.

    1991-01-01

    A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1-5 micromoles of carbon and has an associated blank of 0.1-0.2 micromole of carbon. Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3%. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The delta 13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC. The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average delta 13C = -12.4%). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and delta 13C of pore-water DOC was nearly 8% lighter at 1.5-2.0-cm depth than in the mat surface layer (0-0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and delta 13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters

  12. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    PubMed

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  13. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  14. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-07-01

    Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers

  15. Modelling stable water isotopes in monsoon precipitation during the previous interglacial

    NASA Astrophysics Data System (ADS)

    Sjolte, Jesper; Hoffmann, Georg

    2014-02-01

    Changes in the tropical hydrological cycle have been recorded world wide in speleothem records dating back more than 200,000 years for some areas. Numerous empirical and modelling studies have demonstrated a strong link between the intensity of the northern hemisphere monsoon and the precessional insolation cycle (˜23 ka (thousand years)). Here we present simulations of the climate conditions of the previous interglacial, the Eemian (115-130 ka BP), using a general circulation model. We focus on changes in the tropical hydrological cycle and in the monsoon in particular. The model is equipped with a module for computing the water isotopic composition of all water reservoirs represented by the model. Our analysis of the simulated water isotope signals indicates that this key palaeo-proxy, i.e. the 18O or Deuterium signal in precipitation, is controlled by varying factors in different tropical areas: The main control on 18O for the Indian summer monsoon is the local precipitation amount, in accordance with the traditional interpretation, while the main control of 18O for East Asia is downwind depletion of 18O in vapour along the transport path. Over Africa the model simulates a strong gradient in the 18O anomalies during the Eemian climatic optimum, with depleted values in the east and relatively enriched 18O content in the west. This pattern is the result of a combination of the local "amount effect" and an anomalous zonal moisture transport. The influence of the SSTs anomalies on the placement of the Intertropical Convergence Zone (ITCZ) is found to be of major importance for the precipitation amount in the coastal regions of tropical South America. For the western part of South America a decrease in precipitation is seen for the Eemian climatic optimum, while an increase is seen for the eastern part. Our results underline the importance of reviewing the mechanisms causing isotopic changes in proxy records and further investigating the causes for past shifts in

  16. Strontium stable isotope behaviour accompanying basalt weathering

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  17. Transition of stable isotope ratios of leaf water under simulated dew formation.

    PubMed

    Kim, Kyounghee; Lee, Xuhui

    2011-10-01

    Dew formation, a common meteorological phenomenon, is expected to intensify in the future. Dew can influence the H₂¹⁸O and HDO isotopic compositions of leaf water (δ(L) ), but the phenomenon has been neglected in many experimental and modelling studies. In this study, the dew effect on δ(L) was investigated with a dark plant chamber in which dew formation was introduced. The H₂¹⁸O and HDO compositions of water vapour, dew water and leaf water of five species were measured for up to 48 h of dew exposure. Our results show that the exchanges of H₂¹⁸O and HDO in leaf water with the air continued in the darkness when the net H₂¹⁶O flux was zero. Our estimates of the leaf conductance using the isotopic mass balance method ranged from 0.035 to 0.087 mol m⁻² s⁻¹, in broad agreement of the night-time stomatal conductance reported in the literature. In our experiments, the conductance of the C₃ species was 0.04 ± 0.01 mol m⁻² s⁻¹ and that of the C₃ plants was 0.10 ± 0.04 mol m⁻² s⁻¹. At the end of 16 h dew exposure, 72 (±17) and 94 (±11)% of the leaf water came from dew according to the ¹⁸O and D tracer, respectively. © 2011 Blackwell Publishing Ltd.

  18. Simultaneous measurements of stable water isotopes in near-surface vapor and precipitation to constrain below-cloud processes

    NASA Astrophysics Data System (ADS)

    Graf, Pascal; Sodemann, Harald; Pfahl, Stephan; Schneebeli, Marc; Ventura, Jordi Figueras i.; Leuenberger, Andreas; Grazioli, Jacopo; Raupach, Tim; Berne, Alexis; Wernli, Heini

    2016-04-01

    Present-day observations of stable water isotopes (SWI) in precipitation on monthly time scales are abundant and the processes governing the variation of SWI on these time scales have been investigated by many studies. However, also on much shorter time scales of hours mesoscale meteorological processes lead to significant variations of SWIs, which are important to understand. There are only few studies investigating the variations of SWI on this short time scale, for which, e.g., frontal dynamics, convection and cloud microphysics play an essential role. In particular, the isotopic composition of both near-surface vapor and precipitation is significantly influenced by below-cloud processes that include precipitation evaporation and isotopic exchange between falling precipitation and surrounding vapor. In this study, simultaneous measurements of SWI in near-surface vapor and precipitation with high (sub-hourly) temporal resolution in combination with observational data from radars, disdrometers, radiosondes and standard meteorological instruments are used for a detailed analysis of the relative importance of below-cloud and in-cloud (i.e., precipitation formation) processes during the course of three rain events in Switzerland in spring 2014. Periods are identified when the isotopic composition of near-surface vapor and equilibrium vapor above liquid rain drops agree and when they differ due to either evaporation of precipitation or incomplete equilibration of precipitation with surrounding vapor. These findings are verified by the supporting observational data. In addition, calculations with a simple rain-shaft model fed with observational data are compared to the actual isotopic composition of precipitation. This combination of isotope measurements and model calculations allows us to test the sensitivity of the precipitation isotope signal to rain intensity, drop-size distribution and temperature and humidity profiles.

  19. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  20. Stable isotope research pool inventory

    SciTech Connect

    Not Available

    1985-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for non-destructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, /sup 40/Ca and /sup 56/Fe. All request for the loan of samples should be submitted with a summary of the purpose of the loan to: Isotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  1. Fifteen Years of Stable Oxygen, Hydrogen, and Carbon Isotopic Data from the Surface Waters in South Florida

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Price, R. M.

    2008-05-01

    The flow of water into the coastal zone of South Florida has been subject to significant anthropogenic modification over the past 100 years. Information on pre-anthropogenic conditions has been usually obtained from proxy indicators such as the oxygen isotope ratios contained in sedimentological archives such as corals and sediment cores. The current effort to restore water flows to historic conditions combined with a 10 year record of stable oxygen and hydrogen isotopic measurements from > 100 locations in the Everglades, Biscayne Bay, and the west coast and a > 15 year record from Florida Bay offers a unique opportunity to study the influence of changes in water management upon this proxy. Such information is important in assessing the veracity of previous oxygen isotopic interpretations as well as the influence of the restoration effort to influence water flows. Two of the significant findings are; 1) There has been a continual decline in the δ18O of the freshwater end-member reaching the western portion of Florida Bay suggesting a reduction a change in the hydrological status of this portion of Florida Bay; 2) there has been a decline in the δ13C of the dissolved inorganic carbon in all the coastal environments, which is ten times the rate of decline in the δ13C of the atmosphere originated from the burning of fossil fuel. These two examples suggest multiple influences upon the coastal ecosystem relating to anthropogenic activity.

  2. Relationships between water and paddlefish Polyodon spathula dentary elemental and stable-isotopic signatures: potential application for reconstructing environmental history.

    PubMed

    Bock, L R; Whitledge, G W; Pracheil, B; Bailey, P

    2017-02-01

    The objectives of this study were to characterize relationships between water and paddlefish Polyodon spathula dentary Sr:Ca, δ(18) O and stable hydrogen isotope ratio (δD) to determine the accuracy with which individual P. spathula could be assigned to their collection locations using dentary-edge Sr:Ca, δD and δ(18) O. A laboratory experiment was also conducted to determine whether dentary Sr:Ca in age 0 year P. spathula would reflect shifts in water Sr:Ca to which fish were exposed. Significant linear relationships between water and dentary Sr:Ca, δD and δ(18) O were observed, although the relationship between water and dentary δ(18) O was weaker than those for Sr:Ca and δD. Classification success for individual fish to collection locations that differed in water Sr:Ca, δD and δ(18) O ranged from 86 to 100% based on dentary-edge Sr:Ca, δD and δ(18) O. Dentary Sr:Ca increased significantly in laboratory-reared age 0 year P. spathula following 4 weeks of exposure to elevated water Sr:Ca; dentary Sr:Ca of fish held in water with elevated Sr:Ca was also significantly higher than that of control fish reared in ambient laboratory water. Results indicated that P. spathula dentaries reflect water signatures for commonly-applied natural chemical markers and strongly suggest that dentary microchemistry and stable-isotopic compositions will be applicable for reconstructing P. spathula environmental history in locations where sufficient spatial differences in water chemistry occur.

  3. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo

    2017-04-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ{}18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologoue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ{}18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ{}18O and δD, three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. In addition, a benchmark test is applied to thirteen high resolution data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. The presented methods are found to accurately reconstruct the temperatures of the synthetic data, and the estimated temperatures are shown to be unbiased. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions around 0.5 ^oC. In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 ^oC. The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.5 ^oC. The diffusion length ratio method is the least precise with a precision of 11.8 ^oC. The absolute temperature estimates from this method are also shown

  4. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Beeckman, H.; de Haulleville, T.; Kearsley, E.; Toirambe, B.; Stoffelen, P.; Boeckx, P. F.

    2012-12-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C and 18O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of 13C are influenced by fractionation through carboxylation and changes in stomatal conductance. Similarly, fractionation of 18O from soil water occurs at the leaf level through evapo-transipiration. As a consequence, δ18O values in tree cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, using both 13C and 18O stable isotopes might not only be valuable proxies of past climatic conditions but also serve as an important tool in understanding carbon and water relations within a forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope (13C / 18O) composition at two functionally similar, but geographically dissimilar, tropical humid forests in DR Congo. A first site, the Luki man and the biosphere (MAB) reserve, is located in the western part of DR Congo influenced by a tropical wet and dry climate. A second site, the Yangambi MAB reserve is located in the north

  5. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  6. Rooting depth and water source flexibility of Arundo donax across a wide and topographically varied floodplain inferred from stable isotopes

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; West, J. B.; Li, F.; Kui, L.

    2011-12-01

    Floodplain environments can exhibit strong gradients in soil moisture availability, from very dry to saturated, with important consequences for riparian vegetation transpiration and productivity and therefore ecohydrologic flowpaths. These gradients are often driven by geomorphic features that themselves can be affected by vegetation change over relatively short timescales. The Rio Grande has undergone substantial change in the past half century, including channel narrowing and significant expansion of non-native vegetation, often across previously unvegetated sandbars and natural levees. The objective of this study was to assess water sources for Arundo donax L. (giant reed), a now common invasive grass growing along the floodplains of the Rio Grande. Our hypotheses were: a) Arundo would switch from primarily shallow soil moisture to groundwater during periods of soil moisture deficit, but that this access would be limited by increasing groundwater depths, and b) transpiration would decline with floodplain elevation and decreasing surface soil moisture because of increasing depth to groundwater and surface soil moisture deficits. We used natural-abundance stable isotopes of oxygen (δ18O) and hydrogen (δ2H) to determine the water sources of Arundo along four approximately 100-meter transects arrayed perpendicular to the Rio Grande in southwest Texas. Surface soil water, river water, groundwater, precipitation and rhizome sections were collected every month from summer 2010 until summer 2011 to assess potential source water isotopic composition for Arundo. Mixing models were used to estimate Arundo dependence on surface soil moisture or groundwater. The isotopic compositions of groundwater and river water were similar throughout the year, indicating significant hyporheic exchange. As expected, the isotopic composition of precipitation events and a large flood event were distinct from the slowly-changing river and allowed an assessment of Arundo use of these

  7. Assessing site-specific spatio-temporal variations in hydrogen and oxygen stable isotopes of human drinking water

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Bowen, G. J.; Ehleringer, J. R.

    2008-12-01

    Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) are environmental forensic tracers that can be used to constrain the origin and movement of animals, people, and products. The fundamental assumption underlying this method is that water resources at different geographic locations have distinct and characteristic isotopic signatures that are assimilated into organic tissues. Although much is known about regional-scale spatio-temporal variability in δ2H and δ18O of water, few studies have addressed the question of how distinct these geographic and seasonal patterns are for any given site. To address this question, a 2-year survey of δ2H and δ18O in tap water from across the contiguous U.S. and Canada was conducted. The data show that seasonal variability in δ2H and δ18O of tap water is generally low (<10 ‰ for δ2H), and those with the highest variability can be classified as: a) cities or towns in areas of high climate seasonality, or b) large cities in arid or seasonally arid regions which access and switch among multiple water sources throughout the year. The data suggest that inter-annual variation in tap water isotope ratios is typically low, with a median difference for month-month pairs during the 2 sampling years of 2.7 (δ2H). The results from this study confirm the existence of temporal variability in δ2H and δ18O of tap water, but suggest that this variability in human-managed systems is highly damped and may be amenable to classification, modeling, and prediction. In all, the data provide the foundation for incorporating temporal variation in predictive models of water and organic δ2H and δ18O, leading to more robust and statistically defensible tests of geographic origin.

  8. The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Bath, A. H.; Talbot, J. C.

    The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18

  9. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  10. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  11. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  12. Temporal and spatial variability of stable isotopes of the water molecule in the Ebro River basin, Spain

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Petelet-Giraud, Emmanuelle; Millot, Romain

    2014-05-01

    Variations in the stable-isotope O and H composition in a catchment's water balance are mainly caused by natural variations in the isotopic composition of rainfall, through the mixing with pre-existing waters and the influence of evaporation. Stable isotopes of water can be considered as conservative and as not being affected by exchanges with soil or rock. Stable isotopes were analysed in the surface waters along the course of the Ebro River, in main tributaries of the Ebro river, in some groundwater, and over a one year survey at the outlet. The global meteoric-water line is used to represent the meteoric input as well as the local rainwater characteristics measured in five stations, all surrounding the Ebro catchment. Mean weighted rain input showed enriched values for four stations and a depleted one for the latter (large continental circulation of air masses). The δ18O and δ2H relationships for surface- and ground waters collected in the Ebro catchment with other rivers draining the French side of the Pyrenees or along the Mediterranean Sea are compiled. Most of the points clearly plot close to the global and local meteoric-water lines reflecting a meteoric origin and a lack of significant evaporation or oxygen isotopes exchanges between water and the rock matrix. The tributaries present large variations in their δ18O and δ2H signatures but only the Guadalope river has an evaporated signal.ghe most depleted values are observed for the tributaries draining the Pyrenees agreeing with the Cauterets and Garonne river signatures on the French side. The Aragon, also draining the Pyrenees, has a more enriched signature that agree with the one observed in the Adour river on the French side. However, all tributaries have more depleted values than all mean rain water signal on the Ebro catchment as given by the local rain monitoring stations. If the Burgos station is considered as representative of long range continental transport, the depleted values in the

  13. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Sik; Kim, Jun-Mo; Lee, Dong-Rim; Kim, Yongje; Lee, Dongho

    2007-10-01

    SummaryIn order to analyze water movement through an unsaturated soil zone in Jeju Island, Korea, temporal variations in the oxygen-18 and deuterium isotopes of precipitation and soil waters at three different depths were monitored for about one year. The stable oxygen and hydrogen isotopic compositions of the soil waters are plotted between or near the two local meteoric water lines for summer and winter precipitation indicating that the soil waters were recharged from the year-around precipitation, and evaporation was negligible even during hot summer season in the study area. Mean residence times of the soil waters were then estimated from the δ18O, δD, and deuterium excess or d-values of the precipitation and soil waters using two well-mixed or exponential models (EM) and one exponential piston-flow model (EPM). The regression results show that the combination of the exponential piston-flow model and the d-values of the precipitation and soil waters gives the most reasonable estimation of the mean residence times of the soil waters in the study area. It suggests that the deuterium excess or d-values can be used as a better parameter than the δ18O or δD values alone for estimating mean residence times of subsurface waters not only in Korea but also in other Northeast Asian countries. The estimated low moisture contents and hydraulic diffusivities of the soils at the three different depths also indicate that the boundary between the upper fine-grained soil and the lower coarse-grained soil may act as a capillary barrier, and the soil waters probably flow slowly through micropores rather than rapidly through macropores in the unsaturated soil zone.

  14. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  15. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  16. A comparison between wet canopy evaporation estimated by stable isotope ratios of water and canopy interception measured by water balance

    NASA Astrophysics Data System (ADS)

    Murakami, Shigeki; Hattori, Shohei; Uemura, Ryu

    2017-04-01

    Some papers proved that canopy interception is proportional to rainfall not only on a rain event basis but also on an hourly basis (e.g. Murakami, 2006, J. Hydrol.; Saito et al., 2013, J. Hydrol.). However, theoretically, evaporation does not depend on rainfall amount. These results are enigmatic and we need to reevaluate wet canopy evaporation. We measured gross rainfall and net rainfall in a plastic Christmas tree stand with a height of 165 cm placed on a 180-cm square tray as described in Murakami and Toba (2013, Hydrol. Res. Lett.). The measurement was conducted outside under natural rainfall. We also estimated wet canopy evaporation using stable isotope ratios of water. During a rain event, we manually sampled gross and net rainwater on an hourly basis. Evaporation was calculated using the difference between the δ18O (or δ2H) values in gross and net rainfall using isotope fractionation factor. Total gross rainfall in a target rain event in October, 2014, was 28.0 mm and net rainfall (discharge from the tray) was 22.7 mm, i.e. canopy interception was 5.3 mm (18.9% of gross rainfall). The δ18O (or δ2H) value in net rainfall was higher than that in gross rainfall because of fractionation by evaporation on wet canopy surface. Hourly evaporation calculated by the values of δ18O varied from 2% to 24% of gross rainfall, and the weighted average by hourly gross rainfall was 5.2% of gross rainfall. Further, we estimated rainfall interception using a tank model (Yoshida et al., 1993) assuming constant evaporation rate, i.e. 20% of gross rainfall. Total net rainfall calculated by the model was 23.1 mm, i.e. calculated canopy interception was 4.9 mm (17.5% of gross rainfall). Then, keeping the parameters of the model, we simulated net rainfall using hourly surface evaporation obtained by the δ18O values. Calculated net rainfall was 25.6 mm, i.e. wet canopy evaporation was only 2.4 mm (8.6% of gross rainfall). So far, possible explanation of the discrepancy between

  17. Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments

    NASA Astrophysics Data System (ADS)

    Hoshina, Yu; Fujita, Koji; Iizuka, Yoshinori; Motoyama, Hideaki

    2016-03-01

    Major ions, stable oxygen isotopes (δ18O), and accumulation rates are analyzed using high temporal resolution data from shallow ice cores and snow pits from East and West Antarctica. Seasonal cycles of major ions and δ18O are well preserved at sites with an accumulation rate threshold of >100 kg m-2 a-1 and calm wind conditions. The seasonal cycle is unclear at sites with high wind speeds, even if the accumulation rate is greater than the threshold. To eliminate the influences of different source regions on major ion and δ18O signals in ice cores, we calculate correlation coefficients between annually averaged major ion concentrations and δ18O, and then compare these with accumulation rates and other geographical variables such as latitude, elevation, and distance from the coast. We find that accumulation rates are highly correlated with elevation and the 10-m snow temperature, and that major ions and δ18O are negatively correlated at low accumulation sites in inland Antarctica. Negative correlations could reflect inconsistent accumulation due to a large inter-annual variability in the accumulation rate. The results show that the relationships between major ions and δ18O may not reflect climatic signatures, and could be a result of the unique characteristics of this arid environment.

  18. [Fractionation of hydrogen stable isotopes in the human body].

    PubMed

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  19. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  20. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    NASA Astrophysics Data System (ADS)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  1. Tritium records to trace stratospheric moisture inputs in Antarctica along with stable water isotopes and other tracers

    NASA Astrophysics Data System (ADS)

    Fourré, Elise; Landais, Amaëlle; Cauquoin, Alexandre; Jean-Baptiste, Philippe; Petit, Jean-Robert

    2017-04-01

    Tritium is one of the very few proxies which can document the stratospheric-tropospheric exchange. In fact natural tritium (3H) is mainly produced in the stratosphere by spallation and rapidly enters the water cycle in the form of tritiated water molecules HTO. Due to the high content of H2O in the troposphere compared to the stratosphere, the present-day tritium content of the stratosphere is 105 times the tropospheric one. HTO concentration in precipitation can thus be related to stratospheric moisture input. Apart from being a key region for climate studies, the East Antarctica Plateau with its low water pressure and precipitation is especially sensitive to stratospheric inputs enriched in tritium. In turn, tritium concentrations in East Antarctica snow should ideally be used to assess the dynamics of stratosphere - troposphere exchanges, but tritium data are very sparse. In this study, we present high resolution measurements of tritium concentration over the last 50 years at the Vostok station from three different snow pits: this allows us to identify similar cyclic interannual pattern despite stratigraphic noise. For one of the pits, stable water isotopes including 17O-excess, sodium concentration, as well 10Be have been measured on the very same samples [1,2]. As for tritium, variations in 10Be are modulated by the production under the influence of solar activity and partly by the stratospheric inputs, but once produced 10Be becomes attached to ambient aerosols and are transported and deposited with them. At Vostok, a possible link between 17O-excess and stratospheric moisture inputs variability has also been suggested [2]. We explore the correlations between these different tracers to confirm the link with stratospheric moisture inputs and to investigate the mechanisms at play in relation with the climatic conditions. In this aim, confrontation with modeling outputs [3] from the LMDZ Atmospheric General Circulation Model enhanced with both stable water

  2. Stable carbon isotope ratios of archaeal GDGTs in the marine water column and surface sediments

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Hurley, S.; Close, H. G.; Jasper, C. E.

    2016-12-01

    Archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are ubiquitous throughout the marine environment and are preserved in sediments and sedimentary rocks on million-year timescales. Variations in the number of ring-containing GDGT isomers in sediments correlate with differences in overlying sea surface temperatures, a relationship formalized in the TEX86 paleotemperature proxy. Ammonia-oxidizing Thaumarchaeota are believed to be the major sources of these GDGTs, implying that the greatest production and export of GDGTs from the water column should be associated with the maximum expression of ammonia monooxygenase (amoA) genes and maximum number of thaumarchaeal cells, both of which occur in the subsurface NO2- maximum near a depth of ca. 80-250 m. To examine the relationship between production and export of GDGTs from the water column, we measured the concentrations and δ13C values of GDGTs in suspended particulate matter (SPM) of the western South Atlantic Ocean and compared them to values from pure thaumarchaeal cultures and from available sediment core-tops from other locations. Thaumarchaeota are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). However, both the SPM and core-top δ13C values in some cases are moderately more 13C-depleted than would be predicted based on the 13C content of local DIC and the previously-published biosynthetic isotope fractionation (ɛ). This indicates that the average metabolism of the planktonic archaeal community either is mixotrophic (≥ 25% organic carbon assimilation) or that the published ɛ value for the model organism Nitrosopumilus maritimus may not be representative of the total autotrophic community. In addition to this offset, δ13C values of GDGTs in SPM inversely mirror DIC profiles, with lowest values in the nitrite maximum and higher values in the deeper water column, similar to the overall trends for bulk SPM. Finally, while individual GDGTs in SPM samples

  3. The Western Ghat as the water tower of the South Indian Rivers : a stable isotope investigation on the origin of water and factors affecting the water cycle.

    NASA Astrophysics Data System (ADS)

    Lambs, Luc; Tripti, Muguli; Balakrishna, Keshava

    2014-05-01

    The long stretch (1600 km) of Ghats on the western side (Western Ghats) of Peninsular India separates relatively wetter west coast from drier eastern coast. The western and eastern sides of the Ghats are having distinct isotopic signatures indicating unequal distribution of the moisture sources. South India is characterized by having moisture source for southwest monsoon from Arabian Sea and northeast monsoon from Bay of Bengal. The wetter side of Peninsular region is covered by combination of evergreen tropical forest and grass lands, termed as Shola Forests which support higher vapor recycling process. Very few isotopic studies have been undertaken in these areas, except few places, mainly along the coast lines. This study presents the stable isotope results on rivers and groundwater of the Western Ghats covering Agumbe (Karnataka) to Ooty (Tamil Nadu) and its west coast river basins as observed for the three year period. The stable isotope results on the surface, subsurface and deep water pools show that the mean d18O value range from -4 o to -2 o on the west slope, and from -5 o to -4 o on the east slope, with quite no altitude or amount effect up to 2000 m asl. The more depleted values are found only in higher elevation, like the Doddabeta in the Nilgiri (2637m), with d18O close to -9 o which is exceptional for a tropical area. The hills on the west slope of the Western Ghats as well as in the mountainous Shola forest exhibit strong water vapor recycling as evidenced by high d-excess values. On the contrary on the eastern slope, the drier condition and the numerous impoundments and river damming support strong evaporation process. Thus, the study identifies the profound effect of tropical vegetation and anthropogenic factors on the recharge functioning of river and groundwater pools in Southern India.

  4. Zooplankton trophic niches respond to different water types of the western Tasman Sea: A stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Henschke, Natasha; Everett, Jason D.; Suthers, Iain M.; Smith, James A.; Hunt, Brian P. V.; Doblin, Martina A.; Taylor, Matthew D.

    2015-10-01

    The trophic relationships of 21 species from an oceanic zooplankton community were studied using stable isotopes of carbon and nitrogen. Zooplankton and suspended particulate organic matter (POM) were sampled in three different water types in the western Tasman Sea: inner shelf (IS), a cold core eddy (CCE) and a warm core eddy (WCE). δ15N values ranged from 3.9‰ for the parasitic copepod Sapphirina augusta to 10.2‰ for the euphausiid, Euphausia spinifera. δ13C varied from -22.6 to -19.4‰ as a result of the copepod Euchirella curticauda and E. spinifera. The isotopic composition of POM varied significantly among water types; as did the trophic enrichment of zooplankton over POM, with the lowest enrichment in the recently upwelled IS water type (0.5‰) compared to the warm core eddy (1.6‰) and cold core eddy (2.7‰). The WCE was an oligotrophic environment and was associated with an increased trophic level for omnivorous zooplankton (copepods and euphausiids) to a similar level as carnivorous zooplankton (chaetognaths). Therefore carnivory in zooplankton can increase in response to lower abundance and reduced diversity in their phytoplankton and protozoan prey. Trophic niche width comparisons across three zooplankton species: the salp Thalia democratica, the copepod Eucalanus elongatus and the euphausiid Thysanoessa gregaria, indicated that both niche partitioning and competition can occur within the zooplankton community. We have shown that trophic relationships among the zooplankton are dynamic and respond to different water types. The changes to the zooplankton isotopic niche, however, were still highly variable as result of oceanographic variation within water types.

  5. Synthesis on evaporation partitioning using stable isotopes

    NASA Astrophysics Data System (ADS)

    Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Jonson Sutanto, Samuel

    2015-04-01

    Partitioning of evaporation into productive (transpiration) and non-productive evaporation (interception, soil evaporation) is of highest importance for water management practices, irrigation scheme design, and climate modeling. Despite this urge, the magnitude of the ratio of transpiration over total evaporation is still under debate and poorly understood due to measuring difficulties. However, with the current development in isotope measuring devices, new opportunities arise to untangle the partitioning of evaporation. In this paper we synthesize the opportunities and limitations using stable water isotopes in evaporation partitioning. We will analyze a set of field as well as laboratory studies to demonstrate the different evaporation components for various climate and vegetation conditions using stable isotopes 18O/16O and 2H/1H. Experimental data on evaporation partitioning of crops, grass, shrubs and trees are presented and we will discuss the specific experimental set-ups and data collection methods. The paper will be a synthesis of these studies.

  6. Tracing of the Rhône River within Lake Geneva using stable isotope composition of water

    NASA Astrophysics Data System (ADS)

    Cotte, Gabriel; Vennemann, Torsten

    2017-04-01

    interflow and the control of different wind conditions on the formation of resultant gyres of circulation within Lake Geneva. For example, an anticlockwise gyre forces Rhône River water to flow at intermediate depths towards the northern shore of the lake and a return interflow close to the southern shore of the lake. Isotopic mixing models coupled to physical hydrodynamic models of the lake will help constrain the flow paths of the Rhône. References Halder J., Decrouy L. & Vennemann T. 2013 : Mixing of Rhône River water in Lake Geneva (Switzerland-France) inferred from stable hydrogen and oxygen isotope profiles, Journal of Hydrology 477:152-164

  7. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Huabiao; Xu, Baiqing; Li, Zhen; Wang, Mo; Li, Jiule; Zhang, Xiaolong

    2017-02-01

    Climatic significance of ice core stable isotope record in the Himalayas and southern Tibetan Plateau (TP), where the climate is alternately influenced by Indian summer monsoon and mid-latitude westerlies, is still debated. A newly drilled Zuoqiupu ice core from a temperate maritime glacier on the southeastern TP covering 1942-2011 is investigated in terms of the relationships between δ18O and climate parameters. Distinct seasonal variation of δ18O is observed due to high precipitation amount in this area. Thus the monsoon (June to September) and non-monsoon (October to May) δ18O records are reconstructed, respectively. The temperature effect is identified in the annual δ18O record, which is predominantly contributed by temperature control on the non-monsoon precipitation δ18O record. Conversely, the negative correlation between annual δ18O record and precipitation amount over part of Northeast India is mostly contributed by the monsoon precipitation δ18O record. The variation of monsoon δ18O record is greatly impacted by the Indian summer monsoon strength, while that of non-monsoon δ18O record is potentially associated with the mid-latitude westerly activity. The relationship between Zuoqiupu δ18O record and Sea Surface Temperature (SST) is found to be inconsistent before and after the climate shift of 1976/1977. In summer monsoon season, the role of SST in the monsoon δ18O record is more important in eastern equatorial Pacific Ocean and tropical Indian Ocean before and after the shift, respectively. In non-monsoon season, however, the Atlantic Multidecadal Oscillation has a negative impact before but positive impact after the climate shift on the non-monsoon δ18O record.

  8. No influence of CO2 on stable isotope analyses of soil waters with off‐axis integrated cavity output spectroscopy (OA‐ICOS)

    PubMed Central

    Tetzlaff, Doerthe; Soulsby, Chris

    2017-01-01

    Rationale It was recently shown that the presence of CO2 affects the stable isotope (δ2H and δ18O values) analysis of water vapor via Wavelength‐Scanned Cavity Ring‐Down Spectroscopy. Here, we test how much CO2 is emitted from soil samples and if the CO2 in the headspace influences the isotope analysis with the direct equilibration method by Off‐Axis Integrated Cavity Output Spectroscopy (OA‐ICOS). Methods The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ2H and δ18O values) and CO2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. Results The experiment with the sparkling water showed that CO2 does not influence the stable isotope analysis by OA‐ICOS. CO2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO2 can be related to soil moisture and organic matter which both enhance microbial activity. Conclusions We found, despite the high CO2 emissions from soil samples, no need for a post‐correction of the pore water stable isotope analysis results, since there is no relation between CO2 concentrations and the stable isotope results of vapor samples obtained with OA‐ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:28024164

  9. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-07

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.

  10. Vegetation effects on event water dynamics - Insights from in-situ stable isotope observations and dye patterns

    NASA Astrophysics Data System (ADS)

    Volkmann, Till; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2014-05-01

    The predicted changes of climate and land-use could have drastic effects on the water balance of ecosystems, particularly under frequent drought and subsequent rewetting conditions. Yet, inference of these effects and related consequences for the structure and functioning of ecosystems, groundwater recharge, leaching of nutrients and pollutants, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the manifold interactions between vegetation and soil water dynamics. While plants require water and nutrients, they also exert, for instance, important below-ground controls on the distribution and movement of water and chemicals in the rooted soil horizons via uptake and redistribution of water, modification of soil hydraulic properties, and formation of conduits for rapid preferential water flow. This work aims to contribute to fill existing gaps by assessing the effects of different plant types and their rooting systems on the soil water dynamics. Therefore, we conducted artificial drought and subsequent rewetting experiments using isotopically and dye (Brilliant Blue FCF) labeled water on plots of various surface cover (bare soil, grass, beech, oak, vine) established on relatively homogeneous luvisol on loess in southwestern Germany. Detailed insight into the short-term dynamics of event water infiltration and root uptake during the field experiments was facilitated by the application of novel techniques for high-frequency in-situ monitoring of stable isotope signatures in pore and transpiration water using commercial laser-based spectrometers, augmenting conventional observations of soil physicochemical states (soil water content, matric potential, electrical conductivity). The temporal point information is complemented by dye staining profiles, providing a detailed picture of spatial infiltration patterns, and by root density observations. The results of the experiments allow for a comprehensive spatiotemporal

  11. Water use Efficiency in a Blue oak ( Quercus douglasii) Savanna - a Combined Analysis of Stable Isotopes and Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Tu, K. P.; Knohl, A.; Ma, S.; Baldocchi, D. D.; Dawson, T. E.

    2007-12-01

    Understanding the relationship between carbon assimilation and water consumption by natural vegetation is needed to assess how changes in climate will affect plant carbon and water exchange as well as the energy fluxes of ecosystems. While climate change is expected to cause significant warming, most models also suggest changes in the timing and amount of precipitation received; thus implications of this type of change are particularly acute in Mediterranean regions of the world. Blue oak savannas are already exposed to broad variation in water availability and to severe droughts during the summer months. Our objective was to evaluate the trade-off between carbon gain and water loss (Water Use Efficiency) in this ecosystem at both the leaf and at the ecosystem scales. We monitored the ratio of the partial pressures of CO2 inside the leaf (Ci) and in the outside air (Ca) or Ci/Ca, during the summer months of three subsequent years. This ratio is determined by the balance between photosynthetic capacity and stomatal conductance to water loss. Leaf-level estimates for individual trees were based on the carbon isotope composition (δ13C) of bulk leaf tissue and of recently fixed carbohydrates (leaf soluble sugars). These leaf and individual tree based estimates were then compared with canopy-level estimates derived from continuous eddy covariance measurements of fluxes of CO2, water vapor and meteorological variables from two eddy covariance systems, one above (23m) and one below (2m) the tree canopy. We found that savanna Blue oak trees cope with severe drought through coordinated down-regulation of carbon and water fluxes, i.e. the ratio Ci/Ca remained stable over four summer months, despite decreasing soil water content and leaf water potentials. Stable C isotope composition of leaf soluble sugars is the most robust measure of Ci/Ca because it reflects the initial discrimination of photosynthetic products, without the confounding effects ascribed to storage, tissue

  12. Chromium stable isotope fractionation during adsorption

    NASA Astrophysics Data System (ADS)

    Ellis, A.; Johnson, T.; Bullen, T.

    2003-04-01

    Chromium is a common anthropogenic contaminant in ground water. It is redox-active; the two common valences in natural waters are Cr(VI), which is highly soluble and toxic, and Cr(III), which is relatively insoluble. Redox reactions control Cr mobility in aqueous solutions with Cr(VI) reduction to Cr(III) controlling the attenuation of Cr in groundwater. Our previous study demonstrated that abiotic Cr(VI) reduction causes an isotope fractionation of -3.5 permil (53Cr/52Cr) and isotopes can therefore be used to calculate the extent of reduction. In the present study, experiments were conducted to measure Cr isotope fractionation during Cr(VI) sorption on Al203. Sorption of Cr(VI) could be important as a small isotope fractionation may get amplified along the edges of a Cr(VI) contaminated plume. A previous study demonstrated a similar process with Fe isotopes on anion exchange resin. Initial solutions of 200 mg/l Cr(VI) (as K2Cr2O7) and 0.1 mM KCl were made up. Sufficient solid Al203 was added to achieve 50% sorption. After equilibration, the solution was extracted by centrifuging and filtering with a 0.2 micron filter. Al203 was then added again to result in a further 50% sorption of the remaining Cr(VI). This process was repeated 10 times to amplify any isotopic fractionation between dissolved and adsorbed Cr(VI). The instantaneous stable isotope fractionation was calculated based on the δ 53Cr values of the initial and final Cr(VI) solutions. The results show that the stable isotope values measured in the solutions after the ten steps were within the uncertainty of the isotope value of the initial solution. Therefore, no significant stable isotope fractionation occurred. We are presently conducting experiments with goethite and expect similar results. Therefore, any fractionation of chromium stable isotopes observed in contaminant plumes are a result of processes other than adsorption (i.e., reduction).

  13. Deciphering Ecohydrological Interactions Using Stable Isotopes

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Evaristo, J. A.; Jasechko, S.

    2014-12-01

    Deciphering the nature of ecohydrological interconnections and scaling that knowledge gained at single points to watersheds is challenging. One tool that that has proved useful in this regard is stable isotope tracing. Single isotope studies have been used recently to quantify landuse change effects on streamflow source apportionment and ecological effects on transit time distributions of water at the catchment scale. However, most work to date has assumed that plant transpiration, groundwater recharge and streamflow are all sourced or mediated by the same well mixed reservoir—the soil. Recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater recharge and streamflow. However, these findings have not yet been widely tested. Here we assemble the first dual isotope database for δ2H and δ18O extracted from 47 globally-distributed stable isotopic datasets. We use these data to test the ecohydrological separation hypothesis. We combine this dual isotope dataset with global precipitation, streamwater, groundwater and soil water datasets. Our results show that precipitation, streamwater and groundwater from the 47 sites plot approximately along the δ2H/δ18O slope of eight, suggesting that local precipitation inputs supply streamwater and groundwater. Soil waters extracted from the 47 studies plot below the regression of local streamwater and groundwater with a slope of 6.6±0.05 ‰. Local plant xylem waters from our matched dataset plot on a slope 6.6±0.07 ‰ consistent with local soil waters. The tight association of soil water slopes and not that of local groundwater or streamflow suggests that plants use soil water that does not itself contribute to groundwater recharge or stream water. This ubiquity of subsurface water compartmentalization is surprising and has important implications for how we

  14. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; Beyer, Matthias; Koeniger, Paul; Wanke, Heike; Hamutoko, Josefina; Himmelsbach, Thomas

    2016-02-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil water were measured in the field using a liquid water isotope analyzer (tunable off-axis integrated cavity output spectroscope, OA-ICOS, LGR) and commercially available soil gas probes (BGL-30, UMS, Munich) in the semi-arid Cuvelai-Etosha Basin (CEB), Namibia. Results support the applicability of an in situ measurement system for the determination of stable isotopes in soil pore water. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring-down laser spectroscopic isotope analysis (CRDS, L2120-i, Picarro Inc.). After drift and span correction of the in situ isotope data, precision for over 140 measurements taken during two consecutive field campaigns (June and November 2014) was 1.8 and 0.48 ‰ for δ2H and δ18O, respectively. Mean measurement trueness is determined using quality check standards and was 5 and 0.3 ‰ for δ2H and δ18O, respectively. The isotope depth profiles are used quantitatively to calculate a soil water balance. The contribution of transpiration to total evapotranspiration ranged between 72 and 92 %. Shortly after a rain event, the contribution of transpiration was much lower, at 35 to 50 %. Potential limitations of such an in situ system are related to environmental conditions which could be minimized by using a temperature-controlled chamber for the laser spectrometer. Further, the applicability of the system using previously oven-dried soil material might be limited by physicochemical soil properties (i.e., clay minerals). Uncertainty in the in situ system is suggested to be reduced by improving the calibration procedure and further studying fractionation effects influencing the isotope ratios in the soil water, especially at low water contents. Furthermore, the influence of soil-respired CO2 on isotope values within the root zone

  15. Stable isotopic characterisation of francolite formation

    NASA Astrophysics Data System (ADS)

    McArthur, J. M.; Benmore, R. A.; Coleman, M. L.; Soldi, C.; Yeh, H.-W.; O'Brien, G. W.

    1986-02-01

    Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values of δ 13C and δ 34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in 18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H 2S decreases the δ 34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.

  16. Human drinking water compared with river waters throughout the United States with respect to their stable hydrogen and oxygen isotopic composition

    NASA Astrophysics Data System (ADS)

    Landwehr, J. M.; Coplen, T. B.; Qi, H.

    2009-04-01

    The composition of stable isotopes of hydrogen (^2H) and oxygen (^18O) in animal tissues, such as hair, nail, teeth and bone, has been used to trace migrations and geographic origin of individuals. Variations of these isotopic ratios in tissue are known to show significant correlations with the isotopic composition of ingested water, as well as with diet and other oxygen sources. Drinking water in natural ecosystems is defined by what is locally available for animal consumption, primarily surface waters such as streams, ponds, lakes, seeps, springs, etc. Tap water provides the drinking water in many human ecosystems. It may derive from local sources but can also draw on more diverse sources, such as large rivers with watersheds larger than those of local creeks, deep ground waters or even imported supplies, which may be isotopically distinct from local ecosystem supplies. Because of the potentially complex hydrologic pathways of water sources available in either animal or human ecosystems, the stable isotopic composition of these supplies may differ significantly from that of the (weighted average) local precipitation which is sometimes used to represent local water supplies. For example, water samples taken from three different taps in Washington, D.C., USA, on August 15, 2007, had measured ^2H and ^18O values of -41.7 per mill and -6.13 per mill, -41.7 per mill and -6.06 per mill, and -42.2 per mill and -6.22 per mill, respectively. A water sample taken on the same day from the Potomac River, which is the source of the D.C. water supply, had ^2H and ^18O values of -41.7 per mill and -6.06 per mill, respectively, consistent with that of the urban tap water. However, precipitation samples collected locally in Reston, Virginia, USA, had ^2H and ^18O values of -16.1 per mill and -3.13 per mill, respectively, for the week ending on August 15, 2007; -17.5 per mill and -3.40 per mill, respectively, for the month preceding August 15, 2007; and -13.6 per mill and -3

  17. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  18. Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Vega, Carmen P.; Schlosser, Elisabeth; Divine, Dmitry V.; Kohler, Jack; Martma, Tõnu; Eichler, Anja; Schwikowski, Margit; Isaksson, Elisabeth

    2016-11-01

    Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42-) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr-1) was higher than at the KC site (0.24 mw. e. yr-1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958-2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant

  19. VeWa: Assessing Vegetation Effects on Water Flows and Mixing in Northern Mountain Environments using Stable Isotopes and Conceptual Runoff Models

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McDonnell, J.; McNamara, J. P.; Van Huijgevoort, M.; Spence, C.; Soulsby, C.

    2015-12-01

    The lack of comprehensive tracer data sets still hinders the development of a generalized understanding of how northern headwaters function hydrologically. As part of the ERC funded "VeWa" project, we combined a conceptual rainfall-runoff model and input-output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in in six high-latitude experimental catchments located in the UK, USA, Sweden and Canada. We used stable isotope records from precipitation and stream flow to examine the effects of soils and landcover. A meta-analysis was carried out using the HBV-model to estimate the main storage changes characterising annual water balances. Annual snowpack storage importance was ranked differently across the sites, and the subsequent rate and longevity of melt was reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; (iii) relative importance of near-surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near-surface runoff processes in wet riparian soils can mobilize isotopically-enriched water during summer and autumn. Given close soil-vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on hydrological functioning of northern environments.

  20. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Kennedy, Casey D.; Stalker, Jeremy C.; Chesson, Lesley A.; Valenzuela, Luciano O.; Beasley, Melanie M.; Ehleringer, James R.; Bowen, Gabriel. J.

    2014-10-01

    In the western U.S., the mismatch between public water demands and natural water availability necessitates large interbasin transfers of water as well as groundwater mining of fossil aquifers. Here we identify probable situations of nonlocal water use in both space and time based on isotopic comparisons between tap waters and potential water resources within hydrologic basins. Our approach, which considers evaporative enrichment of heavy isotopes during storage and distribution, is used to determine the likelihood of local origin for 612 tap water samples collected from across the western U.S. We find that 64% of samples are isotopically distinct from precipitation falling within the local hydrologic basin, a proxy for groundwater with modern recharge, and 31% of samples are isotopically distinct from estimated surface water found within the local basin. Those samples inconsistent with local water sources, which we suggest are likely derived from water imported from other basins or extracted from fossil aquifers, are primarily clustered in southern California, the San Francisco Bay area, and central Arizona. Our isotope-based estimates of nonlocal water use are correlated with both hydrogeomorphic and socioeconomic properties of basins, suggesting that these factors exert a predictable influence on the likelihood that nonlocal waters are used to supply tap water. We use these basin properties to develop a regional model of nonlocal water resource use that predicts (r2 = 0.64) isotopically inferred patterns and allows assessment of total interbasin transfer and/or fossil aquifer extraction volumes across the western U.S.

  1. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  2. Effect of magnesium ions on the stable oxygen isotope equilibrium between dissolved inorganic carbon species and water.

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard

    2010-05-01

    Stable oxygen isotope (δ18O) values of foraminiferal calcites, which represent one of the most fundamental paleoceanographic tools to reconstruct ancient seawater temperatures, are influenced by seawater pH variations. Understanding the driving mechanism for such phenomenon requires precise knowledge of the equilibrium 18O fractionation factors between dissolved inorganic carbon (DIC) species and water. An experimental study by Beck et al. (2005) successfully refined the 18O fractionation factors between DIC components and water. Based on these results, the overall 18O fractionation between total DIC and water as a function of pH can be readily calculated (e.g., Zeebe, 2007). However, these calculations may not be applicable to seawater because the fractionation factors were measured in freshwater. Natural seawater contains numerous ionic species and other dissolved constituents, which may affect the fractionation factors. For example, it has been experimentally demonstrated that the presence of magnesium ions (Mg2+) in solutions affect equilibrium carbon isotope (13C) fractionation between aqueous CO2 and carbonate ions presumably due to the enrichment of 13C isotopes in Mg-CO30 complexes (Thode et al., 1965). This suggests that the presence of Mg2+ in solutions similarly affects the 18O fractionation factors between DIC species and water. On the other hand, Beck et al. (2005) concluded that the effect of ion pairs on the δ18O equilibrium appears to be negligible. However, this conclusion may not apply to ion paring in general, because experiments were not conducted for metal ions other than Na+. Given that Mg2+ has a marked effect on the equilibrium δ13C fractionation factors and Mg-CO30 is the most abundant form of metal-CO3-complexes in natural seawater, the potential effect of Mg2+ on the 18O fractionation factors between DIC components and water needs to be examined. Here, we will present preliminary results from quantitative carbonate precipitation

  3. Temporal variation of nitrogen balance within constructed wetlands treating slightly polluted water using a stable nitrogen isotope experiment.

    PubMed

    Zhang, Wanguang; Lei, Qiongye; Li, Zhengkui; Han, Huayang

    2016-02-01

    Slightly polluted water has become one of the main sources of nitrogen contaminants in recent years, for which constructed wetlands (CW) is a typical and efficient treatment. However, the knowledge about contribution of individual nitrogen removal pathways and nitrogen balance in constructed wetlands is still limited. In this study, a stable-isotope-addition experiment was performed in laboratory-scale constructed wetlands treating slightly polluted water to determine quantitative contribution of different pathways and temporal variation of nitrogen balance using Na(15)NO3 as tracer. Microbial conversion and substrate retention were found to be the dominant pathways in nitrogen removal contributing 24.4-79.9 and 8.9-70.7 %, respectively, while plant contributed only 4.6-11.1 % through direct assimilation but promoted the efficiency of other pathways. In addition, microbial conversion became the major way to remove N whereas nitrogen retained in substrate at first was gradually released to be utilized by microbes and plants over time. The findings indicated that N2 emission representing microbial conversion was not only the major but also permanent nitrogen removal process, thus keeping a high efficiency of microbial conversion is important for stable and efficient nitrogen removal in constructed wetlands.

  4. Earthquake hydrology of the Avon-springs catchment, Christchurch, New Zealand: Stable isotopic tracing of surface water-groundwater interaction following a large near-field seismic event

    NASA Astrophysics Data System (ADS)

    Cronin, M. J.; Horton, T. W.

    2011-12-01

    Hydrological changes that follow large earthquakes are well documented, though the exact nature of these responses are not well understood. Over the past year Christchurch, New Zealand, has experienced multiple large earthquakes starting with a 7.1 Mw on September 4th 2010, and including a devastating 6.3 Mw aftershock on February 22nd 2011, which caused massive infrastructure damage and loss of life. In an attempt to examine the hydrological responses to the earthquakes, we collected surface water samples for oxygen and hydrogen stable isotope analysis along the spring-fed Avon River in Christchurch immediately following and at regular intervals following the February 22nd aftershock. We hypothesize that the stable oxygen and hydrogen isotope composition can be used as tracers in earthquake induced groundwater-surface water-urban water interactions. To test this hypothesis, we present a unique surface water stable isotopic dataset and a simple stable-isotope based mass balance of the effects of the earthquake across a variety of time periods. Initial results indicate that the 6.3 Mw earthquake resulted in an increased discharge to the headwaters of the Avon River system, however it appears the most significant inputs were sourced from ruptured water and sewage mains which were both derived from deeper groundwater aquifers. We plan to combine stable isotopes with other aqueous geochemical tracers such as nitrate and chloride in an effort to separate rupture water and sewage mains from water sourced from the deeper groundwater aquifers. Our findings indicate that stable isotopic compositions can serve as useful tracers of earthquake impacted hydrological systems. It is important however, to stress that the utility of such approaches depends upon the presence of chemically well-defined and isotopically distinct, end-member hydrological reservoirs in the system, as well as the availability of independent constraints on physical and chemical hydrological data. Chemical

  5. Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone

    NASA Astrophysics Data System (ADS)

    Landon, M. K.; Delin, G. N.; Komor, S. C.; Regan, C. P.

    1999-10-01

    Soil water collected from suction lysimeters and wick samplers buried in the unsaturated zone of a sand and gravel aquifer and extracted from soil cores were analyzed for stable oxygen and hydrogen isotope values. Soil water isotopic values differed among the three sampling methods in most cases. However, because each sampling method collected different fractions of the total soil-water reservoir, the isotopic differences indicated that the soil water at a given depth and time was isotopically heterogeneous. This heterogeneity reflects the presence of relatively more and less mobile components of soil water. Isotopic results from three field tests indicated that 95-100% of the water collected from wick samplers was mobile soil water while samples from suction lysimeters and cores were mixtures of more and less mobile soil water. Suction lysimeter samples contained a higher proportion of more mobile water (15-95%) than samples from cores (5-80%) at the same depth. The results of this study indicate that, during infiltration events, soil water collected with wick samplers is more representative of the mobile soil water that is likely to recharge ground water during or soon after the event than soil water from suction lysimeters or cores.

  6. Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P.

    1999-01-01

    Soil water collected from suction lysimeters and wick samplers buried in the unsaturated zone of a sand and gravel aquifer and extracted from soil cores were analyzed for stable oxygen and hydrogen isotope values. Soil water isotopic values differed among the three sampling methods in most cases. However, because each sampling method collected different fractions of the total soil-water reservoir, the isotopic differences indicated that the soil water at a given depth and time was isotopically heterogeneous. This heterogeneity reflects the presence of relatively more and less mobile components of soil water. Isotopic results from three field tests indicated that 95–100% of the water collected from wick samplers was mobile soil water while samples from suction lysimeters and cores were mixtures of more and less mobile soil water. Suction lysimeter samples contained a higher proportion of more mobile water (15–95%) than samples from cores (5–80%) at the same depth. The results of this study indicate that, during infiltration events, soil water collected with wick samplers is more representative of the mobile soil water that is likely to recharge ground water during or soon after the event than soil water from suction lysimeters or cores.

  7. Food sources of wintering piscivorous waterbirds in coastal waters: A triple stable isotope approach for the southeastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Morkūnė, Rasa; Lesutienė, Jūratė; Barisevičiūtė, Rūta; Morkūnas, Julius; Gasiūnaitė, Zita R.

    2016-03-01

    This study uses a triple isotope approach (δ13C, δ15N, and δ34S) to quantify the main food sources for wintering piscivorous waterbirds in the coastal zone of the southeastern Baltic Sea. Significant differences of δ15N and δ34S values among pelagic fishes, benthic fishes, and benthopelagic European smelt (Osmerus eperlanus) were detected, while δ13C was similar among these sources. Using different combinations of δ13C, δ15N, and δ34S values in mixing models, we found that common guillemot (Uria aalge) and red-throated diver (Gavia stellata) mostly foraged on pelagic prey (50-70% and 51-56%, respectively), whereas great crested grebe (Podiceps cristatus) consumed benthic prey (48-53%). European smelt comprised a substantial proportion of the diet of studied birds (19-36%). A stable isotope approach can be recommended as a non-lethal method to study avian diets in the coastal waters of the Baltic Sea.

  8. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    PubMed

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ(2)H and δ(18)O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ(2)H and δ(18)O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  9. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  10. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-11-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  11. Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Ott, D.S.; Cecil, L.D.; Knobel, L.L.

    1994-01-01

    Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the U.S. Geological Survey's continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta H-2 and as delta 0-18, respectively. The values in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respec- tively. The values in water from the 38 ground- water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

  12. Using stable isotopes and integrated flow-tracer modeling to conceptualise vegetation influences on water partitioning, storage and runoff generation in high-latitude environments

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Buttle, Jim; Carey, Sean; Laudon, Hjalmar; McDonnell, Jeff; McNamara, Jim; Spence, Chris; Sprenger, Matthias; van Huijgevoort, Marjolein; Soulsby, Chris

    2016-04-01

    Stable isotopes tracers have been widely used as a means to assess the sources and flow paths of stream flow in a wide range of geographical environments. However, the paucity of high resolution isotope data sets from high latitude northern headwaters hinders the development of a generalized understanding of boreal watershed. As part of the ERC funded "VeWa" project, we use stable isotopes of different waters (that is precipitation, soil water, groundwater, streamwater, plant xylem water) to understand the role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water at six, long-term experimental sites across the wider North (in Scotland, Sweden, Canada and the US). We investigated the effects of vegetation on interception, precipitation partitioning and isotope inputs as well as evaporative losses and dynamics in soil water isotopes. We also used a tracer-aided, spatially distributed rainfall-runoff model to conceptualise and integrate flow paths, storage dynamics and mixing processes at the catchment scale. Whilst inter-site findings differ in detail, in general, vegetation canopy cover had a large influence on the quantity and distribution of interception and throughfall. However, the isotopic signature of throughfall was mainly driven by that of precipitation. Whilst temporal variability in soil water isotopes was mainly driven by throughfall or snowmelt in wet periods, the effects of soil evaporation was dominant in soils during the dry periods, with the effects of evaporative fractionation evident in in the upper 10cm of the soils. At some sites, this evaporative fractionation in the rooting zone seemed to explain the isotopic composition of xylem water. Despite these processes affecting the partitioning of isotopes in the soils, at the catchment scale modelling showed that these differences have limited influence on stream water isotopes. Using the coupled flow-tracer model, we could model stream and soil isotope

  13. Ecological information and water mass properties in the Mediterranean recorded by stable isotope ratios in Pinna nobilis shells

    NASA Astrophysics Data System (ADS)

    GarcíA-March, Jose Rafael; Surge, Donna; Lees, Jonathan M.; Kersting, Diego K.

    2011-06-01

    Sclerochronologic and stable isotope records in Pinna nobilis shells potentially record ecological and oceanographic information. P. nobilis is a subtidal bivalve adapted to live in a variety of environments in the Mediterranean. We hypothesized that stable isotope ratios (δ18O and δ13C) and growth increment patterns from individuals living in different environments serve as ecological indicators. Using a new methodology for calcite sampling, we (1) identified annual growth features (nacre tongues) and (2) compared monthly resolved variations in δ18O and δ13C values and calcification temperatures recorded in animals located above and below the thermocline (16 and 30 m depth). The specimens from 16 m showed more negative δ18O values than the specimen from 30 m, likely reflecting differences in salinity. The specimens from 30 m recorded δ13C values less positive than the specimens from 16 m, which we interpreted as an ontogenetic effect observed in previous studies. Estimated calcification temperatures were offset relative to measured water temperature by ˜6.1°C (˜1.4‰). This finding is evident in earlier proxy studies of P. nobilis, although it was not discussed in those studies. Using the seasonal pattern of δ18O and δ13C values, we demonstrated that nacre tongues are deposited annually and that their formation is independent of temperature. Food availability rather than temperature may control nacre tongue formation. An alternative explanation for nacre tongue formation is gonad maturation during spring. Our findings support the idea that sclerochronology in P. nobilis can be used to reconstruct environmental, ecological, and climate archives of the Mediterranean.

  14. Stable Isotope Analysis of Chlorate

    NASA Astrophysics Data System (ADS)

    Brundrett, M.; Jackson, W. A.; Sturchio, N. C.; Bohlke, J. K.; Hatzinger, P.

    2016-12-01

    Studies have confirmed the presence of chlorate (ClO3-) throughout terrestrial and extraterrestrial systems generally in excess of perchlorate (ClO4-) [1, 2]. ClO3- occurrence, production, and post depositional transformation has significant implications to our understanding of atmospheric Cl cycling and potential biogeochemical reactions on Earth and Mars. The isotopic composition of oxyanions can be used to evaluate their production mechanisms and post-depositional alteration [3, 4]. However, no information is available on the natural isotopic composition of ClO3-. The objective of this study was to develop a method to measure the stable isotope composition (δ18O, δ17O and δ37Cl) of ClO3- and to determine the isotopic composition of ClO3- in natural desert salt accumulations that have been studied previously for NO3- and ClO4- isotopic composition. The process of ClO3- purification and analysis of δ18O, δ 17O and δ37Cl is problematic but has recently been resolved by adapting previously published methods for ClO4-. Competitive anions (e.g. NO3-, Cl-, ClO4-, and SO4-2) are removed through a series of processes including biological reduction, solid phase extraction, and anion or cation exchange. Initial results for control samples treated with the above method have a maximum variation of ± 2 ‰. These methods are being applied to representative samples to determine if various sources of natural and synthetic ClO3- have distinctive isotopic compositions, as reported previously for ClO4- [3, 4]. Establishing the range of isotopic composition of natural ClO3- also could provide information about atmospheric ClO3- production mechanisms and post-depositional processing, with implications for the atmospheric chemistry of oxychlorine compounds and the global biogeochemical cycling of Cl. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Bao and Gu (2004) ES&T 38, 5073-5077.

  15. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  16. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing

    PubMed Central

    Eyice, Özge; Schäfer, Hendrik; Price, Oliver R.; Finnegan, Christopher J.; van Egmond, Roger A.; Shaw, Liz J.; Barrett, Glyn; Bending, Gary D.

    2015-01-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [13C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. PMID:26209677

  17. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  18. Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water

    NASA Astrophysics Data System (ADS)

    Nusbaumer, Jesse; Wong, Tony E.; Bardeen, Charles; Noone, David

    2017-06-01

    Water isotope-enabled climate and earth system models are able to directly simulate paleoclimate proxy records to aid in climate reconstruction. A less used major advantage is that water isotopologues provide an independent constraint on many atmospheric and hydrologic processes, allowing the model to be developed and tuned in a more physically accurate way. This paper describes the new isotope-enabled CAM5 model, including its isotopic physics routines, and its ability to simulate the modern distribution of water isotopologues in vapor and precipitation. It is found that the model has a negative isotopic bias in precipitation. This bias is partially attributed to model overestimates of deep convection, particularly over the midlatitude oceans during winter. This was determined by examining isotope ratios both in precipitation and vapor, instead of precipitation alone. This enhanced convective activity depletes the isotopic water vapor in the lower troposphere, where the majority of poleward moisture transport occurs, resulting in the insufficient transport of water isotopologue mass poleward and landward. This analysis also demonstrates that large-scale dynamical or moisture source changes can impact isotopologue values as much as local shifts in temperature or precipitation amount. The diagnosis of limitations in the large-scale transport characteristics has major implications if one is using isotope-enabled climate models to examine paleoclimate proxy records, as well as the modern global hydroclimate.

  19. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach.

    PubMed

    Wang, Shizong; Seiwert, Bettina; Kästner, Matthias; Miltner, Anja; Schäffer, Andreas; Reemtsma, Thorsten; Yang, Qi; Nowak, Karolina M

    2016-08-01

    Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.

  20. Tracing coalbed natural gas-coproduced water using stable isotopes of carbon

    SciTech Connect

    Sharma, S.; Frost, C.D.

    2008-03-15

    Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

  1. Bering Sea deep water ventilation over the last 2 Ma, evidence from foraminiferal assemblages and stable isotopes

    NASA Astrophysics Data System (ADS)

    Kender, S.; Ravelo, C.; Asahi, H.; Becker, J.; Hall, I.; Leng, M.; Kaminski, M.; Radi, T.; Aiello, I.

    2012-04-01

    We present benthic foraminiferal stable isotope and assemblage data from the Bering Sea continental slope (U1343, ~2000m water depth), in order to elucidate changes in productivity and deep water ventilation over the last ~2 Ma. The Bering Sea is the third largest marginal sea in the world, connecting the Pacific and Arctic Oceans, but there is still very little known of its palaeoceanographic past. Its open connections to the North Pacific make it an important location to monitor subarctic North Pacific palaeoceanography. Site U1343 is situated near the continental slope, and its high latitude location makes it sensitive to sea ice and glacial meltwater input, which caused large fluctuations in stratification, primary productivity and deep water properties through time. Although there is very little deep water forming in the Bering Sea today, potential intmediate and/or deep water formation in the past may also have affected water properties. High productivity in surface water adds to the nutrient content of the aged waters entering the Bering Sea at depth from the Pacific, causing oxygen levels in some locations to be significantly depleted and benthic foraminifera tolerant to low oxygen levels and high primary productivity to thrive. Changes in the proportions of the low oxygen and high productivity species (e.g. Bulimina, Globobulimina, Globocassidulina) show large fluctuations through time, with an overall increase from the beginning of the Mid-Pleistocene Transition (MPT) onwards (~1.2 Ma) indicating more prevalent episodes of low oxygen conditions persisted after this time. Bottom water δ13C(Uvigerina) exhibit more negative values before the MPT compared with eastern equatorial Pacific Site 849, suggesting the presence of aged deep water in the Bering Sea for at least the last 2 Ma. During the MPT bottom water δ13C becomes more negatively offset from the Pacific which, coupled with the presence of lower oxygen benthic foraminifera, suggests a lower oxygen

  2. Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration

    NASA Astrophysics Data System (ADS)

    Wenninger, Jochen; Beza, Desta Tadesse; Uhlenbrook, Stefan

    Irrigated agriculture is the largest user of freshwater worldwide and the scale of irrigated agriculture can be so large that it can have dramatic effects on the water cycle and even alter regional climates. Therefore, it is vital to improve the water use efficiency of irrigated lands in order to address the sustainable use of water resources, the growing need for agricultural products, and the health of ecosystems. Environmental isotopes have unique attributes that make them particularly suitable for tracing hydrological pathways and quantifying hydrological fluxes within the soil-vegetation-atmosphere system. The stable isotopic composition of soil water is mainly controlled by precipitation or irrigation inputs and evaporative losses. Because transpiration does not fractionate soil water isotopes, it is possible to estimate the relative proportions of evaporation and transpiration using isotopic mass balance calculations. In this study experimental investigations, combining classical hydrometric measurements, tracer hydrological methods and a soil water model were applied to laboratory lysimeters to study the transpiration processes of Teff ( Eragrostis tea (Zucc.) Trotter). Teff is an annual bunch cereal and an important aliment in Ethiopia and Eritrea and it is also gaining popularity in other countries. To determine the soil water contents, sensors using a capacitance/frequency domain technology were installed at different depths and soil water samples for the isotope analysis were taken using pore water samplers. Water contents in different depths and water fluxes, such as percolation and evaporation were modeled using the HYDRUS-1D software package. By using an isotope mass balance model the total evaporation and the fractions between soil evaporation and transpiration could be determined. The water losses which were estimated using the isotope mass-balance approach are in good agreement with the measured values using classical hydrometric measurements. The

  3. Residence times and age distributions of spring waters at the Semmering catchment area, Eastern Austria, as inferred from tritium, CFCs and stable isotopes.

    PubMed

    Han, Liangfeng; Hacker, Peter; Gröning, Manfred

    2007-03-01

    The groundwater system in the mountainous area of Semmering, Austria, was studied by environmental tracers in several karst springs. The tracers used included stable isotopes ((18)O, (2)H), tritium ((3)H) and chlorofluorocarbons (CFCs). The tracers provided valuable information in regard to (1) the mean altitude of the spring catchment areas; (2) the residence time and age distribution of the spring waters; and (3) the interconnection of the springs to a sinkhole. The combination of the stable isotopic data and the topography/geology provided the estimates of the mean altitudes of the catchment areas. Based on the stable isotopic data the recharge temperature of the spring waters was estimated. The smoothing of precipitation's isotopic signal in spring discharge provided information on the minimum transit time of the spring waters. Due to short observation time, (3)H data alone cannot be used for describing the mean residence time of the karst waters. CFCs, though useful in recognizing the co-existence of young (post-1993) water with old (CFC-free) water, could not be used to resolve age distribution models. It is shown in this article, however, that the combined use of tritium and CFCs can provide a better assessment of models to account for different groundwater age distributions. In Appendix A, a simplified method for collecting groundwater samples for the analysis of CFCs is described. The method provides a real facilitation for fieldwork. Test data are given for this sampling method in regard to potential contamination by atmospheric CFCs.

  4. Quantifying uncertainty in stable isotope mixing models

    NASA Astrophysics Data System (ADS)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  5. Understanding Patterns of Water Use in a Dryland Woodland Using Stable Isotopes of Water and High-Resolution Dendrometers

    NASA Astrophysics Data System (ADS)

    Page, G. F. M.; Skrzypek, G.; English, J.; Luccitti, S.; Archibald, R. D.; Grierson, P. F.

    2014-12-01

    Dryland ecoystems across inland Australia play a key role in the global carbon cycle owing to their extensive distribution and capacity to respond to highly episodic rainfall events. Understanding the pulse-response of vegetation to unpredictable and episodic rainfall also underpins mechanistic models of ecosystem function in dryland regions that can be used to assess vulnerability to altered hydrology, either from groundwater abstraction or climate change. Here, we used high resolution measurements of stem radius to understand diurnal and seasonal patterns of tree water-uptake in response to highly dynamic (cyclone driven) water availability. We also measured leaf water potential and δ2H and δ18O to validate assumptions about pulse water-use and the spatial and vertical distribution of soil water. We tested the hypotheses that (1) stem radius variation follows daily and seasonal patterns that reflect tree water use, and (2) trees are highly responsive to summer cyclone events that recharge the soil profile. We logged changes in stem radius of 11 Eucalyptus victrix trees every 20 minutes from November 2011 - November 2013 in the Hamersley Ranges of NW Australia. Pre-dawn and midday leaf water potential was also measured every three months between November 2011 and November 2012. We found that stem radius followed diurnal patterns of night-time rehydration and daytime water loss associated with transpiration. Periods with the largest Δψ corresponded with the largest measurements on maximum daily shrinkage (MDS) of the stem. Broader seasonal trends in trunk radius related to temperature, rainfall and VPD were also apparent. Rapid and extended periods (days) of stem expansion were associated with rehydration following cyclonic rainfall followed by prolonged periods (months) of gradual contraction associated with depletion of soil moisture. Cyclonic rainfall events had distinct isotopic composition and could be traced in stem water. Similarly, evaporation of

  6. Tracing ground-water movement by using the stable isotopes of oxygen and hydrogen, upper Penitencia Creek alluvial fan, Santa Clara Valley, California

    USGS Publications Warehouse

    Muir, K.S.; Coplen, Tyler B.

    1981-01-01

    Starting in 1965 the Santa Clara Valley Water District began importing about i00,000 acre-feet per year of northern California water. About one-half of this water was used to artificially recharge the Upper Penitencia Creek alluvial fan in Santa Clara Valley. In order to determine the relative amounts of local ground water and recharged imported water being pumped from the wells, stable isotopes of oxygen and hydrogen were used to trace the movement of the imported water in the alluvial fan. To trace the movement of imported water in the Upper Penitencia Creek alluvial fan, well samples were selected to give areal and depth coverage for the whole fan. The stable isotopes of oxygen-16, oxygen-18, and deuterium were measured in the water samples of imported water and from the wells and streams in the Santa Clara Valley. The d18oand dD compositions of the local runoff were about -6.00 o/oo (parts per thousand) and -40 o/oo, respectively; the average compositions for the local native ground-water samples were about -6.1 o/oo and -41 o/oo, respectively; and the average compositions of the imported water samples were -10.2 o/oo and -74 o/oo, respectively. (The oxygen isotopic composition of water samples is reported relative to Standard Mean Ocean Water, in parts per thousand.) The difference between local ground water and recharged imported water was about 4.1 o/oo in d18o and 33 o/oo in dL. The isotopic data indicate dilution of northern California water with local ground water in a downgradient direction. Two wells contain approximately 74 percent northern California water, six wells more than 50 percent. Data indicate that there may be a correlation between the percentage of northern California water and the depth or length of perforated intervals in wells.

  7. Stable Isotope Spectroscopy for Diagnostic Medicine

    NASA Astrophysics Data System (ADS)

    Murnick, D. E.

    2000-06-01

    Isotopic tracers have been used in medical research for more than fifty years. Radioactive isotopes have been most used because of the high detection efficiencies possible. With increased awareness of the effects of low level radiation and radioactive waste management problems, the need for safe non radioactive tracers has become apparent. Rare stable isotopes of biologically active elements can be used for metabolic and pharmacokinetic studies provided that both sufficient detection sensitivity can be achieved and reliable cost effective instruments can be developed. High resolution optical spectroscopic methods which can determine isotopic ratios with high precision and accuracy are viable for research and clinical use. The study of 13C/12C ratios in CO2 for breath test diagnostics will be described in detail. Using the laser optogalvonic effect with isotopic lasers a specific medical diagnostic for h-pylori infection, has recently received FDA approval. Opportunities exist to study D/H ratios in water and 18O/16O ratios in CO2 and water for basic metabolism diagnostics and 15N/14N ratios in urine for liver function and related studies.

  8. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    SciTech Connect

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. )

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  9. Twelve Month Weekly Monitoring of Stable Isotopes of Water Associated to the Flooding of the Meirama Open Pit (NW Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, J.; Juncosa, R.; Vázquez, A.

    2009-04-01

    In December, 2007, after 30 years of extraction, the mine of Meirama stopped the production of brown lignite. Since April 2008, a controlled flooding process is taking place by which a large mining lake with nearly 150 cubic hectometers and a maximum depth of 180 meters will join the geography of Galicia in a few years. A weekly-based monitoring survey has been taking place in the lake since the beginning of the flooding process. Nearly 50 components and physico-chemical parameters of a series of sampling points located in the surface of the lake as well as in related tributaries, ground and rain waters are being recorded. Among the parameters analyzed, the stable isotopes of water (18-O and 2-H) are worth noting. The data collected so far help us to better understand the hydrological processes occurring in the first year of flooding and combined with different types of chemical constituents (conservative and non-conservative) put important constrains on the hydrochemical processes observed in the lake up to date.

  10. Uses of stable isotopes in fish ecology

    EPA Science Inventory

    Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...

  11. Uses of stable isotopes in fish ecology

    EPA Science Inventory

    Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...

  12. An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry.

    PubMed

    Koeniger, Paul; Marshall, John D; Link, Timothy; Mulch, Andreas

    2011-10-30

    The stable isotopes of water (hydrogen and oxygen isotopes) are of utmost interest in ecology and the geosciences. In many cases water has to be extracted directly from a matrix such as soil or plant tissue before isotopes can be analyzed by mass spectrometry. Currently, the most widely used technique for water is cryogenic vacuum extraction. We present a simple and inexpensive modification of this method and document tests conducted with soils of various grain size and tree core replicates taken on four occasions during 2010. The accuracies for sandy soils are between 0.4‰ and 3‰ over a range of 21‰ and 165‰ for δ(18)O and δ(2)H, respectively. Spiking tests with water of known isotope composition were conducted with soil and tree core samples; they indicate reliable precision after an extraction time of 15 min for sandy soils. For clayey soils and tree cores, the deviations were up to 0.63‰ and 4.7‰ for δ(18)O and δ(2)H, respectively. This indicates either that the extraction time should be extended or that mechanisms different from Rayleigh fractionation play a role. The modified protocol allows a fast and reliable extraction of large numbers of water samples from soil and plant material in preparation for stable isotope analyses. Copyright © 2011 John Wiley & Sons, Ltd.

  13. A mobile and self-sufficient lab for high frequency measurements of stable water isotopes and chemistry of multiple water sources

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Kraft, Philipp; Holly, Hartmut; Sahraei, Amir; Breuer, Lutz

    2017-04-01

    Technical advances over the last years have made instruments for stable water isotope and water chemistry measurements smaller, more durable and energy efficient. It is nowadays feasible to deploy such instruments in situ during field campaigns. Coupled to an automated sample delivery system, high temporal resolution online measurements of various sources are within the bounds of economic and technical possibility. However, the day to day operation of such equipment still requires either a lot of man power and infrastructure or the implementation of a quasi-self-sufficient system. The challenge remains on how to facilitate and remotely operate such a system. We present the design and implementation of the Water Analysis Trailer for Environmental Research (WATER), an autonomous platform consisting of instruments for stable water isotope and water chemistry analysis. The system takes and measures samples in high temporal resolution (<15 min) of up to 12 sources. To ensure an unmanned operation of up to one week several issues need to be addressed. The essential topics are: - self-sufficient power supply, - automated sample delivery and preparation, and - autonomous measurements and management interfacing all instruments. In addition to the basic requirements we implemented: - communication of all system states, alarm messages and measurement results to an internal as well as an external database via cellular telemetry, - automated storage of up to 300 frozen reference samples (100 mL, stored at -18°C), - climate control for temperature sensitive equipment (±1°C), - a local and remote (up to 20 km using radio telemetry) sensor network (i.e. to record states of the hydrological system and climate and soil conditions), also suitable to trigger specific measurements - automatic fire suppression and security system. The initial instrumentation includes a UV spectrometer (ProPs, Trios GmBH, Germany) to measure NO3-, COD, TOC and total suspended sediments, multiparameter

  14. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate

    USGS Publications Warehouse

    Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C.

    2005-01-01

    To determine whether NO3- concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO 3-, we analyzed stream ??15N-NO 3- and ??18O-NO3- values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day-1 during snowmelt, and element concentrations increased from 33 to 71 ??mol L-1 for NO3-, 3 to 9 ??mol L-1 for total Al, and 330 to 570 ??mol L-1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day-1 during snowmelt. The highest NO3-, Al, and DOC concentrations were 52, 10, and 630 ??mol L -1, respectively, and dissolved Si decreased from 148 ??mol L -1 before to 96 ??mol L-1 during snowmelt. Values of ??15N and ??18O of NO3- in stream water were similar in both years. Stream water, atmospherically- derived solutions, and groundwaters had overlapping ??15N- NO3- values. In stream and ground water, ??18O-NO3- values ranged from +5.9 to +12.9??? and were significantly lower than the +58.3 to +78.7??? values in atmospheric solutions. Values of ??18O-NO3- indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3- by increasing contributions of forest floor and mineral soil NO3- during snowmelt. ?? Springer 2005.

  15. A Pilot Study of Watershed Flow Using Stable Water Isotopes in Support of the Development of the Lamprey River Watershed (Southeast New Hampshire) as a Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Frades, M.; Davis, J.; Bryce, J.; McDowell, W. H.

    2008-12-01

    The Lamprey River Watershed provides a suite of ecologic, geographic, geologic, and cultural characteristics that together provide an excellent opportunity to establish a convenient, unique, instructive, and informative natural laboratory. Researchers at the University of New Hampshire are establishing the Lamprey River Watershed, located in the seacoast region of New Hampshire, as a long term hydrologic observatory, where the instrumentation, data, and results from multi-disciplinary studies can be integrated to achieve greater understanding of the hydrologic system as a whole.One component of this proposed research is the establishment of a long term record of water isotope data. The results of a 1.5-year pilot study of stable water isotopes in the Headwaters of the Lamprey River Watershed (HLRW) are the focus of this presentation. In order to better understand groundwater flowpaths and residence times within the HLRW, we used stable water isotopes as natural tracers. For the period of June 2006 through October 2007, over 200 total water samples of groundwater, surface water, precipitation, and infiltration were collected and analyzed for stable hydrogen and oxygen isotopes. Based on analysis of isotopic and hydrometric data, the groundwater system is interpreted to be comprised of three distinct but interconnected reservoirs: a shallow groundwater reservoir which does not directly contribute to stream flow at the watershed outlet and has a mean residence time greater than 9 years; a near-surface groundwater reservoir, which is fed by the shallow system, flows through surface water bodies and wetlands with a mean residence time of approximately 1.5 months, and is the primary source of baseflow in the stream network; and a deep groundwater reservoir. The findings have significant implications for the interpretation of biogeochemical mass balance models of the Lamprey River Watershed and ongoing strontium isotope and trace element tracer studies. In a broader sense

  16. Variations in stable- isotope ratios of ground waters in seismically active regions of California.

    USGS Publications Warehouse

    O'Neil, J.R.; Chi-Yu, King

    1981-01-01

    Measurements of D and 18O concentrations of ground waters in seismically active regions are potentially useful in earthquake prediction and in elucidating mechanisms operative during earthquakes. Principles of this method are discussed and some preliminary data regarding a magnitude 5.7 earthquake at the Oroville Dam in 1975 and a series of events near San Juan Bautista in 1980 are presented to support the utility of such measurements. After earthquakes, the D content of nearby ground waters increased by several permil while the 18O content remained constant. This increase implies that H2O may have either decomposed or reacted to form molecular H2 at depth. It is emphasized that many areas must be investigated for these effects in order to find a sufficient number of 'sensitive' water wells and springs to permit a truly effective program of earthquake research. -Authors

  17. Stable isotope compositions of waters in the Great Basin, United States 3. Comparison of groundwaters with modern precipitation

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A.

    2002-01-01

    Groundwater samples from wells and springs, scattered over most of the Great Basin province, were collected and analyzed for their isotopic makeup. They were augmented by previously published isotopic data on groundwaters from southeast California and by several hundred unpublished isotopic analyses. The ratio of 2H (deuterium, D) to 1H, in water samples from valleys in parts of California, Idaho, Nevada, Oregon, and Utah, are here compared with the winter, summer, and annual isotopic compositions of precipitation falling in or near the sampled areas. The main goal of this study was to identify basins where the groundwaters have isotopic compositions that are "lighter" (depleted in the heavier isotope, D) relative to modern winter precipitation. Where these basins do not adjoin substantially higher terrain, we consider those light groundwaters to be of Pleistocene age and thus more than 10,000 years old. Where the groundwater is 10 to 19??? lighter than local winter precipitation, we consider it to be possibly an indication of Pleistocene water; where the ??D makeup is >20??? lighter, we consider it to be probably Pleistocene water. More than 80 sites underlain by waters of possible or probable Pleistocene age were identified.

  18. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  19. Climate impacts on connectivity of snowmelt to flow in the Willamette River using water stable isotopes

    EPA Science Inventory

    Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in ...

  20. STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER

    EPA Science Inventory

    Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...

  1. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    USGS Publications Warehouse

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with

  2. Quality assurance and quality control in light stable isotope laboratories: a case study of Rio Grande, Texas, water samples.

    PubMed

    Coplen, Tyler B; Qi, Haiping

    2009-06-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory

  3. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2009-01-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory

  4. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  5. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  6. Stable Water Isotope Dynamics Can Constrain GCM Convective Processes during the MJO

    NASA Astrophysics Data System (ADS)

    Tuinenburg, O.; Risi, C. M.; Lacour, J. L.; Schneider, M.

    2014-12-01

    This research aims to improve the representation of convective processes during the Madden-Julian oscillation (MJO) and other modes of intra-seasonal variability in the LMDZ atmospheric models, by making use of joint δD and H2O (vapor) measurements. In addition to atmospheric drying and wetting derived from the humidity measurements, the additional δD measurements provide enrichment and depletion information. This information is used to distinguish between different moistening and drying processes. For example, moistening due to ocean surface evaporation and due to rain re-evaporation can be distinguished, as re-evaporating moisture is more depleted in δD than surface evaporation.We use mid-tropospheric IASI satellite δD and H2O measurements to determine the humidity and δD evolution during about eight MJO events from 2010-2012 (including those monitored during the CINDY/DYNAMO campaign). Moreover, these evolutions are compared to the standard isotope enabled LMDZ GCM, as well as to sensitivity tests of key parameters (cold pool representation, precipitation efficiency, droplet size and fall speed, etc.) in the convection scheme.The IASI measurements over the Indian ocean suggest that from 20 days to 5 days before the MJO peak, the main moisture source is oceanic surface evaporation, which is advected upwards by shallow convection. During the 5 days around the MJO peak, the moisture evolution is dominated by deep convection. Most inter-event variability occurs 5 to 10 days after the event, when 75% of the events are dominated by large scale condensation, while convection dominate the remaining quarter of the events. After this, the advection of relatively dry and enriched air brings back the state to the mean. Over the Maritime continent, similar δD-H2O dynamics occur, but the variability of advected moisture dominates the inter-event variability.The model captures the δD and H2O dynamics of the MJO reasonably well. However, over the Indian ocean, the timing

  7. Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region

    NASA Astrophysics Data System (ADS)

    Hatvani, István Gábor; Leuenberger, Markus; Kohán, Balázs; Kern, Zoltán

    2017-09-01

    Water stable isotopes preserved in ice cores provide essential information about polar precipitation. In the present study, multivariate regression and variogram analyses were conducted on 22 δ2H and 53 δ18O records from 60 ice cores covering the second half of the 20th century. Taking the multicollinearity of the explanatory variables into account, as also the model's adjusted R2 and its mean absolute error, longitude, elevation and distance from the coast were found to be the main independent geographical driving factors governing the spatial δ18O variability of firn/ice in the chosen Antarctic macro region. After diminishing the effects of these factors, using variography, the weights for interpolation with kriging were obtained and the spatial autocorrelation structure of the dataset was revealed. This indicates an average area of influence with a radius of 350 km. This allows the determination of the areas which are as yet not covered by the spatial variability of the existing network of ice cores. Finally, the regional isoscape was obtained for the study area, and this may be considered the first step towards a geostatistically improved isoscape for Antarctica.

  8. Transport of stable isotopes of water and sulphate within reclaimed oil sands saline-sodic mine overburden

    NASA Astrophysics Data System (ADS)

    Huang, Mingbin; Hilderman, Joel N.; Barbour, Lee

    2015-10-01

    The reclamation of shale overburden dumps from oil sands mining requires the placement of reclamation covers comprised of salvaged organic and mineral soils. The primary issues associated with the long-term performance of these covers are their ability to store sufficient water to meet transpiration demands and the potential threat of salt ingress into the cover from the underlying shale. The first issue has been addressed in previous studies, so the objective of this study was to evaluate controls on salt ingress through observations and modelling of the transport of the stable isotopes of water and salt within reclaimed profiles at the South Bison Hills overburden dump located north of Fort McMurray, Alberta. The water flow model was based on a dual porosity soil-vegetation-atmosphere model calibrated to observed field data. This model was then used to simulate deuterium and sulphate transport within the soil profiles. The optimized transport model for deuterium was used to estimate net percolation rates through the cover soil into the underlying shale. This model was then used to assess the controls on sulphate migration, including the rate of sulphate generation as a result of ongoing oxidation of the pyritic shale. The model results indicate that the average net percolation rate is a function of topographic location, ranging from 2.2 × 10-5 m/d at slope locations to 20.8 × 10-5 m/d at plateau locations during the unfrozen days. These rates of net percolation should have produced observable patterns of salt flushing from the cover and upper shale. However, the observed sulphate levels could only be simulated by including a production term related to pyrite oxidation of the shale. The simulated oxidation rates ranged from 0.4 to 5.65 mg/L/d, similar to those estimated from previous laboratory and field investigations.

  9. Preliminary report on the stable isotope imaging and characterization of surface and ground water resources in the southern Sacramento Valley

    SciTech Connect

    Davisson, M.L.; Criss, R.E.; Campbell, K.R.

    1993-11-01

    This document contains information about the water resources in Sacramento. The project considers isotopic characterization of groundwater and the environmental effects of the misuse of water resources. In particular, the study looks at the effects extensive agriculture and the overdrafting of groundwater.

  10. Validation of Heavy-Water Stable Isotope Probing for the Characterization of Rapidly Responding Soil Bacteria▿†

    PubMed Central

    Aanderud, Zachary T.; Lennon, Jay T.

    2011-01-01

    Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H218O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H218O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H218O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H218O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H218O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H218O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes. PMID:21551285

  11. Stable isotope, cation chemistry and petrographic evidence of multiple water sources influencing the alteration of Antarctic hyaloclastites

    NASA Astrophysics Data System (ADS)

    Antibus, J. V.; Panter, K. S.; Wilch, T. I.; Dunbar, N. W.; McIntosh, W. C.

    2010-12-01

    Minna Bluff is a 45 km-long, up to 1100 meter-high volcanic peninsula in the southern Ross Sea, Antarctica. Sequences of lava flows and domes, volcanic sediments, and hyaloclastite breccia interbedded with evidence of glaciation expose a complex record of development from 11.8 to 6.2 Ma [1]. Hyaloclastites are being used to help unravel paleoenvironmental conditions at Minna Bluff. Hyaloclastites are glass-rich sediments formed by the quenching and granuation of magma in contact with water that readily hydrates and alters. Minna Bluff hyaloclastite deposits have alteration assemblages consisting of carbonates and zeolites in veins,vugs, vesicles, and infilling interclast voids. Carbonates consist of low- and high-Mg calcite, dolomite, and magnesite. Zeolites include phillipsite and chabazite. Carbonate textures include blocky, isopachus, bladed (aragonite),radial fibrous spar and microcrystalline micrite. Complex zoning/interlayering of carbonates and zeolites suggest changing physiochemical conditions and/or multiple generations of fluids. Zeolite cation (Na+K)/Ca ratios show a broad range from < 1 to 550. Sr/Ca ratios in carbonates vary over a wide range from <1 to 6000, and are positively correlated with Mg/Ca ratios. Mg/Ca ratios are lower in blocky spar relative to fibrous/bladed forms. Carbonate stable isotope values for oxygen (δ18OPDB) and carbon (δ13CPDB) also show a high degree of variablity with values that range from -9.1 to -30.4‰ and -1.04 to 6.60 ‰, respectively. Lower Mg/Ca ratios correspond to lighter δ18OPDB values. Vein carbonate is isotopically lighter than carbonate in vugs and vesicles. Using conservative formation temperatures (≤ 50°C) calculated δ18O for water in equilibrium with carbonate ranges from -4 to -35‰. Overall, δ18Owater becomes lighter with increasing elevation and decreasing age towards the top of the volcanic sequence. Results suggest that seawater, meteoric water, and potentially, hydrothermal fluids all may have

  12. Stable isotopic analyses in paleoclimatic reconstruction

    SciTech Connect

    Wigand, P.E.

    1995-09-01

    Most traditional paleoclimatic proxy data have inherent time lags between climatic input and system response that constrain their use in accurate reconstruction of paleoclimate chronology, scaling of its variability, and the elucidation of the processes that determine its impact on the biotic and abiotic environment. With the exception of dendroclimatology, and studies of short-lived organisms and pollen recovered from annually varved lacustrine sediments, significant periods of time ranging from years, to centuries, to millennia may intervene between climate change and its first manifestation in paleoclimatic proxy data records. Reconstruction of past climate through changes in plant community composition derived from pollen sequences and plant remains from ancient woodrat middens, wet environments and dry caves all suffer from these lags. However, stable isotopic analyses can provide more immediate indication of biotic response to climate change. Evidence of past physiological response of organisms to changes in effective precipitation as climate varies can be provided by analyses of the stable isotopic content of plant macrofossils from various contexts. These analyses consider variation in the stable isotopic (hydrogen, oxygen and carbon) content of plant tissues as it reflects (1) past global or local temperature through changes in meteoric (rainfall) water chemistry in the case of the first two isotopes, and (2) plant stress through changes in plant respiration/transpiration processes under differing water availability, and varying atmospheric CO, composition (which itself may actually be a net result of biotic response to climate change). Studies currently being conducted in the Intermountain West indicate both long- and short-term responses that when calibrated with modem analogue studies have the potential of revealing not only the timing of climate events, but their direction, magnitude and rapidity.

  13. In Equilibrium Stable Isotope Chemistry of The Deep Water Coral Stylaster Sp. From Rockall Trough: Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Mienis, F.

    Living corals, molluscs and associated water samples were collected from deep sea coral reefs along the margins of Rockall Trough (N. Atlantic). Oxygen (d18O) and carbon (d13C) isotope analyses of seawater and skeletal CaCO3 indicate that vari- ous organisms do not precipitate CaCO3 in isotopic equilibrium with host water. Par- ticularly the most abundant coral genera Lophelia sp and Madrepora sp fractionate markedly, as was already observed by a number of previous studies. However, our new data shows that the coral genus Stylaster, occuring in small numbers in the Rock- all Trough area, is in isotopic equilibrium with seawater. Like for the aragonitic bi- valves and gastropods inhabiting the same deep water reefs, microsampling of growth banded Stylaster specimens can be applied to obtain high resolution time series of in-equilibrium d13C and d18O data covering the life span of individual specimens.

  14. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Tellenbach, C.; Möst, M.; Spaak, P.; van Hardenbroek, M.; Wooller, M. J.; Heiri, O.

    2015-06-01

    The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: -1.6 ± 0.4 ‰; δ18O: -0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to -1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at

  15. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  16. Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.; Johnson, C.A.; Moscati, R.J.

    2002-01-01

    Precipitation was collected between 1991 and 1997 at 41 locations within and adjacent to parts of the Great Basin lying in California, Oregon, Nevada, and Utah. These samples were analyzed for their deuterium (??D) and oxygen-18 (??18O) contents. Separate collections were made of summer and winter season precipitation at stations ranging in elevation from -65 m to 3246 m. The ??D per mil values of stations that were closely spaced but at different elevations showed an average ??D decrease of approximately 10???/km rise in elevation. Data for all samples representing winter precipitation, when plotted on a ??D versus ??18O plot, fall close to the Meteoric Water Line (??D = 8 ??18O + 10); samples representing summer precipitation define a line of slightly lower slope due to evaporation of the raindrops during their passage from cloud to ground. Comparison of our 1991-1997 ??D data with those from the same three stations reported by an earlier study in the southeastern California shows seasonal differences ranging from 0 per mil to 19??? (average: 15) and annual differences ranging from 0 to 13 per mil (average: 2), illustrating the degree of annual and seasonal variability in this region. When contoured, the ??D values display gradients indicating a north to northwest decrease in deuterium, with values ranging from -60 to -125??? in winter precipitation and from -40 to -110??? in summer precipitation. These gradient trends can be explained by the predominance of air mass trajectories originating in the tropical Pacific, the Gulf of California, and (in summer) the Gulf of Mexico.

  17. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate.

    PubMed

    Wegener, Gunter; Bausch, Marlene; Holler, Thomas; Thang, Nguyen Manh; Prieto Mollar, Xavier; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Boetius, Antje

    2012-06-01

    Sub-seafloor sediments are populated by large numbers of microbial cells but not much is known about their metabolic activities, growth rates and carbon assimilation pathways. Here we introduce a new method enabling the sensitive detection of microbial lipid production and the distinction of auto- and heterotrophic carbon assimilation. Application of this approach to anoxic sediments from a Swedish fjord allowed to compare the activity of different functional groups, the growth and turnover times of the bacterial and archaeal communities. The assay involves dual stable isotope probing (SIP) with deuterated water (D(2) O) and (13) C(DIC) (dissolved inorganic carbon). Culture experiments confirmed that the D content in newly synthesized lipids is in equilibrium with the D content in labelled water, independent of whether the culture grew hetero- or autotrophically. The ratio of (13) C(DIC) to D(2) O incorporation enables distinction between these two carbon pathways in studies of microbial cultures and in environmental communities. Furthermore, D(2) O-SIP is sufficiently sensitive to detect the formation of few hundred cells per day in a gram of sediment. In anoxic sediments from a Swedish fjord, we found that > 99% of newly formed lipids were attributed to predominantly heterotrophic bacteria. The production rate of bacterial lipids was highest in the top 5 cm and decreased 60-fold below this depth while the production rate of archaeal lipids was rather low throughout the top meter of seabed. The contrasting patterns in the rates of archaeal and bacterial lipid formation indicate that the factors controlling the presence of these two lipid groups must differ fundamentally. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. A comprehensive theory for the coupling between terrestrial carbon and water cycles, supported by stable carbon isotope measurements from leaves

    NASA Astrophysics Data System (ADS)

    Wang, H.; Cornwell, W.; Wright, I. J.; Prentice, I. C.

    2014-12-01

    Stomata actively regulate the CO2 concentration inside plant leaves, which co-determines the biochemical rate of photosynthesis. Stomatal behaviour thus controls leaf-level water-use efficiency and the 'exchange rate' between the terrestrial carbon and hydrological cycles. Least-cost theory (based on the hypothesis that plants minimize the combined unit costs of maintaining the capacities for water transport and carbon uptake) predicts that (a) long-term mean values of the ci/ca ratio, i.e. the ratio of leaf-internal to ambient CO2 concentration, should be independent of both photon flux density and ca; and (b) these values should vary systematically with growing-season vapour pressure deficit, growth temperature, and atmospheric pressure. Stable carbon isotope (δ13C) measurements provide an integrated measure of the ci/ca in C3 plants. A number of previous studies have focused on the aridity dependence of δ13C. The temperature dependence seems to have been overlooked, but the elevation dependence has been known for a long time: plants at high elevations have systematically lowered ci/ca, and correspondingly increased photosynthetic capacity (Vcmax). Why this should be is a long-standing puzzle: there are various speculative explanations in the literature, and a certain amount of controversy. By contrast, least-cost theory provides quantitative predictions of all three environmental effects. We have analysed a large (3652) set of δ13C measurements from C3 plants, spanning all latitudes and biomes, and shown that these predictions are quantitatively consistent with environmental dependences that can be shown in the measurements using a generalized linear model. This analysis implies the ability to predict ci/ca ratios for large-scale terrestrial ecosystem modelling. Combined with the long-standing 'co-ordination hypothesis' for the control of photosynthetic capacity, least-cost theory provides a basis for a remarkably simple global model for gross primary

  19. Long term changes in Intrinsic Water Use Efficiency, the palaoe record derived from stable carbon isotope measurements from tree rings.

    NASA Astrophysics Data System (ADS)

    Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain

    2015-04-01

    Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.

  20. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  1. Stable Isotope Signatures for Microbial Forensics

    SciTech Connect

    Kreuzer, Helen W.

    2012-01-03

    The isotopic distribution of the atoms composing the molecules of microorganisms is a function of the substrates used by the organisms. The stable isotope content of an organism is fixed so long as no further substrate consumption and biosynthesis occurs, while the radioactive isotopic content decays over time. The distribution of stable isotopes of C, N, O and H in heterotrophic microorganisms is a direct function of the culture medium, and therefore the stable isotope composition can be used to associate samples with potential culture media and also with one another. The 14C content depends upon the 14C content, and therefore the age, of the organic components of the culture medium, as well as on the age of the culture itself. Stable isotope signatures can thus be used for sample matching, to associate cultures with specific growth media, and to predict characteristics of growth media.

  2. Quantifying uncertainty in stable isotope mixing models

    DOE PAGES

    Davis, Paul; Syme, James; Heikoop, Jeffrey; ...

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  3. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the

  4. A new automated system for the rapid analysis of atmospheric water vapor samples for stable isotope composition.

    NASA Astrophysics Data System (ADS)

    Strong, M.; Sharp, Z.; Gutzler, D.

    2004-12-01

    An automated technique for measuring the isotopic composition (δ D) of atmospheric water vapor is being developed at the University of New Mexico. Air is sampled using 12 mL glass vials with screw-on caps. Our analytical system flushes the sample vial with He, isolates the water vapor in a cold trap, and then reduces the water with carbon at 1300° C to form H2 and CO. Isotopic ratios are then measured in continuous flow using a Finnigan Delta plus XL mass spectrometer. With Albuquerque-area air, sample size is approximately 100 nanomoles of H2O. Our system is robotic and interfaces with a commercially available autosampler. This enables us to analyze ~100 air samples per day with little supervision. Standards are prepared by sampling water vapor in equilibrium with waters of known isotopic composition within a glovebox. The advantage of such a system is that it will allow us to analyze atmospheric water vapor at temporal and spatial resolutions not practical with more time-consuming traditional techniques. Sample vials are compact, inexpensive, and easy to use, enabling air samples to be acquired with little effort. One potential application for this technique includes problems requiring high temporal resolution (and a high number of samples) such as diurnal cycles of evapotranspiration. Other applications include studies of the three-dimensional spatial distribution of δ D in water vapor to assess water vapor transport pathways.

  5. Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland

    NASA Astrophysics Data System (ADS)

    Rübel, André P.; Sonntag, Christian; Lippmann, Johanna; Pearson, F. J.; Gautschi, Andreas

    2002-04-01

    Pore water profiles of water, stable isotope, and dissolved noble gas content have been determined across the Opalinus Clay and adjacent formations at the rock laboratory at Mont Terri. We have found enhanced helium contents (up to [ 4He] = 1 × 10 -4 cubic centimeters at standard pressure and temperature per gram of pore water) and argon isotope ratios ( 40Ar/ 36Ar ratios up to 334) due to accumulation of 4He and 40Ar produced in situ. The helium profile was found to be in steady state with respect to in situ production and diffusive loss into the adjacent limestones where groundwater circulates. From this profile a representative mean value of the apparent diffusion coefficient for helium in the pore water of the whole formation was derived for the first time to be D a = 3.5 × 10 -11 m 2 · s -1, which is more than two orders of magnitude lower than the diffusion coefficient D 0 in free water. The stable isotope profile, however, indicates a component of fossil marine pore water, which has not yet been replaced by molecular diffusion of meteoric water from the adjacent limestone and shale formations over the past 10 million years.

  6. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization.

    PubMed

    Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira

    2016-09-01

    With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.

  7. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play

  8. Evaluating the Historical Importance of Impact Induced Hydrothermal Systems on Mars Using the Stable Isotopic Composition of Martian Water

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.

    2010-01-01

    The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced hydrothermal alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced hydrothermal systems have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and hydrothermal interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less hydrothermal interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact hydrothermal systems did not play

  9. Stable isotope (δ18O and δ2H) data for precipitation, stream water, and groundwater in Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Torres-Sanchez, Angel; Rosario-Torres, Manuel

    2014-01-01

    Puerto Rico is located in the northeastern Caribbean Sea (18.2 °N, 66.3 °W), with the Atlantic Ocean on its northern coast. The U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program study area in which most of these data were collected comprises the El Yunque National Forest and surrounding area of eastern Puerto Rico. Samples were collected in two forested watersheds, the Rio Mameyes and the Rio Icacos/Rio Blanco, on opposite sides of a ridge in the Luquillo Mountains on the eastern end of the island (fig. 1). Elevation in both watersheds ranges from sea level to approximately 1,000 meters (m). Near sea level, land use is mixed pasture, moist forest, and residential, grading to completely forested within the boundaries of El Yunque National Forest. Forest type changes with elevation from tabonuco to palo colorado to sierra palm to cloud forest above approximately 950 m (Murphy and others, 2012). The Rio Mameyes watershed is oriented north-northeast, and the basin is underlain by volcaniclastic bedrock (basaltic to andesitic volcanic sandstone/mudstone/conglomerate/breccia). The Rio Icacos/Rio Blanco watershed is oriented south-southeast. The Rio Icacos is one of the headwaters of the Rio Blanco and is underlain by quartz diorite. The lower Rio Blanco basin is underlain by andesitic volcaniclastic bedrock. This report also contains a long-term rain isotope dataset from the San Agustin site, in north-central Puerto Rico (fig. 1). Puerto Rico has a tropical climate dominated by easterly trade winds, and seasonal climate patterns affect the hydrology of the study area. The summer wet season is characterized by convective precipitation from tropical easterly waves, troughs, and cyclonic low-pressure systems, including tropical storms and hurricanes; in contrast, the drier winter season is characterized by trade-wind showers and frontal systems. The highest single-event rainfall totals tend to be associated with tropical storms

  10. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    USDA-ARS?s Scientific Manuscript database

    In this paper we develop an isotope-based statistical framework to evaluate the dynamics of the relationship between water supplies used for human consumption and several hydrological factors, including the spatiotemporal distribution of precipitation and snowmelt as well as the timing and rates of ...

  11. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    PubMed

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  12. Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate

    NASA Astrophysics Data System (ADS)

    Sigman, D. M.; Robinson, R.; Knapp, A. N.; van Geen, A.; McCorkle, D. C.; Brandes, J. A.; Thunell, R. C.

    2003-05-01

    Below its sill depth, the Santa Barbara Basin (SBB) is commonly suboxic ([O2] ˜ 3 μM), with only brief periods of ventilation. Associated with development of suboxia, the concentration of nitrate decreases with depth into the basin without an associated decrease in phosphate, indicating that a substantial fraction of the nitrate supplied to the basin is removed by denitrification. Coincident with the decrease in nitrate concentration across the "redoxcline" (the interface between oxic and suboxic waters) within the SBB, there is an increase in the 15N/14N of that nitrate, as would be anticipated from the isotopic fractionation associated with denitrification. However, the increase in 15N/14N of nitrate is much smaller than occurs in the open eastern tropical North Pacific (ETNP) for a comparable amount of nitrate loss. Both the concentrations of N species within the basin and measurements of nitrate 18O/16O suggest that the lower-than-expected 15N enrichment in the suboxic SBB involves denitrification, rather than being due to some unknown source of low-15N/14N N to the deep SBB. Calculations with a range of models of nitrate supply and consumption indicate that the degree of nitrate consumption in the basin is too small for differences in water circulation to explain the isotopic differences between the Santa Barbara Basin and the open ETNP. Previous studies indicate that the isotope effect of sedimentary denitrification is negligible due to nitrate diffusion in sediment pore waters. Thus we infer that the small magnitude of the isotopic enrichment of SBB water column nitrate is due to the importance of sedimentary denitrification within the basin. Assuming that water column and sedimentary denitrification have isotope effects of 25 and 1.5 per mil, respectively, our results suggest that sedimentary denitrification accounts for more than 75% of the nitrate loss within the suboxic SBB.

  13. Stable Isotopic Composition of Columbia and Snake River Waters Over A 16-Year Period Yield Unexpected Contrasts With Discharge

    NASA Astrophysics Data System (ADS)

    Landwehr, J. M.; Coplen, T. B.

    2012-12-01

    Surface-water samples were collected from three U.S. Geological Survey National Stream Quality Accounting Network (NASQAN) sites in the Columbia River Basin: (1) on the Columbia River at Northport near the international boundary (12400520); (2) on the Columbia River at Vernita Bridge near Priest Rapids Dam (12472900), which is downstream from Northport, but above the confluence of the Snake River; and (3) on the Snake River at Burbank (13353200), which is just above the confluence with the Columbia River. Samples were collected bimonthly from 1984 through 1987 and monthly from 1997 through 2000. As expected, the average stable hydrogen and oxygen composition among the sites increased with decreasing latitude (with δ2HVSMOW-SLAP = -133, -130, and -123 ‰ and δ18OVSMOW-SLAP = -17.6, -17.2, and -16.2 ‰, respectively). During the two three-year sampling periods separated by a decade, the average δ2H and δ18O values for each site are identical within analytical uncertainty (± 1 ‰ and ± 0.1‰, respectively). However, all three sites experienced lower annual flows during the earlier (1980s) sampling period than during the latter one, as well as slightly more negative average LC-excess values and lower slopes of the respective water lines. All three sites are downstream from dams that affect annual discharges; nevertheless, at all three sites, maximum monthly flows occur in the May-June period and minimal flows in the August-September period, consistent with a hydrologic regime influenced by cold season precipitation. A model (OIPC) prediction of the isotopic composition of precipitation at each site suggests that the most negative delta values would occur in January (e.g. δ2H = -127 ‰ near the international boundary and -104 ‰ at the site near Burbank) and the most positive delta values in September (e.g. corresponding δ2H = -77‰ and -70‰). Consistent with the occurrence of highest flows during the May-June time period and with the prediction of

  14. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed Central

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  15. Stable isotope views on ecosystem function: challenging or challenged?

    PubMed

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  16. Using stable isotopes to determine seabird trophic relationships

    USGS Publications Warehouse

    Hobson, Keith A.; Piatt, John F.; Pitocchelli, Jay

    1994-01-01

    1. The stable isotopes of nitrogen (δ15N) and carbon (δ13C) were analysed in 22 species of marine birds from coastal waters of the northeast Pacific Ocean. Analyses confirm that stable nitrogen isotopes can predict seabird trophic positions.2. Based on δ15N analyses, seabird trophic-level inferences generally agree with those of conventional dietary studies, but suggest that lower trophic-level organisms are more important to several seabirds than was recognized previously.3. Stable-carbon isotope analysis may be a good indicator of inshore vs. offshore feeding preference.4. In general, stable-isotope analysis to determine trophic level offers many advantages over conventional dietary approaches since trophic inferences are based on time-integrated estimates of assimilated and not just ingested foods, and isotopic abundance represents a continuous variable that is amenable to statistical analysis.

  17. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  18. Using variances in hydrocarbon concentration and carbon stable isotope to determine the important influence of irrigated water on petroleum accumulation in surface soil.

    PubMed

    Zhang, Juan; Wang, Renqing; Yang, Juncheng; Hou, Hong; Du, Xiaoming; Dai, Jiulan

    2013-05-01

    Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ(13)C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ(13)C of the soil can be explained by the δ(13)C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ(13)C in the atmospheric deposition accounts for 28.2 % of the δ(13)C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ(13)C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.

  19. Stable strontium isotopes ( δ88/86Sr) in cold-water corals — A new proxy for reconstruction of intermediate ocean water temperatures

    NASA Astrophysics Data System (ADS)

    Rüggeberg, Andres; Fietzke, Jan; Liebetrau, Volker; Eisenhauer, Anton; Dullo, Wolf-Christian; Freiwald, André

    2008-05-01

    Zooxanthellate scleractinian corals are known as archives for temporal variations of climate variables, such as sea surface temperature, salinity or productivity. The use of azooxanthellate cold-water corals as potential archives for intermediate water mass properties and climate variability was tested recently. However, the correlation of established proxies such as δ18O and δ13C with temperature is difficult since there is no direct temperature equation applicable as in shallow-water corals. Other temperature proxies such as Sr/Ca, Mg/Ca and U/Ca are influenced by the complex microstructure of the aragonite skeleton, the rate of calcification, and other vital effects observed for coral species. For the first time we show that the stable strontium isotope ratio δ88/86Sr incorporated in the skeletons of the cold-water coral species Lophelia pertusa portrays the ambient seawater temperature. The temperature sensitivity from live samples collected along the European continental margin covering a temperature range from 6° to 10 °C is 0.026 ± 0.003‰/°C (2 σ standard error) which is a sensitivity similar to the tropical shallow-water coral record of Pavona clavata. This indicates a similar fractionation process of strontium for both, zooxanthellate and azooxanthellate corals. For coral aragonite the δ88/86Sr ratio may serve as a new paleo-temperature proxy and introduces new perspectives in paleoceanography with respect to intermediate water dynamics.

  20. Temporal Variation in the Stable Isotopic Composition of Water and Sediment in Seneca Lake, NY (USA): Implications for Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Curtin, T.; Finkelstein, D. B.; Gunn, P.

    2014-12-01

    Paleoclimatic studies often use stratigraphic changes in the oxygen isotope composition (δ18O) of lacustrine carbonate to infer changes in water temperature and/or the δ18O of lake water. To better understand the environmental factors that influence the isotopic composition of lacustrine carbonates and the assumptions that need to be made to infer past changes in climate, we undertook a four-year study of the water chemistry and sediment trap material in Seneca Lake (NY, USA), a large, monomictic, glacial, hardwater lake. Sediment trap material collected weekly between May 2009 and 2013 together with isotopic monitoring of surface and bottom water allow for analysis of the controls on calcite precipitation in the lake. We show that calcite mainly accumulates in traps July through September when the lake water column is stratified and epilimnetic water temperature exceeds 20°C. Up to ~70% of the sediment is comprised of calcite during summer and only ~10% of the sediment is calcite during autumn, winter, and spring. The δ18O of Seneca Lake epilimnetic water varies by only ~0.6 ‰ throughout the year whereas the δ18O of bulk carbonate varies by as much as 2.4‰. As calcite precipitates in the eplimnion, the δ18O declines. Likely due to the large volume and residence time of water, the δ18O of Seneca Lake water appears to track changes in temperature. Our temperature reconstruction using the δ18O of calcite and epilimnetic lake water reveals that calcite was a reasonable proxy for lake surface temperature from July through September. During the remainder of the year, reconstructed temperatures exceed actual temperatures by as much as 18°C. Sediment resuspension (including calcite) during isothermal conditions may explain why calcite is a poor predictor of lake surface temperature in late autumn though spring. The δ18O of calcite in this lake records summer temperatures rather than year-round conditions.

  1. Stable isotope evidence for carbon transformations in the water column and the sediments of the tropical Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Kowalski, Nicole; Dellwig, Olaf; Escher, Peter; Endler, Michael; Böttcher, Michael E.

    2013-04-01

    The depositional environment of the Beibu Gulf is highly complex, and sediments are formed under dynamic changes in hydrodynamics and sediment sources. It is an ideal natural laboratory to study biogeochemical transformation processes and its responses to changes in hydrography and depositional conditions in a tropical shelf environment. In the present study, several water column profiles and a number of short (MUC) and long (GC) sediment cores were taken during a joint German-Chinese expedition with R/V Sonne (Cruise 219; December 2011) in the Beibu Gulf. The sampling stations may be separated into three different depositional zones, namely Northern Coastal Beibu Gulf with sandy sediment, Delta Deposits in Vicinity to Qiongzhou Strait affected by strong currents, and Central Beibu Gulf with stable depositional environments. We measured the geochemical composition and carbon isotope composition of DIC in the water column and pore waters. In the sediments, the TOC, TIC, TN and TS contents, the C isotope composition of organic matter (OM), and the C and O isotope composition of carbonates were analyzed to follow the fate of organic matter during pelagic and benthic transformations. Pelagic OM transformations are already demonstrated by stable isotopes in the water column. The carbon isotopic composition of pore water DIC give further evidence for the mineralization of mainly marine OM with minor or no contributions from methane at most sites. The coupled pore water profiles indicate that sulfate reduction is the most important source for the DIC added to the pore waters. No correlation was observed between TOC contents and net sulfate reduction rates for the investigated sites. Lithostratigraphic marker and 14C age in different depositional zones indicated sedimentation rate plays an important role in determining the preservation and pathway of organic decomposition. In the central Beibu Gulf, where higher sedimentation rates dominate, pore water profiles exhibit the

  2. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water c