REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION
The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...
Sedman, R M; Esparza, J R
1991-01-01
The public health impacts associated with stack emissions from hazardous waste incinerators have become a major concern in recent years. Most evaluations of incinerator stack emissions have focused on three classes of compounds: metals, semivolatile, and volatile compounds. These investigations have been complicated by the difficulty and expense of analyzing the emissions and the limited amount of toxicity information for many of the compounds that have been detected. The results of over 20 trial burns at hazardous waste incinerators were assembled in an attempt to determine which compounds may pose a significant threat to the public health. The risks associated with semivolatile emissions were found to be inconsequential, although further study of dioxins and dibenzofurans emissions appears to be warranted. The risk associated with the emission of cadmium and perhaps chromium (VI) may pose a significant risk to public health at certain facilities. Controls on waste feed or air pollution control devices should be employed to reduce the emission of these metals. Any monitoring of metal emissions from hazardous waste incinerators should focus on cadmium and chromium (VI). PMID:1954929
NASA Astrophysics Data System (ADS)
Chen, Bing; Stein, Ariel F.; Maldonado, Pabla Guerrero; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Castell, Nuria; de la Rosa, Jesus D.
2013-06-01
This study presents a description of the emission, transport, dispersion, and deposition of heavy metals contained in atmospheric aerosols emitted from a large industrial complex in southern Spain using the HYSPLIT model coupled with high- (MM5) and low-resolution (GDAS) meteorological simulations. The dispersion model was configured to simulate eight size fractions (<0.33, 0.66, 1.3, 2.5, 5, 14, 17, and >17 μm) of metals based on direct measurements taken at the industrial emission stacks. Twelve stacks in four plants were studied and the stacks showed considerable differences for both emission fluxes and size ranges of metals. We model the dispersion of six major metals; Cr, Co, Ni, La, Zn, and Mo, which represent 77% of the total mass of the 43 measured elements. The prediction shows that the modeled industrial emissions produce an enrichment of heavy metals by a factor of 2-5 for local receptor sites when compared to urban and rural background areas in Spain. The HYSPLIT predictions based on the meteorological fields from MM5 show reasonable consistence with the temporal evolution of concentrations of Cr, Co, and Ni observed at three sites downwind of the industrial area. The magnitude of concentrations of metals at two receptors was underestimated for both MM5 (by a factor of 2-3) and GDAS (by a factor of 4-5) meteorological runs. The model prediction shows that heavy metal pollution from industrial emissions in this area is dominated by the ultra-fine (<0.66 μm) and fine (<2.5 μm) size fractions.
NASA Technical Reports Server (NTRS)
Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark;
2011-01-01
We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.
Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter
2009-12-07
Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.
40 CFR 63.7740 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP emissions..., that is applied to meet any PM or total metal HAP emissions limitation in this subpart, you must... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...
Waste separation: Does it influence municipal waste combustor emissions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, A.J.; Rigo, H.G.
1996-09-01
It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less
Stacking fault energies and slip in nanocrystalline metals.
Van Swygenhoven, H; Derlet, P M; Frøseth, A G
2004-06-01
The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.
Effect of stacking faults on the photoluminescence spectrum of zincblende GaN
NASA Astrophysics Data System (ADS)
Church, S. A.; Hammersley, S.; Mitchell, P. W.; Kappers, M. J.; Lee, L. Y.; Massabuau, F.; Sahonta, S. L.; Frentrup, M.; Shaw, L. J.; Wallis, D. J.; Humphreys, C. J.; Oliver, R. A.; Binks, D. J.; Dawson, P.
2018-05-01
The photoluminescence spectra of a zincblende GaN epilayer grown via metal-organic chemical vapour deposition upon 3C-SiC/Si (001) substrates were investigated. Of particular interest was a broad emission band centered at 3.4 eV, with a FWHM of 200 meV, which extends above the bandgap of both zincblende and wurtzite GaN. Photoluminescence excitation measurements show that this band is associated with an absorption edge centered at 3.6 eV. Photoluminescence time decays for the band are monoexponential, with lifetimes that reduce from 0.67 ns to 0.15 ns as the recombination energy increases. TEM measurements show no evidence of wurtzite GaN inclusions which are typically used to explain emission in this energy range. However, dense stacking fault bunches are present in the epilayers. A model for the band alignment at the stacking faults was developed to explain this emission band, showing how both electrons and holes can be confined adjacent to stacking faults. Different stacking fault separations can change the carrier confinement energies sufficiently to explain the width of the emission band, and change the carrier wavefunction overlap to account for the variation in decay time.
Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah
2017-11-20
Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks
NASA Astrophysics Data System (ADS)
Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.
1987-11-01
The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.
40 CFR 266.106 - Standards to control metals emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...
40 CFR 266.106 - Standards to control metals emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...
Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance
NASA Astrophysics Data System (ADS)
Murr, L. E.
2016-12-01
In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.
Giasin, Khaled; Ayvar-Soberanis, Sabino
2016-07-28
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.
Giasin, Khaled; Ayvar-Soberanis, Sabino
2016-01-01
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757
Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation
NASA Technical Reports Server (NTRS)
Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc;
2013-01-01
We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Abbott; K. N. Keck; R. E. Schindler
This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less
Sedman, R M; Polisini, J M; Esparza, J R
1994-01-01
Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180
40 CFR 63.7740 - What are my monitoring requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP..., regardless of type, that is applied to meet any PM or total metal HAP emissions limitation in this subpart... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...
40 CFR 63.7740 - What are my monitoring requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP..., regardless of type, that is applied to meet any PM or total metal HAP emissions limitation in this subpart... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...
Directional Thermal Emission and Absorption from Surface Microstructures in Metalized Plastics
2013-09-01
conductive surfaces for directional emission is presented. First, key accomplishments in exploiting surface plasmons for coherent thermal emission from...than as an absorbing coating . In the 2005 design proposed by Lee et al., thermally excited surface waves at a silicon carbide to photonic crystal stack...sufficiently to significantly effect the film durability and thermal conductivity , the profile of the cavity begins to change shape. Although a case
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
Vertical pillar nanoantenna for emission enhancement and redirection
NASA Astrophysics Data System (ADS)
Paparone, J.; Laverdant, J.; Brucoli, G.; Symonds, C.; Crut, A.; Del Fatti, N.; Benoit, J. M.; Bellessa, J.
2018-01-01
Designing efficient metallic nanostructures can help in realizing bright single photon emission in the visible and near-infrared ranges. We propose a novel nanostructure design that combines the benefits of plasmonic hot spot generation in the near-field and the concept of antennas developed in the radio-frequency range. The antenna is formed by a vertical stack of metallic and dielectric nanocylinders. When used for controlling the far-field emission of a localized source, its key features are moderate losses in the metal, relatively large Purcell factors, as well as a low sensibility to the lateral position of the emitter. A redirection process necessary for these vertical structures is proposed, based on the versatility of the vertical geometry, and allows an efficient redirection of the emitted light even for antennas on dielectric substrates.
Organic light emitting diode with light extracting electrode
Bhandari, Abhinav; Buhay, Harry
2017-04-18
An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).
Intermediate connector for stacked organic light emitting devices
D& #x27; Andrade, Brian
2013-02-12
A device is provided, having an anode, a cathode, and an intermediate connector disposed between the anode and the cathode. A first organic layer including an emissive sublayer is disposed between the anode and the intermediate connector, and a second including an emissive sublayer is disposed between the intermediate connector and the cathode. The intermediate connector includes a first metal having a work function lower than 4.0 eV and a second metal having a work function lower than 5.0 eV. The work function of the first metal is at least 0.5 eV less than the work function of the second metal. The first metal is in contact with a sublayer of the second organic layer that includes a material well adapted to receive holes from a low work function metal.
Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José
2011-09-15
Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits. Published by Elsevier B.V.
Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...
Rowat, S C
1999-05-01
Toxic emissions from municipal solid waste (MSW) and hazardous waste incineration are discussed, with reference to recent reviews and to government standards and controls. Studies of known effects of aromatic hydrocarbons, other organics, dioxins, metals, and gases, on fish, soils, plants, and particularly humans are briefly reviewed. A summary of potential problems with existing and proposed incineration is developed, including: (1) lack of toxicity data on unidentified organic emissions; (2) unavoidability of hazardous metal emissions as particles and volatiles; (3) inefficient stack operation resulting in unknown amounts of increased emissions; (4) formation in the stack of highly toxic dioxins and furans, especially under inefficient conditions, and their build-up in the environment and in human tissue; (5) the lack of adequate disposal techniques for incinerator fly ash and wash-water; (6) the contribution of emitted gases such as NO2, SO2 and HCL to smog, acid rain, and the formation of ozone, and the deleterious effects of these on human respiratory systems; (7) the effects and build-up in human tissue of other emitted organics such as benzene, toluene, polychlorinated biphenyls (PCBs), alkanes, alcohols, and phenols; (8) lack of pollution-control and real-time efficiency-monitoring equipment in existing installations. The inability of regulatory bodies historically to ensure compliance with emission standards is discussed, and a concluding opinion is offered that it is inadvisable to engage in new incinerator construction with present knowledge and conditions.
New twinning route in face-centered cubic nanocrystalline metals.
Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong
2017-12-15
Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.
LOW CO LUMINOSITIES IN DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruba, Andreas; Walter, Fabian; Sandstrom, Karin
2012-06-15
We present maps of {sup 12}COJ = 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13'' angular resolution, {approx}250 pc at our average distance of D = 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarf galaxies outside the Local Group ranging from individual lines of sight, stacking over IR-bright regions of embedded star formation, and stacking over the entire galaxy. We detect five galaxies in CO with total CO luminositiesmore » of L{sub CO2-1} = (3-28) Multiplication-Sign 10{sup 6} K km s{sup -1} pc{sup 2}. The other 11 galaxies remain undetected in CO even in the stacked images and have L{sub CO2-1} {approx}< (0.4-8) Multiplication-Sign 10{sup 6} K km s{sup -1} pc{sup 2}. We combine our sample of dwarf galaxies with a large sample of spiral galaxies from the literature to study scaling relations of L{sub CO} with M{sub B} and metallicity. We find that dwarf galaxies with metallicities of Z Almost-Equal-To 1/2-1/10 Z{sub Sun} have L{sub CO} of 2-4 orders of magnitude smaller than massive spiral galaxies and that their L{sub CO} per unit L{sub B} is 1-2 orders of magnitude smaller. A comparison with tracers of star formation (FUV and 24 {mu}m) shows that L{sub CO} per unit star formation rate (SFR) is 1-2 orders of magnitude smaller in dwarf galaxies. One possible interpretation is that dwarf galaxies form stars much more efficiently: we argue that the low L{sub CO}/SFR ratio is due to the fact that the CO-to-H{sub 2} conversion factor, {alpha}{sub CO}, changes significantly in low-metallicity environments. Assuming that a constant H{sub 2} depletion time of {tau}{sub dep} = 1.8 Gyr holds in dwarf galaxies (as found for a large sample of nearby spirals) implies {alpha}{sub CO} values for dwarf galaxies with Z Almost-Equal-To 1/2-1/10 Z{sub Sun} that are more than one order of magnitude higher than those found in solar metallicity spiral galaxies. Such a significant increase of {alpha}{sub CO} at low metallicity is consistent with previous studies, in particular those of Local Group dwarf galaxies that model dust emission to constrain H{sub 2} masses. Even though it is difficult to parameterize the dependence of {alpha}{sub CO} on metallicity given the currently available data, the results suggest that CO is increasingly difficult to detect at lower metallicities. This has direct consequences for the detectability of star-forming galaxies at high redshift, which presumably have on average sub-solar metallicity.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Determination of NOX mass emissions... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.72 Determination of NOX mass emissions for common stack and multiple stack...
76 FR 72507 - National Emissions Standards for Hazardous Air Pollutants: Ferroalloys Production
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... MDL method detection limit mg/dscm milligrams per dry standard cubic meter MIR maximum individual risk... pounds per hour per megawatt (lb/hr/ MW) or 35 milligrams per dry standard cubic meter (mg/ dscm) (0.015... stacks) producing ferromanganese. New, reconstructed, or Metal oxygen refining process... 69 mg/dscm (0...
Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin
2018-04-08
To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.
40 CFR 63.7296 - What emission limitations must I meet for battery stacks?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...
40 CFR 63.7296 - What emission limitations must I meet for battery stacks?
Code of Federal Regulations, 2013 CFR
2013-07-01
... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...
40 CFR 63.7296 - What emission limitations must I meet for battery stacks?
Code of Federal Regulations, 2011 CFR
2011-07-01
... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...
40 CFR 63.7296 - What emission limitations must I meet for battery stacks?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...
40 CFR 63.7296 - What emission limitations must I meet for battery stacks?
Code of Federal Regulations, 2014 CFR
2014-07-01
... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from any...
Wang, Jer-Chyi; Chan, Ya-Ting; Chen, Wei-Fan; Wu, Ming-Chung; Lai, Chao-Sung
2017-10-25
Bernal- and rhombohedral-stacked trilayer graphene (B- and r-TLG) on nickel (Ni) and iridium (Ir) films acting as bottom electrodes (BEs) of silver electrochemical metallization cells (Ag-EMCs) have been investigated in this study. Prior to the fabrication of the EMC devices, Raman mapping and atomic force microscopy are applied to identify the B- and r-TLG sheets, with the latter revealing a significant D peak and a rough surface for the Ir film. The Ag-EMCs with the stacked BE of r-TLG on the Ir film show a conductive mechanism of Schottky emission at the positive top electrode bias for both high- and low-resistance states that can be examined by the resistance change with the device area and are modulated by pulse bias operation. Thus, an effective electron barrier height of 0.262 eV at the r-TLG and Ir interface is obtained because of the conspicuous energy gap of r-TLG on the Ir film and the van der Waals (vdW) gap between the r-TLG and Ir contact metal. With the use of Ni instead of Ir contact metal, the Ag-EMCs with TLG BE demonstrate +0.3 V/-0.75 V operation voltages, more than 10 4 s data retention at 115 °C and 250 times endurance testing, making the TLG sheets suitable for low-power nonvolatile memory applications on flexible substrates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the hourly stack flow rate (in scfh). Only one methodology for determining NOX mass emissions shall be...-diluent continuous emissions monitoring system and a flow monitoring system in the common stack, record... maintain a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonanno, Giorgio, E-mail: buonanno@unicas.it; Stabile, Luca; Avino, Pasquale
2011-11-15
Highlights: > Particle size distributions and total concentrations measurement at the stack and before the fabric filter of an incinerator. > Chemical characterization of UFPs in terms of heavy metal concentration through a nuclear method. > Mineralogical investigation through a Transmission Electron Microscope equipped with an Energy Dispersive Spectrometer. > Heavy metal concentrations on UFPs as function of the boiling temperature. > Different mineralogical and morphological composition amongst samples collected before the fabric filter and at the stack. - Abstract: Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specificmore » attention was paid to ultrafine particles (UFPs, diameter less than 0.1 {mu}m), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e. Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles. Maximum values of 2.7 x 10{sup 7} part. cm{sup -3} and 2.0 x 10{sup 3} part. cm{sup -3} were found, respectively, for number concentration before and after the fabric filter showing a very high efficiency in particle removing by the fabric filter. With regard to heavy metal concentrations, the elements with higher boiling temperature present higher concentrations at lower diameters showing a not complete evaporation in the combustion section and the consequent condensation of semi-volatile compounds on solid nuclei. In terms of mineralogical and morphological analysis, the most abundant compounds found in samples collected before the fabric filter are Na-K-Pb oxides followed by phyllosilicates, otherwise, different oxides of comparable abundance were detected in the samples collected at the stack.« less
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter
2013-06-01
Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.
NASA Technical Reports Server (NTRS)
Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.;
2013-01-01
Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.
NASA Technical Reports Server (NTRS)
Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.;
2013-01-01
Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting
We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, W.J.; Gooch, J.P.; Dahlin, R.S.
1983-03-01
Airborne emissions from coal-fired power plants consist of sulfur, nitrogen, and carbon oxides, as well as traces of certain metals or elements, radionuclides, and organic compounds that have the potential of producing adverse health effects if inhaled. To assess this potential toxicity, samples must be obtained and characterized on the basis of quantity, their chemistry, and toxicity. Sample representativeness and use of proper chemical-biological procedures are the critical for providing input into current research directed toward source apportionment and inhalation toxicology. Obtaining a valid stack sample (gases and particles) from each of more than 1500 US coal-fired power plant ismore » not practical; consequently 33 plants have been selected, taking into account plant design and operating parameters that can affect the characteristics of stack chemical emissions. Since such a program has an estimated cost of $20 million over many years, it is recommended that the initial program consists of sampling only six of the 33 units, selected with EPRI guidance, at an estimated cost of $3.5 million over a 30 month period. The plan is directed at in-stack sampling, plume and atmospheric transformations being beyond the project scope. Various stack sampling methods are considered. For particles, a modified SASS train seems best, and for gases, either resin traps or impingers are probably best. Artifact formation must be minimized. Chemical analysis procedures are to be guided by the known toxicity of species present. Procedures are outlined for organics (volatile and nonvolatile), trace elements, inorganics, and gases. Bioassay methods are restricted to in vitro, subdivided into those assays that detect genetic and direct cellular toxicity.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common... emission monitoring system and flow monitoring system in the common stack and combine emissions for the... continuous emission monitoring system and flow monitoring system in the duct to the common stack from each...
23. Brick coke quencher, brick stack, metal stack to right, ...
23. Brick coke quencher, brick stack, metal stack to right, coke gas pipe to left; in background, BOF building, limestone piles, Levy's Slag Dump. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Mihaljevic, Martin; Majer, Vladimir; Kribek, Bohdan; Sebek, Ondrej
2010-05-01
The copper smelting activities in the Copperbelt mining district (Zambia) left a huge pollution related to the disposal sites of smelting waste (slags) and to the continuous deposition of the smelter stack particulates in the soil systems. We sampled 196 surface and subsurface soils in the vicinity of the Nkana copper smelter at Kitwe and a 110 cm deep lateritic soil profile in order to assess the regional distribution of metallic contaminants and their vertical mobility. The content of contaminants in soil samples were measured by ICP techniques and the lead isotopic compositions (206Pb/207Pb and 208Pb/206Pb ratios) were determined by ICP-MS. The spatial distribution of the major contaminants (Cu, Co, Pb, Zn) indicated the highest contamination NW of the smelter stack corresponding to the direction of prevailing winds in the area. The highest metal concentrations in soils were: 27410 ppm Cu, 606 ppm Co, 480 ppm Pb, 450 ppm Zn. Lead isotopes helped to discriminate the extent of metallic pollution related to the smelter emissions having similar 206Pb/207Pb ratio of 1.17-1.20 in contrast to the regional background value of 1.32. The investigation of the lateritic soil profile sampled in the near vicinity of the Nkana smelter indicated that contamination is mostly located in the uppermost soil horizons enriched in organic matter (< 10 cm). The sequential extraction procedure indicated that up to 33% of Cu and <10% of Co, Pb and Zn was mobile in the profile, being bound in the exchangeable fraction. However, in the deeper parts of the soil profile, metals were mostly bound in reducible fraction, presumably to hydrous ferric oxides. The combination of sequential extraction and lead isotopic determination indicated that the "mobile" fractions of Pb in the soil profile corresponded to the signatures of smelter particulate emissions (206Pb/207Pb = 1.17-1.20), which means that the anthropogenic emissions are the important source of mobile (and potentially bioavailable) metals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
White organic light-emitting diodes with 4 nm metal electrode
NASA Astrophysics Data System (ADS)
Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian
2015-10-01
We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less
Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.
Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E
2014-09-01
Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, A.P.; Van Hook, R.I.; Jackson, D.R.
1976-07-01
Studies of biological activity within the litter horizons of a watershed contaminated by emissions from a lead-ore processing complex focused on the litter-arthropod food chain as a means of detecting perturbations in a heavy-metal contaminated ecosystem. Both point sources (smelter stack emissions) and fugitive sources (ore-handling processes, yard dusts, and exposed concentrate piles) contributed to the Pb, Zn, Cu, and Cd levels in the study area. Arthropod trophic level density, biomass, and heavy metal content were determined by analysis of specimens removed from litter by von Tullgren funnel extraction, taxonomically classified, and segregated into the trophic categories. Changes in littermore » decomposition were reflected in the dynamics of the litter arthropod community. Food-chain dilution of Pb, Zn, Cu, and Cd from litter to litter consumer was occurring, as indicated by the mean concentration factors. Accumulation of Pb by litter consumers was much less than that found for the other three heavy metals. In contrast, predatory arthropods on Crooked Creek Watershed either concentrated or equilibrated with respect to Pb, Zn, and Cd from their prey, as indicated by mean total predator concentration factors. A significant depression of the Ca, Mg, and K content litter occurred relative to the control within 0.8 km of the stack. Two mechanisms were postulated to explain this result: increased leaching of cations through the litter induced by a loss of cation exchange capacity, a decrease in pH, and a decrease in microbial immobilization of macronutrients; and a decreased uptake of macronutrients due to root damage produced by heavy-metal concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlish, John; Thompson, Jeffrey; Dunham, Grant
2014-09-30
Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer amore » potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels that would interfere with accurate measurement at U.S. hazardous air pollutant emission limits for existing coal-fired power plant units. Longer sampling times employed during this test program did appear to improve comparative results for these metals. Although the sorbent contribution to the sample was reduced through improved trap design, additional research is still needed to explore lower-background materials before the MEST-M application can be considered as a potential alternative method for all of the trace metals. This subtask was funded through the EERC–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Electric Power Research Institute, the Illinois Clean Coal Institute, Southern Illinois Power Company, and the Center for Air Toxic Metals Affiliates Program.« less
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2016-05-10
A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...
A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission
NASA Astrophysics Data System (ADS)
Font, Anna; de Hoogh, Kees; Leal-Sanchez, Maria; Ashworth, Danielle C.; Brown, Richard J. C.; Hansell, Anna L.; Fuller, Gary W.
2015-07-01
This study aimed to fingerprint emissions from six municipal waste incinerators (MWIs) and then test if these fingerprint ratios could be found in ambient air samples. Stack emissions tests from MWIs comprised As, Cd, Cr, Cu, Pb, Mn, Ni, V and Hg. Those pairs of metals showing good correlation (R > 0.75) were taken as tracers of MWI emissions and ratios calculated: Cu/Pb; Cd/Pb; Cd/Cu and Cr/Pb. Emissions ratios from MWIs differed significantly from those in ambient rural locations and those close to traffic. In order to identify MWI emissions in ambient air two analysis tests were carried out. The first, aimed to explore if MWI emissions dominate the ambient concentrations. The mean ambient ratio of each of the four metal ratios were calculated for six ambient sampling sites within 10 km from a MWI under stable meteorological conditions when the wind blew from the direction of the incinerator. Under these meteorological conditions ambient Cd/Pb was within the range of MWI emissions at one location, two monitoring sites measured mean Cr/Pb ratios representative of the MWI emissions and the four sites measured values of Cu/Pb within the range of MWI emissions. No ambient measurements had mean Cd/Cu ratios within the MWI values. Even though MWI was not the main source determining the ambient metal ratios, possible occasional plume grounding might have occurred. The second test then examined possible plume grounding by identifying the periods when all metal ratios differed from rural and traffic values at the same time and were consistent with MWI emissions. Metal ratios consistent with MWI emissions were found in ambient air within 10 km of one MWI for about 0.2% of study period. Emissions consistent with a second MWI were similarly detected at two ambient measurement sites about 0.1% and 0.02% of the time. Where plume grounding was detected, the maximum annual mean particulate matter (PM) from the MWI was estimated to be 0.03 μg m-3 to 0.12 μg m-3; 2-3 orders of magnitude smaller than background ambient PM10 concentrations. Ambient concentrations of Cr increased by 1.6-3.0 times when MWI emissions were detected. From our analysis we found no evidence of incinerator emissions in ambient metal concentrations around four UK MWIs. The six UK MWIs studied contributed little to ambient PM10 concentrations.
A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.
Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara
2004-07-21
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.
40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat input at common and multiple stacks. 75.82 Section 75.82 Protection of Environment ENVIRONMENTAL... Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit... systems and perform the Hg emission testing described under § 75.81(b). If reporting of the unit heat...
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2014-08-26
A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
Paintable band-edge liquid crystal lasers.
Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J
2011-01-31
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.
Volatile metal species in coal combustion flue gas.
Pavageau, Marie-Pierre; Pécheyran, Christophe; Krupp, Eva M; Morin, Anne; Donard, Olivier F X
2002-04-01
Metals are released in effluents of most of combustion processes and are under intensive regulations. To improve our knowledge of combustion process and their resulting emission of metal to the atmosphere, we have developed an approach allowing usto distinguish between gaseous and particulate state of the elements emitted. This study was conducted on the emission of volatile metallic species emitted from a coal combustion plant where low/medium volatile coal (high-grade ash) was burnt. The occurrence of volatile metal species emission was investigated by cryofocusing sampling procedure and detection using low-temperature packed-column gas chromatography coupled with inductively coupled plasma-mass spectrometry as multielement detector (LT-GC/ICP-MS). Samples were collected in the stack through the routine heated sampling line of the plant downstream from the electrostatic precipitator. The gaseous samples were trapped with a cryogenic device and analyzed by LT-GC/ICP-MS. During the combustion process, seven volatile metal species were detected: three for Se, one for Sn, two for Hg, and one for Cu. Thermodynamic calculations and experimental metal species spiking experiments suggest that the following volatile metal species are present in the flue gas during the combustion process: COSe, CSSe, CSe2, SeCl2, Hg0, HgCl2, CuO-CuSO4 or CuSO4 x H2O, and SnO2 or SnCl2. The quantification of volatile species was compared to results traditionally obtained by standardized impinger-based sampling and analysis techniques recommended for flue gas combustion characterization. Results showed that concentrations obtained with the standard impinger approach are at least 10 times higher than obtained with cryogenic sampling, suggesting the trapping microaerosols in the traditional methods. Total metal concentrations in particles are also reported and discussed.
L'Anse Warden Electric Company Boiler Number One Emission Test Report – March 2017
L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in March 2017, and the report became available in June 2017
L'Anse Warden Electric Company Boiler Number One Emission Test Report – December 2016
L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in December 2016, and the report became available in January 2017
L'Anse Warden Electric Company Boiler Number One Emission Test Report – July 2016
L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in July 2016, and the report became available in August 2016.
L'Anse Warden Electric Company Boiler Number One Emission Test Report – June 2017
L’Anse Warden Electric Company (LWEC) submitted results from an emission test on the Boiler No. 1 stack. Stack air emission testing was conducted in March 2017, and the report became available in June 2017
Organic and inorganic pollutants from cement kiln stack feeding alternative fuels.
Conesa, Juan A; Gálvez, Araceli; Mateos, Fernán; Martín-Gullón, Ignacio; Font, Rafael
2008-10-30
In this work, an analysis of the emission of different pollutants when replacing partially the fuel type used in a cement kiln is done. The wastes used to feed the kiln were tyres and two types of sewage sludge. The increasing mass flow of sludge is between 700 kg h(-1) and 5,500 kg h(-1)1, for a total production of clinker of 150th(-1), whereas the fed tyres were in the flow range of 500-1,500 kg h(-1). Dioxins and furans, polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons, heavy metals, HCl and HF, CO, CO(2), NO(x) and other parameters of the stack were analyzed, according to the standard methods of sampling and determination, through more than 1 year in six series: one blank (no sewage sludge) and five more with increasing amount of sludge and/or tyres. The emission of PAHs and dioxins seems to increase with the amount of tyres fed to the kiln, probably due to the fed point used for this waste.
NASA Technical Reports Server (NTRS)
Poultney, S. K.; Brumfield, M. L.; Siviter, J. S.
1975-01-01
Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended.
40 CFR 63.307 - Standards for bypass/bleeder stacks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... National Emission Standards for Coke Oven Batteries § 63.307 Standards for bypass/bleeder stacks. (a)(1.... (2) Coke oven emissions shall not be vented to the atmosphere through bypass/bleeder stacks, except.... (3) The owner or operator of a brownfield coke oven battery or a padup rebuild shall install such a...
40 CFR 63.307 - Standards for bypass/bleeder stacks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... National Emission Standards for Coke Oven Batteries § 63.307 Standards for bypass/bleeder stacks. (a)(1.... (2) Coke oven emissions shall not be vented to the atmosphere through bypass/bleeder stacks, except.... (3) The owner or operator of a brownfield coke oven battery or a padup rebuild shall install such a...
40 CFR 63.307 - Standards for bypass/bleeder stacks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... National Emission Standards for Coke Oven Batteries § 63.307 Standards for bypass/bleeder stacks. (a)(1.... (2) Coke oven emissions shall not be vented to the atmosphere through bypass/bleeder stacks, except.... (3) The owner or operator of a brownfield coke oven battery or a padup rebuild shall install such a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Lee, Choong Hyun; Zhang, Wenfeng
2014-11-07
A systematic investigation was carried out on the material and electrical properties of metal oxide doped germanium dioxide (M-GeO{sub 2}) on Ge. We propose two criteria on the selection of desirable M-GeO{sub 2} for gate stack formation on Ge. First, metal oxides with larger cation radii show stronger ability in modifying GeO{sub 2} network, benefiting the thermal stability and water resistance in M-GeO{sub 2}/Ge stacks. Second, metal oxides with a positive Gibbs free energy for germanidation are required for good interface properties of M-GeO{sub 2}/Ge stacks in terms of preventing the Ge-M metallic bond formation. Aggressive equivalent oxide thickness scalingmore » to 0.5 nm is also demonstrated based on these understandings.« less
Short protection device for stack of electrolytic cells
Katz, Murray; Schroll, Craig R.
1985-10-22
Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.
Application of dual-energy x-ray techniques for automated food container inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.; Veselitza, D.
2016-02-01
Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.
The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies
NASA Astrophysics Data System (ADS)
Drinkwater, Michael J.; Byrne, Zachary J.; Blake, Chris; Glazebrook, Karl; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croton, Darren J.; Croom, Scott M.; Davis, Tamara M.; Forster, Karl; Gilbank, David; Hinton, Samuel R.; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Martin, D. Christopher; Pimbblet, Kevin; Poole, Gregory B.; Pracy, Michael; Sharp, Rob; Smillie, Jon; Spolaor, Max; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, Howard K. C.
2018-03-01
The WiggleZ Dark Energy Survey measured the redshifts of over 200 000 ultraviolet (UV)-selected (NUV < 22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large-scale distribution of galaxies over the redshift range 0.2 < z < 1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here, we present the final data release of the survey: a catalogue of 225 415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25 mag
Lambertian white top-emitting organic light emitting device with carbon nanotube cathode
NASA Astrophysics Data System (ADS)
Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.
2012-12-01
We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.
Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling
NASA Astrophysics Data System (ADS)
Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.
2017-12-01
The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.
Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals
NASA Astrophysics Data System (ADS)
Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.; Kioussis, Nicholas; Herbranson, M.
2000-02-01
We have used the Naval Research Laboratory (NRL) tight-binding (TB) method to calculate the generalized stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb. The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We compared our results with full potential linear-muffin-tin orbital and embedded atom method (EAM) calculations, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault energy.
Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X
2014-09-10
Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.
Shear response of Σ3{112} twin boundaries in face-centered-cubic metals
NASA Astrophysics Data System (ADS)
Wang, J.; Misra, A.; Hirth, J. P.
2011-02-01
Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.
Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks
NASA Astrophysics Data System (ADS)
Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.
2013-06-01
In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.
Metal stack optimization for low-power and high-density for N7-N5
NASA Astrophysics Data System (ADS)
Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.
2016-03-01
One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Melinda J.; Samad, Leith; Zhang, Yi
The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less
Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...
2017-02-08
The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less
Fan, Yinping; Li, Shan; Fan, Liuyin; Cao, Chengxi
2012-06-15
In this paper, a moving neutralization boundary (MNB) electrophoresis is developed as a novel model of visual offline sample stacking for the trace analysis of heavy metal ions (HMIs). In the stacking system, the cathodic-direction motion MNB is designed with 1.95-2.8mM HCl+98 mM KCl in phase alfa and 4.0mM NaOH+96 mM KCl in phase beta. If a little of HMI is present in phase alfa, the metal ion electrically migrates towards the MNB and react with hydroxyl ion, producing precipitation and moving precipitation boundary (MPB). The alkaline precipitation is neutralized by hydrogen ion, leading to a moving eluting boundary (MEB), release of HMI from its precipitation, circle of HMI from the MEB to the MPB, and highly efficient visual stacking. As a proof of concept, a set of metal ions (Cu(II), Co(II), Mn(II), Pb(II) and Cr(III)) were chosen as the model HMIs and capillary electrophoresis (CE) was selected as an analytical tool for the experiments demonstrating the feasibility of MNB-based stacking. As shown in this paper, (i) the visual stacking model was manifested by the experiments; (ii) there was a controllable stacking of HMI in the MNB system; (iii) the offline stacking could achieve higher than 123 fold preconcentration; and (iv) the five HMIs were simultaneously stacked via the developed stacking technique for the trace analyses with the limits of detection (LOD): 3.67×10(-3) (Cu(II)), 1.67×10(-3) (Co(II), 4.17×10(-3) (Mn(II)), 4.6×10(-4) (Pb(II)) and 8.40×10(-4)mM (Cr(III)). Even the off-line stacking was demonstrated for the use of CE-based HMI analysis, it has potential applications in atomic absorption spectroscopy (AAS), inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC) etc. Copyright © 2012 Elsevier B.V. All rights reserved.
Mapping metals at high redshift with far-infrared lines
NASA Astrophysics Data System (ADS)
Pallottini, A.; Gallerani, S.; Ferrara, A.; Yue, B.; Vallini, L.; Maiolino, R.; Feruglio, C.
2015-10-01
Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z ≳ 6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of Atacama Large Millimeter/submillimeter Array (ALMA), far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [C II] line at 157.74 μm is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter comic microwave background (CMB) photons inducing characteristic intensity fluctuations (ΔI/ICMB) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [C II] galaxy emission and metal-induced CMB fluctuations at z ˜ 6 by using adaptive mesh refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA Band 6 data (νobs ˜ 272 GHz). The [C II] line flux is correlated with MUV as log (F_peak/μ Jy)= -27.205 -2.253 M_UV -0.038 M_UV^2. Such relation is in very good agreement with recent ALMA observations of MUV < -20 galaxies by e.g. Maiolino et al. and Capak et al. We predict that a MUV = -19 (MUV = -18) galaxy can be detected at 4σ in ≃40 (2000) h, respectively. CMB resonant scattering can produce ≃ ± 0.1 μJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV ≃ -19 galaxies. This would allow to simultaneously detect both [C II] emission from galactic reionization sources and CMB fluctuations produced by z ˜ 6 metals.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
2013-08-15
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less
Steichen, Marc; Malaquias, João C; Arasimowicz, Monika; Djemour, Rabie; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen; Dale, Phillip J
2017-01-16
Cu 2 ZnSnSe 4 -based solar cells with 5.5% power conversion efficiency were fabricated from Cu/Sn/Zn stacks electrodeposited from liquid metal salts. These electrolytes allow metal deposition rates one order of magnitude higher than those of other deposition methods.
Goodarzi, Fariborz; Sanei, Hamed; Labonté, Marcel; Duncan, William F
2002-06-01
The spatial distribution and deposition of lead and zinc emitted from the Trail smelter, British Columbia, Canada, was studied by strategically locating moss bags in the area surrounding the smelter and monitoring the deposition of elements every three months. A combined diffusion/distribution model was applied to estimate the relative contribution of stack-emitted material and material emitted from the secondary sources (e.g., wind-blown dust from ore/slag storage piles, uncovered transportation/trucking of ore, and historical dust). The results indicate that secondary sources are the major contributor of lead and zinc deposited within a short distance from the smelter. Gradually, the stack emissions become the main source of Pb and Zn at greater distances from the smelter. Typical material originating from each source was characterized by SEM/EDX, which indicated a marked difference in their morphology and chemical composition.
Hu, Jicheng; Zheng, Minghui; Liu, Wenbin; Nie, Zhiqiang; Li, Changliang; Liu, Guorui; Xiao, Ke
2014-10-01
Unintentionally produced persistent organic pollutants (UP-POPs) were determined in ambient air from around five secondary non-ferrous metal processing plants in China, to investigate the potential impacts of the emissions of these plants on their surrounding environments. The target compounds were polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), and polychlorinated naphthalenes (PCNs). The PCDD/F, dl-PCB, and PCN concentrations in the ambient air downwind of the plants were 4.70-178, 8.23-7520 and 152-4190 pg/m(3), respectively, and the concentrations upwind of the plants were lower. Clear correlations were found between ambient air and stack gas concentrations of the PCDD/Fs, dl-PCBs, and PCNs among the five plants, respectively. Furthermore, the UP-POPs homolog and congener patterns in the ambient air were similar to the patterns in the stack gas samples. These results indicate that UP-POPs emissions from the plants investigated have obvious impacts on the environments surrounding the plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
Real-time Stack Monitoring at the BaTek Medical Isotope Production Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, Justin I.; Agusbudiman, A.; Cameron, Ian M.
2016-04-01
Radioxenon emissions from radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the International Monitoring System (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and PNNL team at the BaTek medical isotope production facility near Jakarta, Indonesia.
Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J
2006-01-01
We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.
Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites
NASA Astrophysics Data System (ADS)
Trouille, Laura
2011-11-01
Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity or the role of AGN activity in galaxy evolution, we advise maximal inclusiveness. Since BPT-comp comprise a significant percentage of the overall emission-line galaxy population, inclusion of the BPT-comp would provide a more comprehensive picture of the true impact of AGN activity in these studies.
40 CFR 60.1775 - What types of stack tests must I conduct?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What types of stack tests must I...-Stack Testing § 60.1775 What types of stack tests must I conduct? Conduct initial and annual stack tests to measure the emission levels of dioxins/furans, cadmium, lead, mercury, particulate matter, opacity...
40 CFR 60.1775 - What types of stack tests must I conduct?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What types of stack tests must I...-Stack Testing § 60.1775 What types of stack tests must I conduct? Conduct initial and annual stack tests to measure the emission levels of dioxins/furans, cadmium, lead, mercury, particulate matter, opacity...
GAME: GAlaxy Machine learning for Emission lines
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.
2018-06-01
We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
Methods for batch fabrication of cold cathode vacuum switch tubes
Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM
2011-05-10
Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.
Cadmium in forest ecosystems around lead smelters in Missouri.
Gale, N L; Wixson, B G
1979-01-01
The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037
40 CFR 63.9882 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...
40 CFR 63.9882 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...
40 CFR 63.9882 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...
40 CFR 63.9882 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...
40 CFR 63.9882 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... affected sources are each new and existing primary magnesium refining facility. (b) This subpart covers emissions from each spray dryer stack, magnesium chloride storage bins scrubber stack, melt/reactor system...
Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands.
van Dijk, Chris; van Doorn, Wim; van Alfen, Bert
2015-03-01
Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the possible impact on human health and the environment still exists. Multiple year (2004-2013) biomonitoring programs were set up around three waste incinerators for early detection of possible effects of stack emissions on the quality of crops and agricultural products. The results showed that the emissions did not affect the quality of crops and cow milk. Concentrations of heavy metals, PAHs and dioxins/PCBs were generally similar to background levels and did not exceed standards for maximum allowable concentrations in foodstuffs (e.g. vegetables and cow milk). Some exceedances of the fluoride standard for cattle feed were found almost every year in the maximum deposition areas of two incinerators. Biomonitoring with leafy vegetables can be used to monitor the real impact of these emissions on agricultural crops and to communicate with all stakeholders. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...
40 CFR 62.15250 - May I conduct stack testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollutants subject to stack testing requirements: dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, hydrogen chloride, and fugitive ash. (b) You can test less often for dioxins/furans emissions if... municipal waste combustion units have demonstrated levels of dioxins/furans emissions less than or equal to...
Laser micromachining as a metallization tool for microfluidic polymer stacks
NASA Astrophysics Data System (ADS)
Brettschneider, T.; Dorrer, C.; Czurratis, D.; Zengerle, R.; Daub, M.
2013-03-01
A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding and ablation processes. Chemical reagents or glues are not required. The polymer stack contains a flexible membrane which can be used for realizing microfluidic valves and pumps. The metal-to-polymer bond was investigated for different metal foils and plasma treatments, yielding a maximum peel strength of Rps = 1.33 N mm-1. A minimum structure size of 10 µm was determined by 3D microscopy of the laser cut line. As an example application, two different metal foils were used in combination to micromachine a standardized type-T thermocouple on a polymer substrate. An additional laser process was developed which allows metal-to-metal welding in close vicinity to the polymer substrate. With this process step, the reliability of the electrical contact could be increased to survive at least 400 PCR temperature cycles at very low contact resistances.
Fibrous selective emitter structures from sol-gel process
NASA Astrophysics Data System (ADS)
Chen, K. C.
1999-03-01
Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.
Herschel Far Infrared Spectra of Dusty Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Wilson, Derek; Cooray, Asantha R.; Nayyeri, Hooshang
2017-01-01
We stack archival spectra from the Herschel Space Observatory's SPIRE Spectrometer in three redshift bins from low redshifts (z < 0.2), through intermediate redshifts (0.2 < z < 1), and up to high redshifts (z > 1) in order to determine the average properties of the gas and dust in dusty, star-forming galaxies and (U)LIRGs. In the lower-redshift stack, we detect a host of water and carbon monoxide rotational transition lines, as well as some fine structure lines such as [NII]. At intermediate redshifts, only a [CII] line appears. The high-redshift stack displays strong [CII] emission, as well as faint emission from [OI] and [OIII]. The observed emission lines are used to model the average number density and radiation field strength in the photodissociation regions of our high-redshift sample, and the spectral line energy distributions of CO rotational transitions from the low-redshift stack are presented.
SUPPORTING AND HEAT INSULATING MEANS
Birmingham, B.W.; Brown, H.; Scott, R.B.; Vander-arend, P.C.
1959-01-27
A method is described for simultaneously supporting inner and outer members spaced from each other and heat insulating them from each other comprising an inner and outer member together defining an annular cavity. Each member carries a shoulder projecting towards the other member. A stack of annular metal plates in the cavity is held between the shoulder of the outer member and the shoulder of the inner member. The edges of the metal plate forming the stack are exposed to the cavity and to evacuation conditions which may exist within thc cavity. The stack of metal plates acts to both support one of the members with respect to the other and as a heat insulator.
Attachment method for stacked integrated circuit (IC) chips
Bernhardt, Anthony F.; Malba, Vincent
1999-01-01
An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.
Individually addressable cathodes with integrated focusing stack or detectors
Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.
2005-07-12
Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...
Circularly polarized luminescence of helically assembled pyrene π-stacks on RNA and DNA duplexes.
Nakamura, Mitsunobu; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige
2018-05-01
In this report, we describe the circularly polarized luminescence (CPL) of the RNA duplexes having one to four 2'-O-pyrene modified uridines (Upy) and the DNA duplexes having two, four, and six pyrene modified non-nucleosidic linkers (Py). Both the pyrene π-stack arrays formed on the RNA and DNA double helical structures exhibited pyrene excimer fluorescence. In the pyrene-modified RNA systems, the RNA duplex having four Upys gives CPL emission with g lum value of <0.01 at 480 nm. The structure of pyrene stacks on the RNA duplex may be rigidly regulated with increase in the Upy domains, which resulted in the CPL emission. In the DNA systems, the pyrene-modified duplexes containing two and four Pys exhibited CPL emission with g lum values of <0.001 at 505 nm. The pyrene π-stack arrays presented here show CPL emission. However, the g lum values are relatively small when compared with our previous system consisting of the pyrene-zipper arrays on RNA. © 2018 Wiley Periodicals, Inc.
Electromechanical transducer for acoustic telemetry system
Drumheller, D.S.
1993-06-22
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Electromechanical transducer for acoustic telemetry system
Drumheller, Douglas S.
1993-01-01
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2015-02-01
We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.
NASA Astrophysics Data System (ADS)
Li, X.; Pey, K. L.; Bosman, M.; Liu, W. H.; Kauerauf, T.
2010-01-01
The migration of Ta atoms from a transistor gate electrode into the percolated high-κ (HK) gate dielectrics is directly shown using transmission electron microscopy analysis. A nanoscale metal filament that formed under high current injection is identified to be the physical defect responsible for the ultrafast transient breakdown (BD) of the metal-gate/high-κ (MG/HK) gate stacks. This highly conductive metal filament poses reliability concerns for MG/HK gate stacks as it significantly reduces the post-BD reliability margin of a transistor.
Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuzheng; Robertson, John
2016-06-06
We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.
Stacked Device of Polymer Light-Emitting Diode Driven by Metal-Base Organic Transistor
NASA Astrophysics Data System (ADS)
Yoneda, Kazuhiro; Nakayama, Ken-ichi; Yokoyama, Masaaki
2008-02-01
We fabricated a new light-emitting device that combined a polymer light-emitting diode (PLED) and a vertical-type metal-base organic transistor (MBOT) through a floating electrode. By employing a layered floating electrode of Mg:Ag/Au, the MBOT on the PLED was operated successfully and a current amplification factor of approximately 20 was observed. The PLED luminescence exceeding 100 cd/m2 can be modulated using the MBOT with a low base voltage (2.8 V) and VCC (8 V). The emission contrast (on/off ratio) was improved with insertion of an insulating layer under the base, and the cut-off frequency was estimated to be 8 kHz. This device is expected to be a promising driving system of organic light-emitting diode (OLED), realizing low voltage and high numerical aperture.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Methods and Procedures for Conducting Emissions Test for Stack Systems I Table I-9 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics...
OPERATING PARAMETERS TO MINIMIZE EMISSIONS DURING ROTARY KILN EMERGENCY SAFETY VENT OPENINGS
Certain designs of hazardous waste incinerator systems include emergency safety vents (ESVs). ESVs (also called dump stacks, vent stacks, emergency by-pass stacks, thermal relief valves, and pressure relief valves) are regarded as true emergency devices. Their purpose is to vent ...
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2013-12-17
A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
NASA Astrophysics Data System (ADS)
Ballinger, Marcel Y.; Larson, Timothy V.
2014-12-01
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.
Method of fabrication of electrodes and electrolytes
Jankowski, Alan F.; Morse, Jeffrey D.
2004-01-06
Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.
2014-02-24
Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electricallymore » active defects and is essential to achieve a low leakage current in the MIM capacitor.« less
Impact face influence on low velocity impact performance of interply laminated plates
NASA Astrophysics Data System (ADS)
Manikandan, Periyasamy; Chai, Gin Boay
2015-03-01
Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.
Attachment method for stacked integrated circuit (IC) chips
Bernhardt, A.F.; Malba, V.
1999-08-03
An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.
Syn, C.K.; Lesuer, D.R.
1995-07-04
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.
Syn, Chol K.; Lesuer, Donald R.
1995-01-01
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.
Control of Nitrogen Dioxide in Stack Emission by Reaction with Ammonia
NASA Technical Reports Server (NTRS)
Metzler, A. J.; Stevenson, E. F.
1970-01-01
The development of an acid base gas-phase reaction system which utilizes anhydrous ammonia as the reactant to remove nitrogen dioxide from hydrazine-nitrogen tetroxide rocket combustion exhaust is reported. This reaction reduced NO2 levels in exhaust emissions so that the resulting stack emission is completely white instead of the earlier observed typical reddish-brown coloration. Preliminary analyses indicate the importance of reaction time and ammonia concentration on removal efficiency and elimination of the health hazard to individuals with respiratory problems.
40 CFR 61.203 - Radon monitoring and compliance procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Radon monitoring and compliance... for Radon Emissions From Phosphogypsum Stacks § 61.203 Radon monitoring and compliance procedures. (a..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in...
40 CFR 61.203 - Radon monitoring and compliance procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Radon monitoring and compliance... for Radon Emissions From Phosphogypsum Stacks § 61.203 Radon monitoring and compliance procedures. (a..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in...
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Characterization of Air Toxics from an Oil-Fired Firetube Boiler.
Miller, C Andrew; Ryan, Jeffrey V; Lombardo, Tony
1996-08-01
Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants from the combustion of four fuel oils (a #2 oil, a #5 oil, a low sulfur #6 oil, and a high sulfur #6 oil). Measurements of carbon monoxide, nitrogen oxides, particulate matter, and sulfur dioxide stack gas concentrations were made for each oil. Flue gases were also sampled to determine levels of volatile and semivolatile organic compounds and of metals. Analytical procedures were used to provide more detailed information regarding the emissions rates for carbonyls (aldehydes and ketones), and polycyclic aromatic hydrocarbons (PAHs) in addition to the standard analyses for volatile and semivolatile organics. Metals emissions were greater than organic emissions for all oils tested, by an order of magnitude. Carbonyls dominated the organic emissions, with emission rates more than double the remaining organics for all four oils tested. Formaldehyde made up the largest percentage of carbonyls, at roughly 50% of these emissions for three of the four oils, and approximately 30% of the carbonyl emissions from the low sulfur #6 oil. Naphthalene was found to be the largest part of the PAH emissions for three of the four oils, with phenanthrene being greatest for the #2 fuel oil. The flue gases were also sampled for polychlorinated dibenzodioxins and polychlorinated dibenzofurans; however, inconsistent levels were found between repeat tests. For the boiler tested, no single hazardous air pollutant (HAP) was emitted at a rate which would require control under Title III of the Clean Air Act Amendments of 1990. The fuel emitting the largest amount of HAPs was the high sulfur #6 oil, which had a total HAP emission rate of less than 100 lb (45 kg)/year, based on operation for a full year at a firing rate of 1.25 x 106 Btu/hr (50% load of the unit tested).
Li, Yajuan; Guo, Jiangbo; Dai, Bo; Geng, Lijun; Shen, Fengjuan; Zhang, Yajun; Yu, Xudong
2018-07-01
Driven by tunable metal-ligand interactions, a polydentate ligand TC containing terpyridine and carboxylic acid units was developed to construct metallo-polymers that showed multiple aggregation modes with controlled macroscopic properties. In the presence of different kind of Zn 2+ ions or NaOH, TC could form metallo-polymers via π-π stacking and metal-ligand interaction that further trapped water molecules, resulting in hydrogels and crystals. Moreover, these TC/Zn 2+ hydrogels could transform to soluble and fluorescent aggregates in the presence of NaOH due to the formation of binuclear metallo-polymers with enhanced ICT emission. The metal-ligand interactions tuned by different metal salts in gels, crystals, and sols were also studied and illustrated in detail, it was also proved that water was an essential linker for constructing Na + -based metallo-polymers from the TC/NaOH crystal data. This work demonstrated the engineered coordination pathways in generating controllable hydrogels and metallo-polymers for the first time, which led to novel approach for facilely constructing a number of hydrogels with tailorable macroscopic properties. Copyright © 2018 Elsevier Inc. All rights reserved.
Combustion aerosols: factors governing their size and composition and implications to human health.
Lighty, J S; Veranth, J M; Sarofim, A F
2000-09-01
Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 microns (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.
NASA Astrophysics Data System (ADS)
Pal, Anil Kumar; Bharathi Mohan, D.
2017-10-01
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
Pal, Anil Kumar; Mohan, D Bharathi
2017-10-13
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.
Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng
2001-04-01
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions.
Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J
2001-04-01
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.
Evaluation of volatile organic emissions from hazardous waste incinerators.
Sedman, R M; Esparza, J R
1991-01-01
Conventional methods of risk assessment typically employed to evaluate the impact of hazardous waste incinerators on public health must rely on somewhat speculative emissions estimates or on complicated and expensive sampling and analytical methods. The limited amount of toxicological information concerning many of the compounds detected in stack emissions also complicates the evaluation of the public health impacts of these facilities. An alternative approach aimed at evaluating the public health impacts associated with volatile organic stack emissions is presented that relies on a screening criterion to evaluate total stack hydrocarbon emissions. If the concentration of hydrocarbons in ambient air is below the screening criterion, volatile emissions from the incinerator are judged not to pose a significant threat to public health. Both the screening criterion and a conventional method of risk assessment were employed to evaluate the emissions from 20 incinerators. Use of the screening criterion always yielded a substantially greater estimate of risk than that derived by the conventional method. Since the use of the screening criterion always yielded estimates of risk that were greater than that determined by conventional methods and measuring total hydrocarbon emissions is a relatively simple analytical procedure, the use of the screening criterion would appear to facilitate the evaluation of operating hazardous waste incinerators. PMID:1954928
Non-Platinum Group Metal OER/ORR Catalysts for Alkaline Membrane Fuel Cells and Electrolyzers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danilovic, Nemanja; Ayers, Katherine
Regenerative fuel cells (RFC) are energy storage devices that capture electrical energy in the form of hydrogen, with potential application for backup power and energy storage in remote locations, unmanned missions, and renewable energy capture. A unitized regenerative fuel cell (URFC) combines two separate electrochemical devices (fuel cell and electrolyzer) into one stack. The stack cost is driven by the platinum group metal (PGM) catalysts and the flow field components designed to withstand high potentials in acidic environments. Since the stack is the most expensive subcomponent of both the fuel cell and electrolyzer system, combining the two devices results inmore » substantial reduction in capital cost. However, in the past, combining the two stacks sacrificed device performance (operating cost) largely because the fuel cell had to operate with the thick electrolysis membranes in a URFC configuration, and due to water management issues in switching modes. Recent work in membrane-based electrolysis has resulted in more mechanically robust designs and materials that allow much thinner membranes, and work in flow cell design such as flow batteries has shown improved water transport through channel design and wet-proofing approaches. Therefore, the URFC concept is worth revisiting. At the same time, alkaline exchange membrane (AEM) devices are gathering attention due to the promise of PGM and valve metal elimination from the stack and a resulting strategic and capital cost benefit as compared with proton exchange membrane (PEM) systems. The result is a lower capital cost system that has half the precious metal group (PGM) catalysts, membrane and other stack component materials compared with discrete RFCs, although at the sacrifice of performance (operating cost). Proton has identified innovative AEM based RFC's to fulfill the role of low capital cost energy storage device owing to the use of non-precious metal containing electrodes, that enables certain markets where higher operating costs can be tolerated.« less
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.E.
1995-12-01
On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of themore » compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.« less
Stacked Metal Silicide/Silicon Far-Infrared Detectors
NASA Technical Reports Server (NTRS)
Maserjian, Joseph
1988-01-01
Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.
Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong
2015-12-15
A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.
Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.
Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi
2014-01-05
We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.
Micromachined mold-type double-gated metal field emitters
NASA Astrophysics Data System (ADS)
Lee, Yongjae; Kang, Seokho; Chun, Kukjin
1997-12-01
Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in the stack gas. (iii) You... Tier 4 methodology in subpart C of this part, or through the same stack as any combustion unit or...
Monolayer Transition Metal Dichalcogenides as Light Sources.
Pu, Jiang; Takenobu, Taishi
2018-06-13
Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley-coupled systems. This progress report provides an overview of recent advances in TMDC-based light-emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light-emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light-emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high-performance light-emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kitano, Naomu; Horie, Shinya; Arimura, Hiroaki; Kawahara, Takaaki; Sakashita, Shinsuke; Nishida, Yukio; Yugami, Jiro; Minami, Takashi; Kosuda, Motomu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2007-12-01
We demonstrated the use of an in situ metal/high-k fabrication method for improving the performance of metal-insulator-semiconductor field-effect transistors (MISFETs). Gate-first pMISFETs with polycrystalline silicon (poly-Si)/TiN/HfSiON stacks were fabricated by techniques based on low-damage physical vapor deposition, in which high-quality HfSiON dielectrics were formed by the interface reaction between an ultrathin metal-Hf layer (0.5 nm thick) and a SiO2 underlayer, and TiN electrodes were continuously deposited on the gate dielectrics without exposure to air. Gate-first pMISFETs with high carrier mobility and a low threshold voltage (Vth) were realized by reducing the carbon impurity in the gate stacks and improving the Vth stability against thermal treatment. As a result, we obtained superior current drivability (Ion = 350 μA/μm at Ioff = 200 pA/μm), which corresponds to a 13% improvement over that of conventional chemical vapor deposition-based metal/high-k devices.
Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
Song, Junyeob; Zhou, Wei
2018-06-27
Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.
Cheng, Heung-Kiu; Yeung, Margaret Ching-Lam; Yam, Vivian Wing-Wah
2017-10-18
A series of platinum(II) terpyridine complexes with tetraphenylethylene-modified alkynyl ligands has been designed and synthesized. The introduction of the tetraphenylethylene motif has led to aggregation-induced emission (AIE) properties, which upon self-assembly led to the formation of metal-metal-to-ligand charge transfer (MMLCT) behavior stabilized by Pt···Pt and/or π-π interactions. Tuning the steric bulk or hydrophilicity through molecular engineering of the platinum(II) complexes has been found to alter their spectroscopic properties and result in interesting superstructures (including nanorods, nanospheres, nanowires, and nanoleaves) in the self-assembly process. The eye-catching color and emission changes upon varying the solvent compositions may have potential applications in chemosensing materials for the detection of microenvironment changes. Furthermore, the importance of the directional Pt···Pt and/or π-π interactions on the construction of distinctive superstructures has also been examined by UV-vis absorption and emission spectroscopy and transmission electron microscopy. This work represents the interplay of both inter- and intramolecular interactions as well as the energies of the two different chromophoric/luminophoric systems that may open up a new route for the development of platinum(II)-AIE hybrids as functional materials.
Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G
2013-03-15
The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
Interface band alignment in high-k gate stacks
NASA Astrophysics Data System (ADS)
Eric, Bersch; Hartlieb, P.
2005-03-01
In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
Dereshgi, Sina Abedini; Okyay, Ali Kemal
2016-08-08
Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.
Minter, Kelsey M; Jannik, G Timothy; Stagich, Brooke H; Dixon, Kenneth L; Newton, Joseph R
2018-04-01
The U.S. Environmental Protection Agency (EPA) requires the use of the model CAP88 to estimate the total effective dose (TED) to an offsite maximally exposed individual (MEI) for demonstrating compliance with 40 CFR 61, Subpart H: The National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. For NESHAP compliance at the Savannah River Site (SRS), the EPA, the U.S. Department of Energy (DOE), South Carolina's Department of Health and Environmental Control, and SRS approved a dose assessment method in 1991 that models all radiological emissions as if originating from a generalized center of site (COS) location at two allowable stack heights (0 m and 61 m). However, due to changes in SRS missions, radiological emissions are no longer evenly distributed about the COS. An area-specific simulation of the 2015 SRS radiological airborne emissions was conducted to compare to the current COS method. The results produced a slightly higher dose estimate (2.97 × 10 mSv vs. 2.22 × 10 mSv), marginally changed the overall MEI location, and noted that H-Area tritium emissions dominated the dose. Thus, an H-Area dose model was executed as a potential simplification of the area-specific simulation by adopting the COS methodology and modeling all site emissions from a single location in H-Area using six stack heights that reference stacks specific to the tritium production facilities within H-Area. This "H-Area Tritium Stacks" method produced a small increase in TED estimates (3.03 × 10 mSv vs. 2.97 × 10 mSv) when compared to the area-specific simulation. This suggests that the current COS method is still appropriate for demonstrating compliance with NESHAP regulations but that changing to the H-Area Tritium Stacks assessment method may now be a more appropriate representation of operations at SRS.
Short protection device for stack of electrolytic cells
Katz, M.; Schroll, C.R.
1984-11-29
The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.
Hidden Active Galactic Nuclei in Early-type Galaxies
NASA Astrophysics Data System (ADS)
Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo
2016-06-01
We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}⊙ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (˜1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical-IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}⊙ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}˜ {10}6-{10}8 {M}⊙ .
Primary particulate matter from ocean-going engines in the Southern California Air Basin.
Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R
2009-07-15
The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.
NASA Astrophysics Data System (ADS)
Roten, D.; Hogue, S.; Spell, P.; Marland, E.; Marland, G.
2017-12-01
There is an increasing role for high resolution, CO2 emissions inventories across multiple arenas. The breadth of the applicability of high-resolution data is apparent from their use in atmospheric CO2 modeling, their potential for validation of space-based atmospheric CO2 remote-sensing, and the development of climate change policy. This work focuses on increasing our understanding of the uncertainty in these inventories and the implications on their downstream use. The industrial point sources of emissions (power generating stations, cement manufacturing plants, paper mills, etc.) used in the creation of these inventories often have robust emissions characteristics, beyond just their geographic location. Physical parameters of the emission sources such as number of exhaust stacks, stack heights, stack diameters, exhaust temperatures, and exhaust velocities, as well as temporal variability and climatic influences can be important in characterizing emissions. Emissions from large point sources can behave much differently than emissions from areal sources such as automobiles. For many applications geographic location is not an adequate characterization of emissions. This work demonstrates the sensitivities of atmospheric models to the physical parameters of large point sources and provides a methodology for quantifying parameter impacts at multiple locations across the United States. The sensitivities highlight the importance of location and timing and help to highlight potential aspects that can guide efforts to reduce uncertainty in emissions inventories and increase the utility of the models.
NASA Astrophysics Data System (ADS)
Oi, Nagisa; Goto, Tomotsugu; Malkan, Matthew; Pearson, Chris; Matsuhara, Hideo
2017-08-01
The mass, metallicity, and star formation rate (SFR) of a galaxy are crucial parameters in understanding galaxy formation and evolution. However, the relation between these parameters, (i.e., the fundamental relation) is still a matter of debate for luminous infrared (IR) galaxies, which carry a bulk of the SFR budget of the universe at z ∼ 1. We have investigated the relation among stellar mass, gas-phase oxygen abundance, and SFR of the Japanese infrared satellite AKARI-detected mid-IR galaxies at z ∼ 0.88 in the AKARI north ecliptic pole deep field. We observed ∼350 AKARI sources with Subaru/Fiber Multi Object Spectrograph near-IR spectrograph, and detected confirmed Hα emission lines from 25 galaxies and expected Hα emission lines from 44 galaxies. The SFRHα, IR of our sample is almost constant (〈SFRHα, IR〉 = ∼ 25 M⊙ yr - 1) over the stellar mass range of our sample. Compared with main-sequence (MS) galaxies at a similar redshift range (z ∼ 0.78), the average SFR of our detected sample is comparable for massive galaxies ( ∼ 1010.58 M⊙), while higher by ∼0.6 dex for less massive galaxies ( ∼ 1010.05 M⊙). We measure metallicities from the [N II]/Hα emission line ratio. We find that the mass-metallicity relation of our individually measured sources agrees with that for optically-selected star-forming galaxies at z ∼ 0.1, while metallicities of stacked spectra agree with that of MS galaxies at z ∼ 0.78. Considering the high SFR of individually measured sources, the fundamental metallicity relation (FMR) of the IR galaxies is different from that at z ∼ 0.1. However, on the mass-metallicity plane, they are consistent with the MS galaxies, highlighting the higher SFR of the IR galaxies. This suggests that the evolutionary path of our infrared galaxies is different from that of MS galaxies. A possible physical interpretation includes that the star-formation activities of IR galaxies at z ∼ 0.88 in our sample are enhanced by interactions and/or mergers of galaxies, but the inflow of metal-poor gas is not yet induced, keeping the metallicity intact.
NASA Astrophysics Data System (ADS)
Ke, Haohao
Receptor models have been widely used in air quality studies to identify pollution sources and estimate their contributions. A common problem for most current receptor models is insufficient consideration of realistic constraints such as can be obtained from emission inventories, chemical composition profiles of the sources, and the physics of plume dispersion. In addition, poor resolving of collinear sources was often found. With the high quality time-, composition-, and size-resolved measurements during the EPA Supersite project, efforts towards resolving nearby industrial sources were made by combinative use of Positive Matrix Factorization (PMF) and the Pseudo-Deterministic Receptor Model (PDRM). The PMF modeling of Baltimore data in September 2001 revealed coal-fired and oil-fired power plants (CFPP and OFPP, respectively) with significant cross contamination, as indicated by the high Se/Ni ratio in the OFPP profile. Nevertheless, the PMF results provided a good estimate of background and the PMF-constrained emission rates well seeded the trajectory-driven PDRM modeling. Using NOx as the tracer gas for chi/Q tuning, ultimately resolved emissions from individual stacks exhibited acceptable tracer ratios and the emission rates of metals generally agreed with the TRI estimates. This approach was later applied to two metal pollution episodes in St. Louis during in November 2001 and March 2002 and met a similar success. As NOx measurements were unavailable at those metal-production facilities, highly-specific tracer metals (i.e., Cd, Zn, and Cu) for the corresponding units were used to tune chi/Qs and their contributions were well resolved with the PMF-seeded PDRM. Opportunistically a PM2.5 excursion during a windless morning in November 2002 allowed the extraction of an in-situ profile of vehicular emissions in Baltimore. The profiles obtained by direct peak observation, windless model linear regression (WMA), PMF, and UNMIX were comparable and the WMA profile showed the best predictions for non-traffic tracers. Besides, an approach to evaluate vehicular emission factors was developed by receptor measurements under windless conditions. Using SVOC tracers, seasonal variations of traffic and other sources including coal burning, heating, biomass burning, and vegetation were investigated by PMF and in particular the November traffic profile was consistent with the WMA profile obtained earlier.
NASA Astrophysics Data System (ADS)
Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.
2005-05-01
Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.
NASA Astrophysics Data System (ADS)
Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng
2017-07-01
Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.
Rusinko, A
2014-01-01
This paper addresses the issue of the ultrasound effects upon the creep deformation of metals with different levels of stacking fault energy. The influence of preliminary ultrasound irradiation time upon the steady state creep rate is considered. Synthetic theory of irrecoverable deformation is taken as a mathematical apparatus. The analytical results show good agreement with experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto
2018-04-01
Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-01-01
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-12-23
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2
Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...
2015-11-16
Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less
Roehrens, Daniel; Packbier, Ute; Fang, Qingping; Blum, Ludger; Sebold, Doris; Bram, Martin; Menzler, Norbert
2016-01-01
In this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm2 at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm2. The cell performance is presented for single cells and for stack operation, both in lightweight and stationary stack designs. The results from short-term operation indicate that this cell technology may be a very suitable alternative for mobile applications. PMID:28773883
Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.
Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S
2015-12-01
This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of < 115 ppm/V2 and a low leakage current density of 4.457 x 10(-11) A/cm2 at 3 V are achieved which are suitable for analog and mixed signal applications. We found that the anodization voltage played a major role in electrical and structural properties of the thin film. This work suggests that the anodization method can offer crystalline multilayer dielectric stack required for high performance MIM capacitor.
Basic criteria for formation of growth twins in high stacking fault energy metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K. Y.; Zhang, X.; Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843
Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity ofmore » these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.« less
Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovland, V.
2004-12-01
Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less
Conductance of carbon based macro-molecular structures
NASA Astrophysics Data System (ADS)
Stafström, S.; Hansson, A.; Paulsson, M.
2000-11-01
Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Bragg reflector based gate stack architecture for process integration of excimer laser annealing
NASA Astrophysics Data System (ADS)
Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.
2006-12-01
An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.
Structural modifications due to interface chemistry at metal-nitride interfaces
Yadav, S. K.; Shao, S.; Wang, J.; ...
2015-11-27
Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less
Structural modifications due to interface chemistry at metal-nitride interfaces
Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.
2015-01-01
Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces. PMID:26611639
Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong
2017-02-01
The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm 3 and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm 3 ) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm 3 ). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm 3 ) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm 3 ). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm 3 ) and PAHs (148.6-4986.5 μg/Nm 3 ) were detected in the stack gases of MSWI B. In some cases, the concentrations were as high as the concentrations in the fumes exiting the boiler of one foreign stoker without flue gas purification indicating the abundance of CPh and PAH emissions in the stack gas of waste incinerators.
40 CFR 60.1360 - What records must I keep for stack tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... measure specified in table 1 of this subpart: (1) Dioxins/furans. (2) Cadmium. (3) Lead. (4) Mercury. (5... control device during all stack tests for dioxins/furans emissions. (d) The calendar date of each record. ...
Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H
2004-01-01
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From... the stack does not emit more than 20 pCi/(m2-sec) (1.9 pCi/(ft2-sec)) of radon-222 into the air. [57...
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From... the stack does not emit more than 20 pCi/(m2-sec) (1.9 pCi/(ft2-sec)) of radon-222 into the air. [57...
Physical and chemical characterization of residual oil-fired power plant emissions
Although the toxicity of oil combustion emissions is a significant public health concern, few studies characterize the emissions from plant-scale utility boilers firing residual oil. This study remedies that deficiency by sampling and monitoring stack emissions from a 432 Giga Jo...
NASA Astrophysics Data System (ADS)
Chong, Jihyo; Kim, Young J.; Baek, Jongho; Lee, Hanlim
2016-10-01
Major anthropogenic sources of sulphur dioxide in the troposphere include point sources such as power plants and combustion-derived industrial sources. Spatially resolved remote sensing of atmospheric trace gases is desirable for better estimation and validation of emission from those sources. It has been reported that Imaging Differential Optical Absorption Spectroscopy (I-DOAS) technique can provide the spatially resolved two-dimensional distribution measurement of atmospheric trace gases. This study presents the results of I-DOAS observations of SO2 from a large power plant. The stack plume from the Taean coal-fired power plant was remotely sensed with an I-DOAS instrument. The slant column density (SCD) of SO2 was derived by data analysis of the absorption spectra of the scattered sunlight measured by an I-DOAS over the power plant stacks. Two-dimensional distribution of SO2 SCD was obtained over the viewing window of the I-DOAS instrument. The measured SCDs were converted to mixing ratios in order to estimate the rate of SO2 emission from each stack. The maximum mixing ratio of SO2 was measured to be 28.1 ppm with a SCD value of 4.15×1017 molecules/cm2. Based on the exit velocity of the plume from the stack, the emission rate of SO2 was estimated to be 22.54 g/s. Remote sensing of SO2 with an I-DOAS instrument can be very useful for independent estimation and validation of the emission rates from major point sources as well as area sources.
Tian, Di; Winter, Stephen M; Mailman, Aaron; Wong, Joanne W L; Yong, Wenjun; Yamaguchi, Hiroshi; Jia, Yating; Tse, John S; Desgreniers, Serge; Secco, Richard A; Julian, Stephen R; Jin, Changqing; Mito, Masaki; Ohishi, Yasuo; Oakley, Richard T
2015-11-11
Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change. All three radicals order as spin-canted antiferromagnets, but spin-canted ordering is lost at pressures <1.5 GPa. At room temperature, their electrical conductivity increases rapidly with pressure, and the thermal activation energy for conduction Eact is eliminated at pressures ranging from ∼3 GPa for R = F to ∼12 GPa for R = Ph, heralding formation of a highly correlated (or bad) metallic state. For R = F, H the pressure-induced Mott insulator to metal conversion has been tracked by measurements of optical conductivity at ambient temperature and electrical resistivity at low temperature. For R = F compression to 6.2 GPa leads to a quasiquadratic temperature dependence of the resistivity over the range 5-300 K, consistent with formation of a 2D Fermi liquid state. DFT band structure calculations suggest that the ease of metallization of these radicals can be ascribed to their multiorbital character. Mixing and overlap of SOMO- and LUMO-based bands affords an increased kinetic energy stabilization of the metallic state relative to a single SOMO-based band system.
Landrigan, P J; Halper, L A; Silbergeld, E K
1989-01-01
Massive volumes of solid waste are produced in the United States. Options for disposal are limited. Incineration and recycling are frequently proposed solutions. However, incinerators and waste recovery facilities, such as scrap smelters, generate hazardous air pollutants and toxic ash. Their potential hazards to health have not been adequately assessed. To illustrate the policy issues surrounding waste incineration and resource recycling, we examine the case of U.S. Metals, a scrap metals recovery plant in Carteret, New Jersey. This plant emitted 20 kilograms of dioxin in its 25 years of operation. It also released 86 tons of lead annually; nearby air lead levels were repeatedly in violation of standards. Construction of a tall stack caused export of toxic emissions from the plant to Staten Island, New York; high concentrations of lead were documented in surface soil on Staten Island. Because neither the State of New Jersey nor the U.S. Environmental Protection Agency were willing to regulate emissions from the plant, New York, the downwind state, was forced to sue U.S. Metals in federal court. The suit resulted ultimately in closing the plant. The case illustrates the difficulties in regulating pollution across state lines, a difficulty compounded by the abdication of responsibility by state and federal agencies. Further, the episode appears paradigmatic of a disturbing trend by state and local governments to locate waste combustion facilities at sites which will resolve problems of solid waste by encouraging export of airborne pollutants across regulatory boundaries.
Optical properties of metal-dielectric based epsilon near zero metamaterials
NASA Astrophysics Data System (ADS)
Subramania, Ganapathi; Fischer, Arthur; Luk, Ting
2014-03-01
Epsilon(ɛ) near zero(ENZ) materials are metamaterials where the effective dielectric constant(ɛ) is close to zero for a range of wavelengths resulting in zero effective displacement field (D = ɛE) and displacement current. ENZ structures are of great interest in many application areas such as optical nanocircuits, supercoupling, cloaking, emission enhancement etc. Effective ENZ behavior has been demonstrated using cut-off frequency region in a metallic waveguide where the modal index vanishes. Here we demonstrate the fabrication of ENZ metamaterials operating at visible wavelengths (λ ~ 640nm) using an effective medium approach based on a metal-dielectric composites(App. Phys. Let.,101,241107(2012)) that can act as ``bulk'' ENZ material. The structure consists of a multilayer stack composite of alternating nanoscale thickness layers of Ag and TiO2. Optical spectroscopy shows transmission and absorption response is consistent with ENZ behavior and matches well with simulations. We will discuss the criteria necessary in the design and practical implementation of the composite that better approximates a homogenous effective medium including techniques to minimize the effect of optical losses to boost transmission. The potential for hosting gain media in the gratings to address losses and emission control will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tunable geometric Fano resonances in a metal/insulator stack
NASA Astrophysics Data System (ADS)
Grotewohl, Herbert
We present a theoretical analysis of surface-plasmon-mediated mode-coupling in a planar thin film metal/insulator stack. The spatial overlap of a surface plasmon polariton (SPP) and a waveguide mode results in a Fano interference analog. Tuning of the material parameters effects the modes and output fields of the system. Lastly, the intensity and phase sensitivity of the system are compared to a standard surface plasmon resonance (SPR). We begin with background information on Fano interference, an interference effect between two indistinguishable pathways. Originally described for autoionization, we discuss the analogs in other systems. We discuss the features of Fano interference in the mode diagrams, and the Fano resonance observed in the output field. The idea of a geometric Fano resonance (GFR) occurring in the angular domain is presented. Background information on surface plasmon polaritons is covered next. The dielectric properties of metals and how they relate to surface plasmons is first reviewed. The theoretical background of SPPs on an infinite planar surface is covered. The modes of a two planar interface metal/insulator stack are reviewed and the leaky properties of the waveguide are shown in the reflectance. We solve for modes of a three interface metal/insulator stack and shows an avoided crossing in the modes indicative of Fano interference. We observe the asymmetric Fano resonance in the angular domain in the reflectance. The tunability of the material parameters tunes the GFR of the system. The GFR tuning is explored and different Fano lineshapes are observed. We also observe a reversal of the asymmetry Fano lineshape, attributed to the relate phase interactions of the non-interacting modes. The phase of the GFR is calculated and discussed for the variations of the parameters. The reflected field is explored as the insulator permittivities are varied. As the waveguide permittivity is varied, we show there is little response from the system. As the exterior permittivity is varied, the reflectance exhibits the geometric Fano resonance and the tunability of the lineshape is explored. Finally, we calculate the sensitivities of our metal/insulator stack to changes in the permittivity and compare them to the sensitivities of SPRs.
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...
Method for laser welding ultra-thin metal foils
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-26
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.
Method for laser welding ultra-thin metal foils
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.
Optical activity in chiral stacks of 2D semiconductors
NASA Astrophysics Data System (ADS)
Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.
2018-03-01
We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.
Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.
Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing
2013-05-07
Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.
Cool white light-emitting three stack OLED structures for AMOLED display applications.
Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk
2016-11-28
This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.
Anion-π interaction in metal-organic networks formed by metal halides and tetracyanopyrazine
NASA Astrophysics Data System (ADS)
Rosokha, Sergiy V.; Kumar, Amar
2017-06-01
Co-crystallization of tetracyanopyrazine, TCP, with the tetraalkylammonium salts of linear [CuBr2]-, planar [PtCl4]2- or [Pt2Br6]2-, or octahedral [PtBr6]2- complexes resulted in formation of the alternating [MlXn]m-/TCP stacks separated by the Alk4N+ cations. These hybrid stacks showed multiple short contacts between halide ligands of the [MlXn]m- complexes and carbon atoms of the TCP acceptor indicating strong anion-π bonding between these species. It confirmed that the anion-π interaction is sufficiently strong to bring together such disparate components as ionic metal complexes and neutral aromatic molecules regardless of the geometry of the coordination compound. Structural features of the solid-state stacks and [MlXn]m-·TCP dyads resulted from the quantum-mechanical computations suggests that the molecular-orbital (weakly-covalent) component play an important role in association of the [MlXn]m- complexes with the TCP acceptor.
40 CFR 61.44 - Stack sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...
40 CFR 61.44 - Stack sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...
40 CFR 61.44 - Stack sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium Rocket Motor... within 30 days after samples are taken and before any subsequent rocket motor firing or propellant...
Mercury Information Clearinghouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal
2006-03-31
The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEAmore » quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.« less
40 CFR 62.14412 - What stack opacity and visible emissions requirements apply?
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements apply? (a) Your HMIWI (regardless of size category) must not discharge into the atmosphere from... atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer... emissions limit does cover visible emissions discharged to the atmosphere from buildings or enclosures of...
40 CFR 62.14412 - What stack opacity and visible emissions requirements apply?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements apply? (a) Your HMIWI (regardless of size category) must not discharge into the atmosphere from... atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer... emissions limit does cover visible emissions discharged to the atmosphere from buildings or enclosures of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd
A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N′-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N{sub 2}O{sub 2} from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due tomore » its square planar geometry and aromatic rings structures was proposed.« less
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...
Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Giboyeaux, A.
2017-05-19
The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less
Effect of vacancy defects on generalized stacking fault energy of fcc metals.
Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A
2014-03-19
Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.
NASA Astrophysics Data System (ADS)
Kalaycıoğlu, Barış; Husnu Dirikolu, M.
2010-09-01
In this study, a Type III composite pressure vessel (ISO 11439:2000) loaded with high internal pressure is investigated in terms of the effect of the orientation of the element coordinate system while simulating the continuous variation of the fibre angle, the effect of symmetric and non-symmetric composite wall stacking sequences, and lastly, a stacking sequence evaluation for reducing the cylindrical section-end cap transition region stress concentration. The research was performed using an Ansys® model with 2.9 l volume, 6061 T6 aluminium liner/Kevlar® 49-Epoxy vessel material, and a service internal pressure loading of 22 MPa. The results show that symmetric stacking sequences give higher burst pressures by up to 15%. Stacking sequence evaluations provided a further 7% pressure-carrying capacity as well as reduced stress concentration in the transition region. Finally, the Type III vessel under consideration provides a 45% lighter construction as compared with an all metal (Type I) vessel.
Pregger, Thomas; Friedrich, Rainer
2009-02-01
Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.
Li, Yeqing; Zhang, Jiang; Miao, Wenjuan; Wang, Huanzhong; Wei, Mao
2015-09-01
Approximately 400000t of DDTs/HCHs-contaminated soil (CS) needed to be co-processed in a cement kiln with a time limitation of 2y. A new pre-processing facility with a "drying, grinding and DDTs/HCHs vaporizing" ability was equipped to meet the technical requirements for processing cement raw meal and the environmental standards for stack emissions. And the bottom of the precalciner with high temperatures >1000°C was chosen as the CS feeding point for co-processing, which has rarely been reported. To assess the environmental performance of CS pre- and co-processing technologies, according to the local regulation, a test burn was performed by independent and accredited institutes systematically for determination of the clinker quality, kiln stack gas emissions and destruction efficiency of the pollutant. The results demonstrated that the clinker was of high quality and not adversely affected by CS co-processing. Stack emissions were all below the limits set by Chinese standards. Particularly, PCDD/PCDF emissions ranged from 0.0023 to 0.0085ngI-TEQNm(-3). The less toxic OCDD was the peak congener for CS co-processing procedure, while the most toxic congeners (i.e. 2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDD) remained in a minor proportion. Destruction and removal efficiency (DRE) and destruction efficiency (DE) of the kiln system were better than 99.9999% and 99.99%, respectively, at the highest CS feeding rate during normal production. To guarantee the environmental performance of the system the quarterly stack gas emission was also monitored during the whole period. And all of the results can meet the national standards requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric
2017-12-01
The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...
2016-04-01
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less
Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
2017-01-01
We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufford, Daniel C.; Wang, Morris; Liu, Yue
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less
Weidman, Mark C.; Seitz, Michael; Stranks, Samuel D.; ...
2016-07-29
Here, colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L 2[ABX 3] n-1BX 4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide),more » and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.« less
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry... determine the rates of emission of HCl from kilns and associated bypass stacks at portland cement... emission of specific organic HAP from raw material dryers, and kilns at Portland cement manufacturing...
Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Molla, Tesfaye Tadesse; Kwok, Kawai; Frandsen, Henrik Lund
2017-05-01
Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user-defined material model. This is used to validate the developed constitutive law to experiments with constant strain rate, cyclic and creep experiments. The predictions from the developed model are found to agree well with experimental data. It is therefore concluded that Chaboche's unified power law can be applied to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.
40 CFR 61.33 - Stack sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...
40 CFR 61.33 - Stack sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
AN ELECTROCHEMICAL SYSTEM FOR REMOVING AND RECOVERING ELEMENTAL MERCURY FROM FLUE-STACK GASES
the impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in heightened interest in the development of advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Altho...
40 CFR 52.1532 - Stack height review.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1532 Stack height review. The State of New Hampshire has declared to the satisfaction of EPA that no existing emission... the New Hampshire SIP and our delegated PSD authority, the New Hampshire Air Resources Agency will...
40 CFR 52.1532 - Stack height review.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1532 Stack height review. The State of New Hampshire has declared to the satisfaction of EPA that no existing emission... the New Hampshire SIP and our delegated PSD authority, the New Hampshire Air Resources Agency will...
40 CFR 52.1532 - Stack height review.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1532 Stack height review. The State of New Hampshire has declared to the satisfaction of EPA that no existing emission... the New Hampshire SIP and our delegated PSD authority, the New Hampshire Air Resources Agency will...
40 CFR 52.1532 - Stack height review.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1532 Stack height review. The State of New Hampshire has declared to the satisfaction of EPA that no existing emission... the New Hampshire SIP and our delegated PSD authority, the New Hampshire Air Resources Agency will...
40 CFR 52.1532 - Stack height review.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Hampshire § 52.1532 Stack height review. The State of New Hampshire has declared to the satisfaction of EPA that no existing emission... the New Hampshire SIP and our delegated PSD authority, the New Hampshire Air Resources Agency will...
NASA Astrophysics Data System (ADS)
Liu, Hong-Zhi; Ouyang, Jia-Hu; Liu, Zhan-Guo; Wang, Ya-Ming
2013-04-01
LaMAl11O19 (M = Mg, Fe) ceramic coatings were plasma-sprayed on nickel-based superalloy with NiCoCrAlYTa as the bond coat. The microstructure, thermal shock resistance and thermal emissivity of these two ceramic coatings were investigated. LaMAl11O19 coatings exhibit a characteristic of stacked lamellae, and consist mainly of a magnetoplumbite-type hexaaluminate phase and an amorphous phase. During thermal cycling, the amorphous phase disappears and a LaAlO3 phase is formed at temperatures of both 1000 and 1200 °C. The thermal cycling numbers of LaMgAl11O19 coating are 102 at 1000 °C and 42 at 1200 °C; LaFeAl11O19 has a thermal cycling lifetime of 87 at 1000 °C and 30 at 1200 °C, respectively. Normal spectral emissivity of nickel-based superalloy is about 0.2 over the whole wavelength range of 3-14 μm. However, the emissivity of LaFeAl11O19 coating is about 0.7 at short wavelengths and above 0.9 in the wavelength range of 7-14 μm.
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
NASA Astrophysics Data System (ADS)
Hung, Yue
Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.
Ductilizing bulk metallic glass composite by tailoring stacking fault energy.
Wu, Y; Zhou, D Q; Song, W L; Wang, H; Zhang, Z Y; Ma, D; Wang, X L; Lu, Z P
2012-12-14
Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, V.E.
Naturally occurring radioactivity was measured in the atmospheric emissions and process materials of a thermal phosphate (elemental phosphorus) plant. Representative exhaust stack samples were collected from each process in the plant. The phosphate ore contained 12 to 20 parts per million uranium. Processes, emission points, and emission controls are described. Radioactivity concentrations and emission rates from the sources sampled are given.
Remote fire stack igniter. [with solenoid-controlled valve
NASA Technical Reports Server (NTRS)
Ray, W. L. (Inventor)
1974-01-01
An igniter is described mounted on a vent stack with an upper, flame cage near the top of the stack to ignite emissions from the stack. The igniter is a tube with a lower, open, flared end having a spark plug near the lower end and a solenoid-controlled valve which supplies propane fuel from a supply tank. Propane from the tank is supplied at the top under control of a second, solenoid-controlled valve. The valve controlling the lower supply is closed after ignition at the flame cage. The igniter is economical, practical, and highly reliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2006-03-01
TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derivedmore » from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.« less
Emissions of polycyclic aromatic hydrocarbons from batch hot mix asphalt plants.
Lee, Wen-Jhy; Chao, Wen-Hui; Shih, Minliang; Tsai, Cheng-Hsien; Chen, Thomas Jeng-Ho; Tsai, Perng-Jy
2004-10-15
This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.
England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M
2007-01-01
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
Commercialisation of Solid Oxide Fuel Cells - opportunities and forecasts
NASA Astrophysics Data System (ADS)
Dziurdzia, B.; Magonski, Z.; Jankowski, H.
2016-01-01
The paper presents the analysis of commercialisation possibilities of the SOFC stack designed at AGH. The paper reminds the final design of the stack, presented earlier at IMAPS- Poland conferences, its recent modifications and measurements. The stack consists of planar double-sided ceramic fuel cells which characterize by the special anode construction with embedded fuel channels. The stack features by a simple construction without metallic interconnectors and frames, lowered thermal capacity and quick start-up time. Predictions for the possible applications of the stack include portable generators for luxurious caravans, yachts, ships at berth. The SOFC stack operating as clean, quiet and efficient power source could replace on-board diesel generators. Market forecasts shows that there is also some room on a market for the SOFC stack as a standalone generator in rural areas far away from the grid. The paper presents also the survey of SOFC market in Europe USA, Australia and other countries.
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure.
Baranowski, M; Surrente, A; Klopotowski, L; Urban, J M; Zhang, N; Maude, D K; Wiwatowski, K; Mackowski, S; Kung, Y C; Dumcenco, D; Kis, A; Plochocka, P
2017-10-11
Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlayer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe 2 /WSe 2 heterostructures. Here we report on the observation of long-lived interlayer exciton emission in a MoS 2 /MoSe 2 /MoS 2 trilayer van der Waals heterostructure. The interlayer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power, and temperature dependence of the interlayer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long-lived valley polarization of interlayer exciton. Intriguingly, the interlayer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the interlayer exciton emission.
Liu, Guorui; Cai, Zongwei; Zheng, Minghui; Jiang, Xiaoxu; Nie, Zhiqiang; Wang, Mei
2015-01-01
Identifying marker congeners of unintentionally produced polychlorinated naphthalenes (PCNs) from industrial thermal sources might be useful for predicting total PCN (∑2-8PCN) emissions by the determination of only indicator congeners. In this study, potential indicator congeners were identified based on the PCN data in 122 stack gas samples from over 60 plants involved in more than ten industrial thermal sources reported in our previous case studies. Linear regression analyses identified that the concentrations of CN27/30, CN52/60, and CN66/67 correlated significantly with ∑2-8PCN (R(2)=0.77, 0.80, and 0.58, respectively; n=122, p<0.05), which might be good candidates for indicator congeners. Equations describing relationships between indicators and ∑2-8PCN were established. The linear regression analyses involving 122 samples showed that the relationships between the indicator congeners and ∑2-8PCN were not significantly affected by factors such as industry types, raw materials used, or operating conditions. Hierarchical cluster analysis and similarity calculations for the 122 stack gas samples were adopted to group those samples and evaluating their similarity and difference based on the PCN homolog distributions from different industrial thermal sources. Generally, the fractions of less chlorinated homologs comprised of di-, tri-, and tetra-homologs were much higher than that of more chlorinated homologs for up to 111 stack gas samples contained in group 1 and 2, which indicating the dominance of lower chlorinated homologs in stack gas from industrial thermal sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis
2016-01-01
We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633
Described are methods to measure the polychlorinated biphenyl (PCB) emissions from the stacks of municipal waste, industrial waste, and sewage sludge incinerators and from capacitor and transformer filling plants. The PCB emissions from the incineration plants are collected by im...
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution sources? (1) Particulate matter emissions from a combustion source stack (except for wood-fired..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine...
THERMAL ENCAPSULATION OF METALS IN SUPERFUND SOILS
Superfund sites frequently contain both heavy metals and organic hazardous waste. If not properly controlled, the metals may be changed to a more leachable form and may also be emitted to the atmosphere via the exhaust stack. This paper documents a batch kiln R&D test program to ...
NASA Astrophysics Data System (ADS)
Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih
2017-08-01
A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Simmons, J.A.; Knap, A.H.
1991-04-01
The computer model Industrial Source Complex Short Term (ISCST) was used to study the stack emissions from a refuse incinerator proposed for the inland of Bermuda. The model predicts that the highest ground level pollutant concentrations will occur near Prospect, 800 m to 1,000 m due south of the stack. The authors installed a portable laboratory and instruments at Prospect to begin making air quality baseline measurements. By comparing the model's estimates of the incinerator contribution to the background levels measured at the site they predicted that stack emissions would not cause an increase in TSP or SO{sub 2}. Themore » incinerator will be a significant source of HCI to Bermuda air with ambient levels approaching air quality guidelines.« less
Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei
2017-01-17
2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.
Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.
Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less
Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals
Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; ...
2015-05-15
Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less
Deformation induced microtwins and stacking faults in aluminum single crystal.
Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F
2008-09-12
Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.
Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S
2012-01-10
Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.
The mean ultraviolet spectrum of a representative sample of faint z ˜ 3 Lyman alpha emitters
NASA Astrophysics Data System (ADS)
Nakajima, Kimihiko; Fletcher, Thomas; Ellis, Richard S.; Robertson, Brant E.; Iwata, Ikuru
2018-06-01
We discuss the rest-frame ultraviolet (UV) emission line spectra of a large (˜100) sample of low luminosity redshift z ˜ 3.1 Lyman alpha emitters (LAEs) drawn from a Subaru imaging survey in the SSA22 survey field. Our earlier work based on smaller samples indicated that such sources have high [O III]/[O II] line ratios possibly arising from a hard ionizing spectrum that may be typical of similar sources in the reionization era. With optical spectra secured from VLT/VIMOS, we re-examine the nature of the ionizing radiation in a larger sample using the strength of the high ionization diagnostic emission lines of CIII]λ1909, CIVλ1549, HEIIλ1640, and O III]λλ1661, 1666 Å in various stacked subsets. Our analysis confirms earlier suggestions of a correlation between the strength of Ly α and CIII] emission and we find similar trends with broad-band UV luminosity and rest-frame UV colour. Using various diagnostic line ratios and our stellar photoionization models, we determine both the gas phase metallicity and hardness of the ionization spectrum characterized by ξion - the number of Lyman continuum photons per UV luminosity. We confirm our earlier suggestion that ξion is significantly larger for LAEs than for continuum-selected Lyman break galaxies, particularly for those LAEs with the faintest UV luminosities. We briefly discuss the implications for cosmic reionization if the metal-poor intensely star-forming systems studied here are representative examples of those at much higher redshift.
NASA Astrophysics Data System (ADS)
Ren, Christopher X.; Tang, Fengzai; Oliver, Rachel A.; Zhu, Tongtong
2018-01-01
GaN-based nanorods and nanowires have recently shown great potential as a platform for future energy-efficient photonic and optoelectronic applications, such as light emitting diodes and nanolasers. Currently, the most industrially scalable method of growing III-nitride nanorods remains metal-organic vapour phase epitaxy: whilst this growth method is often used in conjunction with extrinsic metallic catalyst particles, these particles can introduce unwanted artifacts in the nanorods such as stacking faults. In this paper, we examine the catalyst-free growth of GaN/InGaN core-shell nanorods by metal-organic vapor phase epitaxy for optoelectronic applications using silane to enhance the vertical growth of the nanorods. We find that both the silane concentration and exposure time can greatly affect the nanorod properties, and that larger concentrations and longer exposure times can severely degrade the nanorod structure and thus result in reduced emission from the InGaN QW shell. Finally, we report that the mechanism behind the effect of silane on the nanorod structure is the unintentional formation of an SiNx interlayer following completion of the growth of the nanorod core. This interlayer induces the growth of GaN islands on the nanorod sidewalls, the spatial distribution of which can affect their subsequent coalescence during the lateral growth stages and result in non-uniformity in the nanorod structure. This suggests that careful control of the silane flow must be exerted during growth to achieve both high aspect ratio nanorods and uniform emission along the length of the nanorod.
NASA Astrophysics Data System (ADS)
Caraveo-Frescas, J. A.; Hedhili, M. N.; Wang, H.; Schwingenschlögl, U.; Alshareef, H. N.
2012-03-01
It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ˜350 mV negative shift with the Si overlayer present and a ˜110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.
Metallic Thin-Film Bonding and Alloy Generation
NASA Technical Reports Server (NTRS)
Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)
2016-01-01
Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.
Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho
In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less
Self-sorting of dynamic metallosupramolecular libraries (DMLs) via metal-driven selection.
Kocsis, Istvan; Dumitrescu, Dan; Legrand, Yves-Marie; van der Lee, Arie; Grosu, Ion; Barboiu, Mihail
2014-03-11
"Metal-driven" selection between finite mononuclear and polymeric metallosupramolecular species can be quantitatively achieved in solution and in a crystalline state via coupled coordination/stacking interactional algorithms within dynamic metallosupramolecular libraries - DMLs.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
40 CFR 75.22 - Reference test methods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recertification of continuous emission monitoring Systems; NOX emission tests of low mass emission units under... continuous moisture monitoring systems are conducted. For the purpose of determining the stack gas molecular... traverse requirement of the method; (iv) Section 8.6 of the method allowing for the use of “Dynamic Spiking...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
40 CFR 98.173 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... furnace are vented through the same stack as any combustion unit or process equipment that reports CO2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Use With the Stack Test Method (300 mm and 450 mm Wafers) I Table I-12 to Subpart I of Part 98... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (300 mm and 450 mm Wafers...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Use With the Stack Test Method (150 mm and 200 mm Wafers) I Table I-11 to Subpart I of Part 98... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (150 mm and 200 mm Wafers...
NASA Technical Reports Server (NTRS)
1980-01-01
Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.
Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorndyke, Brian; Schreibmann, Eduard; Koong, Albert
Respiratory motion artifacts in positron emission tomography (PET) imaging can alter lesion intensity profiles, and result in substantially reduced activity and contrast-to-noise ratios (CNRs). We propose a corrective algorithm, coined 'retrospective stacking' (RS), to restore image quality without requiring additional scan time. Retrospective stacking uses b-spline deformable image registration to combine amplitude-binned PET data along the entire respiratory cycle into a single respiratory end point. We applied the method to a phantom model consisting of a small, hot vial oscillating within a warm background, as well as to {sup 18}FDG-PET images of a pancreatic and a liver patient. Comparisons weremore » made using cross-section visualizations, activity profiles, and CNRs within the region of interest. Retrospective stacking was found to properly restore the lesion location and intensity profile in all cases. In addition, RS provided CNR improvements up to three-fold over gated images, and up to five-fold over ungated data. These phantom and patient studies demonstrate that RS can correct for lesion motion and deformation, while substantially improving tumor visibility and background noise.« less
Nitride-based stacked laser diodes with a tunnel junction
NASA Astrophysics Data System (ADS)
Okawara, Satoru; Aoki, Yuta; Kuwabara, Masakazu; Takagi, Yasufumi; Maeda, Junya; Yoshida, Harumasa
2018-01-01
We report on nitride-based two-stack laser diodes with a tunnel junction for the first time. The stacked laser diode was monolithically grown by metalorganic vapor phase epitaxy. It was confirmed that the two-stack InGaN/GaN multiple-quantum-well laser diode with an emission wavelength of 394 nm exhibited laser oscillation up to a peak output power of over 10 W in the pulsed current mode. The upper and lower emitters of the device were capable of lasing at different threshold currents of 2.4 and 5.2 A with different slope efficiencies of 0.8 and 0.3 W/A, respectively.
Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.
1995-01-01
A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-01-01
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029
Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling
2017-01-25
This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas.
TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station.
Gieré, Reto; Blackford, Mark; Smith, Katherine
2006-10-15
The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal+tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 microm (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO4, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO4-H2O, is the main host for Zn and only occurs in the PM derived from the coal+tire blend, whereas yavapaiite, KFe3+(SO4)2, is present only when pure coal was combusted. We conclude that these metal sulfates precipitated from the flue gas, may be globally abundant aerosols, and have, through hydration or dissolution, a major environmental and health impact.
Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua
2013-07-01
Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
1980-09-30
16. "Substituted Rare Earth Garnet Substrate Crystals and LPE Films for Magneto-optic Applications," M. Kestigian, W.R. Bekebrede and A.B. Smith, J...transparent garnet magnetic films have been discussed by workers at Sperry [4,5]. The above considerations indicate that it is highly desirable to have...metallic magnetic film , such as a garnet , on top of an MLD stack. C. A partially transparent (very thin) magnetic metal film on top of an MLD stack. We
Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.
Study of Stack Emissions from Coast Guard Cutters
DOT National Transportation Integrated Search
1973-09-01
The gaseous and particulate emissions from 14 cutters and boats in the First Coast Guard District have been measured under typical operating conditions. These measurements were performed on 57 diesel engines and boilers configured as main propulsion ...
Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler
NASA Astrophysics Data System (ADS)
Wang, Y. J.; Duan, Y. F.; Zhao, C. S.
Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
40 CFR 60.52c - Emission limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission limits. 60.52c Section 60.52c... Incinerators for Which Construction is Commenced After June 20, 1996 § 60.52c Emission limits. (a) On and after... that contain stack emissions in excess of the limits presented in Table 1A to this subpart. (2) From an...
Gaseous and particulate emissions from thermal power plants operating on different technologies.
Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain
2010-07-01
This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.
NASA Astrophysics Data System (ADS)
Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail
A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.
Measurement of Ferroelectric Films in MFM and MFIS Structures
NASA Astrophysics Data System (ADS)
Anderson, Jackson D.
For many years ferroelectric memory has been used in applications requiring low power, yet mainstream adoption has been stifled due to integration and scaling issues. With the renewed interest in these devices due to the recent discovery of ferroelectricity in HfO2, it is imperative that the properties of these films are well understood. To aid that end, a ferroelectric analysis package has been developed and released on GitHub and PyPI under a creative commons non-commercial share-alike license. This package contains functions for visualization and analysis of data from polarization, leakage current, and FORC measurements as well as basic modeling capability. Functionality is verified via the analysis of lead zirconate titanate (PZT) capacitors, where a multi-domain simulation based on an experimental Preisach density shows decent agreement despite measurement noise. The package is then used in the analysis of ferroelectric HfO2 films deposited in metal-ferroelectric-metal (MFM) and metal-ferroelectric-insulator-semiconductor (MFIS) stacks. 13.5 nm HfO2 films deposited on a semiconductor surface are shown to have a coercive voltage of 2.5 V, rather than the 1.9 V of the film in an MFM stack. This value further increases to 3-5 V when a lightly doped semiconductor depletion and inversion capacitance is added to the stack. The magnitude of this change is more than can be accounted for from the 10% voltage drop across the interfacial oxide layer, indicating that the modified surface properties are impacting the formation of the ferroelectric phase during anneal. In light of this, care should be taken to map out ferroelectric HfO2 properties using the particular physical stack that will be used, rather than using an MFM stack as a proxy.
Surface and Interface Chemistry for Gate Stacks on Silicon
NASA Astrophysics Data System (ADS)
Frank, M. M.; Chabal, Y. J.
This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.
Sampling for Air Chemical Emissions from the Life Sciences Laboratory II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballinger, Marcel Y.; Lindberg, Michael J.
Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less
Fermi LAT Stacking Analysis of Swift Localized GRBs
Ackermann, M.; Ajello, M.; Anderson, B.; ...
2016-05-05
In this paper, we perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of γ-ray bursts (GRBs) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument's field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeVmore » to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst's prompt γ-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift's X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst's afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. Finally, these results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Julia E.; Glissmeyer, John A.
2016-02-29
The Canister Storage Building (CSB), located in the 200-East Area of the Hanford Site, is a 42,000 square foot facility used to store spent nuclear fuel from past activities at the Hanford Site. Because the facility has the potential to emit radionuclides into the environment, its ventilation exhaust stack has been equipped with an air monitoring system. Subpart H of the National Emissions Standards for Hazardous Air Pollutants requires that a sampling probe be located in the exhaust stack in accordance with criteria established by the American National Standards Institute/Health Physics Society Standard N13.1-1999, Sampling and Monitoring Releases of Airbornemore » Radioactive Substances from the Stack and Ducts of Nuclear Facilities.« less
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
..., stack, storage, or fugitive emissions point; and/or are design, equipment, work practice, or operational... procedures designed to minimize emissions of THC for each start-up and shutdown scenario anticipated for all... designed and maintained can sometimes fail and that such failure can sometimes cause an exceedance of the...
Battery condenser system total particulate emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...
Battery condenser system PM10 emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...
Battery condenser system total particulate emission factors and rates for cotton gins: Method 17
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...
Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin concentrations in stack gas averaged 328 ng TEQ/m3. The incinerator had been in operation since the early 1980s. In ...
40 CFR Table 1 to Subpart Ttttt of... - Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... the following . . . 1. Each spray dryer stack a. You must not cause to be discharged to the atmosphere... discharged to the atmosphere any gases that contain hydrochloric acid in excess of 200 lbs/hr. 2. Each magnesium chloride storage bins scrubber stack a. You must not cause to be discharged to the atmosphere any...
40 CFR Table 1 to Subpart Ttttt of... - Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... the following . . . 1. Each spray dryer stack a. You must not cause to be discharged to the atmosphere... discharged to the atmosphere any gases that contain hydrochloric acid in excess of 200 lbs/hr. 2. Each magnesium chloride storage bins scrubber stack a. You must not cause to be discharged to the atmosphere any...
40 CFR Table 1 to Subpart Ttttt of... - Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... the following . . . 1. Each spray dryer stack a. You must not cause to be discharged to the atmosphere... discharged to the atmosphere any gases that contain hydrochloric acid in excess of 200 lbs/hr. 2. Each magnesium chloride storage bins scrubber stack a. You must not cause to be discharged to the atmosphere any...
40 CFR Table 1 to Subpart Ttttt of... - Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... the following . . . 1. Each spray dryer stack a. You must not cause to be discharged to the atmosphere... discharged to the atmosphere any gases that contain hydrochloric acid in excess of 200 lbs/hr. 2. Each magnesium chloride storage bins scrubber stack a. You must not cause to be discharged to the atmosphere any...
40 CFR Table 1 to Subpart Ttttt of... - Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following . . . 1. Each spray dryer stack a. You must not cause to be discharged to the atmosphere... discharged to the atmosphere any gases that contain hydrochloric acid in excess of 200 lbs/hr. 2. Each magnesium chloride storage bins scrubber stack a. You must not cause to be discharged to the atmosphere any...
40 CFR 60.1790 - What test methods must I use to stack test?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What test methods must I use to stack test? 60.1790 Section 60.1790 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...
40 CFR 60.1790 - What test methods must I use to stack test?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What test methods must I use to stack test? 60.1790 Section 60.1790 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...
40 CFR 60.1790 - What test methods must I use to stack test?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What test methods must I use to stack test? 60.1790 Section 60.1790 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...
40 CFR 60.1790 - What test methods must I use to stack test?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What test methods must I use to stack test? 60.1790 Section 60.1790 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste...
Yu-Mei Hsu; Andrzej Bytnerowicz
2015-01-01
NO2 and SO2 are the primary pollutants produced by industrial facilities of the Athabasca Oil sand Region (AOSR), Alberta, Canada. The major emission sources are the upgrader stacks for SO2 and stacks, mine fleets and vehicles for NO2. After emitting from the sources, NO
Code of Federal Regulations, 2010 CFR
2010-07-01
... the excepted sorbent trap monitoring methodology. For an affected coal-fired unit under a State or...; (c) A certified flow monitoring system is required; (d) Correction for stack gas moisture content is... proportional to the stack gas volumetric flow rate. (f) At the beginning and end of each sample collection...
Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials.
Jeong, Hyun; Oh, Hye Min; Bang, Seungho; Jeong, Hyeon Jun; An, Sung-Jin; Han, Gang Hee; Kim, Hyun; Yun, Seok Joon; Kim, Ki Kang; Park, Jin Cheol; Lee, Young Hee; Lerondel, Gilles; Jeong, Mun Seok
2016-03-09
We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination.
Laterally stacked Schottky diodes for infrared sensor applications
NASA Technical Reports Server (NTRS)
Lin, True-Lon (Inventor)
1991-01-01
Laterally stacked Schottky diodes for infrared sensor applications are fabricated utilizing porous silicon having pores. A Schottky metal contract is formed in the pores, such as by electroplating. The sensors may be integrated with silicon circuits on the same chip with a high quantum efficiency, which is ideal for IR focal plane array applications due to uniformity and reproducibility.
ERIC Educational Resources Information Center
Lester, David; Whipple, Melissa
1996-01-01
In a sample of students (n=93), preference for country and western music was not associated with depression or suicidal preoccupation as has been suggested by Stack and Gundlach. However, preference for heavy metal music was associated with prior suicidal ideation. Stronger associations were found between music preferences and measures of…
Lester, D; Whipple, M
1996-01-01
In a sample of students, preference for country and western music was not associated with depression or suicidal preoccupation as has been suggested by Stack and Gundlach. However, preference for heavy metal music was associated with prior suicidal ideation. Stronger associations were found between music preferences and measures of psychoticism and extraversion.
Method and device for electroextraction of heavy metals from technological solutions and wastewater
Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae
2005-05-03
The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.
3D Stacked Memory Final Report CRADA No. TC-0494-93
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, A.; Beene, G.
TI and LLNL demonstrated: (1) a process for the fabrication of 3-D memory using stacked DRAM chips, and (2) a fast prototyping process for 3-D stacks and MCMs. The metallization to route the chip pads to the sides of the die was carried out in a single high-speed masking step. The mask was not the usual physical one in glass and chrome, but was simply a computer file used to control the laser patterning process. Changes in either chip or customer circuit-board pad layout were easily and inexpensively accommodated, so that prototyping was a natural consequence of the laser patterningmore » process. As in the current TI process, a dielectric layer was added to the wafer, and vias to the chip I/0 pads were formed. All of the steps in Texas Instruments earlier process that were required to gold bump the pads were eliminated, significantly reducing fabrication cost and complexity. Pads were created on the sides of ·the die, which became pads on the side of the stack. In order to extend the process to accommodate non-memory devices with substantially greater I/0 than is required for DRAMs, pads were patterned on two sides of the memory stacks as a proof of principle. Stacking and bonding were done using modifications of the current TI process. After stacking and bonding, the pads on the sides of the dice were connected by application of a polyimide insulator film with laser ablation of the polyimide to form contacts to the pads. Then metallization was accomplished in the same manner as on the individual die.« less
InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands.
Han, Yu; Li, Qiang; Ng, Kar Wei; Zhu, Si; Lau, Kei May
2018-06-01
We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.
The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3
NASA Astrophysics Data System (ADS)
Malkan, Matthew Arnold; Cohen, Daniel
2017-01-01
We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.
We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with openingmore » angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.« less
Electric Field-Dependent Photoluminescence in Multilayer Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Stanev, T. K.; Henning, A.; Sangwan, V. K.; Speiser, N.; Stern, N. P.; Lauhon, L. J.; Hersam, M. C.; Wang, K.; Valencia, D.; Charles, J.; Kubis, T. C.
Owing to interlayer coupling, transition metal dichalcogenides (TMDCs) such as MoS2 exhibit strong layer dependence of optical and electronic phenomena such as the band gap and trion and neutral exciton population dynamics. Here, we systematically measure the effect of layer number on the optical response of multilayer MoS2 in an external electric field, observing field and layer number dependent emission energy and photoluminescence intensity. These effects are studied in few (2-6) and bulk (11 +) layered structures at low temperatures. In MoS2\\ the observed layer dependence arises from several mechanisms, including interlayer charge transfer, band structure, Stark Effect, Fermi level changes, screening, and surface effects, so it can be challenging to isolate how these mechanisms impact the observables. Because it behaves like a stack of weakly interacting monolayers rather than multilayer or bulk, ReS2 provides a comparison to traditional TMDCs to help isolate the underlying physical mechanisms dictating the response of multilayers. This work is supported by the National Science Foundation MRSEC program (DMR-1121262), and the 2-DARE Grant (EFRI-1433510). N.P.S. is an Alfred P. Sloan Research Fellow.
NASA Astrophysics Data System (ADS)
Sun, Yan-Qiong; Liu, Qi; Zhong, Jie-Cen; Pan, Qun-Feng; Chen, Yi-Ping
2013-10-01
Two isostructural 3D lanthanide arenedisulfonate metal-organic frameworks (MOFs) [Ln(Hbidc)(nds)0.5(H2O)]n(Ln=Eu(1), La(2)) have been successfully synthesized by the hydrothermal reaction of lanthanide oxide with 2,6-naphthalenedisulfonate sodium (Na2nds) and an auxiliary ligand, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc). The two complexes are both constructed from 2D [Ln(Hbidc)]+ double layers pillared by nds2- ligands to generate 3D (3, 8)-connected open-framework structures with 1D long narrow channels running along the a axis. From topological point of view, the 3D framework is a (3, 8)-connected tfz-d net. The weak interactions including N-H⋯O, O-H⋯O hydrogen bonds and π-π stacking are observed in 1. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ(J=0-4) of Eu(III).
Analysis of Dislocation Emission during Microvoid Growth in Ductile Metals
NASA Astrophysics Data System (ADS)
Belak, James; Rudd, Robert E.
2001-03-01
Fracture in ductile metals occurs through the nucleation and growth of microscopic voids. This talk focuses on the initial stage when dislocations are first emitted from the void surface. The model system consists of a spherical void in an otherwise perfect crystal under triaxial tension. The stress field is calculated using continuum techniques, both finite element and analytic forms due to Eshelby, and compared with large-scale molecular dynamics (MD) simulation. The stress field is used to derive a criterion for dislocation nucleation on the glide planes intersecting the void surface. The critical resolved shear stress and the unstable stacking fault energy for the strain at the surface are used to compare to the critical stress for void growth in the MD simulations. Acknowledgement: This work was performed under the auspices of the US Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. [1] J. Belak, "On the nucleation and growth of voids at high strain-rates," J. Comp.-Aided Mater. Design 5, 193 (1998).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
2017-08-29
A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes themore » particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.« less
1989-06-01
to a common breeching and can be routed to the wet -scrubber or to a bypass stack. The scrubber is a double-alkali flue - gas desulfurization system...the ambient air Bw. = proportion by volume of water vapor in F, = a factor representing a ratio of the vol. the stack gas . ume of wet flue gases...Scrubbers and Bypass Stacks 4 3 Flue Gas Flow Diagram 5 4 ORSAT Sampling Train 8 5 ORSAT Apparatus 8 6 Particulate Sampling Train 9 Table 1 Emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garty, J.
1987-06-01
The lichen Ramalina duriaei (De Not.) Bagl. was transplanted to 22 biomonitoring sites for 1 year (1981-1982). The amounts of Ni, Cr, Cu, Zn, Pb, Mn, and Fe in the lichen material were measured at the end of the transplantation period and the data were compared with the amounts of five of these metals (Ni, Cr, Cu, Zn, and Pb) which were detected in the same lichen species transplanted in the same study area during the 1979-1980 period. The differences between the amounts of the five metals detected during the two periods are discussed. The increase in amounts of somemore » of the metals in the 1981-1982 lichen material (Pb, Ni, and probably Cr) reflects the increase in the total number of motor vehicles between the two periods within the study area. The decrease of Zn in the lichen after the second period reflects a decrease in the use of Zn as a constituent of foliar nutrients in agriculture used for crop spraying. The increase of Cr and Ni in the transplanted lichen after the 1981-1982 period probably also reflects, apart from vehicle pollution, a certain emission from the 250-m-high stacks of a new coal-fired electricity-generating power station.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
MONITORING OF INCINERATOR EMISSIONS
Monitoring of Incinerator Emissions is a chapter to be included in a book entitled Hazardous Waste Incineration, edited by A. Sarofim and D. Pershing, and published by John Wiley and Sons. he chapter describes stack sampling and analysis procedures in use on hazardous waste incin...
White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.
Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin
2009-11-09
This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.
2016-01-25
We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less
Planar varactor frequency multiplier devices with blocking barrier
NASA Technical Reports Server (NTRS)
Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)
1994-01-01
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
Gil-Rostra, Jorge; Ferrer, Francisco J; Espinós, Juan Pedro; González-Elipe, Agustín R; Yubero, Francisco
2017-05-17
A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Subhash L.; Teifel, John; Flores, Richard S.
A 3D stacked sASIC is provided that includes a plurality of 2D reconfigurable structured structured ASIC (sASIC) levels interconnected through hard-wired arrays of 3D vias. The 2D sASIC levels may contain logic, memory, analog functions, and device input/output pad circuitry. During fabrication, these 2D sASIC levels are stacked on top of each other and fused together with 3D metal vias. Such 3D vias may be fabricated as through-silicon vias (TSVs). They may connect to the back-side of the 2D sASIC level, or they may be connected to top metal pads on the front-side of the 2D sASIC level.
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... non-air quality health and environmental impacts) and are commonly referred to as maximum achievable... process, stack, storage, or fugitive emissions point, (D) are design, equipment, work practice, or... combination of the above. CAA section 112(d)(2)(A)-(E). The MACT standard may take the form of a design...
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...
Band engineering in twisted molybdenum disulfide bilayers
NASA Astrophysics Data System (ADS)
Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang
2018-05-01
In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.
Stacking metal nano-patterns and fabrication of moth-eye structure
NASA Astrophysics Data System (ADS)
Taniguchi, Jun
2018-01-01
Nanoimprint lithography (NIL) can be used as a tool for three-dimensional nanoscale fabrication. In particular, complex metal pattern structures in polymer material are demanded as plasmonic effect devices and metamaterials. To fabricate of metallic color filter, we used silver ink and NIL techniques. Metallic color filter was composed of stacking of nanoscale silver disc patterns and polymer layers, thus, controlling of polymer layer thickness is necessary. To control of thickness of polymer layer, we used spin-coating of UV-curable polymer and NIL. As a result, ten stacking layers with 1000 nm layer thickness was obtained and red color was observed. Ultraviolet nanoimprint lithography (UV-NIL) is the most effective technique for mass fabrication of antireflection structure (ARS) films. For the use of ARS films in mobile phones and tablet PCs, which are touch-screen devices, it is important to protect the films from fingerprints and dust. In addition, as the nanoscale ARS that is touched by the hand is fragile, it is very important to obtain a high abrasion resistance. To solve these problems, a UV-curable epoxy resin has been developed that exhibits antifouling properties and high hardness. The high abrasion resistance ARS films are shown to withstand a load of 250 g/cm2 in the steel wool scratch test, and the reflectance is less than 0.4%.
USDA-ARS?s Scientific Manuscript database
Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...
The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.
2016-01-07
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less
NASA Astrophysics Data System (ADS)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.
2016-01-01
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.
Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique
2016-02-01
The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettore Guerriero; Antonina Lutri; Rosanna Mabilia
2008-11-15
A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and themore » performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.« less
Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. H.; Cheng, Y. H.; Ko, C. W.
2015-10-12
This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed tomore » the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.« less
Designer Infrared Filters using Stacked Metal Lattices
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Rebbert, M.; Sternberg, O.
2003-01-01
We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters arc broadly applicable in systems across infrared and terahertz bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy
NASA Astrophysics Data System (ADS)
Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter
2016-05-01
We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.
High Intensity Organic Light-emitting Diodes
NASA Astrophysics Data System (ADS)
Qi, Xiangfei
This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and can be expanded to study other thermal issues in more sophisticated structures.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
...Recent EPA gas audit results indicate that some gas cylinders used to calibrate continuous emission monitoring systems on stationary sources do not meet EPA's performance specification. Reviews of stack test reports in recent years indicate that some stack testers do not properly follow EPA test methods or do not correctly calculate test method results. Therefore, EPA is proposing to amend its Protocol Gas Verification Program (PGVP) and the minimum competency requirements for air emission testing (formerly air emission testing body requirements) to improve the accuracy of emissions data. EPA is also proposing to amend other sections of the Acid Rain Program continuous emission monitoring system regulations by adding and clarifying certain recordkeeping and reporting requirements, removing the provisions pertaining to mercury monitoring and reporting, removing certain requirements associated with a class-approved alternative monitoring system, disallowing the use of a particular quality assurance option in EPA Reference Method 7E, adding an incorporation by reference that was inadvertently left out of the January 24, 2008 final rule, and clarifying the language and applicability of certain provisions.
COST EFFECTIVE CONTROL OF HEXAVALENT CHROMIUM AIR EMISSIONS FROM FUNCTIONAL CHROMIUM ELECTROPLATING
This paper will summrize thie pollution prevention (p2) method to control stack emissions from hard chromium plating operations performed by the USEPA's National Risk Management Research Laboratory (NRMRL) over the last four years. During literature research and user surveys, it...
Deformation mechanisms of nanotwinned Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinghang
The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, suchmore » as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in high-stacking-energy metals: use Ag as a template to introduce high density growth twins in epitaxial Al; and the film thickness is important in determination of volume fraction of growth twins. 3) We prove that high density twin boundaries can lead to significant work hardening capability in nanotwinned Al. We have published 13 articles, including Nature Communications, Nano Letters, and two review articles, one in Annual Review of Materials Research; and one in MRS Bulletin. Two postdocs and three graduate students have worked on the project. Two of them have become postdoc at Sandia National Laboratory and Los Alamos National Laboratory. One of the postdoc has become a faculty at a University. One patent has been filed.« less
2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.
Deng, Zongnan; Jiang, Hao; Li, Chunzhong
2018-05-01
2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near transferable phenomenological n-body potentials for noble metals
NASA Astrophysics Data System (ADS)
Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David
2017-09-01
We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.
Near transferable phenomenological n-body potentials for noble metals.
Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David
2017-09-06
We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.
Hoffman, Melvin G.; Janneck, Frank W.
1982-01-01
A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.
Stacking the Cosmic Web in fluorescent Ly α emission with MUSE
NASA Astrophysics Data System (ADS)
Gallego, Sofia G.; Cantalupo, Sebastiano; Lilly, Simon; Marino, Raffaella Anna; Pezzulli, Gabriele; Schaye, Joop; Wisotzki, Lutz; Bacon, Roland; Inami, Hanae; Akhlaghi, Mohammad; Tacchella, Sandro; Richard, Johan; Bouche, Nicolas F.; Steinmetz, Matthias; Carollo, Marcella
2018-04-01
Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Ly α emission with a surface brightness (SB) that is well below current limits for individual detections. Here, we perform a stacking analysis of the deepest MUSE/VLT data using three-dimensional regions (subcubes) with orientations determined by the position of neighbouring Ly α galaxies at 3 < z < 4. Our method increase the probability of detecting filamentary Ly α emission, provided that these structures are Lyman-limit systems (LLSs). By stacking 390 oriented subcubes we reach a 2σ sensitivity level of SB ≈ 0.44 × 10-20 erg s-1 cm-2 arcsec-2 in an aperture of 1 arcsec2 × 6.25 Å, three times below the expected fluorescent Ly α signal from the Haardt & Madau UVB at z ˜ 3.5. No detectable emission is found on intergalactic scales, implying that at least two thirds of our subcubes do not contain oriented LLSs. On the other hand, significant emission is detected in the circumgalactic medium (CGM) in the direction of the neighbours. The signal is stronger for galaxies with a larger number of neighbours and appears to be independent of any other galaxy properties. We estimate that preferentially oriented satellite galaxies cannot contribute significantly to this signal, suggesting instead that gas densities in the CGM are typically larger in the direction of neighbouring galaxies on cosmological scales.
A metallic interconnect for a solid oxide fuel cell stack
NASA Astrophysics Data System (ADS)
England, Diane Mildred
A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale formed on DME-A2 at 800°C exhibited extremely high electrical conductivity with respect to the commercially available alloys studied. This new alloy shows great promise for use as an interconnect material for a planar SOFC stack operating at intermediate temperatures.
USDA-ARS?s Scientific Manuscript database
A cotton ginning industry-supported project was initiated in 2008 and completed in 2013 to collect additional data for U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) for PM10 and PM2.5. Stack emissions were collected using particle size distributio...
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
An impact analysis of a micro wind system. [windpower for recovering magnesium from stack dust
NASA Technical Reports Server (NTRS)
Zimmer, R. P.; Robinette, S. L.; Mason, R. M.; Schaffer, W. A.
1975-01-01
A process for the recovery of steel mill stack dust has been developed and is being used to recover secondary metals by a small company in Georgia. The process is energy intensive and wind generators were studied as a means of supplying energy for part of the recovery process. Some of the results of this study will be presented.
Direct carbon fuel cell and stack designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorte, Raymond J.; Oh, Tae-Sik
Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
NASA Technical Reports Server (NTRS)
Ricks, Glen A.
1988-01-01
The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.
Development and Application of HVOF Sprayed Spinel Protective Coating for SOFC Interconnects
NASA Astrophysics Data System (ADS)
Thomann, O.; Pihlatie, M.; Rautanen, M.; Himanen, O.; Lagerbom, J.; Mäkinen, M.; Varis, T.; Suhonen, T.; Kiviaho, J.
2013-06-01
Protective coatings are needed for metallic interconnects used in solid oxide fuel cell (SOFC) stacks to prevent excessive high-temperature oxidation and evaporation of chromium species. These phenomena affect the lifetime of the stacks by increasing the area-specific resistance (ASR) and poisoning of the cathode. Protective MnCo2O4 and MnCo1.8Fe0.2O4 coatings were applied on ferritic steel interconnect material (Crofer 22 APU) by high velocity oxy fuel spraying. The substrate-coating systems were tested in long-term exposure tests to investigate their high-temperature oxidation behavior. Additionally, the ASRs were measured at 700 °C for 1000 h. Finally, a real coated interconnect was used in a SOFC single-cell stack for 6000 h. Post-mortem analysis was carried out with scanning electron microscopy. The deposited coatings reduced significantly the oxidation of the metal, exhibited low and stable ASR and reduced effectively the migration of chromium.
NASA Astrophysics Data System (ADS)
Ehrlich, C.; Noll, G.; Wusterhausen, E.; Kalkoff, W.-D.; Remus, R.; Lehmann, C.
2013-04-01
Numerous research articles dealing with Respirable Crystalline Silica (RCS) in occupational health because epidemiological studies reveal an association between RCS-dust and the development of silicosis as well as an increased probability of developing lung cancer. Research activities about RCS in ambient air are known from US-measurements. However there is a lack of knowledge regarding RCS-emissions in several industrial sectors. Industrial sources of crystalline silica include construction, foundries, glass manufacturing, abrasive blasting or any industrial or commercial use of silica sand, and mining and rock crushing operations. This paper describes a RCS-emission measurement method for stack gases and report results from the German RCS-emission measurement programmes which were used to identify installations and types of industries with the highest concentration levels of RCS in stack gases. A two-stage cascade impactor was used for the measurements which separate particles into the following size fractions: >10 μm, 10-4 μm und <4 μm of aerodynamic diameter. The measurements were carried out according to international sampling standards. The size of crystalline silica particles of most concern are those respirable particles that are smaller than four microns (millionths of a metre), also called particulate matter 4 (PM4). The analytical procedure of determining crystalline silica in emission samples (in the fraction below 4 μm) consists of using x-ray diffraction and infrared spectroscopy methods which are the same methods as used in the field of occupational health. A total of 37 emission measurement campaigns were assessed (112 RCS-samples in nine industrial sectors). The investigated plants are located in different German states such as Bavaria, North Rhine Westphalia, Baden-Wuerttemberg, Rhineland-Palatinate and Saxony-Anhalt. The results of the measurements show that most of the investigated plants can achieve compliance with the newly developed German emission limit value (ELV) of 1 mg m-3. The ELV is expressed as the concentration of RCS in stack emissions. According to the German emission minimising principle and the precautionary principle it is assumed that by complying with the RCS-ELV there is no ambient air health risk for people living these plants. In the case of increased total dust concentration in the stack gas (more than 20 mg m-3) combined with increased percentage of crystalline silica in PM4 dust, a violation of the above mentioned ELV is more likely. This applies mostly to installations in the silica sand processing industry. To comply with the ELV of 1 mg m-3, efficient emission control technology should be implemented and should be well maintained.
Reducing fugitive emissions of hazardous air pollutants from industrial facilities is an ongoing priority for the U.S. Environmental Protection Agency (EPA). Unlike stack emissions, fugitive releases are difficult to detect due to their spatial extent and inherent temporal variab...
PBF (PER620) north facade. Camera facing south. Small metal shed ...
PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
Systems and Methods for Providing Insulation
NASA Technical Reports Server (NTRS)
Golden, Johnny L. (Inventor)
2015-01-01
Systems and methods provide a multi-layer insulation (MLI) that includes a plurality of sealed metalized volumes in a stacked arrangement, wherein the plurality of sealed metalized volumes encapsulate a gas therein, with the gas having one of a thermal insulating property, an acoustic insulating property, or a combination insulating property thereof. The MLI also includes at least one spacer between adjacent sealed metalized volumes of the plurality of sealed metalized volumes and a protective cover surrounding the plurality of sealed metalized volumes.
A supramolecular approach to fabricate highly emissive smart materials
Liu, Kai; Yao, Yuxing; Kang, Yuetong; Liu, Yu; Han, Yuchun; Wang, Yilin; Li, Zhibo; Zhang, Xi
2013-01-01
The aromatic chromophores, for example, perylene diimides (PDIs) are well known for their desirable absorption and emission properties. However, their stacking nature hinders the exploitation of these properties and further applications. To fabricate emissive aggregates or solid-state materials, it has been common practice to decrease the degree of stacking of PDIs by incorporating substituents into the parent aromatic ring. However, such practice often involves difficultorganic synthesis with multiple steps. A supramolecular approach is established here to fabricate highly fluorescent and responsive soft materials, which has greatly decreases the number of required synthetic steps and also allows for a system with switchable photophysical properties. The highly fluorescent smart material exhibits great adaptivity and can be used as a supramolecular sensor for the rapid detection of spermine with high sensitivity and selectivity, which is crucial for the early diagnosis of malignant tumors. PMID:23917964
Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity▿
Caughey, Winslow S.; Priola, Suzette A.; Kocisko, David A.; Raymond, Lynne D.; Ward, Anne; Caughey, Byron
2007-01-01
Cyclic tetrapyrroles are among the most potent compounds with activity against transmissible spongiform encephalopathies (TSEs; or prion diseases). Here the effects of differential sulfonation and metal binding to cyclic tetrapyrroles were investigated. Their potencies in inhibiting disease-associated protease-resistant prion protein were compared in several types of TSE-infected cell cultures. In addition, prophylactic antiscrapie activities were determined in scrapie-infected mice. The activity of phthalocyanine was relatively insensitive to the number of peripheral sulfonate groups but varied with the type of metal bound at the center of the molecule. The tendency of the various phthalocyanine sulfonates to oligomerize (i.e., stack) correlated with anti-TSE activity. Notably, aluminum(III) phthalocyanine tetrasulfonate was both the poorest anti-TSE compound and the least prone to oligomerization in aqueous media. Similar comparisons of iron- and manganese-bound porphyrin sulfonates confirmed that stacking ability correlates with anti-TSE activity among cyclic tetrapyrroles. PMID:17709470
Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.
Ibbotson, Lindsey A; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J
2015-02-09
Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges.
Evaluating emissions of HCHO, HONO, NO2, and SO2 from point sources using portable Imaging DOAS
NASA Astrophysics Data System (ADS)
Pikelnaya, O.; Tsai, C.; Herndon, S. C.; Wood, E. C.; Fu, D.; Lefer, B. L.; Flynn, J. H.; Stutz, J.
2011-12-01
Our ability to quantitatively describe urban air pollution to a large extent depends on an accurate understanding of anthropogenic emissions. In areas with a high density of individual point sources of pollution, such as petrochemical facilities with multiple flares or regions with active commercial ship traffic, this is particularly challenging as access to facilities and ships is often restricted. Direct formaldehyde emissions from flares may play an important role for ozone chemistry, acting as an initial radical precursor and enhancing the degradation of co-emitted hydrocarbons. HONO is also recognized as an important OH source throughout the day. However, very little is known about direct HCHO and HONO emissions. Imaging Differential Optical Absorption Spectroscopy (I-DOAS), a relatively new remote sensing technique, provides an opportunity to investigate emissions from these sources from a distance, making this technique attractive for fence-line monitoring. In this presentation, we will describe I-DOAS measurements during the FLAIR campaign in the spring/summer of 2009. We performed measurements outside of various industrial facilities in the larger Houston area as well as in the Houston Ship Channel to visualize and quantify the emissions of HCHO, NO2, HONO, and SO2 from flares of petrochemical facilities and ship smoke stacks. We will present the column density images of pollutant plumes as well as fluxes from individual flares calculated from I-DOAS observations. Fluxes from individual flares and smoke stacks determined from the I-DOAS measurements vary widely in time and by the emission sources. We will also present HONO/NOx ratios in ship smoke stacks derived from the combination of I-DOAS and in-situ measurements, and discuss other trace gas ratios in plumes derived from the I-DOAS observations. Finally, we will show images of HCHO, NO2 and SO2 plumes from control burn forest fires observed in November of 2009 at Vandenberg Air Force Base, Santa Maria, CA.
Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials.
Tahersima, Mohammad H; Sorger, Volker J
2015-08-28
Recent investigations of semiconducting two-dimensional (2D) transition metal dichalcogenides have provided evidence for strong light absorption relative to its thickness attributed to high density of states. Stacking a combination of metallic, insulating, and semiconducting 2D materials enables functional devices with atomic thicknesses. While photovoltaic cells based on 2D materials have been demonstrated, the reported absorption is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we show that taking advantage of the mechanical flexibility of 2D materials by rolling a molybdenum disulfide (MoS(2))/graphene (Gr)/hexagonal boron nitride stack to a spiral solar cell allows for optical absorption up to 90%. The optical absorption of a 1 μm long hetero-material spiral cell consisting of the aforementioned hetero stack is about 50% stronger compared to a planar MoS(2) cell of the same thickness; although the volumetric absorbing material ratio is only 6%. A core-shell structure exhibits enhanced absorption and pronounced absorption peaks with respect to a spiral structure without metallic contacts. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.
The Relation between [O III]/Hβ and Specific Star Formation Rate in Galaxies at z ˜ 2
NASA Astrophysics Data System (ADS)
Dickey, Claire Mackay; van Dokkum, Pieter G.; Oesch, Pascal A.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel; Brammer, Gabriel B.; Franx, Marijn; Skelton, Rosalind E.
2016-09-01
Recent surveys have identified a seemingly ubiquitous population of galaxies with elevated [O III]/Hβ emission line ratios at z > 1, although the nature of this phenomenon continues to be debated. The [O III]/Hβ line ratio is of interest because it is a main component of the standard diagnostic tools used to differentiate between active galactic nuclei and star-forming galaxies as well as the gas-phase metallicity indicators O 23 and R 23. Here, we investigate the primary driver of increased [O III]/Hβ ratios by median-stacking rest-frame optical spectra for a sample of star-forming galaxies in the 3D-HST survey in the redshift range z ˜ 1.4-2.2. Using N = 4220 star-forming galaxies, we stack the data in bins of mass and specific star formation rates (sSFRs), respectively. After accounting for stellar Balmer absorption, we measure [O III]λ5007 Å/Hβ down to M ˜ 109.2 M ⊙ and sSFR ˜ 10-9.6 yr-1, greater than an order of magnitude lower than previous work at similar redshifts. We find an offset of 0.59 ± 0.05 dex between the median ratios at z ˜ 2 and z ˜ 0 at fixed stellar mass, in agreement with existing studies. However, with respect to sSFR, the z ˜ 2 stacks all lie within 1σ of the median SDSS ratios, with an average offset of only -0.06 ± 0.05. We find that the excitation properties of galaxies are tightly correlated with their sSFR at both z ˜ 2 and z ˜ 0, with a relation that appears to be roughly constant over the last 10 Gyr of cosmic time.
40 CFR 75.57 - General recordkeeping provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...
40 CFR 75.57 - General recordkeeping provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...
40 CFR 75.57 - General recordkeeping provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...
40 CFR 75.57 - General recordkeeping provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... stack gas (percent H2O, rounded to the nearest tenth). If the continuous moisture monitoring system... record daily the following information for CO2 mass emissions: (i) Date; (ii) Daily combustion-formed CO2... whether optional procedure to adjust combustion-formed CO2 mass emissions for carbon retained in flyash...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emissions from a combustion source stack must not exceed an average of 500 parts per million by volume, on a..., air pollution source, ambient air, British thermal unit (Btu), coal, combustion source, continuous..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning...
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions from a combustion source stack must not exceed an average of 500 parts per million by volume, on a..., air pollution source, ambient air, British thermal unit (Btu), coal, combustion source, continuous..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...
NASA Astrophysics Data System (ADS)
Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud
2017-12-01
We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.
NASA Technical Reports Server (NTRS)
Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.
Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng
2014-01-01
This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.
Hu, Jicheng; Zheng, Minghui; Nie, Zhiqiang; Liu, Wenbin; Liu, Guorui; Zhang, Bing; Xiao, Ke
2013-01-01
Secondary copper production has received much attention for its high emissions of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) reported in previous studies. These studies focused on the estimation of total PCDD/F and polychlorinated biphenyl (PCB) emissions from secondary copper smelters. However, large variations in PCDD/F and PCB emissions reported in these studies were not analyzed and discussed further. In this study, stack gas samples at different smelting stages (feeding-fusion, oxidation and deoxidization) were collected from four plants to investigate variations in PCDD/F and PCB emissions and characteristics during the secondary copper smelting process. The results indicate that PCDD/F emissions occur mainly at the feeding-fusion stage and these emissions contribute to 54-88% of the total emissions from the secondary copper smelting process. The variation in feed material and operating conditions at different smelting stages leads to the variation in PCDD/F emissions during the secondary copper smelting process. The total PCDD/F and PCB discharge (stack gas emission+fly ash discharge) is consistent with the copper scrap content in the raw material in the secondary copper smelters investigated. On a production basis of 1 ton copper, the total PCDD/F and dl-PCB discharge was 102, 24.8 and 5.88 μg TEQ t(-1) for the three plants that contained 100%, 30% and 0% copper scrap in their raw material feed, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohrasbi, J.
Dose calculations for atmospheric radionuclide releases from the Hanford Site for calendar year (CY) 1992 were performed by Pacific Northwest Laboratory (PNL) using the approved US Environmental Protection Agency (EPA) CAP-88 computer model. Emissions from discharge points in the Hanford Site 100, 200, 300, 400, and 600 areas were calculated based on results of analyses of continuous and periodic sampling conducted at the discharge points. These calculated emissions were provided for inclusion in the CAP-88 model by area and by individual facility for those facilities having the potential to contribute more than 10 percent of the Hanford Site total ormore » to result in an impact of greater than 0.1 mrem per year to the maximally exposed individual (MEI). Also included in the assessment of offsite dose modeling are the measured radioactive emissions from all Hanford Site stacks that have routine monitoring performed. Record sampling systems have been installed on all stacks and vents that use exhaust fans to discharge air that potentially may carry airborne radioactivity. Estimation of activity from ingrowth of long-lived radioactive progeny is not included in the CAP-88 model; therefore, the Hanford Site GENII code (Napier et al. 1988) was used to supplement the CAP-88 dose calculations. When the dose to the MEI located in the Ringold area was calculated, the effective dose equivalent (EDE) from combined Hanford Site radioactive airborne emissions was shown to be 3.7E-03 mrem. This value was reported in the annual air emission report prepared for the Hanford Site (RL 1993).« less
NASA Astrophysics Data System (ADS)
Mininni, Giuseppe; Sbrilli, Andrea; Maria Braguglia, Camilla; Guerriero, Ettore; Marani, Dario; Rotatori, Mauro
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200-350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm -3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t -1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41-3700 μg ITEQ t -1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91-414 μg kg -1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018-0.5 μg Nm -3) were below the Italian limit of 10 μg Nm -3.
Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.
Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin
2012-12-14
GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.
Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida
NASA Astrophysics Data System (ADS)
1981-05-01
This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.
Khan, Z. N.; Ahmed, S.; Ali, M.
2016-01-01
Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.
Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants
NASA Astrophysics Data System (ADS)
Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.
2017-12-01
Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the ratio of CH4 to CO2 in stack based emissions as it relates to our calculated emission rates and as compared to the same ratio for the emission factors.
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Fadzlinatul, M. Y.; Salifairus, M. J.; Asli, N. A.
2018-05-01
Palm oil has been used as the carbon source to synthesize carbon nanotubes (CNTs) on silicon substrates using the thermal chemical vapor deposition (CVD) method. Meanwhile, silicon has been applied using two techniques, which are stacked technique and non-stacked technique. The CNTs were grown at the constant time of 30 minutes with various synthesis temperatures of 750 °C, 850 °C and 950 °C. The CNTs were characterized using micro-Raman spectroscopy and field emission scanning electron microscopy (FESEM). It was found that the density, growth rate, diameter and length of the CNTs produced were affected by the synthesis temperature. Moreover, the structure slightly changes were observed between CNTs obtained in SS and NSS. The synthesize temperature of 750 °C was considered as the suitable temperature for the production of CNTs due to low ID/IG ratio, which for stacked is 0.89 and non-stacked are 0.90. The possible explanation for the different morphology of the produced CNTs was also discussed.
Stacking fault related luminescence in GaN nanorods.
Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G
2015-09-04
Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.
Characterisation of traffic-generated particulate matter in Copenhagen
NASA Astrophysics Data System (ADS)
Wåhlin, Peter; Berkowicz, Ruwim; Palmgren, Finn
Fine and coarse fraction PM was simultaneously sampled with Dichotomous Stacked Filter Units at a road site and at an urban background site during both summer and winter periods. The collected mass was determined gravimetrically, and the contents of 26 elements were measured by Proton-Induced X-ray Emission (PIXE). NO x was monitored continuously at both sites. The road increments (road concentrations minus urban background concentrations) of PIXE elements, PM and NO x were analysed using the Constrained Physical Receptor Model (COPREM). Good agreement between the measured data and the model was achieved in both size fractions using four well-separated source profiles representing the emissions from exhaust, road/tyres, brakes and road salt. The analysis showed that the particles created by brake abrasion have aerodynamic diameters in the inhalable size range around 2.8 μm. This particle diameter is common mass median for a long list of heavy metals that are apportioned to the brakes source: Cr, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba and Pb. Other significant contributions of Al, Si, K, Ca, Ti, Mn, Fe, Zn and Sr, mostly in the coarse particle fraction, are apportioned to the road/tyres source.
RADIO DETECTION OF GREEN PEAS: IMPLICATIONS FOR MAGNETIC FIELDS IN YOUNG GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborti, Sayan; Yadav, Naveen; Ray, Alak
Green Peas are a new class of young, emission line galaxies that were discovered by citizen volunteers in the Galaxy Zoo project. Their low stellar mass, low metallicity, and very high star formation rates make Green Peas the nearby (z {approx} 0.2) analogs of the Lyman break galaxies which account for the bulk of the star formation in the early universe (z {approx} 2-5). They thus provide accessible laboratories in the nearby universe for understanding star formation, supernova feedback, particle acceleration, and magnetic field amplification in early galaxies. We report the first direct radio detection of Green Peas with lowmore » frequency Giant Metrewave Radio Telescope observations and our stacking detection with archival Very Large Array FIRST data. We show that the radio emission implies that these extremely young galaxies already have magnetic fields ({approx}> 30 {mu}G) even larger than that of the Milky Way. This is at odds with the present understanding of magnetic field growth based on amplification of seed fields by dynamo action over a galaxy's lifetime. Our observations strongly favor models with pregalactic magnetic fields at {mu}G levels.« less
X-ray position detector and implementation in a mirror pointing servo system
Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.
2016-04-05
An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.
Fabrication and Characterization of Thermite Reactive Nano-Laminates
NASA Astrophysics Data System (ADS)
Lee, Evyn; Maria, Jon-Paul; Matveev, Sergey; Dlott, Dana; Rost, Christina; Hopkins, Patrick
2017-06-01
Results of fabrication and characterization of thermite reactive nano-laminates (RNLs) via magnetron sputtering will be presented. The samples were created in a bilayer geometry of a metal and metal oxide at varied thicknesses to alter the amount of interfacial area readily available to participate in the reaction. Two systems were investigated to characterize the RNL system: Al/CuO and Zr/CuO. The Al/CuO system was fabricated at a constant overall stack thickness of nearly one micron with varied numbers of bilayers (one to seven). Thermal conductivity and interface conductance of the Al/CuO system were investigated via time-domain thermoreflectance (TDTR). The Zr/CuO system was also fabricated at varying bilayer thickness and was characterized via high throughput shock studies to characterize the oxygen transfer process at short time scales. Emissions were obtained via a flyer plate impact at velocities ranging 0.5- 2 km s-1 at durations of 4-16 ns. The reaction impact threshold was found to be at velocities lower than 0.7(+/-0.05) km s-1. At impact velocities above the threshold, the reaction onset is seen at approximately 1 μs. ARO MURI: Multimodal energy flow at atomically engineered interfaces.
Description of Latvian Metal Production and Processing Enterprises' Air Emissions
NASA Astrophysics Data System (ADS)
Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija
2010-01-01
The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.
40 CFR 60.1400 - What must I include in my initial report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... parameters (use appropriate units as specified in table 2 of this subpart): (1) Dioxins/furans. (2) Cadmium... stack test for dioxins/furans emissions and include supporting calculations. (f) If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, the average carbon feed...
40 CFR 60.1305 - May I conduct stack testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
...: dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, hydrogen chloride, and fugitive ash. (b) You can test less often for dioxins/furans emissions if you own or operate a municipal waste... levels of dioxins/furans emissions less than or equal to 7 nanograms per dry standard cubic meter (total...
Battery condenser system PM2.5 emission factors and rates for cotton gins
USDA-ARS?s Scientific Manuscript database
This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....
Trusted Fabrication through 3D Integration
2017-03-01
contiguous and thus identifiable. The concept of a “smart partitioner” is introduced for a second experiment. Keywords: Trusted Fab ; VLSI; 3DIC...to the fabrication facility. One solution is the split- fab concept in which the design is split into two separate fabs early in the metal stack, and...possible solution is proposed herein whereby a three chip stack is formed, two built in normal semiconductor fabs and one in an interposer fab . This
The concentrations and distribution of Hazardous Air Pollutants (HAPs) metals emitted from four phosphate fertilizer plants in Central Florida, as well as their environmental and health impacts, were assessed. The dominant HAP metals emitted from the stacks of these plants were M...
Patterned helical metallic ribbon for continuous edge winding applications
Liebermann, Howard H.; Frischmann, Peter G.; Rosenberry, Jr., George M.
1983-04-19
Metallic ribbon having cutout patterns therein is provided in continuous helical form. The cutout patterns may be situated to intersect either or both of the ribbon edges or may be situated entirely within the ribbon. The helical ribbon with the cutout patterns may additionally have a nesting, or self-stacking, feature.
Li, Jiafu; Lv, Zhiwei; Du, Lei; Li, Xiaonan; Hu, Xuepeng; Wang, Chong; Niu, Zhiguang; Zhang, Ying
2017-02-01
Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from 12 medical waste incinerators (MWIs) which have a total yearly capacity of 523 440 ton medical waste and accounted for 8.1% of total yearly capacity of 246 MWIs in China were studied. The congeners profile, emissions and toxic equivalent concentrations (TEQ) indicators of PCDD/Fs in stack gas from two groups of MWIs were researched, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed. The results of present study were summarized as follows. (1) The total concentrations and TEQ of PCDD/Fs in stack gas from MWIs were 0.516-122.803 ng Nm -3 and 0.031-3.463 ng I-TEQ Nm -3 , respectively. (2) 1,2,3,4,6,7,8-H7CDF, O8CDD, O8CDF and 1,2,3,4,6,7,8-H7CDD were the indicatory PCDD/Fs of MWI source, which could be used to apportion the sources of PCDD/Fs in environmental medium in China. (3) The emission factors of PCDD/Fs from MWIs ranged from 32.7 to 4900.0 ng I-TEQ ton -1 with a mean of 1923.6 ng I-TEQ ton -1 . (4) The gas emissions of PCDD/Fs from researched 12 MWIs and all of MWIs in China in 2016 were 37.742 and 465.951 mg I-TEQ year -1 , respectively. (5) 1,2,3,7,8,9-H6CDF and 1,2,3,4,7,8-H6CDF were effective TEQ indicators for the real-time monitoring of the PCDD/Fs emission. (6) The congeners profile and factor composition of PCDD/Fs in stack gas from two groups of MWIs were researched based on positive matrix factorization (PMF) model, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
Detectability of cold streams into high-redshift galaxies by absorption lines
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel
2012-08-01
Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.
NASA Astrophysics Data System (ADS)
Eldridge, John J.; Stanway, Elizabeth R.
2012-01-01
Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.
EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.
2013-09-10
Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} comparedmore » to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.« less
Lessons learned in preparing method 29 filters for compliance testing audits.
Martz, R F; McCartney, J E; Bursey, J T; Riley, C E
2000-01-01
Companies conducting compliance testing are required to analyze audit samples at the time they collect and analyze the stack samples if audit samples are available. Eastern Research Group (ERG) provides technical support to the EPA's Emission Measurements Center's Stationary Source Audit Program (SSAP) for developing, preparing, and distributing performance evaluation samples and audit materials. These audit samples are requested via the regulatory Agency and include spiked audit materials for EPA Method 29-Metals Emissions from Stationary Sources, as well as other methods. To provide appropriate audit materials to federal, state, tribal, and local governments, as well as agencies performing environmental activities and conducting emission compliance tests, ERG has recently performed testing of blank filter materials and preparation of spiked filters for EPA Method 29. For sampling stationary sources using an EPA Method 29 sampling train, the use of filters without organic binders containing less than 1.3 microg/in.2 of each of the metals to be measured is required. Risk Assessment testing imposes even stricter requirements for clean filter background levels. Three vendor sources of quartz fiber filters were evaluated for background contamination to ensure that audit samples would be prepared using filters with the lowest metal background levels. A procedure was developed to test new filters, and a cleaning procedure was evaluated to see if a greater level of cleanliness could be achieved using an acid rinse with new filters. Background levels for filters supplied by different vendors and within lots of filters from the same vendor showed a wide variation, confirmed through contact with several analytical laboratories that frequently perform EPA Method 29 analyses. It has been necessary to repeat more than one compliance test because of suspect metals background contamination levels. An acid cleaning step produced improvement in contamination level, but the difference was not significant for most of the Method 29 target metals. As a result of our studies, we conclude: Filters for Method 29 testing should be purchased in lots as large as possible. Testing firms should pre-screen new boxes and/or new lots of filters used for Method 29 testing. Random analysis of three filters (top, middle, bottom of the box) from a new box of vendor filters before allowing them to be used in field tests is a prudent approach. A box of filters from a given vendor should be screened, and filters from this screened box should be used both for testing and as field blanks in each test scenario to provide the level of quality assurance required for stationary source testing.
Suzuki segregation in a binary Cu-Si alloy.
Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E
2004-01-01
Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.
NASA Astrophysics Data System (ADS)
Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.
2017-08-01
The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.
Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate
NASA Technical Reports Server (NTRS)
Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)
2009-01-01
A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Guyader, L.; Chase, T.; Reid, A. H.
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Pang, Chin-Sheng; Hwu, Jenn-Gwo
2014-01-01
Improvement in the time-zero dielectric breakdown (TZDB) endurance of metal-oxide-semiconductor (MOS) capacitor with stacking structure of Al/HfO2/SiO2/Si is demonstrated in this work. The misalignment of the conduction paths between two stacking layers is believed to be effective to increase the breakdown field of the devices. Meanwhile, the resistance of the dielectric after breakdown for device with stacking structure would be less than that of without stacking structure due to a higher breakdown field and larger breakdown power. In addition, the role of interfacial layer (IL) in the control of the interface trap density (D it) and device reliability is also analyzed. Device with a thicker IL introduces a higher breakdown field and also a lower D it. High-resolution transmission electron microscopy (HRTEM) of the samples with different IL thicknesses is provided to confirm that IL is needed for good interfacial property.
Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...
2015-05-12
In this study, stacked monolayers of two-dimensional (2D) materials present a new class of hybrid materials with tunable optoelectronic properties determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) and electron energy loss spectroscopy (EELS) can be used to determine the exact atomic registration between different layers, in few-layer 2D stacks, however fast optical characterization techniques are essential for rapid development of the field. Here, using two- and three-layer MoSe 2 and WSe 2 crystals synthesized by chemical vapor deposition we show that the generally unexplored low frequency (LF) Raman modes (< 50more » cm -1) that originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations. Ab initio calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries.« less
Le Guyader, L; Chase, T; Reid, A H; Li, R K; Svetin, D; Shen, X; Vecchione, T; Wang, X J; Mihailovic, D; Dürr, H A
2017-07-01
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T -TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound.
Le Guyader, L.; Chase, T.; Reid, A. H.; ...
2017-05-03
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.
Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia
2017-04-26
Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
NASA Astrophysics Data System (ADS)
Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.
2017-11-01
The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.
Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang
A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.
Leclerc, Denys; Duo, Wen Li; Vessey, Michelle
2006-04-01
This paper discusses the effects of combustion conditions on PCDD/PCDF emissions from pulp and paper power boilers burning salt-laden wood waste. We found no correlation between PCDD/PCDF emissions and carbon monoxide emissions. A good correlation was, however, observed between PCDD/PCDF emissions and the concentration of stack polynuclear aromatic hydrocarbons (PAHs) in the absence of TDF addition. Thus, poor combustion conditions responsible for the formation of products of incomplete combustion (PICs), such as PAHs and PCDD/PCDF precursors, increase PCDD/PCDF emissions. PAH concentrations increased with higher boiler load and/or low oxygen concentrations at the boiler exit, probably because of lower available residence times and insufficient excess air. Our findings are consistent with the current understanding that high ash carbon content generally favours heterogeneous reactions leading to either de novo synthesis of PCDD/PCDFs or their direct formation from precursors. We also found that, in grate-fired boilers, a linear increase in the grate/lower furnace temperature produces an exponential decrease in PCDD/PCDF emissions. Although the extent of this effect appears to be mill-specific, particularly at low temperatures, the results indicate that increasing the combustion temperature may decrease PCDD/PCDF emissions. It must be noted, however, that there are other variables, such as elevated ESP and stack temperatures, a high hog salt content, the presence of large amounts of PICs and a high Cl/S ratio, which contribute to higher PCDD/PCDFs emissions. Therefore, higher combustion temperatures, by themselves, will not necessarily result in low PCDD/PCDFs emissions.
Aerosol composition and source apportionment in Santiago de Chile
NASA Astrophysics Data System (ADS)
Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto
1999-04-01
Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp<2 μm) and coarse mode aerosol (2
New theory for Mode I crack-tip dislocation emission
NASA Astrophysics Data System (ADS)
Andric, Predrag; Curtin, W. A.
2017-09-01
A material is intrinsically ductile under Mode I loading when the critical stress intensity KIe for dislocation emission is lower than the critical stress intensity KIc for cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a dependence on the elastic constants and the unstable stacking fault energy γusf for slip along the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc metals show that KIe is systematically larger (10-30%) than predicted. However, the critical (crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I emission is accompanied by the formation of a surface step that is not considered in the Rice theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress resisting step formation at the crack tip creates "lattice trapping" against dislocation emission such that (ii) emission is due to a mechanical instability at the crack tip. The new theory is formulated using a Peierls-type model, naturally includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is small. The new theory predicts a higher KIe at a smaller critical shear displacement, rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for the simulated materials, usually requiring use of the measured critical crack tip shear displacement due to complex material non-linearity, show very good agreement with simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice theory, and is used to understand differences between Rice theory and simulation in recent literature. The new theory highlights the role of surface steps created by dislocation emission in Mode I, which has implications not only for intrinsic ductility but also for crack tip twinning and fracture due to chemical interactions at the crack tip.
Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn
2012-01-01
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in...
Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations
NASA Astrophysics Data System (ADS)
Walker, S. A.; Fabian, A. C.; Kosec, P.
2014-12-01
We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.
Quiet Supersonic Platform (QSP) Materials and Structures Focus Group Meeting, 26 June 2001
2001-07-01
variety of size scales. Woven metal microtubes offer efficient heat -transfer capability. An inexpensive approach to creating lattice structures uses...because of their light weight and as heat exchangers , by using a metal with high thermal conductivity to draw heat into the lattice, where it can...tubes woven into metal sheets, which are then stacked, sprayed with a transient liquid-phase sintering/bonding agent, and heated . The result is a
NASA Astrophysics Data System (ADS)
Koshelev, Alexei
2013-03-01
Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.
Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang
2017-08-30
Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.
NASA Astrophysics Data System (ADS)
Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom
2013-04-01
The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity ratios showed distinct differences between the closed CANDU primary coolant system and radiopharmaceutical production releases. According to the concept proposed by Kalinowski and Pistner (2006), the relationship between different isotopic activity ratios based on three or four radioxenon isotopes was plotted in a log-log diagram for source characterisation (civil vs. nuclear test). The multiple isotopic activity ratios were distributed in three distinct areas: HC atmospheric monitoring ratios extended to far left; the CANDU primary coolant system ratios lay in the middle; and 99Mo stack monitoring ratios for ANSTO and CRL were located on the right. The closed CANDU primary coolant has the lowest logarithmic mean ratio that represents the nuclear power reactor operation. The HC atmospheric monitoring exhibited a broad range of ratios spreading over several orders of magnitude. In contrast, the ANSTO and CRL stack emissions showed the smallest range of ratios but the results indicate at least two processes involved in the 99Mo productions. Overall, most measurements were found to be shifted towards the reactor domain. The hypothesis is that this is due to an accumulation of the isotope 131mXe in the stack or atmospheric background as it has the longest half-life and extra 131mXe emissions from the decay of 131I. The contribution of older 131mXe to a fresh release shifts the ratio of 133mXe/131mXe to the left. It was also very interesting to note that there were some situations where isotopic ratios from 99Mo production emissions fell within the nuclear test domain. This is due to operational variability, such as shorter target irradiation times. Martin B. Kalinowski and Christoph Pistner, (2006), Isotopic signature of atmospheric xenon released from light water reactors, Journal of Environmental Radioactivity, 88, 215-235.
Design and operation of interconnectors for solid oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Winkler, W.; Koeppen, J.
Highly efficient combined cycles with solid oxide fuel cell (SOFC) need an integrated heat exchanger in the stack to reach efficiencies of about 80%. The stack costs must be lower than 1000 DM/kW. A newly developed welded metallic (Haynes HA 230) interconnector with a free stretching planar SOFC and an integrated heat exchanger was tested in thermal cycling operation. The design allowed a cycling of the SOFC without mechanical damage of the electrolyte in several tests. However, more tests and a further design optimization will be necessary. These results could indicate that commercial high-temperature alloys can be used as interconnector material in order to fullfil the cost requirements.
2000W high beam quality diode laser for direct materials processing
NASA Astrophysics Data System (ADS)
Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong
2011-11-01
This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.
1990-01-01
Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...
40 CFR 98.172 - GHGs to report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion units include, but are not limited to, by-product recovery coke oven battery combustion stacks... except you must use the default CO2 emission factors for coke oven gas and blast furnace gas from Table C... flares according to the requirements in § 98.33(c)(2) using the emission factors for coke oven gas and...
Particulate Matter Stack Emission Compliance Test Procedure for Fuel Burning Units.
ERIC Educational Resources Information Center
West Virginia Air Pollution Control Commission, Charleston.
This publication details the particulate matter emissions test procedure that is applicable for conducting compliance tests for fuel burning units required to be tested under Sub-section 7 of Regulation II (1972) as established by the state of West Virginia Air Pollution Control Commission. The testing procedure is divided into five parts:…
Potential applications of electron emission membranes in medicine
NASA Astrophysics Data System (ADS)
Bilevych, Yevgen; Brunner, Stefan E.; Chan, Hong Wah; Charbon, Edoardo; van der Graaf, Harry; Hagen, Cornelis W.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Rotman, Daan; Santagata, Fabio; Sarro, Lina; Schaart, Dennis R.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.
2016-02-01
With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.
Experiments were conducted in a 73kW (250,000 Btu/hr) rotary kiln incinerator simulator to examine and characterize emissions from incineration of scrap tire material. The purposes of this project are to: (1) generate a profile of target analytes for full-scale stack sampling eff...
40 CFR 60.1425 - What must I include in the semiannual out-of-compliance reports?
Code of Federal Regulations, 2010 CFR
2010-07-01
...)) show emissions above the limits specified in table 1 of this subpart for dioxins/furans, cadmium, lead... units that apply activated carbon to control dioxins/furans or mercury emissions, include two items: (1... mercury and dioxins/furans stack test (as specified in § 60.1370(a)(1)). Include four items: (i) Eight...
USDA-ARS?s Scientific Manuscript database
This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...
Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials
Ibbotson, Lindsey A.; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J.
2015-01-01
Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges. PMID:25660667
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.
Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun
2012-08-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.
NASA Astrophysics Data System (ADS)
Mastropasqua, L.; Campanari, S.; Brouwer, J.
2017-12-01
The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.
Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...
2016-01-14
Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan
Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less
Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.
Hu, Xiaohui; Kou, Liangzhi; Sun, Litao
2016-08-16
The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.
40 CFR 265.377 - Monitoring and inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... steady state or other appropriate thermal treatment conditions must be made immediately either... process flow and level controls. (2) The stack plume (emissions), where present, must be observed visually...
Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit
2014-01-01
The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.
Theoretical analysis of stack gas emission velocity measurement by optical scintillation
NASA Astrophysics Data System (ADS)
Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong
2014-04-01
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Direct and indirect light emissions from layered ReS2-x Se x (0 ≤ x ≤ 2)
NASA Astrophysics Data System (ADS)
Ho, Ching-Hwa; Liu, Zhan-Zhi; Lin, Min-Han
2017-06-01
ReS2 and ReSe2 have recently been enthusiastically studied owing to the specific in-plane electrical, optical and structural anisotropy caused by their distorted one-layer trigonal (1 T) phase, whereas other traditional transition-metal dichalcogenides (TMDCs, e.g. MoS2 and WSe2) have a hexagonal structure. Because of this special property, more and versatile nano-electronics and nano-optoelectronics devices can be developed. In this work, 2D materials in the series ReS2-x Se x (0 ≤ x ≤ 2) have been successfully grown by the method of chemical vapor transport. The direct and indirect resonant emissions of the complete series of layers can be simultaneously detected by polarized micro-photoluminescence (μPL) spectroscopy when the thickness of the ReS2-x Se x is greater than ˜70 nm. When it is less than 70 nm, only three direct excitonic emissions—E 1 ex, E 2 ex and E S ex—are detected. For the thick (bulk) ReS2-x Se x , more stacking of the ReX2 monolayers even flattens and shifts the valence-band maximum from Γ to the other K- or M-related points, thus leading to the coexistence of direct and indirect resonant light emissions from the c-plane ReX2. The transmittance absorption edge of each bulk ReX2 (a few microns thick) usually has a lower energy than those of the direct E 1 ex and E 2 ex excitonic emissions to form indirect absorption. The coexistence of direct and indirect emissions in ReX2 is a unique characteristic of a 2D layered semiconductor possessing triclinic low symmetry.
Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)
NASA Astrophysics Data System (ADS)
Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.
2005-06-01
Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.
Polymer electrolyte fuel cell mini power unit for portable application
NASA Astrophysics Data System (ADS)
Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.
This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.
Liu, Yangsheng; Liu, Yushan
2005-05-15
The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning, process source, reference method, refuse, residual fuel oil, solid fuel, stack, standard conditions...
40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning, process source, reference method, refuse, residual fuel oil, solid fuel, stack, standard conditions...
Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications
NASA Technical Reports Server (NTRS)
Liu, Donhang; Fetter, Lula; Meinhold, Bruce
2015-01-01
A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.
Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas H.; Whealton, John H.; Whitson, John C.; Wilgen, John B.
2002-12-24
Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim; List-Kratochvil, Emil J. W.
2017-02-01
With the invention of phosphorescent emitter material, organic light emitting diodes with internal quantum yields of up to 100% can be realized. Still, the extraction of the light from the OLED stack is a bottleneck, which hampers the availability of OLEDs with large external quantum efficiencies. In this contribution, we highlight the advantages of integrating aluminum nanodisc arrays into the OLED stack. By this, not only the out-coupling of light can be enhanced, but also the emission color can be tailored and controlled. By means of extinction- and fluorescence spectroscopy measurements we are able to show how the sharp features observed in the extinction measurements correlate with a very selective fluorescence enhancement of the organic emitter materials used in these studies. At the same time, localized surface plasmon resonances of the individual nanodiscs further modify the emission spectrum, e.g., by filtering the green emission tail. A combination of these factors leads to a modification of the emission color in between CIE1931 (x,y) chromaticity coordinates of (0.149, 0.225) and (0.152, 0.352). After accounting for the sensitivity of the human eye, we are able to demonstrate that this adjustment of the chromaticity coordinates goes is accompanied by an increase in device efficiency.
PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.
Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong
2017-08-01
Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm -3 and 1.09-3.36 ng I-TEQ Nm -3 , respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mikhelashvili, V.; Ankonina, G.; Kauffmann, Y.; Atiya, G.; Kaplan, W. D.; Padmanabhan, R.; Eisenstein, G.
2017-06-01
This paper describes a metal-insulator-semiconductor (MIS) capacitor with flat capacitance voltage characteristics and a small quadratic voltage capacitance coefficient. The device characteristics resemble a metal-insulator-metal diode except that here the capacitance depends on illumination and exhibits a strong frequency dispersion. The device incorporates Fe nanoparticles (NPs), mixed with SrF2, which are embedded in an insulator stack of SiO2 and HfO2. Positively charged Fe ions induce dipole type traps with an electronic polarization that is enhanced by photogenerated carriers injected from the substrate and/or by inter nanoparticle exchange of carriers. The obtained characteristics are compared with those of five other MIS structures: two based on Fe NPs, one with and the other without SrF2 sublayers. Additionally, devices contain Co NPs embedded in SrF2 sublayers, and finally, two structures have no NPs, with one based on a stack of SiO2 and HfO2 and the other which also includes SrF2. Only structures containing Fe NPs, which are incorporated into SrF2, yield a voltage independent capacitance, the level of which can be changed by illumination. These properties are essential in radio frequency/analog mixed signal applications.
NASA Astrophysics Data System (ADS)
Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik
2014-11-01
Four new metal coordination complexes, namely, [Na(BTA)]n (1), [K2(BTA)2(μ2-H2O)]n (2), and [M(BTA)2(H2O)2]n (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1-4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of {318}. Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of {311×42}. Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1-4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail.
Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen
2013-12-17
We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.
Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Singh, Deobrat; Sonvane, Yogesh; Gajjar, P. N.
2018-03-01
In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are - 3.24, - 2.53 and - 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.