Sample records for stacking dependent disordering

  1. Role of stacking disorder in ice nucleation

    NASA Astrophysics Data System (ADS)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria

    2017-11-01

    The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  2. Role of stacking disorder in ice nucleation.

    PubMed

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  3. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less

  4. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  5. Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

    PubMed Central

    2016-01-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  6. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  7. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  8. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  9. Electronic Asymmetry by Compositionally Braking Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Warusawithana, Maitri

    2005-03-01

    By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.

  10. Non-conventional Anderson localization in a matched quarter stack with metamaterials

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.

    2013-05-01

    We study the problem of non-conventional Anderson localization emerging in bilayer periodic-on-average structures with alternating layers of materials, with positive and negative refraction indices na and nb. Attention is paid to the model of the so-called quarter stack with perfectly matched layers (the same unperturbed by disorder impedances, Za = Zb, and optical path lengths, nada = |nb|db, with da and db being the thicknesses of basic layers). As was recently numerically discovered, in such structures with weak fluctuations of refractive indices (compositional disorder), the localization length Lloc is enormously large in comparison to the conventional localization occurring in the structures with positive refraction indices only. In this paper we develop a new approach, which allows us to derive the expression for Lloc for weak disorder and any wave frequency ω. In the limit ω → 0 one gets a quite specific dependence, L-1loc∝σ4ω8, which is obtained within the fourth order of perturbation theory. We also analyze the interplay between two types of disorder, when in addition to the fluctuations of na and nb, the thicknesses da and db slightly fluctuate as well (positional disorder). We show how conventional localization recovers with the addition of positional disorder.

  11. Extent and relevance of stacking disorder in “ice Ic”

    PubMed Central

    Kuhs, Werner F.; Sippel, Christian; Falenty, Andrzej; Hansen, Thomas C.

    2012-01-01

    A solid water phase commonly known as “cubic ice” or “ice Ic” is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth’s atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences. PMID:23236184

  12. X-ray and neutron total scattering analysis of Hy·(Bi0.2Ca0.55Sr0.25)(Ag0.25Na0.75)Nb3O10·xH2O perovskite nanosheet booklets with stacking disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, Peter; Koch, Robert; Cladek, Bernadette

    Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weightedmore » by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.« less

  13. Vertical melting of a stack of membranes

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  14. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Sitin, A. G.; Gulakova, E. N.

    The crystal and molecular structures of five styrylheterocycles of the quinoline series are studied. All molecules are planar. The double bond in the ethylene fragment is essentially localized. In the molecule of 2-(4-methylstyryl)quinoline, the ethylene fragment is disordered by the bicycle-pedal pattern. In four of the five compounds, the crystal packings do not contain stacking dimers prearranged for the [2+2] photocycloaddition (PCA) reaction. In the crystal of 2-(3-nitrostyryl)quinoline, pairs of crystallographically independent molecules form stacking dimers. In a dimer, the ethylene fragments have a twist orientation, which is incompatible with the PCA reaction. An attempt to initiate a temperature-dependent processmore » of bicyclepedal isomerization in the crystal and, as a consequence, the PCA reaction by means of simultaneous irradiation and heating of a single crystal is unsuccessful.« less

  16. Disordered animal multilayer reflectors and the localization of light

    PubMed Central

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  17. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  18. Breath stacking in children with neuromuscular disorders.

    PubMed

    Jenkins, H M; Stocki, A; Kriellaars, D; Pasterkamp, H

    2014-06-01

    Respiratory muscle weakness in neuromuscular disorders (NMD) can lead to shallow breathing and respiratory insufficiency over time. Children with NMD often cannot perform maneuvers to recruit lung volume. In adults, breath stacking with a mask and one-way valve can achieve significantly increased lung volumes. To evaluate involuntary breath stacking (IBS) in NMD, we studied 23 children of whom 15 were cognitively aware and able to communicate verbally. For IBS, a one-way valve and pneumotachograph were attached to a face mask. Tidal volumes (Vt) and minute ventilation (VE ) were calculated from airflow over 30 sec before and after 15 sec of expiratory valve closure. Six cooperative male subjects with Duchenne muscular dystrophy (DMD) participated in a subsequent comparison of IBS with voluntary breath stacking (VBS) and supported breath stacking (SBS). The average Vt in those studied with IBS was 277 ml (range 29-598 ml). The average increase in volume by stacking was 599 ml (range -140 to 2,916 ml) above Vt . The average number of stacked breaths was 4.5 (range 0-17). VE increased on average by 18% after stacking (P < 0.05, paired t-test). Oxygen saturation did not change after stacking. Four of the 23 children did not breath stack. Compared to IBS, VBS achieved similar volumes in the six subjects with DMD but SBS was more successful in those with greatest muscle weakness. IBS may achieve breath volumes of approximately three times Vt and may be particularly useful in non-cooperative subjects with milder degrees of respiratory muscle weakness. © 2013 Wiley Periodicals, Inc.

  19. Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.

    2013-06-01

    We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  20. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  1. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  2. Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy

    DOE PAGES

    Lu, Xin; Utama, M. Iqbal Bakti; Lin, Junhao; ...

    2015-07-02

    Various combinations of interlayer shear modes emerge in few-layer molybdenum diselenide grown by chemical vapor deposition depending on the stacking configuration of the sample. Raman measurements may also reveal polytypism and stacking faults, as supported by first principles calculations and high-resolution transmission electron microscopy. Thus, Raman spectroscopy is an important tool in probing stacking-dependent properties in few-layer 2D materials.

  3. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun

    2015-12-01

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  4. Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry

    DOE PAGES

    Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang; ...

    2015-11-13

    The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less

  5. Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang

    The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less

  6. Order-disorder twinning model and stacking faults in alpha-NTO.

    PubMed

    Schwarzenbach, Dieter; Kirschbaum, Kristin; Pinkerton, A Alan

    2006-10-01

    Crystals of the recently published [Bolotina, Kirschbaum & Pinkerton (2005). Acta Cryst. B61, 577-584] triclinic (P\\overline1) structure of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (alpha-NTO) occur as fourfold twins. There are Z' = 4 independent molecules per asymmetric unit. We show that the structure contains layers with 2-periodic layer-group symmetry p2(1)/b 1 (1). This symmetry is lost through the stacking of the layers, which is a possible explanation for Z' = 4. A layer can assume four different but equivalent positions with respect to its nearest neighbor. Twinning arises through stacking faults and is an instructive example of the application of order-disorder theory using local symmetry operations. The near-neighbor relations between molecules remain unchanged through all twin boundaries. The four structures with maximum degree of order, one of which is the observed one, and the family reflections common to all domains are identified. Rods of weak diffuse scattering confirm the stacking model.

  7. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  8. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less

  9. Phases of a stack of membranes in a large number of dimensions of configuration space

    NASA Astrophysics Data System (ADS)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  10. Direction-dependent secondary bonds and their stepwise melting in a uracil-based molecular crystal studied by infrared spectroscopy and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Szekrényes, Zsolt; Nagy, Péter R.; Tarczay, György; Maggini, Laura; Bonifazi, Davide; Kamarás, Katalin

    2018-01-01

    Three types of supramolecular interactions are identified in the three crystallographic directions in crystals of 1,4-bis[(1-hexylurac-6-yl) ethynyl]benzene, a uracil-based molecule with a linear backbone. These three interactions, characterized by their strongest component, are: intermolecular double H-bonds along the molecular axis, London dispersion interaction of hexyl chains connecting these linear assemblies, and π - π stacking of the aromatic rings perpendicular to the molecular planes. On heating, two transitions happen, disordering of hexyl chains at 473 K, followed by H-bond melting at 534 K. The nature of the bonds and transitions was established by matrix-isolation and temperature-dependent infrared spectroscopy and supported by theoretical computations.

  11. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  12. Stacking and Branching in Self-Aggregation of Caffeine in Aqueous Solution: From the Supramolecular to Atomic Scale Clustering.

    PubMed

    Tavagnacco, Letizia; Gerelli, Yuri; Cesàro, Attilio; Brady, John W

    2016-09-22

    The dynamical and structural properties of caffeine solutions at the solubility limit have been investigated as a function of temperature by means of MD simulations, static and dynamic light scattering, and small angle neutron scattering experiments. A clear picture unambiguously supported by both experiment and simulation emerges: caffeine self-aggregation promotes the formation of two distinct types of clusters: linear aggregates of stacked molecules, formed by 2-14 caffeine molecules depending on the thermodynamic conditions and disordered branched aggregates with a size in the range 1000-3000 Å. While the first type of association is well-known to occur under room temperature conditions for both caffeine and other purine systems, such as nucleotides, the presence of the supramolecular aggregates has not been reported previously. MD simulations indicate that branched structures are formed by caffeine molecules in a T-shaped arrangement. An increase of the solubility limit (higher temperature but also higher concentration) broadens the distribution of cluster sizes, promoting the formation of stacked aggregates composed by a larger number of caffeine molecules. Surprisingly, the effect on the branched aggregates is rather limited. Their internal structure and size do not change considerably in the range of solubility limits investigated.

  13. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  14. Compositional modulated atomic layer stacking and uniaxial magnetocrystalline anisotropy of CoPt alloy sputtered films with close-packed plane orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Shin, E-mail: ssaito@ecei.tohoku.ac.jp; Nozawa, Naoki; Hinata, Shintaro

    An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100−x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u} = K{sub u1} + K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x = 20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400 °C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub} = 400 °C.more » A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x = 50 at. %, whereas easily formed in the film with x = 20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4 × 10{sup 7 }erg/cm{sup 3} at around x = 20 at. %, whereas K{sub u2} takes the maximum of 0.7 × 10{sup 7 }erg/cm{sup 3} at around x = 40 at. %, which results in the maximum of 1.8 × 10{sup 7 }erg/cm{sup 3} of K{sub u} at x = 30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x = 30–60 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.« less

  15. Nucleation and growth of order in Cu(3)Au (111) films

    NASA Astrophysics Data System (ADS)

    Bonham, Scott William

    The present work epitaxial investigated two types of ordering phenomena using films of Cusb3Au, the order-disorder phase transition on the (111) crystal surface, and preferential selection of one of two possible stacking domains. Cusb3Au has long been a model system for studying order-disorder phase transition. Bulk material exhibits a discontinuous transition while the surfaces exhibit continuos transitions and the long-range order parameter S is proportional to (Tsb{c}-T)sp{beta}, where Tsb{c} is the critical temperature. The transition of the (111) surface is studied with qualitative reflection high-energy electron diffraction (RHEED), which is sensitive to only the first few atomic layers. This work significantly improves on an earlier study through both improved data collection and more comprehensive data analysis. The measured value of beta =0.50± 0.02 agrees with both the earlier measurements and with predictions of mean field theory. In addition, data on surface defects during the transition and on the kinetics of ordering are presented. During epitaxial growth of (111) face-centered cubic crystal films, such as disordered Cusb3Au, there are two possible ways that successive layers can be laid down, leading to two types of stacking domains. However, a small vicinal miscut (0.5sp° {-}1sp° ) of the crystal surface introduces step edges that change nucleation preferences of the domains, resulting in one being preferred over the other by ratios up to 700:1. Fifteen samples were measured and this preference has been found to depend systematically and strongly on the magnitude and direction of the sample miscut. A qualitative RHEED study confirms that a preference for one of the stacking senses is present after deposition of a few monlolayers of Cusb3Au. The observed behavior of the film can be explained by a model in which Cu and Au atoms minimize their number of Nb nearest neighbors when growing over the Nb step edges. This represents both a discovery of a new phenomena in epitaxial nucleation and a technique for the production of improved epitaxial films.

  16. Magnetic and Crystal Structure of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  17. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    NASA Astrophysics Data System (ADS)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  18. Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V.

    2018-05-01

    The structure and morphology of BimSen epitaxial layers with compositions ranging from Bi2Se3 to the Bi1Se1 grown by molecular beam epitaxy with different flux compositions are investigated by transmission electron microscopy, high-resolution x-ray diffraction, and atomic force microscopy. It is shown that the lattice structure changes significantly as a function of the beam flux composition, i.e., Se/BiSe flux ratio that determines the stoichiometry of the layers. A perfect Bi2Se3 phase is formed only with a sufficiently high additional Se flux, whereas Bi1Se1 is obtained when only a BiSe compound source without additional Se is used. For intermediate values of the excess Se flux during growth, Bi2Se3 -δ layers are obtained with the Se deficit δ varying between 0 and 1. This Se deficit is accommodated by incorporation of additional Bi-Bi double layers into the Bi2Se3 structure that otherwise exclusively consists of Se-Bi-Se-Bi-Se quintuple layers. While a periodic insertion of such Bi double layers would result in the formation of natural BimSen superlattices, we find that this Bi double-layer insertion is rather stochastic with a high degree of disorder depending on the film composition. Therefore, the structure of such epilayers is better described by a one-dimensional paracrystal model, consisting of disordered sequences of quintuple and double layers rather than by strictly periodic natural superlattices. From detailed analysis of the x-ray diffraction data, we determine the dependence of the lattice parameters a and c and distances of the individual (0001) planes dj as a function of composition, evidencing that only the in-plane lattice parameter a shows a linear dependence on composition. The simulation of the diffraction curves with the random stacking paracrystal model yields an excellent agreement with the experimental data and it brings quantitative information on the randomness of the stacking sequence, which is compared to growth modeling using Monte Carlo simulations. The analysis of transmission electron microscopy data furthermore confirms that the Bi-Bi bilayers contain a large amount of vacancies of up to 25%. Conductivity and Hall data confirm that BimSen phases containing Bi-Bi double layers exhibit a rather semimetallic behavior.

  19. Ordered and disordered polymorphs of Na(Ni 2/3Sb 1/3)O₂: Honeycomb-ordered cathodes for Na-ion batteries

    DOE PAGES

    Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; ...

    2015-04-14

    Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni 2/3Sb 1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms,more » depending on the synthesis conditions. The average structure of Na(Ni 2/3Sb 1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯ m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants ( C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni 2/3Sb 1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the three possible choices for distributing Ni and Sb cations into a honeycomb lattice in each transition metal layer. It is observed that the full theoretical discharge capacity expected for a Ni³⁺/²⁺ redox couple (133 mAh/g) can be achieved for the ordered variant but not for the disordered variant (~110 mAh/g). The first 3.27 V plateau during charging is found to be associated with a two-phase O3 ↔ P3 structural transition, with the P3 stacking sequence persisting throughout all further stages of desodiation.« less

  20. Stack gas treatment

    DOEpatents

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  1. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  2. Seismic data enhancement and regularization using finite offset Common Diffraction Surface (CDS) stack

    NASA Astrophysics Data System (ADS)

    Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter

    2017-01-01

    The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.

  3. Scale dependant compensational stacking of channelized sedimentary deposits

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Straub, K. M.; Hajek, E. A.

    2010-12-01

    Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.

  4. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  5. Stacking-fault nucleation on Ir(111).

    PubMed

    Busse, Carsten; Polop, Celia; Müller, Michael; Albe, Karsten; Linke, Udo; Michely, Thomas

    2003-08-01

    Variable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces.

  6. Stacking interactions of hydrogen-bridged rings – stronger than the stacking of benzene molecules.

    PubMed

    Blagojević, Jelena P; Zarić, Snežana D

    2015-08-21

    Analysis of crystal structures from the Cambridge Structural Database showed that 27% of all planar five-membered hydrogen-bridged rings, possessing only single bonds within the ring, form intermolecular stacking interactions. Interaction energy calculations show that interactions can be as strong as -4.9 kcal mol(-1), but dependent on ring structure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITLmore » interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.« less

  8. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  9. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  10. Cool white light-emitting three stack OLED structures for AMOLED display applications.

    PubMed

    Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk

    2016-11-28

    This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.

  11. Converting factors for stacked wood

    Treesearch

    C. A. Bickford

    1957-01-01

    Though the "cord" is used as a standard unit of measure for stacked wood, there is much confusion as to what a cord is and how it can be properly converted to other units of measure. The amount of solid wood in a pile varies greatly depending on the size, straightness, and evenness of the material in the pile, and also on the closeness of stacking.

  12. Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad

    2014-09-01

    We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.

  13. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  14. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE PAGES

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...

    2017-02-08

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less

  15. Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Ajay

    2015-01-01

    Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.

  16. Optical activity in chiral stacks of 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.

    2018-03-01

    We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Sourav, E-mail: sourav.kundu@saha.ac.in; Karmakar, S. N., E-mail: sachindranath.karmakar@saha.ac.in

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effectmore » of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.« less

  18. Dynamic stability of stacked disk type flywheels

    NASA Astrophysics Data System (ADS)

    Younger, F. C.

    1981-04-01

    A flywheel assembly formed from adhesively bonded stacked fiber composite disks was analyzed. The stiffness and rigidity of the assembly required to prevent uncontrolled growth in the deformations due to centrifugal force was determined. It is shown that stacked disk type flywheels become unstable when the speed exceeds a critical value. This critical value of speed depends upon the stiffness of the bonded attachments between the disks. It is found that elastomeric bonds do not provide adequate stiffness to insure dynamic stability for high speed stacked disk type flywheels.

  19. Image transfer by cascaded stack of photonic crystal and air layers.

    PubMed

    Shen, C; Michielsen, K; De Raedt, H

    2006-01-23

    We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and the surface termination, the image can be transfered by the stack with very little deterioration of the resolution, that is the resolution of the final image is approximately the same as the resolution of the image formed behind one single photonic crystal slab.

  20. Modeling of mechanical properties of stack actuators based on electroactive polymers

    NASA Astrophysics Data System (ADS)

    Tepel, Dominik; Graf, Christian; Maas, Jürgen

    2013-04-01

    Dielectric elastomers are thin polymer films belonging to the class of electroactive polymers, which are coated with compliant and conductive electrodes on each side. Under the influence of an electrical field, dielectric elastomers perform a large amount of deformation. Depending on the mechanical setup, stack and roll actuators can be realized. In this contribution the mechanical properties of stack actuators are modeled by a holistic electromechanical approach of a single actuator film, by which the model of a stack actuator without constraints can be derived. Due to the mechanical connection between the stack actuator and the application, bulges occur at the free surfaces of the EAP material, which are calculated, experimentally validated and considered in the model of the stack actuator. Finally, the analytic actuator film model as well as the stack actuator model are validated by comparison to numerical FEM-models in ANSYS.

  1. A first principles approach to magnetic and optical properties in single-layer graphene sandwiched between boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan

    2015-07-01

    The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.

  2. Scale-dependent behavior of scale equations.

    PubMed

    Kim, Pilwon

    2009-09-01

    We propose a new mathematical framework to formulate scale structures of general systems. Stack equations characterize a system in terms of accumulative scales. Their behavior at each scale level is determined independently without referring to other levels. Most standard geometries in mathematics can be reformulated in such stack equations. By involving interaction between scales, we generalize stack equations into scale equations. Scale equations are capable to accommodate various behaviors at different scale levels into one integrated solution. On contrary to standard geometries, such solutions often reveal eccentric scale-dependent figures, providing a clue to understand multiscale nature of the real world. Especially, it is suggested that the Gaussian noise stems from nonlinear scale interactions.

  3. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.

    PubMed

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L

    2013-11-29

    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  4. Glass transition dynamics of stacked thin polymer films

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke

    2011-10-01

    The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.

  5. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.

    PubMed

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete

    2014-04-01

    Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2)  = 0.54-0.85, P < 0.0001). Microchannels deeper than 500 µm were created only by the highest pulse energy of 12.8 mJ/microbeam. Pulse stacking increased AD, and enlarged CZ and AW. CZ varied from 0 to 205 µm and increased linearly with total energy (r(2)  = 0.56-0.75, P < 0.0001). AW ranged from 106 to 422 µm and increased linearly with the logarithm of number of stacked pulses (r(2)  = 0.53-0.61, P < 0.001). The mathematical model estimated micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser settings for desired tissue effects. © 2014 Wiley Periodicals, Inc.

  6. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides

    NASA Astrophysics Data System (ADS)

    Ray, Sibdas; Das, Aniruddha

    2015-06-01

    Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.

  7. Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8.

    PubMed

    Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K

    2013-10-17

    We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.

  8. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    PubMed

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  9. Electrostatically confined trilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Peeters, F. M.

    2017-04-01

    Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry EKe(m ) =-EK'h(m ) for the electron (e ) and hole (h ) states, where m is the angular momentum quantum number and K and K ' label the two valleys. The electron and hole spectra for B =0 are twofold degenerate due to the intervalley symmetry EK(m ) =EK'[-(m +1 ) ] . For both ABC [α =1.5 (1.2) for large (small) R ] and ABA (α =1 ) stackings, the lowest-energy levels show approximately a R-α dependence on the dot radius R in contrast with the 1 /R3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B , the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.

  10. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  11. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  12. Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking

    PubMed Central

    McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.

    2014-01-01

    Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606

  13. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer.

    PubMed

    Steyrleuthner, Robert; Di Pietro, Riccardo; Collins, Brian A; Polzer, Frank; Himmelberger, Scott; Schubert, Marcel; Chen, Zhihua; Zhang, Shiming; Salleo, Alberto; Ade, Harald; Facchetti, Antonio; Neher, Dieter

    2014-03-19

    We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes but with different orientations of the polymer chains with respect to the substrate surface. RI-P(NDI2OD-T2), though exhibiting a rather similar LUMO structure and energy compared with the regioregular counterpart, displayed a very different packing structure characterized by the formation of ordered stacks along the lamellar direction without detectible π-stacking. Vertical electron mobilities were extracted from the space-charge-limited currents in unipolar devices. We demonstrate the anisotropy of the charge transport along the different crystallographic directions and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).

  14. Stacked-unstacked equilibrium at the nick site of DNA.

    PubMed

    Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D

    2004-09-17

    Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.

  15. Structural and electronic transformation in low-angle twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Gargiulo, Fernando; Yazyev, Oleg V.

    2018-01-01

    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  16. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  17. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  18. Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

    PubMed Central

    Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia

    2017-01-01

    Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669

  19. Thickness Dependence of the Dzyaloshinskii-Moriya Interaction in Co2 FeAl Ultrathin Films: Effects of Annealing Temperature and Heavy-Metal Material

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.

    2018-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.

  20. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less

  1. Dynamic signatures of the transition from stacking disordered to hexagonal ice: Dielectric and nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Gainaru, C.; Vynokur, E.; Köster, K. W.; Fuentes-Landete, V.; Spettel, N.; Zollner, J.; Loerting, T.; Böhmer, R.

    2018-04-01

    Using various temperature-cycling protocols, the dynamics of ice I were studied via dielectric spectroscopy and nuclear magnetic resonance relaxometry on protonated and deuterated samples obtained by heating high-density amorphous ices as well as crystalline ice XII. Previous structural studies of ice I established that at temperatures of about 230 K, the stacking disorder of the cubic/hexagonal oxygen lattice vanishes. The present dielectric and nuclear magnetic resonance investigations of spectral changes disclose that the memory of the existence of a precursor phase is preserved in the hydrogen matrix up to 270 K. This finding of hydrogen mobility lower than that of the undoped hexagonal ice near the melting point highlights the importance of dynamical investigations of the transitions between various ice phases and sheds new light on the dynamics in ice I in general.

  2. Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation

    NASA Astrophysics Data System (ADS)

    Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.

    2014-02-01

    The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.

  3. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  4. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE PAGES

    Wu, Qin

    2015-01-30

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  5. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  6. Total Scattering Analysis of Disordered Nanosheet Materials

    NASA Astrophysics Data System (ADS)

    Metz, Peter C.

    Two dimensional materials are of increasing interest as building blocks for functional coatings, catalysts, and electrochemical devices. While increasingly sophisticated processing routes have been designed to obtain high-quality exfoliated nanosheets and controlled, self-assembled mesostructures, structural characterization of these materials remains challenging. This work presents a novel method of analyzing pair distribution function (PDF) data for disordered nanosheet ensembles, where supercell stacking models are used to infer atom correlations over as much as 50 A. Hierarchical models are used to reduce the parameter space of the refined model and help eliminate strongly correlated parameters. Three data sets for restacked nanosheet assemblies with stacking disorder are analyzed using these methods: simulated data for graphene-like layers, experimental data for 1 nm thick perovskite layers, and experimental data for highly defective delta-MnO2 layers. In each case, the sensitivity of the PDF to the real-space distribution of layer positions is demonstrated by exploring the fit residual as a function of stacking vectors. The refined models demonstrate that nanosheets tend towards local interlayer ordering, which is hypothesized to be driven by the electrostatic potential of the layer surfaces. Correctly accounting for interlayer atom correlations permits more accurate refinement of local structural details including local structure perturbations and defect site occupancies. In the delta-MnO2 nanosheet material, the new modeling approach identified 14% Mn vacancies while application of 3D periodic crystalline models to the < 7 A PDF region suggests a 25% vacancy concentration. In contrast, the perovskite nanosheet material is demonstrated to exhibit almost negligible structural relaxation in contrast with the bulk crystalline material from which it is derived.

  7. Metal-like transport in proteins: A new paradigm for biological electron transfer

    NASA Astrophysics Data System (ADS)

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  8. Crystallography, chemistry and structural disorder in the new high-Tc Bi-Ca-Sr-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Veblen, D. R.; Heaney, P. J.; Angel, R. J.; Finger, L. W.; Hazen, R. M.

    1988-01-01

    Diffraction experiments are reported which indicate that the new Bi-Ca-Sr-Cu-O layer-structure superconductor possesses a primitive orthorhombic unit cell with probable space group Pnnn. The material exhibits severe structural disorder which is primarily related to stacking within the layers. The apparent orthorhombic structure is an average resulting from orthorhombic material mixed with monoclinic domains in two twinned orientations. Two distinct types of structural disorder that are common in materials synthesized to date are also described. This disorder complicates the crystallographic analysis and suggests that X-ray and neutron diffraction methods may yield only an average structure.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less

  10. Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p–i–n diodes

    NASA Astrophysics Data System (ADS)

    Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-06-01

    To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.

  11. Implications of a 20-Hz Booster cycle-rate for Slip-stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Zwaska, Robert

    2014-06-10

    We examine the potential impacts to slip-stacking from a change of the Booster cycle-rate from 15- to 20-Hz. We find that changing the Booster cycle-rate to 20-Hz would greatly increase the slip-stacking bucket area, while potentially requiring greater usage of the Recycler momentum aperture and additional power dissipation in the RF cavities. In particular, the losses from RF interference can be reduced by a factor of 4-10 (depending on Booster beam longitudinal parameters). We discuss the aspect ratio and beam emittance requirements for efficient slip-stacking in both cycle-rate cases. Using a different injection scheme can eliminate the need for greatermore » momentum aperture in the Recycler.« less

  12. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less

  14. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasolato, C.; Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, Rome; Domenici, F., E-mail: fabiodomenici@gmail.com

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we reportmore » on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM measurements confirmed the regularity in spacing and size (i.e. area and layer number) of the aggregates. Preliminary SERS measurements confirm the high signal enhancement and demonstrate a quite good reproducibility over large number of aggregates within 100×100 μm{sup 2} 2D super-structure. The availability of such a multisensor could allow a careful statistical analysis of the SERS response, thus leading to a reliable quantitative estimate of the presence of relevant molecular species even at ultra-low concentration.« less

  15. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less

  16. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  17. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less

  18. Application of preconditioned alternating direction method of multipliers in depth from focal stack

    NASA Astrophysics Data System (ADS)

    Javidnia, Hossein; Corcoran, Peter

    2018-03-01

    Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.

  19. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki

    2014-06-21

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarizationmore » sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.« less

  20. Electronic properties of bilayer graphenes strongly coupled to interlayer stacking and an external field

    DOE PAGES

    Park, Changwon; Ryou, Junga; Hong, Suklyun; ...

    2015-07-02

    Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. Lastly, we further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.

  1. Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications

    DOEpatents

    Garrett, Steven L.; Smith, James A.; Kotter, Dale K.

    2017-05-09

    A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.

  2. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  3. Communication: Ion mobility of the radical cation dimers: (Naphthalene)2+• and naphthalene+•-benzene: Evidence for stacked sandwich and T-shape structures

    NASA Astrophysics Data System (ADS)

    Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy

    2015-05-01

    Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

  4. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1986-01-01

    This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.

  5. Stacking Orientation Mediation of Pentacene and Derivatives for High Open-Circuit Voltage Organic Solar Cells.

    PubMed

    Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-05-03

    In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.

  6. Influence of antisite defects and stacking faults on the magnetocrystalline anisotropy of FePt

    NASA Astrophysics Data System (ADS)

    Wolloch, M.; Suess, D.; Mohn, P.

    2017-09-01

    We present density functional theory (DFT) calculations of the magnetic anisotropy energy (MAE) of FePt, which is of great interest for magnetic recording applications. Our data, and the majority of previously calculated results for perfectly ordered crystals, predict a MAE of ˜3.0 meV per formula unit, which is significantly larger than experimentally measured values. Analyzing the effects of disorder by introducing stacking faults (SFs) and antisite defects (ASDs) in varying concentrations we are able to reconcile calculations with experimental data and show that even a low concentration of ASDs are able to reduce the MAE of FePt considerably. Investigating the effect of exact exchange and electron correlation within the adiabatic-connection dissipation fluctuation theorem in the random phase approximation (ACDFT-RPA) reveals a significantly smaller influence on the MAE. Thus the effect of disorder, and more specifically ASDs, is the crucial factor in explaining the deviation of common DFT calculations of FePt to experimental measurements.

  7. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE PAGES

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; ...

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  8. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  9. Theoretical Evidence for the Stronger Ability of Thymine to Disperse SWCNT than Cytosine and Adenine: self-stacking of DNA bases vs their cross-stacking with SWCNT

    PubMed Central

    Wang, Yixuan

    2008-01-01

    Self-stacking of four DNA bases, adenine (A), cytosine (C), guanine (G) and thymine (T), and their cross-stacking with (5,5) as well as (10,0) single walled carbon nanotubes (SWCNTs) were extensively investigated with a novel hybrid DFT method, MPWB1K/cc-pVDZ. The binding energies were further corrected with MP2/6-311++G(d,p) method in both gas phase and aqueous solution, where the solvent effects were included with conductor-like polarized continuum model (CPCM) model and UAHF radii. The strongest self-stacking of G and A takes displaced anti-parallel configuration, but un-displaced or “eclipsed” anti-parallel configuration is the most stable for C and T. In gas phase the self-stacking of nucleobases decreases in the sequence G>A>C>T, while because of quite different solvent effects their self-stacking in aqueous solution exhibits a distinct sequence A>G>T>C. For a given base, cross-stacking is stronger than self-stacking in both gas phase and aqueous solution. Binding energy for cross-stacking in gas phase varies as G>A>T>C for both (10,0) and (5,5) SWCNTs, and the binding of four nucleobases to (10,0) is slightly stronger than to (5,5) SWCNT by a range of 0.1–0.5 kcal/mol. The cross-stacking in aqueous solution varies differently from that gas phase: A>G>T>C for (10,0) SWCNT and G>A>T>C for (5,5) SWCNT. It is suggested that the ability of nucleobases to disperse SWCNT depends on relative strength (ΔΔEbinsol) of self-stacking and cross-stacking with SWCNT in aqueous solution. Of the four investigated nucleobases thymine (T) exhibits the highest (ΔΔEbinsol) which can well explain the experimental finding that T more efficiently functionalizes SWCNT than C and A. PMID:18946514

  10. Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression

    NASA Astrophysics Data System (ADS)

    Pinto, F.; Meo, M.

    2017-06-01

    The ability to absorb a large amount of energy during an impact event without generating critical damages represents a key feature of new generation composite systems. Indeed, the intrinsic layered nature of composite materials allows the embodiment of specific hybrid plies within the stacking sequence that can be exploited to increase impact resistance and damping of the entire structure without dramatic weight increase. This work is based on the development of an impact-resistant hybrid composite obtained by including a thin layer of Non-Newtonian silica based fluid in a carbon fibres reinforced polymer (CFRP) laminate. This hybrid phase is able to respond to an external solicitation by activating an order-disorder transition that thickens the fluid increasing its viscosity, hence dissipating the energy impact without any critical failure. Several Shear Thickening Fluids (STFs) were manufactured by changing the dimensions of the particles that constitute the disperse phase and their concentrations into the continuous phase. The dynamic viscosity of the different STFs was evaluated via rheometric tests, observing both shear thinning and shear thickening effects depending on the concentration of silica particles. The solutions were then embedded as an active layer within the stacking sequence to manufacture the hybrid CFRP laminates with different embedded STFs. Free vibration tests were carried out in order to assess the damping properties of the different laminates, while low velocity impact tests were used to evaluate their impact properties. Results indicate that the presence of the non-Newtonian fluid is able to absorb up to 45 % of the energy during an impact event for impacts at 2.5 m/s depending on the different concentrations and particles dimensions. These results were confirmed via C-Scan analyses to assess the extent of the internal delamination.

  11. Surface dislocation nucleation controlled deformation of Au nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less

  12. What Determines the Ice Polymorph in Clouds?

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2016-07-20

    Ice crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the ice polymorph grown has strong impact on the morphology and light scattering of the ice crystals, modulates the amount of water vapor in ice clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that ice nucleated and grown from deeply supercooled liquid water is metastable stacking disordered ice. The ice polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of ice that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of ice at the vapor interface, and compute the free energy difference between cubic and hexagonal ice interfaces with vapor. We find that vapor deposition results in growth of stacking disordered ice only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of ice. Such extreme conditions have been used to produce stacking disordered frost ice in experiments and may be plausible in the summer polar mesosphere. Growth of ice from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal ice polymorph. Cubic ice is disfavored with respect to hexagonal ice not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the ice-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated ice-vapor interface. We predict that the free energy penalty against the cubic ice interface should decrease strongly with temperature, resulting in some degree of stacking disorder in ice grown from vapor in the tropical tropopause layer, and in polar stratospheric and noctilucent clouds. Our findings support and explain the evolution of the morphology of ice crystals from hexagonal to trigonal symmetry with decreasing temperature, as reported by experiments and in situ measurements in clouds. We conclude that selective growth of the elusive cubic ice polymorph by manipulation of the interfacial properties can likely be achieved at the ice-liquid interface but not at the ice-vapor interface.

  13. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi

    2015-11-01

    Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.

  14. Twisted MoSe 2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE PAGES

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...

    2016-01-14

    Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  15. Twisted MoSe 2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan

    Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  16. Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump-Terahertz Probe Spectroscopy.

    PubMed

    Kar, Srabani; Nguyen, Van Luan; Mohapatra, Dipti R; Lee, Young Hee; Sood, A K

    2018-02-27

    Photoinduced terahertz conductivity Δσ(ω) of Bernal stacked bilayer graphene (BLG) with different dopings is measured by time-resolved optical pump terahertz probe spectroscopy. The real part of photoconductivity Δσ(ω) (Δσ Re (ω)) is positive throughout the spectral range 0.5-2.5 THz in low-doped BLG. This is in sharp contrast to Δσ(ω) for high-doped bilayer graphene where Δσ Re (ω) is negative at low frequency and positive on the high frequency side. We use Boltzmann transport theory to understand quantitatively the frequency dependence of Δσ(ω), demanding the energy dependence of different scattering rates such as short-range impurity scattering, Coulomb scattering, carrier-acoustic phonon scattering, and substrate surface optical phonon scattering. We find that the short-range disorder scattering dominates over other processes. The calculated photoconductivity captures very well the experimental conductivity spectra as a function of lattice temperature varying from 300 to 4 K, without any empirical fitting procedures adopted so far in the literature. This helps us to understand the intraband conductivity of photoexcited hot carriers in 2D materials.

  17. Variable Temperature Performance of a Si(Li) Detector Stack

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; McMurray, Robert E., Jr.; Keller, R. G.; Wercinski, P. F.; Walton, J. T.; Wong, Y. K.

    1994-01-01

    New experimental data is presented which displays 137Cs resolution of both single Si(Li) devices and a detector stack 2 cm in height as a function of temperature (85 K greater than or equal to T greater than or equal to 245 K). We also discuss variations in photopeak shape which indicate that detector charge collection may be temperature dependent over the range of interest.

  18. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki

    2018-07-01

    The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.

  19. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    NASA Astrophysics Data System (ADS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Ge, Supeng; Neupane, Mahesh; Lake, Roger K.

    2013-12-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm2. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  20. Lateral excitonic switching in vertically stacked quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian

    2016-06-14

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are alsomore » discussed.« less

  1. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    PubMed

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  2. Injected carrier concentration dependence of the expansion of single Shockley-type stacking faults in 4H-SiC PiN diodes

    NASA Astrophysics Data System (ADS)

    Tawara, T.; Matsunaga, S.; Fujimoto, T.; Ryo, M.; Miyazato, M.; Miyazawa, T.; Takenaka, K.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; Kato, T.; Okumura, H.; Kimoto, T.; Tsuchida, H.

    2018-01-01

    We investigated the relationship between the dislocation velocity and the injected carrier concentration on the expansion of single Shockley-type stacking faults by monitoring the electroluminescence from 4H-SiC PiN diodes with various anode Al concentrations. The injected carrier concentration was calculated using a device simulation that took into account the measured accumulated charge in the drift layer during diode turn-off. The dislocation velocity was strongly dependent on the injected hole concentration, which represents the excess carrier concentration. The activation energy of the dislocation velocity was quite small (below 0.001 eV between 310 and 386 K) over a fixed range of hole concentrations. The average threshold hole concentration required for the expansion of bar-shaped single Shockley-type stacking faults at the interface between the buffer layer and the substrate was determined to be 1.6-2.5 × 1016 cm-3 for diodes with a p-type epitaxial anode with various Al concentrations.

  3. Interface band alignment in high-k gate stacks

    NASA Astrophysics Data System (ADS)

    Eric, Bersch; Hartlieb, P.

    2005-03-01

    In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.

  4. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim

    2017-11-01

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.

  5. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  6. Engineering metamaterial absorbers from dense gold nanoparticle stacks

    NASA Astrophysics Data System (ADS)

    Hewlett, Sheldon; Mock, Adam

    2017-09-01

    Both ordered and disordered electromagnetic metamaterials have been shown to exhibit interesting and technologically relevant properties that would not be present in the constituent materials in their bulk form. Disordered metamaterials can be fabricated using low-cost and scalable fabrication approaches which are particularly advantageous at the nanoscale. This work shows how a solution-based deposition process can be leveraged to introduce quasi-ordering in disordered gold metamaterials to achieve 94% absorption over the visible spectrum. Full-wave electrodynamic simulations suggest that more advanced structures consistent with this fabrication approach could exhibit 98% average absorption over the entire solar spectrum. We envision this simple and cost-effective fabrication of highly absorbing disordered metamaterials to be of use for thermovoltaics and solar cells.

  7. Generalized stacking fault energies of alloys.

    PubMed

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  8. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  9. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.

    PubMed

    Veerman, Joost; Saakes, Michel; Metz, Sybrand J; Harmsen, G Jan

    2010-12-01

    Electricity can be produced directly with reverse electrodialysis (RED) from the reversible mixing of two solutions of different salinity, for example, sea and river water. The literature published so far on RED was based on experiments with relatively small stacks with cell dimensions less than 10 × 10 cm(2). For the implementation of the RED technique, it is necessary to know the challenges associated with a larger system. In the present study we show the performance of a scaled-up RED stack, equipped with 50 cells, each measuring 25 × 75 cm(2). A single cell consists of an AEM (anion exchange membrane) and a CEM (cation exchange membrane) and therefore, the total active membrane area in the stack is 18.75 m(2). This is the largest dimension of a reverse electrodialysis stack published so far. By comparing the performance of this stack with a small stack (10 × 10 cm(2), 50 cells) it was found that the key performance parameter to maximal power density is the hydrodynamic design of the stack. The power densities of the different stacks depend on the residence time of the fluids in the stack. For the large stack this was negatively affected by the increased hydrodynamic losses due to the longer flow path. It was also found that the large stack generated more power when the sea and river water were flowing in co-current operation. Co-current flow has other advantages, the local pressure differences between sea and river water compartments are low, hence preventing leakage around the internal manifolds and through pinholes in the membranes. Low pressure differences also enable the use of very thin membranes (with low electrical resistance) as well as very open spacers (with low hydrodynamic losses) in the future. Moreover, we showed that the use of segmented electrodes increase the power output by 11%.

  10. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  11. Spectral gain profile of a multi-stack terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.

    2014-11-03

    The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less

  12. Vortex states in a submicron Bi2212 crystal probed by intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Ooi, S.; Tachiki, M.; Mochiku, T.; Wang, H. B.; Komori, K.; Hirata, K.; Arisawa, S.

    2018-03-01

    To study the pancake-vortex states confined in a submicron Bi2Sr2CaCu2O8+y (Bi2212) crystal, we have measured the c-axis resistance and I-V characteristics of a stack of intrinsic Josephson junctions with a lateral dimension less than 1 µm. Although the stack was accidentally shunted by a parallel resistance of 7.5 kΩ, the I-V characteristics show homogeneous multiple branches after the subtraction of the component. The penetrations of single vortices into the submicron stack were clearly observed in the resistance measurements. A vortex phase diagram was constructed by mapping the c-axis resistance on an H-T plane. Temperature dependence of the first-vortex penetration field is consistent with the theoretical estimation on the formation of a pancake-vortex stack in the center of a superconducting strip.

  13. Adhesion enhancement methods for a roll-to-sheet fabrication process of DE stack-transducers and their influences on the electric properties

    NASA Astrophysics Data System (ADS)

    Bochmann, Helge; von Heckel, Benedikt; Maas, Jürgen

    2017-04-01

    Transducers made of dielectric elastomers (DE) offer versatile opportunities for many different applications. To gain large strains and forces a multilayer topology is commonly used. DE stack-transducers represent one multilayer topology and can be operated as a sensor, a generator or an actuator simultaneously. They are made of many layers of DE films, like silicone (PDMS) and polyurethane (PUR), stacked on top of each other. The single layers are several micrometers thin and coated with a compliant electrode on both sides. Depending on the application a DE transducer has to withstand tensile forces, which may lead to a delamination of the layers and a ripping of the stack-transducer. This can be prevented by enhancing the adhesion among the layers. Within this contribution a surface plasma jet treatment with an atmospheric plasma beam as well as an adhesive utilized as electrode material was investigated to obtain an adhesion enhancement. The effects of these methods to enhance the adhesion are introduced briefly. Furthermore, various investigations were made to determine the benefits of the enhancement methods with respect to the electromechanical properties of the electrode. Therefore, certain tests regarding the surface resistance of the electrode and the dielectric breakdown strength (DBS) of the DE film were conducted. The tests indicate that the influences are strongly dependent on the composition of the electrode and the used DE material. Finally, improvements for a dry deposition roll-to-sheet manufacturing process for DE stack-transducers are derived from the obtained results.

  14. Electric-field-induced plasmon in AA-stacked bilayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Y.C., E-mail: yingchih.chuang@gmail.com; Wu, J.Y., E-mail: yarst5@gmail.com; Lin, M.F., E-mail: mflin@mail.ncku.edu.tw

    2013-12-15

    The collective excitations in AA-stacked bilayer graphene for a perpendicular electric field are investigated analytically within the tight-binding model and the random-phase approximation. Such a field destroys the uniform probability distribution of the four sublattices. This drives a symmetry breaking between the intralayer and interlayer polarization intensities from the intrapair band excitations. A field-induced acoustic plasmon thus emerges in addition to the strongly field-tunable intrinsic acoustic and optical plasmons. At long wavelengths, the three modes show different dispersions and field dependence. The definite physical mechanism of the electrically inducible and tunable mode can be expected to also be present inmore » other AA-stacked few-layer graphenes. -- Highlights: •The analytical derivations are performed by the tight-binding model. •An electric field drives the non-uniformity of the charge distribution. •A symmetry breaking between the intralayer and interlayer polarizations is illustrated. •An extra plasmon emerges besides two intrinsic modes in AA-stacked bilayer graphene. •The mechanism of a field-induced mode is present in AA-stacked few-layer graphenes.« less

  15. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    PubMed

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  16. Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy

    NASA Astrophysics Data System (ADS)

    Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément

    2018-04-01

    The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.

  17. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  18. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  19. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Nagesh Kumar, D.

    2018-04-01

    Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.

  20. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  1. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change: Elasticity and Approximate Solutions

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1985-01-01

    The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.

  2. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    NASA Astrophysics Data System (ADS)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  3. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yujie; Gong, Sha; Wang, Zhen

    The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less

  5. Interaction of highly charged ions with carbon nano membranes

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.

  6. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    NASA Astrophysics Data System (ADS)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  7. Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer.

    PubMed

    Laurila, Minni R L; Makeyev, Eugene V; Bamford, Dennis H

    2002-05-10

    Like most RNA polymerases, the polymerase of double-strand RNA bacteriophage phi6 (phi6pol) is capable of primer-independent initiation. Based on the recently solved phi6pol initiation complex structure, a four-amino acid-long loop (amino acids 630-633) has been suggested to stabilize the first two incoming NTPs through stacking interactions with tyrosine, Tyr(630). A similar loop is also present in the hepatitis C virus polymerase, another enzyme capable of de novo initiation. Here, we use a series of phi6pol mutants to address the role of this element. As predicted, mutants at the Tyr(630) position are inefficient in initiation de novo. Unexpectedly, when the loop is disordered by changing Tyr(630)-Lys(631)-Trp(632) to GSG, phi6pol becomes a primer-dependent enzyme, either extending complementary oligonucleotide or, when the template 3' terminus can adopt a hairpin-like conformation, utilizing a "copy-back" initiation mechanism. In contrast to the wild-type phi6pol, the GSG mutant does not require high GTP concentration for its optimal activity. These findings suggest a general model for the initiation of de novo RNA synthesis.

  8. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan

    2017-02-15

    The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π-Stack.

    PubMed

    Kaufmann, Christina; Kim, Woojae; Nowak-Król, Agnieszka; Hong, Yongseok; Kim, Dongho; Würthner, Frank

    2018-03-28

    An adequately designed, bay-tethered perylene bisimide (PBI) dimer Bis-PBI was synthesized by Pd/Cu-catalyzed Glaser-type oxidative homocoupling of the respective PBI building block. This newly synthesized PBI dimer self-assembles exclusively and with high binding constants of up to 10 6 M -1 into a discrete π-stack of four chromophores. Steady-state absorption and emission spectra show the signatures of H-type excitonic coupling among the dye units. Broadband fluorescence upconversion spectroscopy (FLUPS) reveals an ultrafast dynamics in the optically excited state. An initially coherent Frenkel exciton state that is delocalized over the whole quadruple stack rapidly (τ = ∼200 fs) loses its coherence and relaxes into an excimer state. Comparison with Frenkel exciton dynamics in PBI dimeric and oligomeric H-aggregates demonstrates that in the quadruple stack coherent exciton propagation is absent due to its short length of aggregates, thereby it has only one relaxation pathway to the excimer state. Furthermore, the absence of pump-power dependence in transient absorption experiments suggests that multiexciton cannot be generated in the quadruple stack, which is in line with time-resolved fluorescence measurements.

  10. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  11. Multibands tunneling in AAA-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed; Bahaoui, Abdelhadi; Bahlouli, Hocine

    2018-04-01

    We study the electronic transport through np and npn junctions for AAA-stacked trilayer graphene. Two kinds of gates are considered where the first is a single gate and the second is a double gate. After obtaining the solutions for the energy spectrum, we use the transfer matrix method to determine the three transmission probabilities for each individual cone τ = 0 , ± 1 . We show that the quasiparticles in AAA-stacked trilayer graphene are not only chiral but also labeled by an additional cone index τ. The obtained bands are composed of three Dirac cones that depend on the chirality indexes. We show that there is perfect transmission for normal or near normal incidence, which is a manifestation of the Klein tunneling effect. We analyze also the corresponding total conductance, which is defined as the sum of the conductance channels in each individual cone. Our results are numerically discussed and compared with those obtained for ABA- and ABC-stacked trilayer graphene.

  12. Flexible reusable mandrels

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis S. (Inventor)

    1995-01-01

    A reusable laminate mandrel which is unaffected by extreme temperature changes. The flexible laminate mandrel is comprised of sheets stacked to produce the required configuration, a cover wrap that applies pressure to the mandrel laminate, maintaining the stack cross-section. Then after use, the mandrels can be removed, disassembled, and reused. In the method of extracting the flexible mandrel from one end of a composite stiffener, individual ones of the laminae of the flexible mandrel or all are extracted at the same time, depending on severity of the contour.

  13. Optimizing ITO for incorporation into multilayer thin film stacks for visible and NIR applications

    NASA Astrophysics Data System (ADS)

    Roschuk, Tyler; Taddeo, David; Levita, Zachary; Morrish, Alan; Brown, Douglas

    2017-05-01

    Indium Tin Oxide, ITO, is the industry standard for transparent conductive coatings. As such, the common metrics for characterizing ITO performance are its transmission and conductivity/resistivity (or sheet resistance). In spite of its recurrent use in a broad range of technological applications, the performance of ITO itself is highly variable, depending on the method of deposition and chamber conditions, and a single well defined set of properties does not exist. This poses particular challenges for the incorporation of ITO in complex optical multilayer stacks while trying to maintain electronic performance. Complicating matters further, ITO suffers increased absorption losses in the NIR - making the ability to incorporate ITO into anti-reflective stacks crucial to optimizing overall optical performance when ITO is used in real world applications. In this work, we discuss the use of ITO in multilayer thin film stacks for applications from the visible to the NIR. In the NIR, we discuss methods to analyze and fine tune the film properties to account for, and minimize, losses due to absorption and to optimize the overall transmission of the multilayer stacks. The ability to obtain high transmission while maintaining good electrical properties, specifically low resistivity, is demonstrated. Trade-offs between transmission and conductivity with variation of process parameters are discussed in light of optimizing the performance of the final optical stack and not just with consideration to the ITO film itself.

  14. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  15. Understanding morphology-mobility dependence in PEDOT:Tos

    NASA Astrophysics Data System (ADS)

    Rolland, Nicolas; Franco-Gonzalez, Juan Felipe; Volpi, Riccardo; Linares, Mathieu; Zozoulenko, Igor V.

    2018-04-01

    The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of π -π stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat. Mater. 12, 1038 (2013), 10.1038/nmat3722] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective π -π stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials.

  16. 3-Phenyl-6-(2-pyrid-yl)-1,2,4,5-tetra-zine.

    PubMed

    Chartrand, Daniel; Laverdière, François; Hanan, Garry

    2007-12-06

    The title compound, C(13)H(9)N(5), is the first asymmetric diaryl-1,2,4,5-tetra-zine to be crystallographically characterized. We have been inter-ested in this motif for incorporation into supra-molecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric mol-ecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The mol-ecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryl-tetra-zines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å].

  17. Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-09-01

    Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.

  18. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.

    PubMed

    Shang, S L; Wang, W Y; Wang, Y; Du, Y; Zhang, J X; Patel, A D; Liu, Z K

    2012-04-18

    Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the <112> and <110> directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}<112>; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}<110>. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.

  19. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires

    NASA Astrophysics Data System (ADS)

    Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2018-03-01

    We explore the effects of random and short-period crystal-phase intermixing in InAs nanowires (NW) on the carrier trapping and thermal activation behavior using correlated optical and electrical transport spectroscopy. The polytypic InAs NWs are grown by catalyst-free molecular beam epitaxy under different temperatures, resulting in different fractions of wurtzite (WZ) and zincblende (ZB) and variable short-period (˜1-4 nm) WZ/ZB stacking sequences. Temperature-dependent microphotoluminescence (μ PL) studies reveal that variations in the WZ/ZB stacking govern the emission energy and carrier confinement properties. The optical transition energies are modeled for a wide range of WZ/ZB stacking sequences using a Kronig-Penney type effective mass approximation, while comparison with experimental results suggests that polarization sheet charges on the order of ˜0.0016-0.08 C/m along the WZ/ZB interfaces need to be considered to best describe the data. The thermal activation characteristics of carriers trapped inside the short-period WZ/ZB structure are directly reproduced in the temperature-dependent carrier density evolution (4-300 K) probed by four-terminal (4T) NW-field effect transistor measurements. In particular, we find that activation of carriers in-between ˜1016-1017c m-3 follows a two-step process, with activation at low temperature attributed to WZ/ZB traps and activation at high temperature being linked to surface states and electron accumulation at the InAs NW surface.

  20. Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Odhiambo, Henry; Othieno, Herick

    2015-05-01

    The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.

  1. Performance of low resistance microchannel plate stacks

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Stock, J.

    1991-01-01

    Results are presented from an evaluation of three sets of low resistance microchannel plate (MCP) stacks; the tests encompassed gain, pulse-height distribution, background rate, event rate capacity as a function of illuminated area, and performance changes due to high temperature bakeout and high flux UV scrub. The MCPs are found to heat up, requiring from minutes to hours to reach stabilization. The event rate is strongly dependent on the size of the area being illuminated, with larger areas experiencing a gain drop onset at lower rates than smaller areas.

  2. Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita

    2018-02-01

    Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.

  3. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  4. Charliecloud: Unprivileged containers for user-defined software stacks in HPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priedhorsky, Reid; Randles, Timothy C.

    Supercomputing centers are seeing increasing demand for user-defined software stacks (UDSS), instead of or in addition to the stack provided by the center. These UDSS support user needs such as complex dependencies or build requirements, externally required configurations, portability, and consistency. The challenge for centers is to provide these services in a usable manner while minimizing the risks: security, support burden, missing functionality, and performance. We present Charliecloud, which uses the Linux user and mount namespaces to run industry-standard Docker containers with no privileged operations or daemons on center resources. Our simple approach avoids most security risks while maintaining accessmore » to the performance and functionality already on offer, doing so in less than 500 lines of code. Charliecloud promises to bring an industry-standard UDSS user workflow to existing, minimally altered HPC resources.« less

  5. Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2/oxide stacks using reduced voltage

    NASA Astrophysics Data System (ADS)

    Kita, Koji; Abraham, David W.; Gajek, Martin J.; Worledge, D. C.

    2012-08-01

    We have demonstrated purely electrical manipulation of the magnetic anisotropy of a Co0.6Fe0.2B0.2 film by applying only 8 V across the CoFeB/oxide stack. A clear transition from in-plane to perpendicular anisotropy was observed. The quantitative relationship between interface anisotropy energy and the applied electric-field was determined from the linear voltage dependence of the saturation field. By comparing the dielectric stacks of MgO/Al2O3 and MgO/HfO2/Al2O3, enhanced voltage control was also demonstrated, due to the higher dielectric constant of the HfO2. These results suggest the feasibility of purely electrical control of magnetization with small voltage bias for spintronics applications.

  6. Lamination effects on a 3D model of the magnetic core of power transformers

    NASA Astrophysics Data System (ADS)

    Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan

    2017-12-01

    In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.

  7. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.

    2018-07-01

    The Casimir and Casimir–Polder interactions are investigated in a stack of equally spaced graphene layers. The optical response of the individual graphene is taken into account using gauge invariant components of the polarization tensor extended to the whole complex frequency plane. The planar symmetry for the electromagnetic boundary conditions is further used to obtain explicit forms for the Casimir energy stored in the stack and the Casimir–Polder energy between an atom above the stack. Our calculations show that these fluctuation induced interactions experience strong thermal effects due to the graphene Dirac-like energy spectrum. The spatial dispersion and temperature dependence in the optical response are also found to be important for enhancing the interactions especially at smaller separations. Analytical expressions for low and high temperature limits and their comparison with corresponding expressions for an infinitely conducting planar stack are further used to expand our understanding of Casimir and Casimir–Polder energies in Dirac materials. Our results may be useful to experimentalists as new ways to probe thermal effects at the nanoscale in such universal interactions.

  8. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells

    PubMed Central

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-01-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633

  9. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-08-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.

  10. Long-range self-organization of cytoskeletal myosin II filament stacks.

    PubMed

    Hu, Shiqiong; Dasbiswas, Kinjal; Guo, Zhenhuan; Tee, Yee-Han; Thiagarajan, Visalatchi; Hersen, Pascal; Chew, Teng-Leong; Safran, Samuel A; Zaidel-Bar, Ronen; Bershadsky, Alexander D

    2017-02-01

    Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

  11. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    PubMed Central

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  12. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na 3Ni 2BiO 6 Cathodes for Na-Ion Batteries

    DOE PAGES

    Liu, Jue; Yin, Liang; Wu, Lijun; ...

    2016-08-17

    Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less

  13. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na 3Ni 2BiO 6 Cathodes for Na-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Yin, Liang; Wu, Lijun

    Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less

  14. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo

    2015-02-28

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiativemore » and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.« less

  15. Diagenetic Microcrystalline Opal Varieties from the Monterey Formation, CA: HRTEM Study of Structures and Phase Transformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)

    1994-01-01

    Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as lamellar domains within relict opal-CT fibers. These findings indicate that the type of transformation mechanism depends upon the primary structural characteristics of the authigenic opaline. varieties that are in turn influenced by the sediment lithology.

  16. 3-Phenyl-6-(2-pyrid­yl)-1,2,4,5-tetra­zine

    PubMed Central

    Chartrand, Daniel; Laverdière, François; Hanan, Garry

    2008-01-01

    The title compound, C13H9N5, is the first asymmetric diaryl-1,2,4,5-tetra­zine to be crystallographically characterized. We have been inter­ested in this motif for incorporation into supra­molecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric mol­ecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The mol­ecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryl­tetra­zines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å]. PMID:21200916

  17. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  18. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate

    DOE PAGES

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; ...

    2016-04-29

    CalE6 from Micromonospora echinospora is a (pyridoxal 50 phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. Here, we report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis andmore » holoenzyme maturation.« less

  19. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  20. Language extraction from zinc sulfide

    NASA Astrophysics Data System (ADS)

    Varn, Dowman Parks

    2001-09-01

    Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.

  1. Study of dehydroxylated-rehydroxylated smectites by SAXS

    NASA Astrophysics Data System (ADS)

    Muller, F.; Pons, C.-H.; Papin, A.

    2002-07-01

    Montmorillonite and beidellite are dioctahedral 2:1 phyllosilicates. The weakness of the bonding between layers allows the intercalation of water molecules (disposed in layers) in the interlayer space. The samples studied are constituted of cv layers (cv for vacant octahedral sites in cis positions). They have been dehydroxylated. This is accompanied by the migration of the octahedral cations from former trans-octahedra to empty cis-sites therefore the layers become tv (vacant site in trans position). To characterize the stacking of the layers, SAXS (Small Angle X-ray Scattering) analyses have been investigated in natural (N) and after a dehydroxylation-rehydroxylation cycle (R) states. The SAXS pattern modelisation for Na -exchanged samples in the N state shows that the layers stack in particles with well defined interlayer distances d_{001}, corresponding to 0 water layer, 1 water layers and 2 water layers. The dehydroxylation-rehydroxylation cycle increases the proportion of interlayer distances with zero water layer and the disorder in the stacking. The decreasing of the disorder parameter with the proportion of tetrahedral charge in the N and R sample shows that the distribution of the water layers depend on the localization of the deficit of charge. Les montmorillonites et les smectites sont des phyllosilicates 2:1 dioctaédriques. Les liaisons entre feuillets sont suffisamment faibles pour permettre l'insertion, dans l'espace interfoliaire, de molécules d'eau qui se disposent en couches. Les échantillons étudiés ont des feuillets cis-vacants (le site octaédrique inoccupé est en une des deux positions “cis”). Ils ont été deshydroxylés. Ceci s'accompagne d'une migration cationique, à l'intérieur des couches octaédriques, des sites trans vers les sites cis et le feuillet devient trans-vacant. Des expériences de Diffusion X aux Petits Angles (DPA) ont permis de caractériser l'empilement des feuillets. La modélisation des diagrammes de DPAX met en évidence, pour les échantillons sodique non traités, des empilements de feuillets formant des particules avec des distances interlamellaires à 0, 1 et 2 couches d'eau. Après le cycle de déshydroxylation-réhydroxylation, la proportion de feuillets avec une distance interlamellaire correspondante à zéro couche d'eau et le désordre dans l'empi lement des feuillets augmentent. La décroissance du paramètre de désordre avec la proportion de charges tetraédriques montre que l'organi sation des couches d'eau dépend de la localisation du déficit de charge.

  2. Building generic anatomical models using virtual model cutting and iterative registration.

    PubMed

    Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W

    2010-02-08

    Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.

  3. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    NASA Astrophysics Data System (ADS)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  4. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, W.; Bolz, H.; Jansen, A.

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set upmore » and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.« less

  5. π-Electron-system-layered polymer: through-space conjugation and properties as a single molecular wire.

    PubMed

    Morisaki, Yasuhiro; Ueno, Shizue; Saeki, Akinori; Asano, Atsushi; Seki, Shu; Chujo, Yoshiki

    2012-04-02

    [2.2]Paracyclophane-based through-space conjugated oligomers and polymers were prepared, in which poly(p-arylene-ethynylene) (PAE) units were partially π-stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end-capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method and investigated together with time-dependent density functional theory (TD-DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.

    2018-07-01

    Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.

  7. van der Waals Heterostructures with High Accuracy Rotational Alignment.

    PubMed

    Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel

    2016-03-09

    We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

  8. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    NASA Astrophysics Data System (ADS)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  9. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  10. Source apportionment of stack emissions from research and development facilities using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-12-01

    Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.

  11. Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2.

    PubMed

    Nguyen, Linh-Nam; Lan, Yann-Wen; Chen, Jyun-Hong; Chang, Tay-Rong; Zhong, Yuan-Liang; Jeng, Horng-Tay; Li, Lain-Jong; Chen, Chii-Dong

    2014-05-14

    Two-dimensional crystals can be assembled into three-dimensional stacks with atomic layer precision, which have already shown plenty of fascinating physical phenomena and been used for prototype vertical-field-effect-transistors.1,2 In this work, interlayer electron tunneling in stacked high-quality crystalline MoS2 films were investigated. A trilayered MoS2 film was sandwiched between top and bottom electrodes with an adjacent bottom gate, and the discrete energy levels in each layer could be tuned by bias and gate voltages. When the discrete energy levels aligned, a resonant tunneling peak appeared in the current-voltage characteristics. The peak position shifts linearly with perpendicular magnetic field, indicating formation of Landau levels. From this linear dependence, the effective mass and Fermi velocity are determined and are confirmed by electronic structure calculations. These fundamental parameters are useful for exploitation of its unique properties.

  12. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures

    PubMed Central

    Deng, Tianqi; Su, Haibin

    2015-01-01

    We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715

  13. Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Richardson, E.; Siwal, D.

    A method for achieving good position resolution of low-intensity electron signals using a microchannel plate resistive anode detector is demonstrated. Electron events at a rate of 7 counts s{sup −1} are detected using a Z-stack microchannel plate. The dependence of position resolution on both the distance and the potential difference between the microchannel plate and resistive anode is investigated. Using standard commercial electronics, a measured position resolution of 170 μm (FWHM) is obtained, which corresponds to an intrinsic resolution of 157 μm (FWHM)

  14. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  15. The Coherent Interlayer Resistance of a Single, Misoriented Interface between Two Graphite Stacks

    NASA Astrophysics Data System (ADS)

    Lake, Roger K.; Habib, K. M. Masum; Sylvia, Somaia; Ge, Supeng; Neupane, Mahesh

    2014-03-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles ranging from 0° to 27 .29° . The quantum-resistance of the ideal AB stack is on the order of 1 to 10 m Ωμm2 depending on the Fermi energy. For small rotation angles <= 7 .34° , the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with primitive cell size for minimum size cells. A change of misorientation angle by one degree can increase the primitive cell size by three orders of magnitude. These large cell sizes may not follow the exponential trend of the minimal cells especially at energies a few hundred meV away from the charge neutrality point. At such energies, their coherent interlayer resistance is likely to coincide with that of a nearby rotation angle with a much smaller primitive cell. The energy dependence of the interlayer transmission is described and analyzed. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  16. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  17. Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments.

    PubMed

    Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B

    2017-12-26

    Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.

  18. Tailoring plasmonic properties of nanobeam composites by the sliding disorder

    NASA Astrophysics Data System (ADS)

    Gric, Tatjana; Hess, Ortwin

    2017-11-01

    Nanobeam composites are important for designing sensing, nonlinear, and emission functionalities. Here, we describe a method for tuning the plasmonic properties of a silver nanobeam-based metamaterial. Such metamaterials open the wide avenues for a variety of applications in the fields of bio- and chemical sensing, nonlinearity enhancement, and fluorescence control. Specifically, we present the boundary between two nanobeam composites stacked together and exhibiting the sliding disorder. The modes are tunable. We simulated the solutions of surface plasmon polaritons (SPP) modes and their propagations. The configuration proposed here makes a breakthrough of the conventional configuration allowing for optimizations of SPP properties and making SPP application more flexible in practices. The wide plasmonic tuning range of nanobeam composites makes them promising in metamaterial-based optoelectronic devices. The plasma frequency is found to be tailored by the sliding disorder.

  19. Superconducting ferecrystals: turbostratically disordered atomic-scale layered (PbSe)1.14(NbSe2)n thin films.

    PubMed

    Grosse, Corinna; Alemayehu, Matti B; Falmbigl, Matthias; Mogilatenko, Anna; Chiatti, Olivio; Johnson, David C; Fischer, Saskia F

    2016-09-16

    Hybrid electronic heterostructure films of semi- and superconducting layers possess very different properties from their bulk counterparts. Here, we demonstrate superconductivity in ferecrystals: turbostratically disordered atomic-scale layered structures of single-, bi- and trilayers of NbSe2 separated by PbSe layers. The turbostratic (orientation) disorder between individual layers does not destroy superconductivity. Our method of fabricating artificial sequences of atomic-scale 2D layers, structurally independent of their neighbours in the growth direction, opens up new possibilities of stacking arbitrary numbers of hybrid layers which are not available otherwise, because epitaxial strain is avoided. The observation of superconductivity and systematic Tc changes with nanostructure make this synthesis approach of particular interest for realizing hybrid systems in the search of 2D superconductivity and the design of novel electronic heterostructures.

  20. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    PubMed Central

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  1. Characterization of individual straight and kinked boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Zhiguang

    Boron carbides represent a class of ceramic materials with p-type semiconductor natures, complex structures and a wide homogeneous range of carbon compositions. Bulk boron carbides have long been projected as promising high temperature thermoelectric materials, but with limited performance. Bringing the bulk boron carbides to low dimensions (e.g., nanowires) is believed to be an option to enhance their thermoelectric performance because of the quantum size effects. However, the fundamental studies on the microstructure-thermal property relation of boron carbide nanowires are elusive. In this dissertation work, systematic structural characterization and thermal conductivity measurement of individual straight and kinked boron carbide nanowires were carried out to establish the true structure-thermal transport relation. In addition, a preliminary Raman spectroscopy study on identifying the defects in individual boron carbide nanowires was conducted. After the synthesis of single crystalline boron carbide nanowires, straight nanowires accompanied by the kinked ones were observed. Detailed structures of straight boron carbide nanowires have been reported, but not the kinked ones. After carefully examining tens of kinked nanowires utilizing Transmission Electron Microscopy (TEM), it was found that they could be categorized into five cases depending on the stacking faults orientations in the two arms of the kink: TF-TF, AF-TF, AF-AF, TF-IF and AF-IF kinks, in which TF, AF and IF denotes transverse faults (preferred growth direction perpendicular to the stacking fault planes), axial faults (preferred growth direction in parallel with the stacking fault planes) and inclined faults (preferred growth direction neither perpendicular to nor in parallel with the stacking fault planes). Simple structure models describing the characteristics of TF-TF, AF-TF, AF-AF kinked nanowires are constructed in SolidWorks, which help to differentiate the kinked nanowires viewed from the zone axes where stacking faults are invisible. In collaboration with the experts in the field of thermal property characterization of one dimensional nanostructures, thermal conductivities of over 60 nanowires including both straight and kinked ones have been measured in the temperature range of 20 - 420 K and the parameters (i.e., carbon contents, diameters, stacking faults densities/orientations and kinks) affecting the phonon transport were explored. The results disclose strong carbon content and diameter dependence of thermal conductivities of boron carbide nanowires, which decreases as lowering the carbon content and diameter. Stacking fault orientations do modulate the phonon transport (kappaTF < kappa AF), while stacking fault densities seems to only have obvious effects on phonon transport when meeting certain threshold ( 39%). The most interesting discovery is significant reduction of thermal conductivity (15% - 40%) in kinked boron carbide nanowires due to phonon mode conversions and scattering at the kink site. Last but not least, micro-Raman spectroscopy study on individual boron carbide nanowires has been performed for the first time, to the best of our knowledge. Based on the preliminary data, it is found that the stacking fault orientations have no apparent effect on the Raman scattering, but the stacking fault densities do. In addition, up as the size going down to nanoscale, some Raman modes are inactive while some new ones show up, which is largely ascribed to the quantum confinement effects. One more important finding is that the carbon content also plays important role in the Raman scattering of boron carbide nanowires in the low frequency region (< 600 cm-1), which mainly comes from the 3-atom chains (C-B-C or C-B-B).

  2. Breath-stacking and incentive spirometry in Parkinson's disease: Randomized crossover clinical trial.

    PubMed

    Ribeiro, Rhayssa; Brandão, Daniella; Noronha, Jéssica; Lima, Cibelle; Fregonezi, Guilherme; Resqueti, Vanessa; Dornelas de Andrade, Arméle

    2018-05-01

    Patients with Parkinson's disease often exhibit respiratory disorders and there are no Respiratory Therapy protocols which are suggested as interventions in Parkinson's patients. The aim of this study is to evaluate the effects of Breathing-Stacking (BS) and incentive spirometer (IS) techniques in volume variations of the chest wall in patients with Parkinson's Disease (PD). 14 patients with mild-moderate PD were included in this randomized cross-over study. Volume variations of the chest wall were assessed before, immediately after, then 15 and 30 min after BS and IS performance by optoelectronic plethysmography. Tidal volume (VT) and minute ventilation (MV) significantly increased after BS and IS techniques (p < 0.05). There was greater involvement of pulmonary and abdominal compartments after IS. The results suggest that these re-expansion techniques can be performed to immediately improve volume. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Observation of solid–solid transitions in 3D crystals of colloidal superballs

    PubMed Central

    Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.

    2017-01-01

    Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101

  4. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Li, H.; Robertson, J.

    2016-05-28

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al{sub 2}O{sub 3} as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al{sub 2}O{sub 3}, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al{sub 2}O{sub 3} is attributed tomore » its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.« less

  5. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  6. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  7. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep

    2008-03-26

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed tomore » capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.« less

  8. Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.

    PubMed

    Kinoshita, Hiroki; Jeon, Il; Maruyama, Mina; Kawahara, Kenji; Terao, Yuri; Ding, Dong; Matsumoto, Rika; Matsuo, Yutaka; Okada, Susumu; Ago, Hiroki

    2017-11-01

    Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl 5 ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl 5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ -1 ) is realized after MoCl 5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance

    NASA Astrophysics Data System (ADS)

    Güvenç, O.; Roters, F.; Hickel, T.; Bambach, M.

    2015-01-01

    During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.

  10. Phonon Transport at the Interfaces of Vertically Stacked Graphene and Hexagonal Boron Nitride Heterostructures

    DOE PAGES

    Yan, Zhequan; Chen, Liang; Yoon, Mina; ...

    2016-01-12

    Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less

  11. A complete methodology towards accuracy and lot-to-lot robustness in on-product overlay metrology using flexible wavelength selection

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; den Boef, Arie; Noot, Marc; Adam, Omer; Grzela, Grzegorz; Fuchs, Andreas; Jak, Martin; Liao, Sax; Chang, Ken; Couraudon, Vincent; Su, Eason; Tzeng, Wilson; Wang, Cathy; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Wang, Y. C.; Cheng, Kevin; Ke, Chih-Ming; Terng, L. G.

    2017-03-01

    The optical coupling between gratings in diffraction-based overlay triggers a swing-curve1,6 like response of the target's signal contrast and overlay sensitivity through measurement wavelengths and polarizations. This means there are distinct measurement recipes (wavelength and polarization combinations) for a given target where signal contrast and overlay sensitivity are located at the optimal parts of the swing-curve that can provide accurate and robust measurements. Some of these optimal recipes can be the ideal choices of settings for production. The user has to stay away from the non-optimal recipe choices (that are located on the undesirable parts of the swing-curve) to avoid possibilities to make overlay measurement error that can be sometimes (depending on the amount of asymmetry and stack) in the order of several "nm". To accurately identify these optimum operating areas of the swing-curve during an experimental setup, one needs to have full-flexibility in wavelength and polarization choices. In this technical publication, a diffraction-based overlay (DBO) measurement tool with many choices of wavelengths and polarizations is utilized on advanced production stacks to study swing-curves. Results show that depending on the stack and the presence of asymmetry, the swing behavior can significantly vary and a solid procedure is needed to identify a recipe during setup that is robust against variations in stack and grating asymmetry. An approach is discussed on how to use this knowledge of swing-curve to identify recipe that is not only accurate at setup, but also robust over the wafer, and wafer-to-wafer. KPIs are reported in run-time to ensure the quality / accuracy of the reading (basically acting as an error bar to overlay measurement).

  12. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    PubMed

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  13. Stacking of purines in water: the role of dipolar interactions in caffeine.

    PubMed

    Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A

    2016-05-11

    During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.

  14. Mental health disorders among homeless, substance-dependent men who have sex with men.

    PubMed

    Fletcher, Jesse B; Reback, Cathy J

    2017-07-01

    Homelessness is associated with increased prevalence of mental health disorders, substance use disorders and mental health/substance use disorder comorbidity in the United States of America. Gay, bisexual and other men who have sex with men (MSM) living in the United States are at increased risk for homelessness, and have also evidenced elevated mental health and substance use disorder prevalence relative to their non-MSM male counterparts. Secondary analysis of data from a randomised controlled trial estimating the diagnostic prevalence of substance use/mental health disorder comorbidity among a sample of homeless, substance-dependent MSM (DSM-IV verified; n = 131). The most prevalent substance use/mental health disorder comorbidities were stimulant dependence comorbid with at least one depressive disorder (28%), alcohol dependence comorbid with at least one depressive disorder (26%) and stimulant dependence comorbid with antisocial personality disorder (25%). Diagnostic depression and antisocial personality disorder both demonstrated high rates of prevalence among homeless, substance-dependent (particularly stimulant and alcohol dependent) MSM. [Fletcher JB, Reback CJ. Mental health disorders among homeless, substance-dependent men who have sex with men. Drug Alcohol Rev 2016;36:555-559]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  15. "It's exercise or nothing": a qualitative analysis of exercise dependence

    PubMed Central

    Bamber, D; Cockerill, I; Rodgers, S; Carroll, D

    2000-01-01

    Objectives—To explore, using qualitative methods, the concept of exercise dependence. Semistructured interviews were undertaken with subjects screened for exercise dependence and eating disorders. Methods—Female exercisers, four in each case, were allocated a priori to four groups: primary exercise dependent; secondary exercise dependent, where there was a coincidence of exercise dependence and an eating disorder; eating disordered; control, where there was no evidence of either exercise dependence or eating disorder. They were asked about their exercise and eating attitudes and behaviour, as well as about any history of psychological distress. Their narratives were taped, transcribed, and analysed from a social constructionist perspective using QSR NUD*IST. Results—Participants classified as primary exercise dependent either showed no evidence of exercise dependent attitudes and behaviour or, if they exhibited features of exercise dependence, displayed symptoms of an eating disorder. Only the latter reported a history of psychological distress, similar to that exhibited by women classified as secondary exercise dependent or eating disordered. For secondary exercise dependent and eating disordered women, as well as for controls, the narratives largely confirmed the a priori classification. Conclusions—Where exercise dependence was manifest, it was always in the context of an eating disorder, and it was this co-morbidity, in addition to eating disorders per se, that was associated with psychological distress. As such, these qualitative data support the concept of secondary, but not primary, exercise dependence. Key Words: exercise dependence; eating disorders; psychological distress; anorexia; bulimia PMID:11131229

  16. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate.

    PubMed

    Braun, Doris E; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J

    2016-06-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic ( A° - C ) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol -1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A ° - C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A ° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities ( a w ) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D . This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system.

  17. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate

    PubMed Central

    Braun, Doris E.; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J.

    2017-01-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic (A° – C) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol–1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A° – C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities (aw) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D. This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system. PMID:28663717

  18. Structure and energetics of extended defects in ice Ih

    NASA Astrophysics Data System (ADS)

    Silva Junior, Domingos L.; de Koning, Maurice

    2012-01-01

    We consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice Ih. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30∘ and 90∘ partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice Ih are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30∘ dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90∘ partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice Ih should be based on the idea of reconstructed partial dislocations.

  19. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  20. Effect of Alloying on the Strength Properties and the Hardening Mechanisms of Nitrogen-Bearing Austenitic Steels after Hot Deformation and Annealing

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2017-11-01

    The main mechanisms of hardening nitrogen-bearing austenitic steels that operate under various thermomechanical treatment conditions at various steel compositions are considered. The strength properties of the steels are shown to depend on the content of interstitial elements, namely, carbon and nitrogen, and the influence of these elements on the stacking fault energy is estimated. The ratios of the main alloying elements that favor an increase or a decrease in the stacking fault energy are found to achieve the desirable level of strain hardening provided that an austenitic structure of steel is retained.

  1. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.; Sridharan, K.

    2017-08-01

    The stacking fault energy (SFE) plays an important role in deformation behavior and radiation damage of FCC metals and alloys such as austenitic stainless steels. In the present communication, existing expressions to calculate SFE in those steels from chemical composition are reviewed and an improved multivariate linear regression with random intercepts is used to analyze a new database of 144 SFE measurements collected from 30 literature references. It is shown that the use of random intercepts can account for experimental biases in these literature references. A new expression to predict SFE from austenitic stainless steel compositions is proposed.

  2. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  3. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    NASA Astrophysics Data System (ADS)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  4. Zn-dopant dependent defect evolution in GaN nanowires.

    PubMed

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-21

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.

  5. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    PubMed

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

  6. "It's exercise or nothing": a qualitative analysis of exercise dependence.

    PubMed

    Bamber, D; Cockerill, I M; Rodgers, S; Carroll, D

    2000-12-01

    To explore, using qualitative methods, the concept of exercise dependence. Semistructured interviews were undertaken with subjects screened for exercise dependence and eating disorders. Female exercisers, four in each case, were allocated a priori to four groups: primary exercise dependent; secondary exercise dependent, where there was a coincidence of exercise dependence and an eating disorder; eating disordered; control, where there was no evidence of either exercise dependence or eating disorder. They were asked about their exercise and eating attitudes and behaviour, as well as about any history of psychological distress. Their narratives were taped, transcribed, and analysed from a social constructionist perspective using QSR NUD*IST. Participants classified as primary exercise dependent either showed no evidence of exercise dependent attitudes and behaviour or, if they exhibited features of exercise dependence, displayed symptoms of an eating disorder. Only the latter reported a history of psychological distress, similar to that exhibited by women classified as secondary exercise dependent or eating disordered. For secondary exercise dependent and eating disordered women, as well as for controls, the narratives largely confirmed the a priori classification. Where exercise dependence was manifest, it was always in the context of an eating disorder, and it was this comorbidity, in addition to eating disorders per se, that was associated with psychological distress. As such, these qualitative data support the concept of secondary, but not primary, exercise dependence.

  7. Exploring Moho sharpness in Northeastern North China Craton with frequency-dependence analysis of Ps receiver function

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.

    2017-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.

  8. Comorbid mental disorders among the patients with alcohol abuse and dependence in Korea.

    PubMed Central

    Cho, Maeng Je; Hahm, Bong-Jin; Suh, Tongwoo; Suh, Guk-Hee; Cho, Seong-Jin; Lee, Chung Kyoon

    2002-01-01

    This study investigated the patterns of alcohol disorder comorbidity with other psychiatric disorders, using Korean nationwide epidemiological data. By two-stage cluster sampling, 5,176 adult household residents of Korea were interviewed using the Korean version of the Diagnostic Interview Schedule. Psychiatric disorders strongly associated with alcohol disorders were, other drug abuse or dependence, major depression, simple phobia, antisocial personality disorder, tobacco dependence, and pathological gambling. Male alcoholics had a tendency to begin with tobacco dependence, and some male pathological gamblers first had alcohol disorders. The presence of comorbid psychiatric disorders was associated with a more severe form and the later onset of alcohol disorders, and associated with help-seeking for alcohol abuse/dependence. PMID:11961310

  9. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    PubMed

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  10. Modular Integrated Stackable Layers (MISL) 1.1 Design Specification. Design Guideline Document

    NASA Technical Reports Server (NTRS)

    Yim, Hester J.

    2012-01-01

    This document establishes the design guideline of the Modular Instrumentation Data Acquisition (MI-DAQ) system in utilization of several designs available in EV. The MI- DAQ provides the options to the customers depending on their system requirements i.e. a 28V interface power supply, a low power battery operated system, a low power microcontroller, a higher performance microcontroller, a USB interface, a Ethernet interface, a wireless communication, various sensor interfaces, etc. Depending on customer's requirements, the each functional board can be stacked up from a bottom level of power supply to a higher level of stack to provide user interfaces. The stack up of boards are accomplished by a predefined and standardized power bus and data bus connections which are included in this document along with other physical and electrical guidelines. This guideline also provides information for a new design options. This specification is the product of a collaboration between NASA/JSC/EV and Texas A&M University. The goal of the collaboration is to open source the specification and allow outside entities to design, build, and market modules that are compatible with the specification. NASA has designed and is using numerous modules that are compatible to this specification. A limited number of these modules will also be released as open source designs to support the collaboration. The released designs are listed in the Applicable Documents.

  11. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans

    DOE PAGES

    Dron, Paul I.; Michl, Josef; Johnson, Justin C.

    2017-10-16

    Here, we describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks.

  12. Tris(N-{bis­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)lanthanum(III)

    PubMed Central

    Prytula-Kurkunova, Angelina Yu.; Trush, Victor A.; Dyakonenko, Viktoriya V.; Sliva, Tetyana Yu.; Amirkhanov, Vladimir M.

    2017-01-01

    The asymmetric unit of [La(C20H21N3O3PS)3(C12H8N2)] is created by one LaIII ion, three deprotonated N-{bis­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidate (L −) ligands and one 1,10-phenanthroline (Phen) mol­ecule. Each LaIII ion is eight-coordinated (6O+2N) by three phosphoryl O atoms, three sulfonyl O atoms of three L − ligands and two N atoms of the chelating Phen ligand, leading to the formation of six- and five-membered metallacycles, respectively. The lanthanum coordination polyhedron has a bicapped trigonal–prismatic geometry. ‘Sandwich-like’ intra­molecular π–π stacking inter­actions are observed between the 1,10-phenanthroline ligand and two benzene rings of two different L − ligands. The phenyl rings of L − that are not involved in the stacking inter­actions show minor positional disorder. Mol­ecules form layers parallel to the (010) plane due to weak C—H⋯O inter­molecular hydrogen bonds. Unidentified highly disordered solvate mol­ecules that occupy ca 400 Å3 large voids have been omitted from the refinement model. PMID:28775887

  13. The effects of operator position, pallet orientation, and palletizing condition on low back loads in manual bag palletizing operations

    PubMed Central

    Gallagher, Sean; Heberger, John R.

    2015-01-01

    Many mining commodities are packaged and shipped using bags. Small bags are typically loaded onto pallets for transport and require a significant amount of manual handling by workers. This specific task of manual bag handling has been associated with the development of musculoskeletal disorders (MSDs), especially low back disorders. This study evaluates the biomechanical demands of different work layouts when performing manual palletizing of small bags, and evaluates the biomechanical stresses associated with different stacking techniques. Results indicate that peak forward bending moments as well as spinal compression and shear forces are higher when the pallet is situated at the side of the conveyor as opposed to the end of the conveyor. At low levels of the pallet, controlled bag placement results in higher peak forward bending moments than stacking at higher levels and when dropping the bag to lower levels. The results of this study will be used to inform the development of an audit tool for bagging operations in the mining industry. Relevance to industry In many cases for workers loading small bags, compression forces exceed the NIOSH criterion of 3400 N. Orientation of the pallet has a significant impact on spinal compression, and positioning the pallet at the end of the conveyor reduces the estimated compressive loading on the lumbar spine by approximately 800 N. PMID:26190879

  14. Skiving stacked sheets of paper into test paper for rapid and multiplexed assay

    PubMed Central

    Yang, Mingzhu; Zhang, Wei; Yang, Junchuan; Hu, Binfeng; Cao, Fengjing; Zheng, Wenshu; Chen, Yiping; Jiang, Xingyu

    2017-01-01

    This paper shows that stacked sheets of paper preincubated with different biological reagents and skiving them into uniform test paper sheets allow mass manufacturing of multiplexed immunoassay devices and simultaneous detection of multiplex targets that can be read out by a barcode scanner. The thickness of one sheet of paper can form the width of a module for the barcode; when stacked, these sheets of paper can form a series of barcodes representing the targets, depending on the color contrast provided by a colored precipitate of an immunoassay. The uniform thickness of sheets of paper allows high-quality signal readout. The manufacturing method allows highly efficient fabrication of the materials and substrates for a straightforward assay of targets that range from drugs of abuse to biomarkers of blood-transmitted infections. In addition, as a novel alternative to the conventional point-of-care testing method, the paper-based barcode assay system can provide highly efficient, accurate, and objective diagnoses. PMID:29214218

  15. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  16. Shifter: Containers for HPC

    NASA Astrophysics Data System (ADS)

    Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho

    2017-10-01

    Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.

  17. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  18. A new software for dimensional measurements in 3D endodontic root canal instrumentation.

    PubMed

    Sinibaldi, Raffaele; Pecci, Raffaella; Somma, Francesco; Della Penna, Stefania; Bedini, Rossella

    2012-01-01

    The main issue to be faced to get size estimates of 3D modification of the dental canal after endodontic treatment is the co-registration of the image stacks obtained through micro computed tomography (micro-CT) scans before and after treatment. Here quantitative analysis of micro-CT images have been performed by means of new dedicated software targeted to the analysis of root canal after endodontic instrumentation. This software analytically calculates the best superposition between the pre and post structures using the inertia tensor of the tooth. This strategy avoid minimization procedures, which can be user dependent, and time consuming. Once the co-registration have been achieved dimensional measurements have then been performed by contemporary evaluation of quantitative parameters over the two superimposed stacks of micro-CT images. The software automatically calculated the changes of volume, surface and symmetry axes in 3D occurring after the instrumentation. The calculation is based on direct comparison of the canal and canal branches selected by the user on the pre treatment image stack.

  19. Reliability and Validity of the MINI International Neuropsychiatric Interview for Children and Adolescents (MINI-KID)

    ClinicalTrials.gov

    2009-02-13

    Major Depression; Mania; Anxiety Disorders; Psychotic Disorder; Alcohol Dependence; Drug Dependence; Eating Disorders; Suicidality; Dysthymia; ADHD; Tourettes Disorder; Conduct Disorder; Oppositional Defiant Disorder; Pervasive Developmental Disorder

  20. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    PubMed

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  1. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  2. Optical properties and electronic transitions of DNA oligonucleotides as a function of composition and stacking sequence.

    PubMed

    Schimelman, Jacob B; Dryden, Daniel M; Poudel, Lokendra; Krawiec, Katherine E; Ma, Yingfang; Podgornik, Rudolf; Parsegian, V Adrian; Denoyer, Linda K; Ching, Wai-Yim; Steinmetz, Nicole F; French, Roger H

    2015-02-14

    The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.

  3. The thermal stability of Pt/epitaxial Gd2O3/Si stacks and its dependence on heat-treatment ambient

    NASA Astrophysics Data System (ADS)

    Lipp, E.; Osten, H. J.; Eizenberg, M.

    2009-12-01

    The stability of Pt/epitaxial Gd2O3/Si stacks is studied by monitoring the chemical and electrical properties following heat treatments in forming gas and in vacuum at temperatures between 400 and 650 °C. Our results show that stack instability is realized via diffusion of Gd through the Pt grain boundaries, which was observed after forming-gas annealing at 550 °C for 30 min. The Gd diffusion kinetics in forming gas is studied by secondary ion mass spectrometry analysis, showing that the diffusion process occurs according to C-type kinetics with an activation energy of 0.73±0.04 eV. Following vacuum heat treatments at 600 °C for 30 min, Si outdiffusion is observed, in addition to Gd outdiffusion. Si outdiffusion results in the formation of PtSi clusters on the metal surface following vacuum annealing at 650 °C. In contrast, in the case of forming-gas treatments, Si diffusion and silicide formation were detected only after annealing at 700 °C. The better stability of Pt/Gd2O3/Si stacks in forming gas is correlated with the content of oxygen in the Pt layer during the treatment.

  4. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  5. Sequence periodicity in nucleosomal DNA and intrinsic curvature

    PubMed Central

    2010-01-01

    Background Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Results Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. Conclusions The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA. PMID:20487515

  6. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    PubMed

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  7. ADHD and the externalizing spectrum: direct comparison of categorical, continuous, and hybrid models of liability in a nationally representative sample.

    PubMed

    Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Markon, Kristian E; Keyes, Katherine M; Blanco, Carlos; Saha, Tulshi D; Hasin, Deborah S

    2014-08-01

    Alcohol use disorders, substance use disorders, and antisocial personality disorder share a common externalizing liability, which may also include attention-deficit hyperactivity disorder (ADHD). However, few studies have compared formal quantitative models of externalizing liability, with the aim of delineating the categorical and/or continuous nature of this liability in the community. This study compares categorical, continuous, and hybrid models of externalizing liability. Data were derived from the 2004-2005 National Epidemiologic Survey on Alcohol and Related Conditions (N = 34,653). Seven disorders were modeled: childhood ADHD and lifetime diagnoses of antisocial personality disorder (ASPD), nicotine dependence, alcohol dependence, marijuana dependence, cocaine dependence, and other substance dependence. The continuous latent trait model provided the best fit to the data. Measurement invariance analyses supported the fit of the model across genders, with females displaying a significantly lower probability of experiencing externalizing disorders. Cocaine dependence, marijuana dependence, other substance dependence, alcohol dependence, ASPD, nicotine dependence, and ADHD provided the greatest information, respectively, about the underlying externalizing continuum. Liability to externalizing disorders is continuous and dimensional in severity. The findings have important implications for the organizational structure of externalizing psychopathology in psychiatric nomenclatures.

  8. [A case of compulsive buying--impulse control disorder or dependence disorder?].

    PubMed

    Croissant, Bernhard; Klein, Oliver; Löber, Sabine; Mann, Karl

    2009-05-01

    It is unclear what disease entity causes compulsive buying. In ICD-10 and DSM-IV, compulsive buying is classified as "Impulse control disorder--not otherwise classified". Some publications interpret compulsive buying rather as a dependence disorder. We present the case of a male patient with compulsive buying syndrome. We discuss the close relationship to dependence disorders. The patient showed symptoms which would normally be associated with a dependence disorder. On the basis of a wider understanding of the dependency concept, as it is currently being discussed, we believe that the patient has shown a typical buying behavior that has presumably activated a reward loop similar to that of a substance dependency.

  9. Reflection by absorbing periodically stratified media

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2014-03-01

    Existing theory gives the optical properties of a periodically stratified medium in terms of a two by two matrix. This theory is valid also for absorbing media, because the matrix remains unimodular. The main effect of absorption is that the reflection (of either polarization) becomes independent of the number of periods N, and of the substrate properties, provided N exceeds a certain value which depends on the absorption. The s and p reflections are then given by simple formulae. The stop-band structure, which gives total reflection in bands of frequency and angle of incidence in the non-absorbing case, remains influential in weakly absorbing media, causing strong variations in reflectivity. The theory is applied to the frequency dependence of the normal-incidence reflectivity of a quarter-wave stack in which the high-index and low-index layers both absorb weakly. Analytical expressions are obtained for the frequency at which the reflectivity is maximum, the maximum reflectivity, and also for the reflectivity at the band edges of the stop band of the non-absorbing stack.

  10. Influence of Selenization Time on Microstructural, Optical, and Electrical Properties of Cu2ZnGeSe4 Films

    NASA Astrophysics Data System (ADS)

    Swapna Mary, G.; Hema Chandra, G.; Anantha Sunil, M.; Gupta, Mukul

    2018-01-01

    We have studied the effects of selenization time on the microstructural, optical, and electrical properties of stacked (Cu/Se/ZnSe/Se/Ge/Se) × 4 layers to demonstrate growth of Cu2ZnGeSe4 (CZGSe) thin films. Electron beam evaporation was used to deposit CZGSe films on glass substrates for selenization in high vacuum at 450°C for different times (15 min, 30 min, 45 min, and 60 min). The incomplete reaction of the precursor layers necessitates selenization at higher temperature for different durations to achieve desirable microstructural and optoelectronic properties. Energy-dispersive spectroscopic measurements revealed that the stacked layers selenized at 450°C for 30 min were nearly stoichiometric with atomic ratios of Cu/(Zn + Ge) = 0.88, Zn/Ge = 1.11, and Se/(Cu + Zn + Ge) = 1.03. X-ray diffraction analysis revealed that the stacks selenized at 450°C for 30 min crystallized in tetragonal stannite structure. Selenization-time-dependent Raman measurements of the selenized stacks are systematically presented to understand the growth of CZGSe. The elemental distribution through depth as a function of selenization time was investigated using secondary-ion mass spectroscopy. The ionic valency of the constituent elements in CZGSe films selenized at 450°C for 30 min was examined using high-resolution x-ray photoelectron spectroscopy. Significant changes were observed in the surface morphology of the stacked layers with increase in selenization time. The effects of defects on the electrical properties and of binary phases on the optical properties are discussed.

  11. Anxiety disorders and drug dependence: evidence on sequence and specificity among adults.

    PubMed

    Goodwin, Renee D; Stein, Dan J

    2013-04-01

    The goal of this study was to investigate the relation between specific anxiety disorders and substance dependence, adjusting for potentially confounding demographic factors (e.g. sex) and comorbidity (e.g. alcohol dependence, major depression), among adults in the USA. Data were drawn from the National Comorbidity Survey (NCS), a nationally representative population sample of the US adult population aged 15-54. The temporal sequence of onset of anxiety and substance dependence disorders was examined. Substance dependence temporally precedes several anxiety disorders, particularly panic disorder. Specifically, a history of past substance dependence predicts current panic disorder (odds ratio [OR] =2.62, 95% confidence interval [CI] =1.29, 5.32), social phobia (OR=1.7, 95%CI=1.12, 2.41), and agoraphobia (OR=1.78, 95%CI=1.08, 2.94). Conversely, in more than 50% of substance abuse disorder cases, in nearly 40% of post-traumatic stress disorder (PTSD) cases, and in nearly 30% of generalized anxiety disorder (GAD) cases, the anxiety disorder has first onset. Similarly, a lifetime history of social phobia, PTSD, or GAD significantly predicts lifetime substance dependence (OR=1.51 for social phobia, 2.06 for PTSD, 1.45 for GAD). For any particular anxiety disorder, a diagnosis of substance abuse can occur prior to or subsequent to an anxiety disorder. Nevertheless, there is also evidence for the specificity of some associations between anxiety and substance dependence disorders; these are independent of the effects of sex and other comorbid disorders, may be causal in nature, and deserve particular attention in clinical settings. The possibility that within a particular anxiety disorder there are a variety of mechanisms of association with various substances should be addressed in future work. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  12. The Relationship between Child Abuse and Negative Outcomes among Substance Users: Psychopathology, Health, and Comorbidities

    PubMed Central

    Banducci, Anne N.; Hoffman, Elana; Lejuez, C.W.; Koenen, Karestan C.

    2014-01-01

    Background Adults with substance use disorders (SUDs) report higher rates of child abuse than adults without SUDs. Prior work suggests this abuse is associated with higher rates of psychosis, posttraumatic stress disorder, physical health problems, alcohol dependence, and cannabis dependence among substance users. Little is known about other problems associated with child abuse experienced by substance users. We hypothesized among adults with SUDs, child abuse would be associated with elevated rates of all Diagnostic and Statistical Manual (DSM-IV-TR) psychiatric disorders, substance dependencies, and comorbidities assessed. Method We assessed 280 inpatients in substance use treatment with the Structured Clinical Interview for the DSM-IV-TR, the Diagnostic Instrument for Personality Disorders, and Childhood Trauma Questionnaire (CTQ). We used chi-square and regression analyses to establish whether rates of psychiatric disorders, substance dependencies, and comorbidities differed as a function of child abuse. Results Consistent with our hypotheses, higher scores on the CTQ were associated with elevated rates of psychiatric disorders (mood disorders, anxiety disorders, psychotic symptoms, and personality disorders) and substance dependencies (alcohol dependence and cocaine dependence). Moreover, higher rates of all comorbidity patterns (e.g. comorbid alcohol dependence and anxiety) were observed among individuals who reported experiencing child abuse. Across all substance dependencies examined, individuals who had been abused had significantly higher rates of all psychiatric disorders assessed. Conclusions Individuals with substance use disorders who have been abused have particularly elevated rates of psychiatric and substance use disorders as a function of their abuse experiences. These findings have important treatment implications for individuals in residential substance use treatment settings. PMID:24976457

  13. Seafloor Age-Stacking Reveals No Evidence for Milankovitch Cycle Influence on Abyssal Hills at Intermediate, Fast and Super-Fast Spreading Rates

    NASA Astrophysics Data System (ADS)

    Goff, J.; Zahirovic, S.; Müller, D.

    2017-12-01

    Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The random nature of abyssal hills is consistent with a primarily faulted origin. .

  14. Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state

    DOE PAGES

    Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...

    2015-12-10

    We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less

  15. Mental disorders as risk factors for later substance dependence: estimates of optimal prevention and treatment benefits.

    PubMed

    Glantz, M D; Anthony, J C; Berglund, P A; Degenhardt, L; Dierker, L; Kalaydjian, A; Merikangas, K R; Ruscio, A M; Swendsen, J; Kessler, R C

    2009-08-01

    Although mental disorders have been shown to predict subsequent substance disorders, it is not known whether substance disorders could be cost-effectively prevented by large-scale interventions aimed at prior mental disorders. Although experimental intervention is the only way to resolve this uncertainty, a logically prior question is whether the associations of mental disorders with subsequent substance disorders are strong enough to justify mounting such an intervention. We investigated this question in this study using simulations to estimate the number of substance disorders that might be prevented under several hypothetical intervention scenarios focused on mental disorders. Data came from the National Comorbidity Survey Replication (NCS-R), a nationally representative US household survey that retrospectively assessed lifetime history and age of onset of DSM-IV mental and substance disorders. Survival analysis using retrospective age-of-onset reports was used to estimate associations of mental disorders with subsequent substance dependence. Simulations based on the models estimated effect sizes in several hypothetical intervention scenarios. Although successful intervention aimed at mental disorders might prevent some proportion of substance dependence, the number of cases of mental disorder that would have to be treated to prevent a single case of substance dependence is estimated to be so high that this would not be a cost-effective way to prevent substance dependence (in the range 76-177 for anxiety-mood disorders and 40-47 for externalizing disorders). Treatment of prior mental disorders would not be a cost-effective way to prevent substance dependence. However, prevention of substance dependence might be considered an important secondary outcome of interventions for early-onset mental disorders.

  16. Alcohol Dependence and Domestic Violence as Sequelae of Abuse and Conduct Disorder in Childhood.

    ERIC Educational Resources Information Center

    Kunitz, Stephen J.; Levy, Jerrold E.; McCloskey, Joanne; Gabriel, K. Ruben

    1998-01-01

    This study compared 204 Navajo men and women for alcohol dependence and domestic violence as sequelae of abuse and conduct disorders in childhood. Both physical and sexual abuse were risk factors for conduct disorder. Physical abuse and conduct disorder were risk factors for alcohol dependence. Alcohol dependence and physical abuse were…

  17. Comorbidity of Psychiatric Disorders and Nicotine Dependence among Adolescents: Findings from a Prospective, Longitudinal Study

    ERIC Educational Resources Information Center

    Griesler, Pamela C.; Hu, Mei-Chen; Schaffram, Christine; Kandel, Denise B.

    2008-01-01

    The relationship between nicotine dependence and DSM-IV psychiatric disorders in 1,039 adolescents is examined. Findings revealed that psychiatric disorders most usually predicted the onset of the first basis of nicotine dependence while nicotine dependence does not appear to have an influence on the onset of psychiatric disorders. Other…

  18. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  19. Discovery: Pile Patterns

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2017-01-01

    Earlier "Discovery" articles (de Mestre, 1999, 2003, 2006, 2010, 2011) considered patterns from many mathematical situations. This article presents a group of patterns used in 19th century mathematical textbooks. In the days of earlier warfare, cannon balls were stacked in various arrangements depending on the shape of the pile base…

  20. [Update on the respiratory management of patients with chronic neuromuscular disease].

    PubMed

    Priou, P; Trzepizur, W; Meslier, N; Gagnadoux, F

    2017-12-01

    Neuromuscular diseases include a wide range of conditions that may involve potentially life-threatening respiratory complications (infection, respiratory failure). For patients with neuromuscular diseases, clinical assessment of respiratory function and regular pulmonary function tests are needed to screen for nocturnal respiratory disorders, weakness of the diaphragm and potential restrictive disorders and/or chronic hypercapnic respiratory insufficiency, possibly with couch deficiency. MANAGEMENT OF NOCTURNAL RESPIRATORY DISORDERS AND CHRONIC RESPIRATORY FAILURE: Nocturnal respiratory assistance is an important phase of care for nocturnal respiratory disorders and chronic respiratory failure. This may involve continuous positive airway pressure, adaptative servo-ventilation or non-invasive ventilation with a facial or nasal mask. As needed, diurnal assistance may be proposed by mouthpiece ventilation. Should non-invasive ventilation prove insufficient, or if significant swallowing disorders or recurrent bronchial obstruction develop, or in case of prolonged intubation, tracheotomy may be required. In case of lower airway infection with ineffective cough, physical therapy, associated with air stacking, intermittent positive pressure breathing or mechanical in-exsufflation may be proposed. Care for swallowing disorders, nutritional counseling (cachexia, obesity), vaccinations and therapeutic education are integral elements of patient-centered management aiming to prevent the negative impact of infection and to manage respiratory failure of chronic neuromuscular disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Should pathological gambling and obesity be considered addictive disorders? A factor analytic study in a nationally representative sample

    PubMed Central

    Blanco, Carlos; García-Anaya, María; Wall, Melanie; de los Cobos, José Carlos Pérez; Swierad, Ewelina; Wang, Shuai; Petry, Nancy M.

    2015-01-01

    Objective Pathological gambling (PG) is now aligned with substance use disorders in the DSM-5 as the first officially recognized behavioral addiction. There is growing interest in examining obesity as an addictive disorder as well. The goal of this study was to investigate whether epidemiological data provide support for the consideration of PG and obesity as addictive disorders. Method Factor analysis of data from a large, nationally representative sample of US adults (N=43,093), using nicotine dependence, alcohol dependence, drug dependence, PG and obesity as indicators. It was hypothesized that nicotine dependence, alcohol dependence and drug use dependence would load on a single factor. It was further hypothesized that if PG and obesity were addictive disorders, they would load on the same factor as substance use disorders, whereas failure to load on the addictive factor would not support their conceptualization as addictive disorders. Results A model with one factor including nicotine dependence, alcohol dependence, drug dependence and PG, but not obesity, provided a very good fit to the data, as indicated by CFI=0.99, TLI=0.99 and RMSEA=.01 and loadings of all indicators >0.4. Conclusion Data from this study support the inclusion of PG in a latent factor with substance use disorders but do not lend support to the consideration of obesity, as defined by BMI, as an addictive disorder. Future research should investigate whether certain subtypes of obesity are best conceptualized as addictive disorders and the shared biological and environmental factors that account for the common and specific features of addictive disorders. PMID:25769392

  2. The relationship between child abuse and negative outcomes among substance users: psychopathology, health, and comorbidities.

    PubMed

    Banducci, Anne N; Hoffman, Elana; Lejuez, C W; Koenen, Karestan C

    2014-10-01

    Adults with substance use disorders (SUDs) report higher rates of child abuse than adults without SUDs. Prior work suggests that this abuse is associated with higher rates of psychosis, posttraumatic stress disorder, physical health problems, alcohol dependence, and cannabis dependence among substance users. Little is known about other problems associated with child abuse experienced by substance users. We hypothesized that among adults with SUDs, child abuse would be associated with elevated rates of all Diagnostic and Statistical Manual (DSM-IV-TR) psychiatric disorders, substance dependencies, and comorbidities assessed. We assessed 280 inpatients in substance use treatment with the Structured Clinical Interview for the DSM-IV-TR, the Diagnostic Instrument for Personality Disorders, and Childhood Trauma Questionnaire (CTQ). We used chi-square and regression analyses to establish whether rates of psychiatric disorders, substance dependencies, and comorbidities differed as a function of child abuse. Consistent with our hypotheses, higher scores on the CTQ were associated with elevated rates of psychiatric disorders (mood disorders, anxiety disorders, psychotic symptoms, and personality disorders) and substance dependencies (alcohol dependence and cocaine dependence). Moreover, higher rates of all comorbidity patterns (e.g. comorbid alcohol dependence and anxiety) were observed among individuals who reported experiencing child abuse. Across all substance dependencies examined, individuals who had been abused had significantly higher rates of all psychiatric disorders assessed. Individuals with substance use disorders who have been abused have particularly elevated rates of psychiatric and substance use disorders as a function of their abuse experiences. These findings have important treatment implications for individuals in residential substance use treatment settings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Stable isotope insights into the weathering processes of a phosphogypsum disposal area.

    PubMed

    Papaslioti, Evgenia-Maria; Pérez-López, Rafael; Parviainen, Annika; Macías, Francisco; Delgado-Huertas, Antonio; Garrido, Carlos J; Marchesi, Claudio; Nieto, José M

    2018-04-28

    Highly acidic phosphogypsum wastes with elevated potential for contaminant leaching are stack-piled near coastal areas worldwide, threatening the adjacent environment. Huge phosphogypsum stacks were disposed directly on the marshes of the Estuary of Huelva (SW Spain) without any impermeable barrier to prevent leaching and thus, contributing to the total contamination of the estuarine environment. According to the previous weathering model, the process water ponded on the surface of the stack, initially used to carry the waste, was thought to be the main washing agent through its infiltration and subsequently the main component of the leachates emerging as the edge outflows. Preliminary restorations have been applied to the site and similar ones are planned for the future considering process water as the only pollution agent. Further investigation to validate the pollution pathway was necessary, thus an evaluation of the relationship between leachates and weathering agents of the stack was carried out using stable isotopes (δ 18 O, δ 2 H, and δ 34 S) as geochemical tracers. Quantification of the contribution of all possible end-members to the phosphogypsum leachates was also conducted using ternary mixing via the stable isotopic tracers. The results ruled out ponded process water as main vector of edge outflow pollution and unveiled a continuous infiltration of estuarine waters to the stack implying that is subjected to an open weathering system. The isotopic tracers revealed a progressive contribution downstream from fluvial to marine signatures in the composition of the edge outflows, depending on the location of each disposal zone within the different estuarine morphodynamic domains. Thus, the current study suggests that the access of intertidal water inside the phosphogypsum stack, for instance through secondary tidal channels, is the main responsible for the weathering of the waste in depth, underlying the necessity for new, more effective restorations plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Microseismic event location by master-event waveform stacking

    NASA Astrophysics Data System (ADS)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We finally compare the location results for both synthetics and real data with those obtained by using classical waveforms stacking approaches.

  5. Space Shuttle Transportation (Roll-Out) Loads Diagnostics

    NASA Technical Reports Server (NTRS)

    Elliott, Kenny B.; Buehrle, Ralph D.; James, George H.; Richart, Jene A.

    2005-01-01

    The Space Transportation System (STS) consists of three primary components; an Orbiter Vehicle, an External Fuel Tank, and two Solid Rocket Boosters. The Orbiter Vehicle and Solid Rocket Boosters are reusable components, and as such, they are susceptible to durability issues. Recently, the fatigue load spectra for these components have been updated to include load histories acquired during the rollout phase of the STS processing for flight. Using traditional program life assessment techniques, the incorporation of these "rollout" loads produced unacceptable life estimates for certain Orbiter structural members. As a result, the Space Shuttle System Engineering and Integration Office has initiated a program to re-assess the method used for developing the "rollout" loads and performing the life assessments. In the fall of 2003 a set of tests were preformed to provide information to either validate existing load spectra estimation techniques or generate new load spectra estimation methods. Acceleration and strain data were collected from two rollouts of a partial-stack configuration of the Space Shuttle. The partial stack configuration consists of two Solid Rocket Boosters tied together at the upper External Tank attachment locations mounted on the Mobile Launch Platform carried by a Crawler Transporter (CT). In the current analysis, the data collected from this test is examined for consistency in speed, surface condition effects, and the characterization of the forcing function. It is observed that the speed of the CT is relatively stable. The dynamic response acceleration of the partial-stack is slightly sensitive to the surface condition of the road used for transport, and the dynamic response acceleration of the partial-stack generally increases as the transport speed increases. However, the speed sensitivity is dependent on the measurement location. Finally, the character of the forcing function is narrow-banded with the primary drivers being harmonics of two CT speed dependent excitations. One source is an excitation due to the CT treads striking the road surface, and the second is unknown.

  6. Structure and dynamics of thylakoids in land plants.

    PubMed

    Pribil, Mathias; Labs, Mathias; Leister, Dario

    2014-05-01

    Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.

  7. Design and Implementation of an Operations Module for the ARGOS paperless Ship System

    DTIC Science & Technology

    1989-06-01

    A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1

  8. Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers, revealed by the temperature-dependent synchrotron WAXD/SAXS and infrared/Raman spectral measurements.

    PubMed

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-02-26

    The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.

  9. Spatial delineation, fluid-lithology characterization, and petrophysical modeling of deepwater Gulf of Mexico reservoirs though joint AVA deterministic and stochastic inversion of three-dimensional partially-stacked seismic amplitude data and well logs

    NASA Astrophysics Data System (ADS)

    Contreras, Arturo Javier

    This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.

  10. Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    NASA Technical Reports Server (NTRS)

    Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.

    2011-01-01

    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.

  11. Psychiatric comorbidity in a sample of cocaine-dependent outpatients seen in the Community of Madrid drug addiction care network.

    PubMed

    Martínez-Gras, Isabel; Ferre Navarrete, Francisco; Pascual Arriazu, Jesús; Peñas Pascual, José; de Iceta Ruiz de Gauna, Mariano; Fraguas Herráez, David; Rubio Valladolid, Gabriel

    2016-03-02

    The objective of this study was to estimate the current prevalence of psychiatric disorders in cocaine-dependent patients who attend different treatment centres in the Community of Madrid. A prospective multicentre study was used, and a total of 197 cocaine-dependent subjects were assessed. The assessment instrument used for diagnosis was the Psychiatric Research Interview for Substance and Mental Disorders (PRISM-IV). The main findings of this study were a high prevalence of psychiatric comorbidity in cocaine-dependent patients seeking treatment (64.0%). The most common Non Substance Use Disorders found were attention-deficit/hyperactivity Disorders (34.5%) and depressive disorders (13.7%). The most common Substance Use Disorder was alcohol dependence (28.4%). Cocaine-dependent patients who had a depressive disorder and were alcohol dependent presented a more severe clinical profile and a higher degree of psychopathology, measured using different assessment tools, than the patients who were only cocaine dependent. These data suggest that the presence of psychiatric comorbidity could constitute a risk factor associated with the severity of cocaine dependence. The clinical heterogeneity found also indicates the need to search for individualised treatments that more specifically fit the needs of this population.

  12. Should pathological gambling and obesity be considered addictive disorders? A factor analytic study in a nationally representative sample.

    PubMed

    Blanco, Carlos; García-Anaya, María; Wall, Melanie; de Los Cobos, José Carlos Pérez; Swierad, Ewelina; Wang, Shuai; Petry, Nancy M

    2015-05-01

    Pathological gambling (PG) is now aligned with substance use disorders in the DSM-5 as the first officially recognized behavioral addiction. There is growing interest in examining obesity as an addictive disorder as well. The goal of this study was to investigate whether epidemiological data provide support for the consideration of PG and obesity as addictive disorders. Factor analysis of data from a large, nationally representative sample of US adults (N=43,093), using nicotine dependence, alcohol dependence, drug dependence, PG and obesity as indicators. It was hypothesized that nicotine dependence, alcohol dependence and drug use dependence would load on a single factor. It was further hypothesized that if PG and obesity were addictive disorders, they would load on the same factor as substance use disorders, whereas failure to load on the addictive factor would not support their conceptualization as addictive disorders. A model with one factor including nicotine dependence, alcohol dependence, drug dependence and PG, but not obesity, provided a very good fit to the data, as indicated by CFI=0.99, TLI=0.99 and RMSEA=0.01 and loadings of all indicators >0.4. Data from this study support the inclusion of PG in a latent factor with substance use disorders but do not lend support to the consideration of obesity, as defined by BMI, as an addictive disorder. Future research should investigate whether certain subtypes of obesity are best conceptualized as addictive disorders and the shared biological and environmental factors that account for the common and specific features of addictive disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. The association of 5-HTR2A-1438A/G, COMTVal158Met, MAOA-LPR, DATVNTR and 5-HTTVNTR gene polymorphisms and antisocial personality disorder in male heroin-dependent Chinese subjects.

    PubMed

    Yang, Mei; Kavi, Vasish; Wang, Wenfu; Wu, Zhimei; Hao, Wei

    2012-03-30

    To explore the association between the 5-HTR2A-1438A/G, COMTVal158Met, MAOA-LPR, DATVNTR and 5-HTTVNTR polymorphisms with comorbidity of antisocial personality disorder in male heroin-dependent patients. In case control study, we compared the polymorphic distributions of 5-HTR2A-1438A/G, COMTVal158Met, MAOA-LPR, DATVNTR and 5-HTTVNTR in 588 male heroin-dependent patients (including 311 patients with antisocial personality disorder and 277 patients without antisocial personality disorder) and 194 normal males by genotypes, alleles, and interaction between genes. Between male heroin-dependent patients with antisocial personality disorder and normal males, and between male heroin-dependent patients with and without antisocial personality disorder, the distributions of 5-HTTVNTR polymorphic genotypes and alleles were in statistical significance. Individuals carrying 10R allele were in higher risk of the comorbidity of antisocial personality disorder and heroin dependence. By MDR analyses, the interaction between 5-HTTVNTR and DATVNTR was close to statistical significance in predicting the risk of antisocial personality disorder in male heroin dependent patients. In male heroin dependent patients, individuals carrying 5-HTTVNTR 10R allele or/and DATVNTR 9R allele were in higher risks of co-occurring antisocial personality disorder, while individuals with 5-HTTVNTR 12R/12R and DATVNTR 10R/10R genotypes together were in lower risks of antisocial personality disorder. 5-HTTVNTR, and the interaction between 5-HTTVNTR and DATVNTR may be associated with the comorbidity of antisocial personality disorder in male heroin-dependent patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).

    PubMed

    Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J

    2014-12-16

    Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.

  15. Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho

    In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less

  16. Influence of stacking sequence on scattering characteristics of the fundamental anti-symmetric Lamb wave at through holes in composite laminates.

    PubMed

    Veidt, Martin; Ng, Ching-Tai

    2011-03-01

    This paper investigates the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at through holes in composite laminates. Three-dimensional (3D) finite element (FE) simulations and experimental measurements are used to study the physical phenomenon. Unidirectional, bidirectional, and quasi-isotropic composite laminates are considered in the study. The influence of different hole diameter to wavelength aspect ratios and different stacking sequences on wave scattering characteristics are investigated. The results show that amplitudes and directivity distribution of the scattered Lamb wave depend on these parameters. In the case of quasi-isotropic composite laminates, the scattering directivity patterns are dominated by the fiber orientation of the outer layers and are quite different for composite laminates with the same number of laminae but different stacking sequence. The study provides improved physical insight into the scattering phenomena at through holes in composite laminates, which is essential to develop, validate, and optimize guided wave damage detection and characterization techniques. © 2011 Acoustical Society of America

  17. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.

    PubMed

    Tasco, Vittorianna; Usman, Muhammad; De Giorgi, Milena; Passaseo, Adriana

    2014-02-07

    Tailoring of electronic and optical properties of self-assembled InAs quantum dots (QDs) is a critical limit for the design of several QD-based optoelectronic devices operating in the telecom frequency range. We describe how fine control of the strain-induced surface kinetics during the growth of vertically stacked multiple layers of QDs allows for the engineering of their self-organization process. Most noticeably, this study shows that the underlying strain field induced along a QD stack can be modulated and controlled by time-dependent intermixing and segregation effects occurring after capping with a GaAs spacer. This leads to a drastic increase of the TM/TE polarization ratio of emitted light, not accessible from conventional growth parameters. Our detailed experimental measurements, supported by comprehensive multi-million atom simulations of strain, electronic and optical properties, provide in-depth analysis of the grown QD samples allowing us to give a clear picture of the atomic scale phenomena affecting the proposed growth dynamics and consequent QD polarization response.

  18. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    PubMed

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  19. The Effect of Grain Size on the Radiation Response of Silicon Carbide and its Dependence on Irradiation Species and Temperature

    NASA Astrophysics Data System (ADS)

    Jamison, Laura

    In recent years the push for green energy sources has intensified, and as part of that effort accident tolerant and more efficient nuclear reactors have been designed. These reactors demand exceptional material performance, as they call for higher temperatures and doses. Silicon carbide (SiC) is a strong candidate material for many of these designs due to its low neutron cross-section, chemical stability, and high temperature resistance. The possibility of improving the radiation resistance of SiC by reducing the grain size (thus increasing the sink density) is explored in this work. In-situ electron irradiation and Kr ion irradiation was utilized to explore the radiation resistance of nanocrystalline SiC (nc-SiC), SiC nanopowders, and microcrystalline SiC. Electron irradiation simplifies the experimental results, as only isolated Frenkel pairs are produced so any observed differences are simply due to point defect interactions with the original microstructure. Kr ion irradiation simulates neutron damage, as large radiation cascades with a high concentration of point defects are produced. Kr irradiation studies found that radiation resistance decreased with particle size reduction and grain refinement (comparing nc-SiC and microcrystalline SiC). This suggests that an interface-dependent amorphization mechanism is active in SiC, suggested to be interstitial starvation. However, under electron irradiation it was found that nc-SiC had improved radiation resistance compared to single crystal SiC. This was found to be due to several factors including increased sink density and strength and the presence of stacking faults. The stacking faults were found to improve radiation response by lowering critical energy barriers. The change in radiation response between the electron and Kr ion irradiations is hypothesized to be due to either the change in ion type (potential change in amorphization mechanism) or a change in temperature (at the higher temperatures of the Kr ion irradiation, critical energy barriers can be overcome without the assistance of stacking faults). The dependence of the radiation response of SiC on grain size is not as straight forward as initially presumed. The stacking faults present in many nc-SiC materials boost radiation resistance, but an increased number of interfaces may lead to a reduction in radiation response.

  20. The pathological status of exercise dependence

    PubMed Central

    Bamber, D.; Cockerill, I.; Carroll, D.

    2000-01-01

    Objectives—This study was concerned with the concept of exercise dependence. Levels of psychological morbidity, personality profiles, and exercise beliefs were compared among subjects screened for exercise dependence and eating disorders. Method—Adult female exercisers were allocated on the basis of questionnaire screening to one of the following groups: primary exercise dependence (n = 43); secondary exercise dependence, where there was the coincidence of exercise dependence and an eating disorder (n = 27); eating disorder (n =14); control, where there was no evidence of either exercise dependence or eating disorder (n = 110). Questionnaire assessment was undertaken of psychological morbidity, self esteem, weight and body shape dissatisfaction, personality, and exercise beliefs. Results—Aside from a higher incidence of reported menstrual abnormalities, the primary exercise dependence group was largely indistinguishable from the controls. In stark contrast, the secondary exercise dependence group reported higher levels of psychological morbidity, neuroticism, dispositional addictiveness, and impulsiveness, lower self esteem, greater concern with body shape and weight, as well as with the social, psychological, and aesthetic costs of not exercising than the controls, but differed little from the eating disorder group. Conclusions—In the absence of an eating disorder, women identified as being exercise dependent do not exhibit the sorts of personality characteristics and levels of psychological distress that warrant the construction of primary exercise dependence as a widespread pathology. Key Words: exercise dependence; eating disorders; personality; self esteem; neuroticism; psychological morbidity PMID:10786869

  1. Density functional theory calculations of the turbostratically disordered compound [ ( SnSe ) 1 + y ] m ( VSe 2 ) n

    DOE PAGES

    Rudin, Sven P.; Johnson, David C.

    2015-04-30

    Among composite materials that layer constituent substances of nanoscale thicknesses, [(SnSe)1+y ]m(VSe2)n emerges as an example where the constituents retain incommensurate lattice structures. Perpendicular to the stacking direction, the system exhibits random translations and random rotations on average, i.e., turbostratic disorder, with local regions showing twelvefold diffraction patterns. Earlier theoretical work on these structures showed that combining density functional theory with an empirical treatment of the van der Waals interaction gave structural parameters in good agreement with experiment, but no attempt was made to examine the relative orientations. Here we approximate the extended system with one extended constituent and onemore » finite constituent, which allows the treatment of all relative orientations on equal footing. Furthermore, the calculations show how the twelvefold periodicity follows from how the ions of the SnSe layer lock in with favored positions relative to the VSe2 layer, and the associated energy scale supports arguments for the overall turbostratic disorder.« less

  2. Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin

    NASA Astrophysics Data System (ADS)

    Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.

    2015-10-01

    The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.

  3. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    PubMed

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  4. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-04

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.

  5. Spectral reflectance properties of iridescent pierid butterfly wings.

    PubMed

    Wilts, Bodo D; Pirih, Primož; Stavenga, Doekele G

    2011-06-01

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies' photoreceptors.

  6. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Chen, Lien-Wen

    2011-02-01

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the Γ-X and Γ-X' directions are also presented. The calculated results are compared with the experimental results.

  7. The role of negative emotionality and impulsivity in depressive/anxiety disorders and alcohol dependence.

    PubMed

    Boschloo, L; Vogelzangs, N; van den Brink, W; Smit, J H; Beekman, A T F; Penninx, B W J H

    2013-06-01

    Much is still unclear about the role of personality in the structure of common psychiatric disorders such as depressive/anxiety disorders and alcohol dependence. This study will therefore examine whether various traits of negative emotionality and impulsivity showed shared or specific associations with these disorders. Method Cross-sectional data were used from the Netherlands Study of Depression and Anxiety (NESDA), including individuals with no DSM-IV psychiatric disorder (n = 460), depressive/anxiety disorder only (i.e. depressive and/or anxiety disorder; n = 1398), alcohol dependence only (n = 32) and co-morbid depressive/anxiety disorder plus alcohol dependence (n = 358). Aspects of negative emotionality were neuroticism, hopelessness, rumination, worry and anxiety sensitivity, whereas aspects of impulsivity included disinhibition, thrill/adventure seeking, experience seeking and boredom susceptibility. Aspects of negative emotionality formed a homogeneous dimension, which was unrelated to the more heterogeneous construct of impulsivity. Although all aspects of negative emotionality were associated with alcohol dependence only, associations were much stronger for depressive/anxiety disorder only and co-morbid depressive/anxiety disorder with alcohol dependence. The results for impulsivity traits were less profound and more variable, with disinhibition and boredom susceptibility showing modest associations with both depressive/anxiety disorder and alcohol dependence, whereas low thrill/adventure seeking and high disinhibition were more strongly related with the first and the latter, respectively. Our results suggest that depressive/anxiety disorder and alcohol dependence result from shared as well as specific aetiological pathways as they showed the same associations with all aspects of negative emotionality, disinhibition and boredom susceptibility as well as specific associations with thrill/adventure seeking and disinhibition.

  8. Surface and Interface Chemistry for Gate Stacks on Silicon

    NASA Astrophysics Data System (ADS)

    Frank, M. M.; Chabal, Y. J.

    This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.

  9. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2014-01-01

    Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  10. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor.

    PubMed

    Chen, Bi; Wu, Qun; Xu, Yan

    2014-06-02

    Maotai-flavor liquor is produced by simultaneous saccharification and fermentation (SSF) process under solid state conditions, including Daqu (starter) making, stacking fermentation and alcohol fermentation stages. Filamentous fungi produce many enzymes to degrade the starch material into fermentable sugar during liquor fermentation. This study investigated the filamentous fungal community associated with liquor making process. Eight and seven different fungal species were identified by using culture-dependent and -independent method (PCR-denaturing gradient gel electrophoresis, DGGE) analyses, respectively. The traditional enumeration method showed that Daqu provided 7 fungal species for stacking fermentation. The total population of filamentous fungi increased from 3.4 × 10(3)cfu/g to 1.28 × 10(4)cfu/g in the first 3 days of stacking fermentation, and then decreased till the end. In alcohol fermentation in pits, the population continuously decreased and few fungal species survived (lower than 1 × 10(3)cfu/g) after 10 days. Therefore, stacking fermentation is an essential stage for the growth of filamentous fungi. Paecilomyces variotii, Aspergillus oryzae and Aspergillus terreus were detected by both methods, and P. variotii and A. oryzae were the predominant species. Meanwhile, P. variotii possessed the highest glucoamylase (3252 ± 526 U/g) and A. oryzae exhibited the highest α-amylase (1491 ± 324 U/g) activity among the cultivable fungal species. Furthermore, the variation of starch and reducing sugar content was consistent with the growth of P. variotii and A. oryzae in Zaopei (fermented grains) during stacking fermentation, which implied that the two filamentous fungi played an important role in producing amylase for hydrolyzing the starch. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Psychiatric Comorbidity and Physical Correlates in Alcohol-dependent Patients.

    PubMed

    Gauba, Deepak; Thomas, Pramod; Balhara, Yatan P S; Deshpande, Smita N

    2016-01-01

    To examine the prevalence and pattern of comorbidity in alcohol dependence and its relationship with physical and laboratory findings. Eighty males with alcohol dependence were examined using the Hindi version of Diagnostic Interview for Genetic Studies, the International Classification of Disease-10 th Edition Personality Disorder Examination, Alcohol Use Disorder Identification Test for alcohol use, global assessment of functioning, blood sampling electrocardiogram, and ultrasonogram. Eighty-seven percent had a comorbid Axis I or an Axis II psychiatric disorder, over 78% had nicotine dependence, and 56% had comorbid Axis II disorder, antisocial personality being the most common. Gamma glutamyl transpeptidase levels were significantly associated with comorbidity. High comorbidity of Axis I psychiatric disorders was found among persons with alcohol dependence. Axis II disorders were also present.

  12. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  13. Alcohol-dependent patients with comorbid phobic disorders: a comparison between comorbid patients, pure alcohol-dependent and pure phobic patients.

    PubMed

    Schadé, Annemiek; Marquenie, Loes A; Van Balkom, Anton J L M; Koeter, Maarten W J; De Beurs, Edwin; Van Den Brink, Wim; Van Dyck, Richard

    2004-01-01

    Patients with a double diagnosis of alcohol dependence and phobic disorders are a common phenomenon in both alcohol and anxiety disorder clinics. If we are to provide optimum treatment we need to know more about the clinical characteristics of this group of comorbid patients. To answer the following questions. (1). What are the clinical characteristics of treatment-seeking alcohol-dependent patients with a comorbid phobic disorder? (2). Are alcohol dependence and other clinical characteristics of comorbid patients different from those of 'pure' alcohol-dependent patients? (3). Are the anxiety symptoms and other clinical characteristics of comorbid patients different from those of 'pure' phobic patients? Three groups of treatment-seeking patients were compared on demographic and clinical characteristics: alcohol dependent patients with a comorbid phobic disorder (n = 110), alcohol-dependent patients (n = 148) and patients with social phobia or agoraphobia (n = 106). In order to diagnose the comorbid disorders validly, the assessment took place at least 6 weeks after detoxification. Comorbid patients have high scores on depressive symptoms and general psychopathology: 25% of patients have a current and 52% a lifetime depressive disorder. The majority have no partner and are unemployed, they have a high incidence of other substance use (benzodiazepine, cocaine, cannabis) and a substantial proportion of comorbid patients have been emotionally, physically and sexually abused. They do not have a more severe, or different type of alcohol dependence or anxiety disorder than 'pure' alcohol-dependent patients and phobic patients respectively. Comorbid patients constitute a complex part of the treatment-seeking population in alcohol clinics and psychiatric hospitals. These findings should be taken into account when diagnosing and treating alcohol-dependent patients with a comorbid phobic disorder.

  14. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  15. Superconductivity in two-dimensional NbSe2 field effect transistors

    NASA Astrophysics Data System (ADS)

    El-Bana, Mohammed S.; Wolverson, Daniel; Russo, Saverio; Balakrishnan, Geetha; Mck Paul, Don; Bending, Simon J.

    2013-12-01

    We describe investigations of superconductivity in few molecular layer NbSe2 field effect transistors. While devices fabricated from NbSe2 flakes less than eight molecular layers thick did not conduct, thicker flakes were superconducting with an onset Tc that was only slightly depressed from the bulk value for 2H-NbSe2 (7.2 K). The resistance typically showed a small, sharp high temperature transition followed by one or more broader transitions which usually ended in a wide tail to zero resistance at low temperatures. We speculate that these multiple resistive transitions are related to disorder in the layer stacking. The behavior of several flakes has been characterized as a function of temperature, applied field and back-gate voltage. We find that the conductance in the normal state and transition temperature depend weakly on the gate voltage, with both conductivity and Tc decreasing as the electron concentration is increased. The application of a perpendicular magnetic field allows the evolution of different resistive transitions to be tracked and values of the zero temperature upper critical field, Hc2(0), and coherence length, ξ(0), to be independently estimated. Our results are analyzed in terms of available theories for these phenomena.

  16. Individuals receiving specialized treatment for drug and alcohol dependence and gambling disorder in Israel--characteristics and implications for prevalence estimates.

    PubMed

    Lev-Ran, Shaul; Florentin, Iris; Feingold, Daniel; Rehm, Jürgen

    2014-01-01

    Substance dependence is one of the main factors contributing to morbidity and mortality worldwide. Gambling disorder has recently been included as an addictive disorder in DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) and is associated with substantial psychiatric comorbidity and respective disability. Nevertheless, the vast majority of those suffering from these disorders do not receive treatment. In Israel, prevalence of substance dependence has traditionally been estimated to be lower than those in high-income countries, though prevalence estimates from the recent decade are lacking. Moreover, characteristics of individuals seeking treatment for substance dependence and gambling disorder have not been published. In this study, the authors analyzed data from the Israel National Addiction Registry, a computerized database that includes sociodemographic characteristics of all individuals treated in specialized public facilities for substance dependence and gambling disorders in the years 2003-2012. The prevalence of treatment utilization for drug and alcohol dependence and gambling disorders were 0.2%, 0.1%, and 0.01%, respectively. These rates generally remained stable throughout the last decade. Individuals seeking treatment for alcohol dependence were in the lower socioeconomic status (SES) cluster, whereas those seeking treatment for drug dependence were in the midrange SES clusters, findings that are generally in concurrence with characteristics of treatment seekers in high-income countries. Prevalence estimates based on reports indicating that approximately 10% of individuals with substance dependence seek treatment suggest rates of alcohol dependence in Israel that are substantially higher those previously published, though still lower than most high-income countries. Nationwide epidemiologic studies exploring current rates of substance dependence and gambling disorder in Israel are urgently needed, and treatment options should be planned and funded accordingly. Potential reasons for these apparent low rates of treatment utilization for these disorders in Israel should be explored in order to improve services provided for this population.

  17. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction ofmore » this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set, the severe absorption associated with the refractive index change suggests that incorporating EC materials into phase correcting spatial light modulators (SLMS) would allow for only negligible phase correction before transmission losses became too severe. However, we would like to emphasize that other EC materials may allow sufficient phase correction with limited absorption, which could make this approach attractive.« less

  18. Childhood maltreatment, personality disorders and 3-year persistence of adult alcohol and nicotine dependence in a national sample.

    PubMed

    Elliott, Jennifer C; Stohl, Malka; Wall, Melanie M; Keyes, Katherine M; Skodol, Andrew E; Eaton, Nicholas R; Shmulewitz, Dvora; Goodwin, Renee D; Grant, Bridget F; Hasin, Deborah S

    2016-05-01

    Persistent cases of alcohol and nicotine dependence are associated with considerable morbidity and mortality, and are predicted by childhood maltreatment and personality disorders. Our aim was to test whether personality disorders (individually or conjointly) mediate the relationship between childhood maltreatment and the persistence of dependence. Personality disorders, modeled dimensionally, were tested as mediators of the relationship between childhood maltreatment and the 3-year persistence of alcohol and nicotine dependence in participants in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) who had current alcohol and nicotine dependence in their baseline interview. Individual personality disorders were assessed in separate models. Then, those that were significant were examined jointly in multiple mediator models to determine their total and unique effects. A large, nationally representative US survey. Participants ≥ 18 years who completed baseline and 3-year follow-up NESARC interviews who had baseline alcohol dependence (n = 1172; 68% male) or nicotine dependence (n = 4017; 52.9% male). Alcohol Use Disorder and Associated Disabilities Interview Schedule (AUDADIS-IV) measures of childhood maltreatment, personality disorders and alcohol/nicotine dependence. Individual models indicated that many personality disorders mediated the relationship between childhood maltreatment and the 3-year persistence of alcohol and nicotine dependence (each explaining 6-46% of the total effect, Ps < 0.05). In multiple mediator models, borderline and antisocial symptoms remained significant mediators, each explaining 20-37% of the total effect (Ps < 0.01). Personality disorder symptoms (especially borderline and antisocial) help explain the association between childhood maltreatment and persistent alcohol and nicotine dependence. © 2016 Society for the Study of Addiction.

  19. Childhood maltreatment, personality disorders, and 3-year persistence of adult alcohol and nicotine dependence in a national sample

    PubMed Central

    Elliott, Jennifer C.; Stohl, Malka; Wall, Melanie M.; Keyes, Katherine M.; Skodol, Andrew E.; Eaton, Nicholas R.; Shmulewitz, Dvora; Goodwin, Renee D.; Grant, Bridget F.; Hasin, Deborah S.

    2015-01-01

    Background and Aims Persistent cases of alcohol and nicotine dependence are associated with considerable morbidity and mortality, and are predicted by childhood maltreatment and personality disorders. Our aim was to test whether personality disorders (individually or conjointly) mediate the relationship between childhood maltreatment and the persistence of dependence. Design Personality disorders, modeled dimensionally, were tested as mediators of the relationship between childhood maltreatment and the 3-year persistence of alcohol and nicotine dependence in participants in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) who had current alcohol and nicotine dependence in their baseline interview. Individual personality disorders were assessed in separate models. Then, those that were significant were examined jointly in multiple mediator models to determine their total and unique effects. Setting A large, nationally representative United States survey. Participants Participants ≥18 years who completed baseline and 3-year follow-up NESARC interviews who had baseline alcohol dependence (n=1,172; 68% male) or nicotine dependence (n=4,017; 52.9% male). Measurements Alcohol Use Disorder and Associated Disabilities Interview Schedule (AUDADIS-IV) measures of childhood maltreatment, personality disorders, and alcohol/nicotine dependence. Findings Individual models indicated that many personality disorders mediated the relationship between childhood maltreatment and the 3-year persistence of alcohol and nicotine dependence (each explaining 6%–46% of the total effect, ps<0.05). In multiple mediator models, borderline and antisocial symptoms remained significant mediators, each explaining 20%–37% of the total effect (ps<0.01). Conclusions Personality disorder symptoms (especially borderline and antisocial) help explain the association between childhood maltreatment and persistent alcohol and nicotine dependence. PMID:26714255

  20. Column compression strength of tubular packaging forms made from paper

    Treesearch

    Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson

    2006-01-01

    Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...

  1. Fractional Quantum Hall Effect in Infinite-Layer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.

    2000-12-18

    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ''one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T>0 or with disorder.

  2. Anisotropy of electrical resistivity in PVT grown WSe2-x crystals

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.

    2018-05-01

    Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.

  3. N-(1-Allyl-3-chloro-4-eth-oxy-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-06-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8).

  4. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    PubMed

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  5. Comorbid phobic disorders do not influence outcome of alcohol dependence treatment. Results of a naturalistic follow-up study.

    PubMed

    Marquenie, Loes A; Schadé, Annemiek; Van Balkom, Anton J L M; Koeter, Maarten; Frenken, Sipke; van den Brink, Wim; van Dyck, Richard

    2006-01-01

    Despite claims that comorbid anxiety disorders tend to lead to a poor outcome in the treatment of alcohol dependence, the few studies on this topic show conflicting results. To test whether the outcome of treatment-seeking alcohol-dependent patients with a comorbid phobic disorder is worse than that of similar patients without a comorbid phobic disorder. The probabilities of starting to drink again and of relapsing into regular heavy drinking in (i) a group of 81 alcohol-dependent patients with comorbid social phobia or agoraphobia were compared with those in (ii) a group of 88 alcohol-dependent patients without anxiety disorders in a naturalistic follow-up using Cox regression analysis. Adjusted for initial group differences, the hazard ratio for the association of phobic disorders with resumption of drinking was 1.05 (95% CI, 0.85-1.30, P = 0.66) and the adjusted hazard ratio for the association of phobic disorders with a relapse into regular heavy drinking was 1.02 (95% CI, 0.78-1.33, P = 0.89). The findings of this study do not confirm the idea that alcohol-dependent patients who have undergone alcohol-dependence treatment are at greater risk of a relapse if they have a comorbid anxiety disorder. No differences were found in abstinence duration or time to relapse into regular heavy drinking between patients with and without comorbid phobic disorders.

  6. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material

    NASA Astrophysics Data System (ADS)

    Butz, Benjamin

    2015-03-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB <--> BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research Foundation through the SFB 953 ``Synthetic Carbon Allotropes.''

  7. Fano-shaped impurity spectral density, electric-field-induced in-gap state, and local magnetic moment of an adatom on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua

    2017-08-01

    Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.

  8. Selective excitation of exciton transitions in PTCDA crystals and films

    NASA Astrophysics Data System (ADS)

    Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; Desilva, L. A. A.; Gisslén, L.; Scholz, R.

    2010-04-01

    Photoluminescence excitation studies on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) single crystals and polycrystalline PTCDA films are compared to the calculated excitonic dispersion deduced from an exciton model including the coupling between Frenkel and charge transfer (CT) excitons along the stacking direction. For excitation energies below the 0-0 Frenkel exciton absorption band at 5 K these measurements enable the selective excitation of several CT states. The CT2 state involving stacked PTCDA molecules reveals two excitation resonances originating from different vibronic sublevels. Moreover, the fundamental transition of the CT1 exciton state delocalized over both basis molecules in the crystal unit cell has been identified from the corresponding excitation resonance. From the excitation energy dependence the fundamental transition energies of the CT2 and CT1 excitons have been deduced to occur at 1.95 and 1.98 eV, respectively. When the excitation energy exceeds ˜2.08eV , we observe a strong emission channel which is related to the indirect minimum of the lowest dispersion branch dominated by Frenkel excitons. Photoluminescence excitation spectroscopy measurements on polycrystalline PTCDA films reveal a strong CT2 signal intensity which is attributed to an increased density of defect-related CT2 states that are preferentially formed by slightly deformed or compressed stacked PTCDA molecules in the vicinity of defects or at grain boundaries. Temperature-dependent PL measurements in polycrystalline PTCDA films between 10 and 300 K at an excitation of 1.88 eV further allow a detailed investigation of the CT2 transition and its vibronic subband.

  9. Close-packed structure dynamics with finite-range interaction: computational mechanics with individual layer interaction.

    PubMed

    Rodriguez-Horta, Edwin; Estevez-Rams, Ernesto; Lora-Serrano, Raimundo; Neder, Reinhard

    2017-09-01

    This is the second contribution in a series of papers dealing with dynamical models in equilibrium theories of polytypism. A Hamiltonian introduced by Ahmad & Khan [Phys. Status Solidi B (2000), 218, 425-430] avoids the unphysical assignment of interaction terms to fictitious entities given by spins in the Hägg coding of the stacking arrangement. In this paper an analysis of polytype generation and disorder in close-packed structures is made for such a Hamiltonian. Results are compared with a previous analysis using the Ising model. Computational mechanics is the framework under which the analysis is performed. The competing effects of disorder and structure, as given by entropy density and excess entropy, respectively, are discussed. It is argued that the Ahmad & Khan model is simpler and predicts a larger set of polytypes than previous treatments.

  10. Anion mediated polytype selectivity among the basic salts of Co(II)

    NASA Astrophysics Data System (ADS)

    Ramesh, T. N.; Rajamathi, Michael; Vishnu Kamath, P.

    2006-08-01

    Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R 1 and 3R 2, with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R 2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R 1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO 42- ions.

  11. The moderating effect of gender on ideal-weight goals and exercise dependence symptoms.

    PubMed

    Cook, Brian; Hausenblas, Heather; Rossi, James

    2013-03-01

    Background and aims Exercise dependence is implicated in the development of eating disorders and muscle dysmorphic disorder. Although conceptually these disorders represent similar pathologies they largely affect different genders and result in opposite body composition, appearance, and ideal-weight goals (i.e., to gain or lose/maintain weight). Therefore, understanding individuals' ideal-weight goals related to engaging in exercise while simultaneously examining gender differences in exercise dependence symptoms may help to identify those whom may be most at-risk for eating disorders and muscle dysmorphic disorder. The purpose of our study was to examine the moderating effect of gender for exercise dependence symptoms in relation to weight gain, loss, or maintenance goals. Methods Self-reported exercise behavior and exercise dependence symptoms (i.e., Exercise Dependence Scale) were assessed in 513 undergraduate students. Results Our analysis revealed a moderating effect for gender on ideal-weight goals and a gender difference in exercise dependence symptoms. Specifically, men who were dissatisfied with their current weight reported more exercise dependence symptoms than women. Conclusions These results support a growing body of research and extend our understanding of the relationships among exercise dependence and gender specific body-focused psychiatric disorders.

  12. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    NASA Astrophysics Data System (ADS)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  13. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-01

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices. Electronic supplementary information (ESI) available: Detailed description of synthesis of CdZnS/ZnS, CIS/ZnS QDs and ZnO NPs; TEM images of CdZnS/ZnS and CIS/ZnS QDs; voltage-dependent luminance (CE variations of blue CdZnS/ZnS and yellow CIS/ZnS monochromatic QLEDs; EL spectra and energy band diagram of bilayered QD EML-based QLED with a stacking sequence of CdZnS/ZnS//CIS/ZnS QD; normalized EL spectra of CIS/ZnS//CdZnS/ZnS QD-bilayered QLEDs; comparison of current density of monochromatic QLEDs and bicolored white QLEDs; and voltage-dependent luminance (CE variations of CIS/ZnS QLED fabricated through 150 °C-EML baking. See DOI: 10.1039/c5nr00426h

  14. Substance use disorders in adolescents with attention deficit hyperactivity disorder: a 4-year follow-up study.

    PubMed

    Groenman, Annabeth P; Oosterlaan, Jaap; Rommelse, Nanda; Franke, Barbara; Roeyers, Herbert; Oades, Robert D; Sergeant, Joseph A; Buitelaar, Jan K; Faraone, Stephen V

    2013-08-01

    To examine the relationship between a childhood diagnosis of attention deficit hyperactivity disorder (ADHD) with or without oppositional defiant disorder (ODD)/conduct disorder (CD) and the development of later alcohol/drug use disorder [psychoactive substance use disorder (PSUD)] and nicotine dependence in a large European sample of ADHD probands, their siblings and healthy control subjects. Subjects (n = 1017) were participants in the Belgian, Dutch and German part of the International Multicenter ADHD Genetics (IMAGE) study. IMAGE families were identified through ADHD probands aged 5-17 years attending out-patient clinics, and control subjects from the same geographic areas. After a follow-up period (mean: 4.4 years) this subsample was re-assessed at a mean age of 16.4 years. PSUD and nicotine dependence were assessed using the Diagnostic Interview Schedule for Children, Alcohol Use Disorders Identification Test, Drug Abuse Screening Test and Fagerström test for Nicotine Dependence. The ADHD sample was at higher risk of developing PSUD [hazard ratio (HR) = 1.77, 95% confidence interval (CI) = 1.05-3.00] and nicotine dependence (HR = 8.61, 95% CI = 2.44-30.34) than healthy controls. The rates of these disorders were highest for ADHD youth who also had CD, but could not be accounted for by this comorbidity. We did not find an increased risk of developing PSUD (HR = 1.18, 95% CI = 0.62-2.27) or nicotine dependence (HR = 1.89, 95% CI = 0.46-7.77) among unaffected siblings of ADHD youth. A childhood diagnosis of attention deficit hyperactivity disorder is a risk factor for psychoactive substance use disorder and nicotine dependence in adolescence and comorbid conduct disorder, but not oppositional defiant disorder, further increases the risk of developing psychoactive substance use disorder and nicotine dependence. © 2013 Society for the Study of Addiction.

  15. TESTING FOR CPT VIOLATION IN B0s SEMILEPTONIC DECAYS

    NASA Astrophysics Data System (ADS)

    Kooten, R. Van

    2014-01-01

    A DØ analysis measuring the charge asymmetry Absl of like-sign dimuon events due to semileptonic b-hadron decays at the Fermilab Tevatron Collider has shown indications of possible anomalous CP violation in the mixing of neutral B mesons. This result has been used to extract the first senstivity to CPT violation in the B0s system. An analysis to explore further this anomaly by specifically measuring the semileptonic charge asymmetry, assl, in B0s decays is described, as well as how a variant of this analysis can be used to explore a larger set of CPT-violating parameters in the B0s system for the first time.

  16. Modeling charge transport in organic photovoltaic materials.

    PubMed

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M

    2009-11-17

    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.

  17. Combined effects of π-π stacking and hydrogen bonding on the (N1) acidity of uracil and hydrolysis of 2'-deoxyuridine.

    PubMed

    Kellie, Jennifer L; Navarro-Whyte, Lex; Carvey, Matthew T; Wetmore, Stacey D

    2012-03-01

    M06-2X/6-31+G(d,p) is used to study the simultaneous effects of π-π stacking interactions with phenylalanine (modeled as benzene) and hydrogen bonding with small molecules (HF, H(2)O, and NH(3)) on the N1 acidity of uracil and the hydrolytic deglycosylation of 2'-deoxyuridine (dU) (facilitated by fully (OH(-)) or partially (HCOO(-)···H(2)O) activated water). When phenylalanine is complexed with isolated uracil, the proton affinity of all acceptor sites significantly increases (by up to 28 kJ mol(-1)), while the N1 acidity slightly decreases (by ~6 kJ mol(-1)). When small molecules are hydrogen bound to uracil, addition of the phenylalanine ring can increase or decrease the acidity of uracil depending on the number and nature (acidity) of the molecules bound. Furthermore, a strong correlation between the effects of π-π stacking on the acidity of U and the dU deglycosylation reaction energetics is found, where the hydrolysis barrier can increase or decrease depending on the nature and number of small molecules bound, the nucleophile considered (which dictates the negative charge on U in the transition state), and the polarity of the (bulk) environment. These findings emphasize that the catalytic (or anticatalytic) role of the active-site aromatic amino acid residues is highly dependent on the situation under consideration. In the case of uracil-DNA glycosylase (UNG), which catalyzes the hydrolytic excision of uracil from DNA, the type of discrete hydrogen-bonding interactions with U, the nature of the nucleophile, and the anticipated weak, nonpolar environment in the active site suggest that phenylalanine will be slightly anticatalytic in the chemical step, and therefore experimentally observed contributions to catalysis may entirely result from associated structural changes that occur prior to deglycosylation.

  18. [Personality variables, psychopathological alterations and personality disorders in alcohol-dependent patients according to Cloninger's typology of alcohol abuse].

    PubMed

    Echeburúa, Enrique; Bravo de Medina, Ricardo; Aizpiri, Javier

    2008-11-01

    In this paper, an evaluation of Cloninger's typology of alcohol abuse in personality, psychopathology and personality disorders is carried out. The sample consisted of 158 alcoholics in treatment (56 Type I alcohol-dependent patients and 102 Type II alcohol-dependent patients). All subjects were assessed with diverse assessment tools related to personality (Impulsiveness Scale, Sensation Seeking Scale and STAI), psychopathology (SCL-90-R, BDI and Inadaptation Scale) and personality disorders (IPDE). The main findings were that Type II alcohol-dependent patients were more impulsive and sensation-seeking and they displayed more hostility and emotional distress than Type I alcohol-dependent patients. Personality disorders were not so prevalent in the case of Type I alcohol-dependent patients. The most specific personality disorders for Type II alcohol-dependent patients were narcissistic and paranoid. The implications of this study for further research are commented on.

  19. Age of onset and temporal sequencing of lifetime DSM-IV alcohol use disorders relative to comorbid mood and anxiety disorders.

    PubMed

    Falk, Daniel E; Yi, Hsiao-Ye; Hilton, Michael E

    2008-04-01

    Understanding the temporal sequencing of alcohol use disorders (AUDs) and comorbid mood and anxiety disorders may help to disentangle the etiological underpinnings of comorbidity. Methodological limitations of previous studies, however, may have led to inconsistent or inconclusive findings. To describe the temporal sequencing of the onset of AUDs relative to the onset of specific comorbid mood and anxiety disorders using a large, nationally representative survey. AUD onset tended to follow the onset of 2 of the 9 mood and anxiety disorders (specific and social phobia). The onset of alcohol abuse tended to precede the onset of 5 of the 9 mood and anxiety disorders (GAD, panic, panic with agoraphobia, major depression, and dysthymia), whereas the onset of alcohol dependence tended to precede the onset of only 2 of the 9 mood and anxiety disorders (GAD and panic). Lag times between primary and subsequent disorders generally ranged from 7 to 16 years. Comorbid individuals whose alcohol dependence came after panic with agoraphobia, hypomania, and GAD had increased risk of persistent alcohol dependence. Alcohol abuse, but not dependence, precedes many mood and anxiety disorders. If the primary disorder does in fact play a causative or contributing role in the development of the subsequent disorder, this role can best be described as "temporally distal." However, in assessing the risk for persistent alcohol dependence, clinicians should not only consider the type of comorbid mood/anxiety disorder, but also the temporal ordering of these disorders.

  20. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less

  1. Saprophytic Activity and Sporulation of Cryphonectria parasitica on Dead Chestnut Wood in Forests with Naturally Established Hypovirulence.

    PubMed

    Prospero, S; Conedera, M; Heiniger, U; Rigling, D

    2006-12-01

    ABSTRACT Sustainable biological control of the chestnut blight fungus Crypho-nectria parasitica with hypovirulence depends on the production and dissemination of hypovirus-infected propagules of the pathogen. We investigated the ability of C. parasitica to sporulate and produce hypo-virus-infected spores on recently dead chestnut wood in coppice stands in southern Switzerland where hypovirulence has been naturally established. The number and type (active, inactive, or none) of cankers was assessed on experimentally cut and stacked stems, firewood stacks, and natural dead wood. Hypovirus-free and hypovirus-infected strains readily survived for more than 1 year in the chestnut blight cankers of the stacked stems. Sporulation of C. parasitica was observed on the surface of preexisting inactive and active cankers, as well as on newly colonized bark areas and was significantly more abundant than on comparable cankers on living stems. On all types of dead wood, we observed more stromata with perithecia than with pycnidia; however, a large proportion of the stromata was not differentiated. All perithecia examined yielded only hypovirus-free ascospores. The incidence of pycnidia that produced hypovirus-infected conidia ranged from 5% on natural dead wood to 41% on the experimental stacks. The mean virus transmission rate into conidia was 69%. Our study demonstrates a considerable saprophytic activity of C. parasitica on recently dead chestnut wood and supports the hypothesis of a role of this saprophytic phase in the epidemiology of hypovirulence.

  2. Persistent Self-Association of Solute Molecules in Solution.

    PubMed

    Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei

    2017-11-02

    The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.

  3. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode.

    PubMed

    Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa

    2018-04-18

    Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

  4. Personality Disorders in Gay, Lesbian, Bisexual and Transgender Chemically Dependent Patients

    PubMed Central

    Grant, Jon E.; Flynn, Meredith; Odlaug, Brian L.; Schreiber, Liana R.N.

    2011-01-01

    This study sought to examine personality disorders and their related clinical variables in a sample of gay, lesbian, bisexual and transgender (GLBT) individuals with substance use disorders. Study participants were 145 GLBT patients who were admitted to a residential dual diagnosis chemical dependency treatment program. A total of 136 (93.8%) had at least one personality disorder. The most common personality disorders were borderline (n=93; 64.1%), obsessive-compulsive (n=82; 56.6%), and avoidant (n=71; 49.0%) personality disorders. Preliminary data suggests there is a high prevalence of personality disorders in the GLBT population undergoing chemical dependency treatment. PMID:21838838

  5. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  6. Comorbidity and risk indicators for alcohol use disorders among persons with anxiety and/or depressive disorders: findings from the Netherlands Study of Depression and Anxiety (NESDA).

    PubMed

    Boschloo, Lynn; Vogelzangs, Nicole; Smit, Johannes H; van den Brink, Wim; Veltman, Dick J; Beekman, Aartjan T F; Penninx, Brenda W J H

    2011-06-01

    This study examines comorbidity of alcohol abuse and alcohol dependence as well as its risk indicators among anxious and/or depressed persons, also considering temporal sequencing of disorders. Baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including 2329 persons with lifetime DSM-IV anxiety (social phobia, generalized anxiety disorder, panic disorder, and agoraphobia) and/or depressive (major depressive disorder and dysthymia) disorders and 652 controls. Lifetime diagnoses of DSM-IV alcohol abuse and dependence were established, as well as information about socio-demographic, vulnerability, addiction-related and anxiety/depression-related characteristics. Temporal sequencing of disorders was established retrospectively, using age of onset. Of persons with combined anxiety/depression 20.3% showed alcohol dependence versus 5.5% of controls. Prevalence of alcohol abuse was similar across groups (± 12%). Independent risk indicators for alcohol dependence among anxious and/or depressed persons were male gender, vulnerability factors (family history of alcohol dependence, family history of anxiety/depression, openness to experience, low conscientiousness, being single, and childhood trauma), addiction-related factors (smoking and illicit drug use) and early anxiety/depression onset. Persons with secondary alcohol dependence were more neurotic, more often single and lonelier, while persons with primary alcohol dependence were more often male and more extravert. Alcohol dependence, but not abuse, is more prevalent in anxious and/or depressed persons. Persons with comorbid alcohol dependence constitute a distinct subgroup of anxious and/or depressed persons, characterized by addiction-related habits and vulnerability. However, considerable variation in characteristics exists depending on temporal sequencing of disorders. This knowledge may improve identification and treatment of those anxious and/or depressed patients who are additionally suffering from alcohol dependence. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    PubMed Central

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119

  8. Electronic delocalization in discotic liquid crystals: a joint experimental and theoretical study.

    PubMed

    Crispin, Xavier; Cornil, Jérôme; Friedlein, Rainer; Okudaira, Koji Kamiya; Lemaur, Vincent; Crispin, Annica; Kestemont, Gaël; Lehmann, Matthias; Fahlman, Mats; Lazzaroni, Roberto; Geerts, Yves; Wendin, Göran; Ueno, Nobuo; Brédas, Jean-Luc; Salaneck, William R

    2004-09-29

    Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper pi-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the pi-electrons along the discotic stacks.

  9. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  10. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin

    NASA Astrophysics Data System (ADS)

    Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw

    2014-04-01

    Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.

  11. High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu

    2006-12-01

    We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.

  12. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  13. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  14. The Direct FuelCell™ stack engineering

    NASA Astrophysics Data System (ADS)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  15. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  16. Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs.

    PubMed

    Gil-Rostra, Jorge; Ferrer, Francisco J; Espinós, Juan Pedro; González-Elipe, Agustín R; Yubero, Francisco

    2017-05-17

    A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.

  17. Theoretical study of pyramid sizes and scattering effects in silicon photovoltaic module stacks.

    PubMed

    Höhn, Oliver; Tucher, Nico; Bläsi, Benedikt

    2018-03-19

    Front side pyramids are the industrial standard for wafer based monocrystalline silicon solar cells. These pyramids fulfill two tasks: They act as anti-reflective structure on the one hand and as a light-trapping structure on the other hand. In recent development smaller pyramids with sizes below 1 µm attract more and more interest. In this paper an optical analysis of periodically arranged front side pyramids is performed. The impact on the reflectance as well as on the useful absorption within the solar cell is investigated depending on the pyramids size, the amount of additional scattering in the system and the quality of the rear side reflector. In contrast to other investigations not only the solar cell, but the full photovoltaic (PV) module stack is considered. This can strongly influence results, as we show in this paper. The results indicate that in a PV module stack with realistic assumptions for the amount of scattering as well as for the rear side reflectance only small differences for pyramids with sizes above 600 nm occur. Preliminary conclusions for random pyramids deduced from these results for periodically arranged pyramids indicate that these differences could become even smaller.

  18. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria Carmen; González-Elipe, Agustín R.; Yubero, Francisco

    2017-10-01

    Sculptured porous Bragg microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with a zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength-dependent optical retarders. This optical behavior is attributed to a self-structuration of the stacked layers involving the lateral association of nanocolumns in the direction perpendicular to the main flux of particles during the multilayer film growth, as observed by focused ion beam scanning electron microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids, or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems has been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. The sculptured BMs have been incorporated as microfluidic chips for optical transduction for label-free vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical monitoring of vapor and liquids of different refractive indices and aqueous solutions of glucose flowing through the microfluidic chips are described.

  19. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidaux, Y., E-mail: yves.bidaux@alpeslasers.ch; Alpes Lasers SA, 1-3 Maximilien-de-Meuron, CH-2000 Neuchatel; Terazzi, R.

    2015-09-07

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement ismore » furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.« less

  20. Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao

    2016-03-01

    We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).

  1. Selective catalytic hydrogenation of the N-acyl and uridyl double bonds in the tunicamycin family of protein N-glycosylation inhibitors

    USDA-ARS?s Scientific Manuscript database

    Tunicamycin is a Streptomyces-derived inhibitor of eukaryotic protein N-glycosylation and bacterial cell wall biosynthesis, and is a potent and general toxin by these biological mechanisms. The antibacterial activity is dependent in part upon a p-p stacking interaction between the tunicamycin uridyl...

  2. Tunable electronic lens using a gradient polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Wu, Shin-Tson

    2003-01-01

    Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.

  3. [Comorbid neurotic disorders in opioid-dependent patients].

    PubMed

    Zobin, M L; Iarovoĭ, V S

    2012-01-01

    Necessity of distinguishing between psychopathology of opioid dependence itself and co-occurred neurotic (ICD-10 item F4) disorders is caused by the need to choose an adequate therapy. The prevalence and types of comorbid neurotic disorders among opioid-dependent patients in sustained full and partial remission are described.

  4. Exercise dependence score in patients with longstanding eating disorders and controls: the importance of affect regulation and physical activity intensity.

    PubMed

    Bratland-Sanda, Solfrid; Martinsen, Egil W; Rosenvinge, Jan H; Rø, Oyvind; Hoffart, Asle; Sundgot-Borgen, Jorunn

    2011-01-01

    To examine associations among exercise dependence score, amount of physical activity and eating disorder (ED) symptoms in patients with longstanding ED and non-clinical controls. Adult female inpatients (n = 59) and 53 age-matched controls participated in this cross sectional study. Assessments included the eating disorders examination, eating disorders inventory, exercise dependence scale, reasons for exercise inventory, and MTI Actigraph accelerometer. Positive associations were found among vigorous, not moderate, physical activity, exercise dependence score and ED symptoms in patients. In the controls, ED symptoms were negatively associated with vigorous physical activity and not correlated with exercise dependence score. Exercise for negative affect regulation, not weight/appearance, and amount of vigorous physical activity were explanatory variables for exercise dependence score in both groups. The positive associations among exercise dependence score, vigorous physical activity and ED symptoms need proper attention in the treatment of longstanding ED. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.

  5. Fuel cell manifold sealing system

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  6. Method for producing a fuel cell manifold seal

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1982-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  7. Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation

    NASA Astrophysics Data System (ADS)

    Das, Aniruddha

    2017-11-01

    5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.

  8. [The Dependent Personality Questionnaire (DPQ): French translation and validation study in a population of 138 hospitalized psychiatric patients].

    PubMed

    Loas, G; Monestes, J-L; Wallier, J; Berthoz, S; Corcos, M

    2010-04-01

    Dependent personality disorder is a new diagnosis introduced in the third version of the DSM (DSM-III). Contrary to other disorders of personality, as the borderline or the schizotypal personalities, there are no specific interviews or questionnaires focusing on dependent personality. Thus the study of dependent personality disorder requires the use of global interviews or questionnaire as the SCID -II or SIDP-IV. Recently, Tyrer and colleagues (2004) have proposed an 8-item questionnaire, the DPQ (Dependent Personality Questionnaire). Each item of the DPQ is rated from 0 to 3 with a total score ranging from 0 to 24. Using a sample of 30 psychiatric patients presenting various diagnoses and a dependent personality disorder for the half of the sample, the authors have determined the cutoff score allowing the diagnosis of DSM-IV Dependent Personality Disorder. A cutoff of 10 was associated with the best sensitivity (87.5%), specificity (87.5%) and positive predictive value (87.5%). Moreover, the value of the Youden coefficient (Sensitivity+Specificity - 100) was 75. The aim of the study was to present the French version of the DPQ and to determine its psychometric properties as well as the cutoff score. One hundred and thirty-eight psychiatric inpatients (97 females, 41 males) with a mean age of 42.26 years were included in the study. The patients were hospitalized in an inpatients unit receiving mood disorders, neurotic disorders or suicide attempters. The subjects filled out the French versions of the DPQ and the Personality Disorders Questionnaire of Hyler, PDQ-4+. Using the PDQ-4+ two groups were built: 25 subjects filled out the diagnoses of dependent personality disorder and 20 subjects did not meet any criteria of dependent personality disorder. Then, for different values of the DPQ, sensitivity, specificity and positive predictive value and Youden indicia (Sensitivity+Specificity - 100) were calculated. The best values of Youden indicia (74) were obtained for the cutoff of 13 on the DPQ. The corresponding sensitivity, specificity and positive predictive value were respectively 84, 90 and 91.3%. The French version of the DPQ is now available and permits detection of dependent personality in French populations. Our results must be replicated using structured interviews of personality disorder instead of questionnaires (PDQ-4+) and other samples with different prevalence of dependent personality disorders must be used to test the potential cutoff scores of the DPQ. 2009 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  9. Transient analysis of a solid oxide fuel cell stack with crossflow configuration

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Liu, S. F.

    2018-05-01

    This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.

  10. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  11. Personality Disorder Features and Insomnia Status amongst Hypnotic-Dependent Adults

    PubMed Central

    Ruiter, Megan E.; Lichstein, Kenneth L.; Nau, Sidney D.; Geyer, James

    2012-01-01

    Objective To determine the prevalence of personality disorders and their relation to insomnia parameters among persons with chronic insomnia with hypnotic dependence. Methods Eighty-four adults with chronic insomnia with hypnotic dependence completed the SCID-II personality questionnaire, two-weeks of sleep diaries, polysomnography, and measures of insomnia severity, impact, fatigue severity, depression, anxiety, and quality of life. Frequencies, between-subjects t-tests and hierarchical regression models were conducted. Results Cluster C personality disorders were most prevalent (50%). Obsessive-compulsive personality disorder (OCPD) was most common (n=39). These individuals compared to participants with no personality disorders did not differ in objective and subjective sleep parameters. Yet, they had poorer insomnia-related daytime functioning. OCPD and Avoidant personality disorders features were associated with poorer daytime functioning. OCPD features were related to greater fatigue severity, and overestimation of time awake was trending. Schizotypal and Schizoid features were positively associated with insomnia severity. Dependent personality disorder features were related to underestimating time awake. Conclusions Cluster C personality disorders were highly prevalent in patients with chronic insomnia with hypnotic dependence. Features of Cluster C and A personality disorders were variously associated with poorer insomnia-related daytime functioning, fatigue, and estimation of nightly wake-time. Future interventions may need to address these personality features. PMID:22938862

  12. Personality disorder features and insomnia status amongst hypnotic-dependent adults.

    PubMed

    Ruiter, Megan E; Lichstein, Kenneth L; Nau, Sidney D; Geyer, James D

    2012-10-01

    To determine the prevalence of personality disorders and their relation to insomnia parameters among persons with chronic insomnia with hypnotic dependence. Eighty-four adults with chronic insomnia with hypnotic dependence completed the SCID-II personality questionnaire, two-weeks of sleep diaries, polysomnography, and measures of insomnia severity, impact, fatigue severity, depression, anxiety, and quality of life. Frequencies, between-subjects t-tests and hierarchical regression models were conducted. Cluster C personality disorders were most prevalent (50%). Obsessive-Compulsive personality disorder (OCPD) was most common (n=39). These individuals compared to participants with no personality disorders did not differ in objective and subjective sleep parameters. Yet, they had poorer insomnia-related daytime functioning. OCPD and Avoidant personality disorders features were associated with poorer daytime functioning. OCPD features were related to greater fatigue severity, and overestimation of time awake was trending. Schizotypal and Schizoid features were positively associated with insomnia severity. Dependent personality disorder features were related to underestimating time awake. Cluster C personality disorders were highly prevalent in patients with chronic insomnia with hypnotic dependence. Features of Cluster C and A personality disorders were variously associated with poorer insomnia-related daytime functioning, fatigue, and estimation of nightly wake-time. Future interventions may need to address these personality features. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Clinical differences between cocaine-dependent patients with and without antisocial personality disorder.

    PubMed

    Comín, Marina; Redondo, Santiago; Daigre, Constanza; Grau-López, Lara; Casas, Miguel; Roncero, Carlos

    2016-12-30

    The aim of this study is to compare the features of two groups of cocaine dependent patients in treatment, one of them with co-morbid diagnosis of antisocial personality disorder and the other not. Cross-sectional design, with 143 cocaine-dependent patients attending a drug unit, distributed in two groups: patients with and without Antisocial Personality Disorder. As results, we found that the 15.38% of the sample were diagnosed with an Antisocial Personality Disorder. In relation to socio-demographic variables, Antisocial Personality Disorder patients have less probability of being working or studying (9.1% vs. 47.9%). After multivariate analysis it was found that significantly Antisocial Personality Disorder patients have more opiates dependence (OR: 0.219; 95% IC 0.072-0.660), sedative dependence (OR: 0.203; 95% IC 0.062-0.644) and in more cases show Borderline Personality Disorder (OR: 0.239; 95% IC 0.077-0.746). This study highlights significant differences between cocaine addicts with or without an Antisocial Personality Disorder. All these differences are good indicators of the complexity of the patients with this personality disorder. Better knowledge of their profile will help us to improve the design of specific treatment programs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Mood disorder, anxiety, and suicide risk among subjects with alcohol abuse and/or dependence: a population-based study.

    PubMed

    Wiener, Carolina D; Moreira, Fernanda P; Zago, Alethea; Souza, Luciano M; Branco, Jeronimo C; Oliveira, Jacqueline F de; Silva, Ricardo A da; Portela, Luis V; Lara, Diogo R; Jansen, Karen; Oses, Jean P

    2018-01-01

    To evaluate the prevalence of alcohol abuse and/or dependence in a population-based sample of young adults and assess the prevalence of comorbid mood disorders, anxiety, and suicide risk in this population. This cross-sectional, population-based study enrolled 1,953 young adults aged 18-35 years. The CAGE questionnaire was used to screen for alcohol abuse and/or dependence, with CAGE scores ≥ 2 considered positive. Psychiatric disorders were investigated through the structured Mini International Neuropsychiatric Interview (MINI). Alcohol abuse and/or dependence was identified in 187 (9.60%) individuals (5.10% among women and 15.20% among men). Alcohol abuse and/or dependence were more prevalent among men than women, as well as among those who used tobacco, illicit drugs or presented with anxiety disorder, mood disorder, and suicide risk. These findings suggest that alcohol abuse and/or dependence are consistently associated with a higher prevalence of psychiatric comorbidities, could be considered important predictors of other psychiatric disorders, and deserve greater public heath attention, pointing to the need for alcohol abuse prevention programs.

  15. Maladaptive perfectionism as mediator among psychological control, eating disorders, and exercise dependence symptoms in habitual exerciser

    PubMed Central

    Costa, Sebastiano; Hausenblas, Heather A.; Oliva, Patrizia; Cuzzocrea, Francesca; Larcan, Rosalba

    2016-01-01

    Background and aims The current study examined the mediating role of maladaptive perfectionism among parental psychological control, eating disorder symptoms, and exercise dependence symptoms by gender in habitual exercisers. Methods Participants were 348 Italian exercisers (n = 178 men and n = 170 women; M age = 20.57, SD = 1.13) who completed self-report questionnaires assessing their parental psychological control, maladaptive perfectionism, eating disorder symptoms, and exercise dependence symptoms. Results Results of the present study confirmed the mediating role of maladaptive perfectionism for eating disorder and exercise dependence symptoms for the male and female exercisers in the maternal data. In the paternal data, maladaptive perfectionism mediated the relationships between paternal psychological control and eating disorder and exercise dependence symptoms as full mediator for female participants and as partial mediator for male participants. Discussion Findings of the present study suggest that it may be beneficial to consider dimensions of maladaptive perfectionism and parental psychological control when studying eating disorder and exercise dependence symptoms in habitual exerciser. PMID:28092194

  16. Maladaptive perfectionism as mediator among psychological control, eating disorders, and exercise dependence symptoms in habitual exerciser.

    PubMed

    Costa, Sebastiano; Hausenblas, Heather A; Oliva, Patrizia; Cuzzocrea, Francesca; Larcan, Rosalba

    2016-03-01

    Background and aims The current study examined the mediating role of maladaptive perfectionism among parental psychological control, eating disorder symptoms, and exercise dependence symptoms by gender in habitual exercisers. Methods Participants were 348 Italian exercisers (n = 178 men and n = 170 women; M age = 20.57, SD = 1.13) who completed self-report questionnaires assessing their parental psychological control, maladaptive perfectionism, eating disorder symptoms, and exercise dependence symptoms. Results Results of the present study confirmed the mediating role of maladaptive perfectionism for eating disorder and exercise dependence symptoms for the male and female exercisers in the maternal data. In the paternal data, maladaptive perfectionism mediated the relationships between paternal psychological control and eating disorder and exercise dependence symptoms as full mediator for female participants and as partial mediator for male participants. Discussion Findings of the present study suggest that it may be beneficial to consider dimensions of maladaptive perfectionism and parental psychological control when studying eating disorder and exercise dependence symptoms in habitual exerciser.

  17. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Crystal structure of [propane-1,3-diylbis(piperidine-4,1-di-yl)]bis-[(pyridin-4-yl)methanone]-4,4'-oxydi-benzoic acid (1/1).

    PubMed

    Low, Emily M; LaDuca, Robert L

    2014-09-01

    In the title co-crystal, C25H32N4O2·C14H10O5, mol-ecules are connected into supra-molecular chains aligned along [102] by O-H⋯N hydrogen bonding. These aggregate into supra-molecular layers oriented parallel to (20-1) by C-H⋯O inter-actions. These layers then stack in an ABAB pattern along the c crystal direction to give the full three-dimensional crystal structure. The central chain in the dipyridylamide has an anti-anti conformation. The dihedral angle between the aromatic ring planes is 29.96 (3)°. Disorder is noted in some of the residues in the structure and this is manifested in two coplanar dispositions of one statistically disordered carb-oxy-lic acid group.

  19. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  20. Pressurized electrolysis stack with thermal expansion capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgeois, Richard Scott

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less

  1. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  2. Anisotropic charge transport in large single crystals of π-conjugated organic molecules.

    PubMed

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-05-07

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.

  3. Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils

    PubMed Central

    Kim, Jae In; Na, Sungsoo; Eom, Kilho

    2014-01-01

    Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture. PMID:24551113

  4. Disordered Quantum Gases and Spin-Dependent Lattices

    DTIC Science & Technology

    2013-07-07

    regarding the role of disorder in many-particle quantum systems, such as superconductors and electronic solids. These issues are of great technological...REPORT Disordered Quantum Gases and Spin-Dependent Lattices 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This grant supported the first realization of...the disordered Bose-Hubbard models using ultra-cold atoms trapped in a disordered optical lattice. Several critical questions regarding this crucial

  5. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  6. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  7. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    PubMed Central

    Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.

    2014-01-01

    Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550

  8. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  9. Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au

    NASA Astrophysics Data System (ADS)

    Radetic, T.; Lançon, F.; Dahmen, U.

    2002-08-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.

  10. 2-Amino­pyrimidin-1-ium 4-methyl­benzene­sulfonate

    PubMed Central

    Tabatabaee, Masoumeh; Noozari, Najmeh

    2011-01-01

    In the crystal structure of the title compound, C4H6N3 +·C7H7O3S−, inter­molecular N—H⋯O hydrogen bonds link the cations and anions into chains along [100]. Additional stabilization is provided by weak C—H⋯O hydrogen bonds. An inter­molecular π–π stacking inter­action with a centroid–centroid distance of 3.6957 (7) Å is also observed. The H atoms of the methyl group were refined as disordered over two sets of sites with equal occupancies PMID:21754830

  11. Liver and chorion cytochemistry.

    PubMed

    Roels, F; De Prest, B; De Pestel, G

    1995-01-01

    Microscopic visualization of peroxisomes in chorionic villus cytotrophoblast and in biopsy and autopsy samples of liver and kidney, the presence of enlarged liver macrophages containing lipid droplets insoluble in acetone and n-hexane as well as polarizing inclusions formed by stacks of trilamellar sheets are of diagnostic value in peroxisomal disorders. Methods are presented for evaluating these structures by light microscopy; trilamellar inclusions are only detected by electron microscopy. Macrophage features are preserved in archival paraffin blocks. In adrenal cortex, insoluble lipid, polarizing inclusions and trilamellar structures should be looked for. The stains are easily reproducible, and all reagents are commercially available.

  12. N-(1-Allyl-3-chloro-4-eth­oxy-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8):0.376 (8). PMID:24940237

  13. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated the skin after 7 h at a ten-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5% of applied MTX before skin saturation, and increased afterwards up to 8.0% at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section. In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.

  14. Anode reactive bleed and injector shift control strategy

    DOEpatents

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  15. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  16. Eating disorder risk, exercise dependence, and body weight dissatisfaction among female nutrition and exercise science university majors.

    PubMed

    Harris, Natalie; Gee, David; d'Acquisto, Debra; Ogan, Dana; Pritchett, Kelly

    2015-09-01

    Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON).

  17. Eating disorder risk, exercise dependence, and body weight dissatisfaction among female nutrition and exercise science university majors

    PubMed Central

    Harris, Natalie; Gee, David; D’Acquisto, Debra; Ogan, Dana; Pritchett, Kelly

    2015-01-01

    Background and Aims Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Methods Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. Results The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. Discussion and Conclusions This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON). PMID:26551912

  18. Caffeine intake, toxicity and dependence and lifetime risk for psychiatric and substance use disorders: an epidemiologic and co-twin control analysis.

    PubMed

    Kendler, Kenneth S; Myers, John; O Gardner, Charles

    2006-12-01

    Although caffeine is the most commonly used psychoactive substance and often produces symptoms of toxicity and dependence, little is known, especially in community samples, about the association between caffeine use, toxicity and dependence and risk for common psychiatric and substance use disorders. Assessments of lifetime maximal caffeine use and symptoms of caffeine toxicity and dependence were available on over 3600 adult twins ascertained from the population-based Virginia Twin Registry. Lifetime histories of major depression (MD), generalized anxiety disorder (GAD) and panic disorder, alcohol dependence, adult antisocial behavior and cannabis and cocaine abuse/dependence were obtained at personal interview. Logistic regression analyses in the entire sample and within monozygotic (MZ) twin pairs were conducted in SAS. In the entire sample, measures of maximal caffeine use, heavy caffeine use, and caffeine-related toxicity and dependence were significantly and positively associated with all seven psychiatric and substance use disorders. However, within MZ twin pairs, controlling for genetic and family environmental factors, these associations, while positive, were all non-significant. These results were similar when excluding twins who denied regular caffeine use. Maximal lifetime caffeine intake and caffeine-associated toxicity and dependence are moderately associated with risk for a wide range of psychiatric and substance use disorders. Analyses of these relationships within MZ twin pairs suggest that most of the observed associations are not causal. Rather, familial factors, which are probably in part genetic, predispose to both caffeine intake, toxicity and dependence and the risk for a broad array of internalizing and externalizing disorders.

  19. Gender differences in the relationship between gambling problems and the incidence of substance-use disorders in a nationally representative population sample

    PubMed Central

    Pilver, Corey E.; Libby, Daniel J.; Hoff, Rani A.; Potenza, Marc N.

    2013-01-01

    Background Cross-sectional studies have demonstrated gender-related differences in the associations between problem-gambling severity and substance-use disorders; however, these associations have not been examined longitudinally. We aimed to examine the prospective associations between problem-gambling severity and incident substance-use disorders in women versus men. Methods Analyses were conducted using Wave-1 and Wave-2 NESARC data focusing on psychiatric diagnoses from 34,006 non-institutionalized US adults. Inclusionary criteria for pathological gambling were used to categorize Wave-1 participants as at-risk/problem gambling (ARPG) and non-ARPG (i.e. non-gambling/low-frequency gambling/low-risk gambling). Dependent variables included the three-year incidence of any substance-use disorder, alcohol-use disorders, nicotine dependence, drug-use disorders, prescription drug-use disorders, and illicit drug-use disorders. Results Significant gender-by-ARPG status interactions were observed with respect to the three-year incidence of nicotine dependence and prescription drug-use disorders, and approached significance with respect to incident alcohol-use disorders. ARPG (relative to non-ARPG) was positively associated with nicotine dependence among women (OR=2.00; 95% CI=1.24-3.00). ARPG was negatively associated with incident prescription drug-use disorders among men (OR=0.30; 95% CI=0.10-0.88)). Finally, ARPG was positively associated with incident alcohol-use disorders among men (OR=2.20; 95% CI=1.39-3.48). Conclusions Gambling problems were associated with an increased 3-year incidence of nicotine dependence in women and alcohol dependence in men. These findings highlight the importance of considering gender in prevention and treatment initiatives for adults who are experiencing gambling problems. Moreover, the specific factors underlying the differential progressions of specific substance-use disorders in women and men with ARPG warrant identification. PMID:23755930

  20. Mapping of reciprocal space of La{sub 0.30}CoO{sub 2} in 3D: Analysis of superstructure diffractions and intergrowths with Co{sub 3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana

    2015-07-15

    We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less

  1. Toward the Discovery of Effective Polycyclic Inhibitors of α-Synuclein Amyloid Assembly*

    PubMed Central

    Lamberto, Gonzalo R.; Torres-Monserrat, Valentina; Bertoncini, Carlos W.; Salvatella, Xavier; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O.

    2011-01-01

    The fibrillation of amyloidogenic proteins is a critical step in the etiology of neurodegenerative disorders such as Alzheimer and Parkinson diseases. There is major interest in the therapeutic intervention on such aberrant aggregation phenomena, and the utilization of polyaromatic scaffolds has lately received considerable attention. In this regard, the molecular and structural basis of the anti-amyloidogenicity of polyaromatic compounds, required to evolve this molecular scaffold toward therapeutic drugs, is not known in detail. We present here biophysical and biochemical studies that have enabled us to characterize the interaction of metal-substituted, tetrasulfonated phthalocyanines (PcTS) with α-synuclein (AS), the major protein component of amyloid-like deposits in Parkinson disease. The inhibitory activity of the assayed compounds on AS amyloid fibril formation decreases in the order PcTS[Ni(II)] ∼ PcTS > PcTS[Zn(II)] ≫ PcTS[Al(III)] ≈ 0. Using NMR and electronic absorption spectroscopies we demonstrated conclusively that the differences in binding capacity and anti-amyloid activity of phthalocyanines on AS are attributed to their relative ability to self-stack through π-π interactions, modulated by the nature of the metal ion bound at the molecule. Low order stacked aggregates of phthalocyanines were identified as the active amyloid inhibitory species, whose effects are mediated by residue specific interactions. Such sequence-specific anti-amyloid behavior of self-stacked phthalocyanines contrasts strongly with promiscuous amyloid inhibitors with self-association capabilities that act via nonspecific sequestration of AS molecules. The new findings reported here constitute an important contribution for future drug discovery efforts targeting amyloid formation. PMID:21795682

  2. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    PubMed

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  3. The metallic state in neutral radical conductors: dimensionality, pressure and multiple orbital effects.

    PubMed

    Tian, Di; Winter, Stephen M; Mailman, Aaron; Wong, Joanne W L; Yong, Wenjun; Yamaguchi, Hiroshi; Jia, Yating; Tse, John S; Desgreniers, Serge; Secco, Richard A; Julian, Stephen R; Jin, Changqing; Mito, Masaki; Ohishi, Yasuo; Oakley, Richard T

    2015-11-11

    Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change. All three radicals order as spin-canted antiferromagnets, but spin-canted ordering is lost at pressures <1.5 GPa. At room temperature, their electrical conductivity increases rapidly with pressure, and the thermal activation energy for conduction Eact is eliminated at pressures ranging from ∼3 GPa for R = F to ∼12 GPa for R = Ph, heralding formation of a highly correlated (or bad) metallic state. For R = F, H the pressure-induced Mott insulator to metal conversion has been tracked by measurements of optical conductivity at ambient temperature and electrical resistivity at low temperature. For R = F compression to 6.2 GPa leads to a quasiquadratic temperature dependence of the resistivity over the range 5-300 K, consistent with formation of a 2D Fermi liquid state. DFT band structure calculations suggest that the ease of metallization of these radicals can be ascribed to their multiorbital character. Mixing and overlap of SOMO- and LUMO-based bands affords an increased kinetic energy stabilization of the metallic state relative to a single SOMO-based band system.

  4. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering.

    PubMed

    Tan, Yang; Ma, Linan; Gao, Zhibin; Chen, Ming; Chen, Feng

    2017-04-12

    Raman enhancement on a flat nonmetallic surface has attracted increasing attention, ever since the discovery of graphene enhanced Raman scattering. Recently, diverse two-dimensional layered materials have been applied as a flat surface for the Raman enhancement, attributed to different mechanisms. Looking beyond these isolated materials, atomic layers can be reassembled to design a heterostructure stacked layer by layer with an arbitrary chosen sequence, which allows the flow of charge carriers between neighboring layers and offers novel functionalities. Here, we demonstrate the heterostructure as a novel Raman enhancement platform. The WSe 2 (W) monolayer and graphene (G) were stacked together to form a heterostructure with an area of 10 mm × 10 mm. Heterostructures with different stacked structuress are used as platforms for the enhanced Raman scattering, including G/W, W/G, G/W/G/W, and W/G/G/W. On the surface of the heterostructure, the intensity of the Raman scattering is much stronger compared with isolated layers, using the copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman enhancement effect on heterostructures depends on stacked methods. Phonon modes of CuPc have the strongest enhancement on G/W. W/G and W/G/G/W have a stronger enhancement than that on the isolated WSe 2 monolayer, while lower than the graphene monolayer. The G/W/G/W/substrate demonstrated a comparable Raman enhancement effect than the G/W/substrate. These differences are due to the different interlayer couplings in heterostructures related to electron transition probability rates, which are further proved by first-principle calculations and probe-pump measurements.

  5. Implicit Acquisition of Grammars with Crossed and Nested Non-Adjacent Dependencies: Investigating the Push-Down Stack Model

    ERIC Educational Resources Information Center

    Udden, Julia; Ingvar, Martin; Hagoort, Peter; Petersson, Karl M.

    2012-01-01

    A recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study…

  6. Interpretation of TOF SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation

    NASA Astrophysics Data System (ADS)

    Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.

    2005-06-01

    The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.

  7. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    NASA Astrophysics Data System (ADS)

    Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.

    2015-06-01

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  8. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less

  9. Atomistic modeling of phonon transport in turbostratic graphitic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Rui; Chen, Yifeng; Kim, Ki Wook, E-mail: kwk@ncsu.edu

    2016-05-28

    Thermal transport in turbostratic graphitic systems is investigated by using an atomistic analytical model based on the 4th-nearest-neighbor force constant approximation and a registry-dependent interlayer potential. The developed model is shown to produce an excellent agreement with the experimental data and ab initio results in the calculation of bulk properties. Subsequent analysis of phonon transport in combination with the Green's function method illustrates the significant dependence of key characteristics on the misorientation angle, clearly indicating the importance of this degree of freedom in multi-stacked structures. Selecting three angles with the smallest commensurate unit cells, the thermal resistance is evaluated atmore » the twisted interface between two AB stacked graphite. The resulting values in the range of 35 × 10{sup −10} K m{sup 2}/W to 116 × 10{sup −10} K m{sup 2}/W are as large as those between two dissimilar material systems such as a metal and graphene. The strong rotational effect on the cross-plane thermal transport may offer an effective means of phonon engineering for applications such as thermoelectric materials.« less

  10. Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures

    DTIC Science & Technology

    1990-03-05

    12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S

  11. Use of Pharmacotherapies in the Treatment of Alcohol Use Disorders and Opioid Dependence in Primary Care

    PubMed Central

    Lee, Jinhee; Kresina, Thomas F.; Campopiano, Melinda; Lubran, Robert; Clark, H. Westley

    2015-01-01

    Substance-related and addictive disorders are chronic relapsing conditions that substantially impact public health. Effective treatments for these disorders require addressing substance use/dependence comprehensively as well as other associated comorbidities. Comprehensive addressing of substance use in a medical setting involves screening for substance use, addressing substance use directly with the patient, and formulating an appropriate intervention. For alcohol dependence and opioid dependence, pharmacotherapies are available that are safe and effective when utilized in a comprehensive treatment paradigm, such as medication assisted treatment. In primary care, substance use disorders involving alcohol, illicit opioids, and prescription opioid abuse are common among patients who seek primary care services. Primary care providers report low levels of preparedness and confidence in identifying substance-related and addictive disorders and providing appropriate care and treatment. However, new models of service delivery in primary care for individuals with substance-related and addictive disorders are being developed to promote screening, care and treatment, and relapse prevention. The education and training of primary care providers utilizing approved medications for the treatment of alcohol use disorders and opioid dependence in a primary care setting would have important public health impact and reduce the burden of alcohol abuse and opioid dependence. PMID:25629034

  12. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides

    PubMed Central

    Crevenna, Alvaro H.; Bomblies, Rainer; Lamb, Don C.

    2017-01-01

    Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET) or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET). The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP). Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the influence on molecular properties when chosing labeling positions for fluorescence experiments. PMID:28542243

  13. Synthesis, crystal structure and high temperature phase transition in the new organic-inorganic hybrid [N(C4H9)4]3Zn2Cl7H2O crystals

    NASA Astrophysics Data System (ADS)

    Ben Gzaiel, Malika; Oueslati, Abderrazek; Lhoste, Jérôme; Gargouri, Mohamed; Bulou, Alain

    2015-06-01

    The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound tri-tetrabutylammonium heptachloro-dizincate (I) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/n space group) containing ZnCl42- and ZnCl3H2O1- tetrahedra. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers stacked along the c direction. Differential scanning calorimetry (DSC) in the range 250-450 K disclosed a reversible structural phase transition of order-disorder type at 358 K, prior to the melting at 395 K. The temperature dependence of the Raman spectra of [N(C4H9)4]3Zn2Cl7H2O single crystals was studied in the spectral range 100-3500 cm-1 and for temperatures between 300 and 386 K. The most important changes are observed for the line at 261 cm-1 issued from ν1(ZnCl4). The analysis of the wavenumber, intensity and the line width based on an order-disorder model allowed to obtain information relative to the activation energy and the correlation length. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the anionic parts. The assumption of cluster fluctuations also allowed the critical exponents to be obtained for the transition δ = 0.011 and the correlation length ξ0 = 598 Å.

  14. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  15. Significant relationship between lifetime alcohol use disorders and suicide attempts in an Australian schizophrenia sample.

    PubMed

    McLean, Duncan; Gladman, Beverley; Mowry, Bryan

    2012-02-01

    Suicide and attempted suicide are common in individuals with schizophrenia, and evidence exists for a link between substance use disorders and suicidality in this disorder. However, alcohol has not been consistently implicated. We examined the relationship between substance use disorders and suicide attempts in schizophrenia. We recruited a schizophrenia sample in Australia (n = 821) for genetic analyses. We analysed demographic and clinical variables, including substance use disorders, and their relationship to suicide attempts using generalised equation modelling. A significant association was identified between lifetime alcohol abuse/dependence and suicide attempts (OR = 1.66; 95% CI, 1.23 to 2.24; p = 0.001) after adjustment for potential confounders, but not between cannabis abuse/dependence and suicide attempts, nor between other illicit drug abuse/dependence and suicide attempts. Polysubstance abuse/dependence was also not implicated. These results suggest that the presence of alcohol abuse/dependence may be a risk factor for suicide attempts in individuals with schizophrenia, independent of comorbid substance abuse/dependence.

  16. Zn-dopant dependent defect evolution in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-01

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires. Electronic supplementary information (ESI) available: HRTEM image of undoped GaN nanowires and first-principles calculations of Zn doped WZ-GaN. See DOI: 10.1039/c5nr04771d

  17. Temporal relationship between the age of onset of phobic disorders and development of substance dependence in adolescent psychiatric patients.

    PubMed

    Ilomäki, Risto; Hakko, Helinä; Timonen, Markku; Lappalainen, Jaakko; Mäkikyrö, Taru; Räsänen, Pirkko

    2004-09-06

    To investigate the age of onset of phobic disorders in relation to later development of substance dependence in a sample of adolescent psychiatric patients. Clinical sample of 238 adolescents (age 12-17) admitted to psychiatric inpatient hospitalization between April 2001 and July 2003. Psychiatric diagnoses and onset ages obtained from the schedule for affective disorders and schizophrenia for school aged children-present and lifetime (K-SADS-PL). Logistic regression analyses revealed that adolescents with phobic disorders had a 4.9-fold risk for comorbid substance dependence compared to those without phobia. The mean onset age was 11.4 and 14.4 years for phobias and comorbid substance dependence, respectively. Boys (13.7 years) had a statistically significantly lower onset age for substance dependence than girls (15.4 years). Over one-half of the adolescents with phobic disorders had developed substance dependence within three years after the onset of phobia. We found that phobias might influence the development of secondary substance dependence within a few years from the onset of phobia already in adolescence.

  18. Comorbid Post-Traumatic Stress Disorder and Opioid Dependence.

    PubMed

    Patel, Rikinkumar S; Elmaadawi, Ahmed; Nasr, Suhayl; Haskin, John

    2017-09-03

    Post-traumatic stress disorder (PTSD) is predominant amongst individuals addicted to opioids and obscures the course of illness and the treatment outcome. We report the case of a patient with major depressive disorder and opioid dependence, who experienced post-traumatic stress disorder symptoms during a recent visit to the inpatient unit. The similarity of symptoms between post-traumatic stress disorder and opioid dependence is so high that, sometimes, it is a challenge to differentiate between these conditions. Since opioid withdrawal symptoms mimic hyper vigilance, this results in an exaggeration of the response of patients with post-traumatic stress disorder. This comorbidity is associated with worse health outcomes, as its pathophysiology involves a common neurobiological circuit. Opioid substitution therapy and psychotherapeutic medications in combination with evidence-based cognitive behavioral therapy devised for individuals with comorbid post-traumatic stress disorder and opioid dependence may improve treatment outcomes in this population. Therefore, we conclude that the screening for post-traumatic stress disorder in the opioid-abusing population is crucial. To understand the underlying mechanisms for this comorbidity and to improve the treatment response, further research should be encouraged.

  19. Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Newton, A. G.; Sposito, G.

    2012-12-01

    Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural and dynamical properties of the phyllosilicate edge interface differ from those of the 2:1 phyllosilicate basal surface. The non-planar surface structure and abundant oxygen atoms and hydroxyl groups at the edge order the water layers such that a steep gradient in the water self-diffusion coefficient exists near the surface. Isolated phyllosilicate nanoparticles maintain the original crystal habit; disordered edge structures emerge upon stacking of the particles. These simulations validate CLAYFF as a general forcefield for 2:1 phyllosilicate edges and nanoparticles and demonstrate a powerful method for future investigations of geologic media at the mesoscale.

  20. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE PAGES

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; ...

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  1. Personality disorders and associated features in cocaine-dependent inpatients.

    PubMed

    Kranzler, H R; Satel, S; Apter, A

    1994-01-01

    Previous research has shown a high prevalence of comorbid personality disorders among individuals seeking treatment for cocaine dependence. We studied axis II disorders (using the Structured Clinical Interview for DSM-III-R Personality Disorders [SCID-II]) in 50 patients admitted for inpatient rehabilitation. All patients met lifetime criteria for cocaine dependence and reported cocaine use during the month before admission. Seventy percent of patients met criteria for at least one axis II diagnosis; the mean number of axis II diagnoses among these patients was 2.54 (range, one to six). The most common axis II diagnosis was borderline (34% of all patients), followed by antisocial and narcissistic (each 28%), avoidant and paranoid (each 22%), obsessive-compulsive (16%), and dependent (10%). To evaluate the relationship between comorbid personality pathology, substance abuse, and other psychiatric symptomatology, patients were divided into two groups based on whether they received an axis II disorder diagnosis. The groups did not differ on substance abuse variables. However, there were significant group differences on a measure of psychosis proneness and in the number of comorbid depressive and anxiety disorder diagnoses. These results are consistent with other studies of personality disorders in substance abuse patients, and suggest that it may be clinically useful to characterize cocaine-dependent patients with respect to comorbid axis II disorders.

  2. Examining the Nature of the Association Between Attention-Deficit/Hyperactivity Disorder and Nicotine Dependence: A Familial Risk Analysis

    PubMed Central

    Biederman, Joseph; Petty, Carter R.; Hammerness, Paul; Woodworth, K. Yvonne; Faraone, Stephen V.

    2013-01-01

    Objective The main aim of this study was to use familial risk analysis to examine the association between attention-deficit/hyperactivity disorder (ADHD) and nicotine dependence. Methods Subjects were children with (n = 257) and without (n = 229) ADHD of both sexes ascertained form pediatric and psychiatric referral sources and their first-degree relatives (N = 1627). Results Nicotine dependence in probands increased the risk for nicotine dependence in relatives irrespective of ADHD status. There was no evidence of cosegregation or assortative mating between these disorders. Patterns of familial risk analysis suggest that the association between ADHD and nicotine dependence is most consistent with the hypothesis of independent transmission of these disorders. Conclusions These findings may have important implications for the identification of a subgroup of children with ADHD at high risk for nicotine dependence based on parental history of nicotine dependence. PMID:23461889

  3. Brain MR Spectroscopy Biomarkers in a Clinical Trial of PTS Patients With Comorbid AUD

    DTIC Science & Technology

    2016-05-01

    levels in the neocortex of 40 alcohol dependent veterans with posttraumatic stress disorder (PTSD). We propose to perform longitudinal proton magnetic...longitudinal, magnetic resonance spectroscopy, alcohol dependence, posttraumatic stress disorder (PTSD), topiramate, γ-aminobutyric acid (GABA), glutamate, US...the neocortex of alcohol dependent veterans with posttraumatic stress disorder (PTSD). We propose to perform longitudinal proton magnetic resonance

  4. Associations of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence: A systematic review and meta-analysis.

    PubMed

    Oo, Khine Zin; Aung, Ye Kyaw; Jenkins, Mark A; Win, Aung Ko

    2016-09-01

    The neurotransmitter serotonin is understood to control mood and drug response. Carrying a genetic variant in the serotonin transporter gene (5HTT) may increase the risk of major depressive disorder and alcohol dependence. Previous estimates of the association of the S allele of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence have been inconsistent. For the systematic review, we used PubMed MEDLINE and Discovery of The University of Melbourne to search for all relevant case-control studies investigating the associations of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence. Summary odds ratios (OR) and their 95% confidence intervals (CI) were estimated. To investigate whether year of publication, study population or diagnostic criteria used were potential sources of heterogeneity, we performed meta-regression analyses. Publication bias was assessed using Funnel plots and Egger's statistical tests. We included 23 studies of major depressive disorder without alcohol dependence containing 3392 cases and 5093 controls, and 11 studies of alcohol dependence without major depressive disorder containing 2079 cases and 2273 controls. The summary OR for homozygote carriers of the S allele of 5HTTLPR polymorphism compared with heterozygote and non-carriers combined (SS vs SL+LL genotype) was 1.33 (95% CI = [1.19, 1.48]) for major depressive disorder and 1.18 (95% CI = [1.01, 1.38]) for alcohol dependence. The summary OR per S allele of 5HTTLPR polymorphism was 1.16 (95% CI = [1.08, 1.23]) for major depressive disorder and 1.12 (95% CI = [1.01, 1.23]) for alcohol dependence. Meta-regression models showed that the associations did not substantially change after adjusting for year of publication, study population and diagnostic criteria used. There was no evidence for publication bias of the studies included in our meta-analysis. Our meta-analysis confirms that individuals with the homozygous S allele of 5HTTLPR polymorphism are at increased risks of major depressive disorder as well as alcohol dependence. Further studies are required to investigate the association between 5HTTLPR polymorphism and the comorbidity of major depressive disorder and alcohol dependence as well as gene × environmental interactions. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  5. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment.

    PubMed

    Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal

    2013-12-01

    Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.

  6. Investigations of the Electronic, Vibrational and Structural Properties of Single and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Lui, Chun Hung

    Single and few-layer graphene (SLG and FLG) have stimulated great scientific interest because of their distinctive properties and potential for novel applications. In this dissertation, we investigate the mechanical, electronic and vibrational properties of these remarkable materials by various techniques, including atomic-force microscopy (AFM) and Raman, infrared (IR), and ultrafast optical spectroscopy. With respect to its mechanical properties, SLG is known to be capable of undergoing significant mechanical deformation. We have applied AFM to investigate how the morphology of SLG is influenced by the substrate on which it is deposited. We have found that SLG is strongly affected by the morphology of the underlying supporting surface. In particular, SLG deposited on atomically flat surfaces of mica substrates exhibits an ultraflat morphology, with height variation essentially indistinguishable from that observed for the surface of cleaved graphite. One of the most distinctive aspects of SLG is its spectrum of electronic excitations, with its characteristic linear energy-momentum dispersion relation. We have examined the dynamics of the corresponding Dirac fermions by optical emission spectroscopy. By analyzing the spectra of light emission induced in the spectral visible range by 30-femtosecond laser pulses, we find that the charge carriers in graphene cool by the emission of strongly coupled optical phonons in a few 10's of femtoseconds and thermalize among themselves even more rapidly. The charge carriers and the strongly coupled optical phonons are thus essentially in thermal equilibrium with one another on the picosecond time scale, but can be driven strongly out of equilibrium with the other phonons in the system. Temperatures exceeding 3000 K are achieved for the subsystem of the charge carriers and optical phonons under femtosecond laser excitation. While SLG exhibits remarkable physical properties, its few-layer counterparts are also of great interest. In particular, FLG can exist in various crystallographic stacking sequences, which strongly influence the material's electronic properties. We have developed an accurate and convenient method of characterizing stacking order in FLG using the lineshape of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in trilayer and tetralayer graphene. We find that 15% of exfoliated graphene trilayers and tetralayers are comprised of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. The accurate identification of stacking domains in FLG allows us to investigate the influence of stacking order on the material's electronic properties. In particular, we have studied by means of IR spectroscopy the possibility of opening a band gap by the application of a strong perpendicular electric field in trilayer graphene. We observe an electrically tunable band gap exceeding 100 meV in ABC trilayers, while no band gap is found for ABA trilayers. We have also studied the influence of layer thickness and stacking order on the Raman response of the out-of-plane vibrations in FLG. We observe a Raman combination mode that involves the layer-breathing vibrations in FLG. This Raman mode is absent in SLG and exhibits a lineshape that depends sensitively on both the material's layer thickness and stacking sequence.

  7. Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators

    NASA Astrophysics Data System (ADS)

    Skarstad, Paul M.

    Implantable cardioverter-defibrillators (ICDs) are implantable medical devices designed to treat ventricular fibrillation by administering a high-voltage shock directly to the heart. Minimizing the time a patient remains in fibrillation is an important goal of this therapy. Both batteries and high-voltage capacitors used in these devices can display time-dependency in performance, resulting in significant extension of charge time. Altering the electrode balance in lithium/silver vanadium oxide batteries used to power these devices has minimized time-dependent changes in battery resistance. Charge-interval dependent changes in capacitor cycling efficiency have been minimized for stacked-plate aluminum electrolytic capacitors by a combination of material and processing factors.

  8. Dependent Personality Disorder: Comparing an Expert Generated and Empirically Derived Five-Factor Model Personality Disorder Count

    ERIC Educational Resources Information Center

    Miller, Joshua D.; Lynam, Donald R.

    2008-01-01

    Assessment of the "Diagnostic and Statistical Manual of Mental Disorders" (4th Ed.; "DSM-IV") personality disorders (PDs) using five-factor model (FFM) prototypes and counts has shown substantial promise, with a few exceptions. Miller, Reynolds, and Pilkonis suggested that the expert-generated FFM dependent prototype might be misspecified in…

  9. Preferred Psychological Internet Resources for Addressing Anxiety Disorders, Parenting Problems, Eating Disorders, and Chemical Dependency.

    ERIC Educational Resources Information Center

    Morse, Laura; Doran, Matt; Simonin, Danielle; Smith, Allyson; Maloney, Colleen; Wright, Cara; Underwood, Michelle; Hoppel, Andrea; O'Donnell, Shannon; Chambliss, Catherine

    Although the Internet offers information about psychological problems and support resources for behavioral health problems, the quality of this information varies widely. So as to offer guidance in this area, preferred sites pertaining to anxiety disorders, parenting problems, eating disorders, and chemical dependency were analyzed. A total of 365…

  10. Inflatable containment diaphragm for sealing and removing stacks

    DOEpatents

    Meskanick, G.R.; Rosso, D.T.

    1993-04-13

    A diaphragm with an inflatable torus-shaped perimeter is used to seal at least one end of a stack so that debris that might be hazardous will not be released during removal of the stack. A diaphragm is inserted and inflated in the lower portion of a stack just above where the stack is to be cut such that the perimeter of the diaphragm expands and forms a seal against the interior surface of the stack.

  11. Inflatable containment diaphragm for sealing and removing stacks

    DOEpatents

    Meskanick, Gerald R.; Rosso, David T.

    1993-01-01

    A diaphragm with an inflatable torus-shaped perimeter is used to seal at least one end of a stack so that debris that might be hazardous will not be released during removal of the stack. A diaphragm is inserted and inflated in the lower portion of a stack just above where the stack is to be cut such that the perimeter of the diaphragm expands and forms a seal against the interior surface of the stack.

  12. User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.

    2015-09-01

    While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.

  13. A comparative density functional study on electrical properties of layered penta-graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less

  14. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  15. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  16. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  17. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  18. The magnetic ground state and relationship to Kitaev physics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  19. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  20. Diffusion reaction of oxygen in HfO2/SiO2/Si stacks.

    PubMed

    Ferrari, S; Fanciulli, M

    2006-08-03

    We study the oxidation mechanism of silicon in the presence of a thin HfO2 layer. We performed a set of annealing in 18O2 atmosphere on HfO2/SiO2/Si stacks observing the 18O distribution in the SiO2 layer with time-of-flight secondary ion mass spectrometry (ToF-SIMS). The 18O distribution in HfO2/SiO2/Si stacks upon 18O2 annealing suggests that what is responsible for SiO2 growth is the molecular O2, whereas no contribution is found of the atomic oxygen to the oxidation. By studying the dependence of the oxidation velocity from oxygen partial pressure and annealing temperature, we demonstrate that the rate-determining step of the oxidation is the oxygen exchange at the HfO2/SiO2 interface. When moisture is chemisorbed in HfO2 films, the oxidation of the underlying silicon substrate becomes extremely fast and its kinetics can be described as a wet silicon oxidation process. The silicon oxidation during O2 annealing of the atomic layer deposited HfO2/Si is fast in its early stage due to chemisorbed moisture and becomes slow after the first 10 s.

  1. Controllable Growth and Formation Mechanisms of Dislocated WS2 Spirals.

    PubMed

    Fan, Xiaopeng; Zhao, Yuzhou; Zheng, Weihao; Li, Honglai; Wu, Xueping; Hu, Xuelu; Zhang, Xuehong; Zhu, Xiaoli; Zhang, Qinglin; Wang, Xiao; Yang, Bin; Chen, Jianghua; Jin, Song; Pan, Anlian

    2018-06-13

    Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS 2 spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.

  2. Interface adjustment and exchange coupling in the IrMn/NiFe system

    NASA Astrophysics Data System (ADS)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L.

    2017-01-01

    The exchange bias effect was investigated, in the 5-300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (tCu) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and tCu results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component.

  3. The myopia of crowds: Cognitive load and collective evaluation of answers on Stack Exchange

    PubMed Central

    Burghardt, Keith; Alsina, Emanuel F.; Girvan, Michelle; Rand, William; Lerman, Kristina

    2017-01-01

    Crowds can often make better decisions than individuals or small groups of experts by leveraging their ability to aggregate diverse information. Question answering sites, such as Stack Exchange, rely on the “wisdom of crowds” effect to identify the best answers to questions asked by users. We analyze data from 250 communities on the Stack Exchange network to pinpoint factors affecting which answers are chosen as the best answers. Our results suggest that, rather than evaluate all available answers to a question, users rely on simple cognitive heuristics to choose an answer to vote for or accept. These cognitive heuristics are linked to an answer’s salience, such as the order in which it is listed and how much screen space it occupies. While askers appear to depend on heuristics to a greater extent than voters when choosing an answer to accept as the most helpful one, voters use acceptance itself as a heuristic, and they are more likely to choose the answer after it has been accepted than before that answer was accepted. These heuristics become more important in explaining and predicting behavior as the number of available answers to a question increases. Our findings suggest that crowd judgments may become less reliable as the number of answers grows. PMID:28301531

  4. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  5. Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Fong, M.; Bowyer, R.; Whitehead, A.; Lee, B.; King, L.; Applegate, D.; McCarthy, I.

    2018-05-01

    For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied.

  6. Develop and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1984-01-01

    Two 25-cell, 13 inch x 23 inch (4kW) stacks were started up to evaluate the reliability of component and stack technology developed through the end of 1983. Both stacks started up well and are running satisfactorily on hydrogen-air after 1900 hours and 800 hours, respectively. A synthetic-reformat mixing station is nearing completion, and both stacks will be operated on reformate fuel. A stack-protection control system was placed in operation for Stack No. 2, and a similar set-up is in preparation for Stack No. 1. This system serves to change operating conditions or shut the stack down to avoid deleterious effects from nonstack-related upsets. The capability will greatly improve changes of obtaining meaningful long-term test data.

  7. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, Murray; Schroll, Craig R.

    1985-10-22

    Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.

  8. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  9. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akihisa; Abuillan, Wasim; Burk, Alexandra S.; Körner, Alexander; Ries, Annika; Werz, Daniel B.; Demé, Bruno; Tanaka, Motomu

    2015-04-01

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration. The bulkier "bent" Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter "bent" disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.

  10. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    NASA Astrophysics Data System (ADS)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  11. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Akihisa, E-mail: ayamamoto@icems.kyoto-u.ac.jp, E-mail: tanaka@uni-heidelberg.de; Tanaka, Motomu, E-mail: ayamamoto@icems.kyoto-u.ac.jp, E-mail: tanaka@uni-heidelberg.de; Institute for Integrated Cell-Material Sciences

    2015-04-21

    The mechanical properties of multilayer stacks of Gb3 glycolipid that play key roles in metabolic disorders (Fabry disease) were determined quantitatively by using specular and off-specular neutron scattering. Because of the geometry of membrane stacks deposited on planar substrates, the scattered intensity profile was analyzed in a 2D reciprocal space map as a function of in-plane and out-of-plane scattering vector components. The two principal mechanical parameters of the membranes, namely, bending rigidity and compression modulus, can be quantified by full calculation of scattering functions with the aid of an effective cut-off radius that takes the finite sample size into consideration.more » The bulkier “bent” Gb3 trisaccharide group makes the membrane mechanics distinctly different from cylindrical disaccharide (lactose) head groups and shorter “bent” disaccharide (gentiobiose) head groups. The mechanical characterization of membranes enriched with complex glycolipids has high importance in understanding the mechanisms of diseases such as sphingolipidoses caused by the accumulation of non-degenerated glycosphingolipids in lysosomes or inhibition of protein synthesis triggered by the specific binding of Shiga toxin to Gb3.« less

  12. Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction

    PubMed Central

    2014-01-01

    Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210

  13. [Topiramate in substance-related and addictive disorders].

    PubMed

    Cohen, Johan; Dervaux, Alain; Laqueille, Xavier

    2014-09-01

    Drug treatments used in substance use disorders are not effective in all patients. To assess the effectiveness of topiramate use in the treatment of substance use disorders. Medline database from January 1966 to December 2013, Cochrane database and clinicaltrials.gov. We used keywords topiramate, addiction, substance abuse, alcohol, tobacco, nicotine, cocaine, methamphetamine, opiate, heroin, benzodiazepine, cannabis, bulimia nervosa, binge eating disorder, gambling. All clinical trials were included. Animal trials, laboratory tests, reviews, answers to writers, case-reports, case series and publications unrelated to the topic were excluded. Twenty-eight articles investigating the efficacy of topiramate in substance use were included. In alcohol-related disorder, several trials and a meta-analysis showed a reduction of days of consumption. In a single-center trial on tobacco-related disorder, topiramate was not found effective in reducing the carbon monoxide expired. In cocaine-related disorder, one single-center trial showed a reduction of days of consumption and two single-center trials have found a trend in favour of topiramate. In alcohol and cocaine co-dependency, a single-center trial found a trend in favour of topiramate. In methamphetamine-related disorder, a multicenter trial found a trend in favour of topiramate. In bulimia nervosa, two single-center trials showed a reduction in binge eating and compensatory behaviours. In binge eating disorder, several trials showed a reduction of binge eating and weight. In gambling, one single-center trial did not show any significant results. There were no randomized controlled trials found in opioid-related disorder, benzodiazepines-related disorder, and cannabis-related disorder. Definition of abstinence and methods to assess the efficacy of topiramate differed between trials. The methodological quality of included trials was variable, especially with no double-blind procedure in eight trials. Topiramate showed interest mainly in alcoholism, binge eating disorder and bulimia nervosa. No definitive conclusions can be reached for other substance use disorders such as nicotine dependence, cocaine dependence, amphetamine dependence or cannabis dependence and for gambling. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime

    NASA Astrophysics Data System (ADS)

    Li, Mengyue; Yuan, Jie; Kinev, Nickolay; Li, Jun; Gross, Boris; Guénon, Stefan; Ishii, Akira; Hirata, Kazuto; Hatano, Takeshi; Koelle, Dieter; Kleiner, Reinhold; Koshelets, Valery P.; Wang, Huabing; Wu, Peiheng

    2012-08-01

    We report on measurements of the linewidth Δf of terahertz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution-limited measurements indicated that Δf may be below 1 GHz—much smaller than expected from a purely cavity-induced synchronization. While at low bias we found Δf to be not smaller than ˜500 MHz, at high bias, where a hot spot coexists with regions which are still superconducting, Δf turned out to be as narrow as 23 MHz. We attribute this to the hot spot acting as a synchronizing element. Δf decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or electron spin resonance (ESR), but hard to explain in standard electrodynamic models of Josephson junctions.

  15. Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Li, Zhenqing; He, Chaoyu; Ouyang, Tao; Zhang, Chunxiao; Tang, Chao; Römer, Rudolf A.; Zhong, Jianxin

    2018-04-01

    We construct a class of two-dimensional (2D) phosphorus allotropes by assembling a previously proposed ultrathin metastable phosphorus nanotube into planar structures in different stacking orientations. Based on first-principles methods, the structures, stabilities, and fundamental electronic properties of these allotropes are systematically investigated. Our results show that these 2D van der Waals phosphorene allotropes possess remarkable stabilities due to the strong intertube van der Waals interactions, which cause an energy release of about 30 - 70 meV /atom , depending on their stacking details. Most of them are confirmed to be energetically more favorable than the experimentally viable α -P and β -P . Three of them, showing a relatively higher probability of being synthesized in the future, are further confirmed to be dynamically stable semiconductors with strain-tunable band gaps and intrinsic piezoelectricity, which may have potential applications in nanosized sensors, piezotronics, and energy harvesting in portable electronic nanodevices.

  16. Electronic structure and lattice dynamics of few-layer InSe

    NASA Astrophysics Data System (ADS)

    Webster, Lucas; Yan, Jia-An

    Studies of Group-III monochalcogenides (MX, M = Ga and In, X = S, Se, and Te) have revealed their great potentials in many optoelectronic applications, including solar energy conversion, fabrication of memory devices and solid-state batteries. Among these semiconductors, indium selenide (InSe) has attracted particular attention due to its narrower direct bandgap, which makes it suitable for photovoltaic conversion. In this work, using first-principles calculations, we present a detailed study of the energetics, atomic structures, electronic structures, and lattice dynamics of InSe layers down to two-dimensional limit, namely, monolayer InSe and bilayer InSe with various stacking geometry. Calculations using various exchange-correlation functionals and pseudopotentials are tested and compared with experimental data. The dependence of the Raman spectra on the stacking geometry and the laser polarization will also be discussed. This work is supported by the SET Grant of the Fisher College of Science and Mathematics (FCSM) at the Towson University.

  17. Analysis of the Light-harvesting Pigment-Protein Complex of Wild Type and a Chlorophyll-b-less Mutant of Barley 1

    PubMed Central

    Burke, John J.; Steinback, Katherine E.; Arntzen, Charles J.

    1979-01-01

    we have compared chloroplast lamellae isolated from a chlorophyll-b-less mutant and wild type barley (Hordeum vulgare). The results demonstrate that: (a) one of the two major polypeptides comprising the lightharvesting complex (LHC) is present in the chlorophyll-b-less mutant; (b) higher cation concentrations are required to maintain grana stacks in the mutant; and (c) cation effects on excitation energy distribution are present in the chlorophyll-b-less mutant but are reduced in amount and are dependent on higher concentrations of cations. We interpret these data to support the concept that the LHC mediates cation-induced grana stacking and cation regulation of excitation energy distribution between photosystems I and Ii in chloroplast lamellae. A partial LHC complement in the mutant alters the quantitative cation requirement for both phenomena, but not the over-all qualitative response. Images PMID:16660704

  18. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  19. Effective pollutant emission heights for atmospheric transport modelling based on real-world information.

    PubMed

    Pregger, Thomas; Friedrich, Rainer

    2009-02-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.

  20. Self-assemblies, helical ribbons and gelation tuned by solvent-gelator interaction in a bi-1,3,4-oxadiazole gelator

    NASA Astrophysics Data System (ADS)

    Zhao, Chengxiao; Bai, Binglian; Wang, Haitao; Qu, Songnan; Xiao, Guanjun; Tian, Taiji; Li, Min

    2013-04-01

    A bi-1,3,4-oxadiazole derivative (BOXDH-T12) showed intramolecular charge transition at concentrations lower than 1 × 10-5 mol/L. The self-assembling behaviors of BOXDH-T12 depended on solvents that it self-assembled into H-aggregates in alcohols and slipped packing aggregates in DMSO. FTIR, 1H NMR and TGA results revealed that strong gelator-gelator hydrogen bonding interaction induced H-aggregation of BOXDH-T12 in alcohols and the interactions between DMSO and BOXDH-T12 molecules caused a slipped stacking. BOXDH-T12 can gel the mixtures of DMSO and ethanol through a cooperative effect of the hydrogen bonding, van der Waals interaction and π-π stacking forces, furthermore, helical ribbons could be observed in DMSO/ethanol due to DMSO molecule interacting. In alcohols, solvophobic/solvophilic effect plays a critical role in gelation behaviors.

  1. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    PubMed

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  2. Soldier System Power Sources

    DTIC Science & Technology

    2006-12-31

    dependence, and estimated mass of the stack. The model equations were derived from peer reviewed academic journals , internal studies, and texts on the subject...Liu, R. Dougal, E. Solodovnik, "VTB-Based Design of a Standalone Photovoltaic Power System", International Journal of Green Energy, Vol. 1, No. 3...Powered Battery Chargers 17 Exergy minimization 19 Use of secondary cells as temporary energy repositories 19 Design an automatic energy optimization

  3. Supramolecular networks with electron transfer in two dimensions

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  4. Intimate Partner Violence and Welfare Participation: A Longitudinal Causal Analysis

    ERIC Educational Resources Information Center

    Cheng, Tyrone C.

    2013-01-01

    This longitudinal study examined the temporal-ordered causal relationship between intimate partner violence (IPV), five mental disorders (depression, generalized anxiety disorder, social phobia, panic attack, posttraumatic stress disorder [PTSD]), alcohol abuse/dependence, drug abuse/ dependence, treatment seeking (from physician, counselor, and…

  5. Sampled-time control of a microbial fuel cell stack

    NASA Astrophysics Data System (ADS)

    Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2017-07-01

    Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.

  6. Annual Research Review: The neurobehavioral development of multiple memory systems: implications for childhood and adolescent psychiatric disorders

    PubMed Central

    Goodman, Jarid; Marsh, Rachel; Peterson, Bradley S.; Packard, Mark G.

    2014-01-01

    Extensive evidence indicates that mammalian memory is organized into multiple brains systems, including a “cognitive” memory system that depends upon the hippocampus and a stimulus-response “habit” memory system that depends upon the dorsolateral striatum. Dorsal striatal-dependent habit memory may in part influence the development and expression of some human psychopathologies, particularly those characterized by strong habit-like behavioral features. The present review considers this hypothesis as it pertains to psychopathologies that typically emerge during childhood and adolescence. These disorders include Tourette syndrome, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, eating disorders, and autism spectrum disorders. Human and nonhuman animal research shows that the typical development of memory systems comprises the early maturation of striatal-dependent habit memory and the relatively late maturation of hippocampal-dependent cognitive memory. We speculate that the differing rates of development of these memory systems may in part contribute to the early emergence of habit-like symptoms in childhood and adolescence. In addition, abnormalities in hippocampal and striatal brain regions have been observed consistently in youth with these disorders, suggesting that the aberrant development of memory systems may also contribute to the emergence of habit-like symptoms as core pathological features of these illnesses. Considering these disorders within the context of multiple memory systems may help elucidate the pathogenesis of habit-like symptoms in childhood and adolescence, and lead to novel treatments that lessen the habit-like behavioral features of these disorders. PMID:24286520

  7. Principles for Instructional Stack Development in HyperCard.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  8. 40 CFR 60.1775 - What types of stack tests must I conduct?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What types of stack tests must I...-Stack Testing § 60.1775 What types of stack tests must I conduct? Conduct initial and annual stack tests to measure the emission levels of dioxins/furans, cadmium, lead, mercury, particulate matter, opacity...

  9. 40 CFR 60.1775 - What types of stack tests must I conduct?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What types of stack tests must I...-Stack Testing § 60.1775 What types of stack tests must I conduct? Conduct initial and annual stack tests to measure the emission levels of dioxins/furans, cadmium, lead, mercury, particulate matter, opacity...

  10. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the hourly stack flow rate (in scfh). Only one methodology for determining NOX mass emissions shall be...-diluent continuous emissions monitoring system and a flow monitoring system in the common stack, record... maintain a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or...

  11. Aripiprazole plus topiramate in opioid-dependent patients with schizoaffective disorder: an 8-week, open-label, uncontrolled, preliminary study.

    PubMed

    Bruno, Antonio; Romeo, Vincenzo M; Pandolfo, Gianluca; Scimeca, Giuseppe; Zoccali, Rocco A; Muscatello, Maria Rosaria A

    2014-01-01

    The aims of this study were to evaluate a combination of aripiprazole and topiramate in the treatment of opioid-dependent patients with schizoaffective disorder undergoing methadone maintenance therapy (MMT) and, further, to taper off patients from methadone treatment. Twenty patients who met DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) criteria for opioid dependence and schizoaffective disorder receiving MMT (80 mg/day) were given aripiprazole (10 mg/day) plus topiramate (up to 200 mg/day) for 8 weeks. A methadone dose reduction of 3 mg/day until suspension at week 4 was established. Aripiprazole plus topiramate was effective in reducing clinical symptoms, and a rapid tapering off of MMT was achieved. Combining aripiprazole and topiramate may be effective in patients with a dual diagnosis of opioid dependency and schizoaffective disorder.

  12. Abuse or dependence on cannabis and other psychiatric disorders. Madrid study on dual pathology prevalence.

    PubMed

    Arias, Francisco; Szerman, Nestor; Vega, Pablo; Mesias, Beatriz; Basurte, Ignacio; Morant, Consuelo; Ochoa, Enriqueta; Poyo, Félix; Babin, Francisco

    2013-01-01

    Cannabis use has been associated to a wide variety of mental disorders, the possible causal role of this use in the etiology of severe mental disorders as schizophrenia or bipolar disorder standing out. Moreover, the cannabinoid system is involved in emotional regulation, so cannabis use could disturb this process and provoke anxiety and mood disorders. The main objective of this study was to analyze the cannabis addict subgroup from Madrid study of prevalence of dual disorders in community mental health and substance misuse services. The sample consisted of 837 outpatients under treatment in the mental health network or drug network of the Community of Madrid (Spain). Of these, 353 subjects had a lifetime diagnosis of cannabis abuse or dependence and 357 subjects did not have cannabis substance use disorder. We used the Mini International Neuropsychiatric Interview (MINI) to evaluate axis I mental disorders, and Personality Disorder Questionnaire to evaluate personality disorders. It was considered that 76.5% of the cannabis addicts had a current dual disorder. The most prevalent ones were mood and anxiety disorders. Of those addicted to cannabis, 51% had a personality disorder. Most of them had several substance use disorders. Cannabis abuse or dependence subjects had an earlier onset in consumption of other drugs such as alcohol, cocaine, and tobacco than addicts without cannabis abuse or dependence. The cannabis addicts also differed from the other addicts because of an association to antisocial personality disorder, bipolar disorder, psychosis and agoraphobia. The presence of these mental disorders was significantly associated to a lower age at initiation of cannabis use. Dual pathology is very high in cannabis addicts under treatment. Said consumption of cannabis, probably within a polysubstance use pattern, is associated to severe mental disorders as psychosis and bipolar disorder. An earlier age of onset in cannabis use is associated to a greater risk of said mental disorders.

  13. Personality Disorders and the 3-Year Course of Alcohol, Drug, and Nicotine Use Disorders

    PubMed Central

    Hasin, Deborah; Fenton, Miriam C.; Skodol, Andrew; Krueger, Robert; Keyes, Katherine; Geier, Timothy; Greenstein, Eliana; Blanco, Carlos; Grant, Bridget

    2012-01-01

    Context Little is known about the role of a broad range of personality disorders in the course of substance use disorder (SUD), and whether these differ by substance. The existing literature focuses mostly on antisocial personality disorder and does not come to clear conclusions. Objective To determine the association between the ten DSM-IV personality disorders and the persistence of common SUDs in a 3-year prospective study of a national sample. Design Data were drawn from participants in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) who had alcohol dependence (N=1,172), cannabis use disorder (N=454) or nicotine dependence (N=4,017) at baseline and who were re-interviewed three years later. Control variables included demographic characteristics, family history of substance disorders, baseline Axis I disorders and treatment status, and prior SUD duration. Main outcome measure Persistent SUD, defined as meeting full criteria for the relevant SUD throughout the 3-year follow-up period. Results Persistent SUD was found among 30.1% of participants with alcohol dependence, 30.8% with cannabis use disorder, and 56.6% with nicotine dependence at baseline. Axis I disorders did not have strong or consistent associations with persistent SUD. In contrast, antisocial personality disorder was significantly associated with persistent alcohol, cannabis and nicotine use disorders (adjusted odds ratios: 2.46-3.51), as was borderline personality disorder (adjusted odds ratios: 2.04-2.78) and schizotypal personality disorder (adjusted odds ratios: 1.65-5.90). Narcissistic, schizoid, and obsessive-compulsive personality disorders were less consistently associated with SUD persistence. Conclusions The consistent findings on the association of antisocial, borderline and schizotypal personality disorders with persistent SUD indicates the importance of these personality disorders in understanding the course of SUD. Future studies should examine dimensional representations of personality disorders and the role of specific components of these disorders, biological and environmental contributors to these relationships, and potential applications of these findings to treatment development. PMID:22065531

  14. Personality disorders and the 3-year course of alcohol, drug, and nicotine use disorders.

    PubMed

    Hasin, Deborah; Fenton, Miriam C; Skodol, Andrew; Krueger, Robert; Keyes, Katherine; Geier, Timothy; Greenstein, Eliana; Blanco, Carlos; Grant, Bridget

    2011-11-01

    Little is known about the role of a broad range of personality disorders in the course of substance use disorder (SUD) and whether these differ by substance. The existing literature focuses mostly on antisocial personality disorder and does not come to clear conclusions. To determine the association between the 10 DSM-IV personality disorders and the persistence of common SUDs in a 3-year prospective study of a national sample. Data were drawn from participants in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) who had alcohol dependence (n = 1172), cannabis use disorder (n = 454), or nicotine dependence (n = 4017) at baseline and who were reinterviewed 3 years later. Control variables included demographic characteristics, family history of substance disorders, baseline Axis I disorders and treatment status, and prior SUD duration. Main Outcome Measure  Persistent SUD, defined as meeting full criteria for the relevant SUD throughout the 3-year follow-up period. Persistent SUD was found among 30.1% of participants with alcohol dependence, 30.8% with cannabis use disorder, and 56.6% with nicotine dependence at baseline. Axis I disorders did not have strong or consistent associations with persistent SUD. In contrast, antisocial personality disorder was significantly associated with persistent alcohol, cannabis, and nicotine use disorders (adjusted odds ratios, 2.46-3.51), as was borderline personality disorder (adjusted odds ratios, 2.04-2.78) and schizotypal personality disorder (adjusted odds ratios, 1.65-5.90). Narcissistic, schizoid, and obsessive-compulsive personality disorders were less consistently associated with SUD persistence. The consistent findings on the association of antisocial, borderline, and schizotypal personality disorders with persistent SUD indicates the importance of these personality disorders in understanding the course of SUD. Future studies should examine dimensional representations of personality disorders and the role of specific components of these disorders, biological and environmental contributors to these relationships, and potential applications of these findings to treatment development.

  15. Crosswalk between DSM-IV Dependence and DSM-5 Substance Use Disorders for Opioids, Cannabis, Cocaine and Alcohol

    PubMed Central

    Compton, Wilson M.; Dawson, Deborah A.; Goldstein, Risë B.; Grant, Bridget F.

    2013-01-01

    Background Ascertaining agreement between DSM-IV and DSM-5 is important to determine the applicability of treatments for DSM-IV conditions to persons diagnosed according to the proposed DSM-5. Methods Data from a nationally representative sample of US adults were used to compare concordance of past-year DSM-IV Opioid, Cannabis, Cocaine and Alcohol Dependence with past-year DSM-5 disorders at thresholds of 3+, 4+ 5+ and 6+ positive DSM-5 criteria among past-year users of opioids (n=264), cannabis (n=1,622), cocaine (n=271) and alcohol (n=23,013). Substance-specific 2×2 tables yielded overall concordance (kappa), sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV). Results For DSM-IV Alcohol, Cocaine and Opioid Dependence, optimal concordance occurred when 4+ DSM-5 criteria were endorsed, corresponding to the threshold for moderate DSM-5 Alcohol, Cocaine and Opioid Use Disorders. Maximal concordance of DSM-IV Cannabis Dependence and DSM-5 Cannabis Use Disorder occurred when 6+ criteria were endorsed, corresponding to the threshold for severe DSM-5 Cannabis Use Disorder. At these optimal thresholds, sensitivity, specificity, PPV and NPV generally exceeded 85% (>75% for cannabis). Conclusions Overall, excellent correspondence of DSM-IV Dependence with DSM-5 Substance Use Disorders was documented in this general population sample of alcohol, cannabis, cocaine and opioid users. Applicability of treatments tested for DSM-IV Dependence is supported by these results for those with a DSM-5 Alcohol, Cocaine or Opioid Use Disorder of at least moderate severity or Severe Cannabis Use Disorder. Further research is needed to provide evidence for applicability of treatments for persons with milder substance use disorders. PMID:23642316

  16. Healthy and unhealthy dependence: implications for major depression.

    PubMed

    Schulte, Fiona S; Mongrain, Myriam; Flora, David B

    2008-09-01

    To examine the contribution of varying levels of dependency to Axis I and Axis II disorders, and to the recurrence of major depression in a graduate student sample diagnosed with a history of the disorder. At Time 1, participants were interviewed to confirm a current or past episode of major depression along with the presence of Axis II and other current or past Axis I disorders. Various measures of dependency were administered including the Depressive Experiences Questionnaire (DEQ; Blatt, D'Afflitti, & Quinlan, 1976), the 3-Vector Dependency Inventory (3VDI; Pincus & Gurtman, 1995), and the Personal Style Inventory (PSI; Robins et al., 1994). Participants were interviewed 20 months later to determine the recurrence of a depressive episode. A factor analysis conducted on scale scores for each dependency measure resulted in three factors labelled 'unhealthy', 'intermediate', and 'healthy' dependence. Controlling for history of major depression, structural equation modelling found 'unhealthy' dependence to be the only predictor of recurrences of major depression and Axis II disorders, while 'healthy' dependence was related to fewer depressive symptoms. These results have important implications for the conceptualization of the dependency construct.

  17. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-02-15

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  18. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-05-17

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  19. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2003-02-11

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  20. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2001-10-09

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  1. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2002-01-01

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  2. Development of a high power density 2.5 kW class solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Yokoo, M.; Mizuki, K.; Watanabe, K.; Hayashi, K.

    2011-10-01

    We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.

  3. Psychiatric Disorders in Smokers Seeking Treatment for Tobacco Dependence: Relations with Tobacco Dependence and Cessation

    PubMed Central

    Piper, Megan E.; Smith, Stevens S.; Schlam, Tanya R.; Fleming, Michael F.; Bittrich, Amy A.; Brown, Jennifer L.; Leitzke, Cathlyn J.; Zehner, Mark E.; Fiore, Michael C.; Baker, Timothy B.

    2009-01-01

    Objective The present research examined the relation of psychiatric disorders to tobacco dependence and cessation outcomes. Method Data were collected from 1504 smokers (58.2% women, 83.9% white, 44.67 [SD = 11.08] years old) making an aided smoking cessation attempt as part of a clinical trial. Psychiatric diagnoses were determined using the Composite International Diagnostic Interview (CIDI) structured clinical interview. Tobacco dependence was assessed using the Fagerstrom Test of Nicotine Dependence (FTND) and the Wisconsin Inventory of Smoking Dependence Motives (WISDM). Results Diagnostic groups included those who were never diagnosed, ever diagnosed (at any time, including in the past year), and those with past-year diagnoses (with or without prior diagnosis). Some diagnostic groups had lower follow-up abstinence rates than did the never diagnosed group (p’s < .05). At 8 weeks post-quit, strong associations were found between cessation outcome and both past-year mood disorder and ever-diagnosed anxiety disorder. At 6 months post-quit those ever diagnosed with an anxiety disorder (OR = .72, p = .02) and those ever diagnosed with more than one psychiatric diagnosis (OR = .74, p = .03) had lower abstinence rates. The diagnostic categories did not differ in smoking heaviness or the FTND, but they did differ in dependence motives assessed with the WISDM. Conclusion Information on recent or lifetime psychiatric disorders may help clinicians gauge relapse risk and may suggest dependence motives that are particularly relevant to affected patients. These findings also illustrate the importance of using multidimensional tobacco dependence assessments. PMID:20099946

  4. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE PAGES

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.; ...

    2018-01-09

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  5. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  6. Vortex shaking study of REBCO tape with consideration of anisotropic characteristics

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min

    2017-09-01

    The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.

  7. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  8. Visualization of endosome dynamics in living nerve terminals with four-dimensional fluorescence imaging.

    PubMed

    Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S

    2014-04-16

    Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.

  9. Manifold gasket accommodating differential movement of fuel cell stack

    DOEpatents

    Kelley, Dana A.; Farooque, Mohammad

    2007-11-13

    A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.

  10. Electrochemical cell stack assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  11. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey Scott

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less

  12. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

  13. Environmental barrier material for organic light emitting device and method of making

    DOEpatents

    Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA

    2003-02-18

    An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.

  14. Review of the Proposed "DSM-5" Substance Use Disorder

    ERIC Educational Resources Information Center

    Jones, K. Dayle; Gill, Carman; Ray, Shannon

    2012-01-01

    The "DSM-5" Task Force has recommended a new substance use disorder to replace substance abuse and dependence. This article provides an overview of substance abuse and dependence, a description of the "DSM-5" substance use disorder, and implications and potential consequences of this change.

  15. Associations between Polygenic Risk for Psychiatric Disorders and Substance Involvement.

    PubMed

    Carey, Caitlin E; Agrawal, Arpana; Bucholz, Kathleen K; Hartz, Sarah M; Lynskey, Michael T; Nelson, Elliot C; Bierut, Laura J; Bogdan, Ryan

    2016-01-01

    Despite evidence of substantial comorbidity between psychiatric disorders and substance involvement, the extent to which common genetic factors contribute to their co-occurrence remains understudied. In the current study, we tested for associations between polygenic risk for psychiatric disorders and substance involvement (i.e., ranging from ever-use to severe dependence) among 2573 non-Hispanic European-American participants from the Study of Addiction: Genetics and Environment. Polygenic risk scores (PRS) for cross-disorder psychopathology (CROSS) were generated based on the Psychiatric Genomics Consortium's Cross-Disorder meta-analysis and then tested for associations with a factor representing general liability to alcohol, cannabis, cocaine, nicotine, and opioid involvement (GENSUB). Follow-up analyses evaluated specific associations between each of the five psychiatric disorders which comprised CROSS-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (AUT), bipolar disorder (BIP), major depressive disorder (MDD), and schizophrenia (SCZ)-and involvement with each component substance included in GENSUB. CROSS PRS explained 1.10% of variance in GENSUB in our sample (p < 0.001). After correction for multiple testing in our follow-up analyses of polygenic risk for each individual disorder predicting involvement with each component substance, associations remained between: (A) MDD PRS and non-problem cannabis use, (B) MDD PRS and severe cocaine dependence, (C) SCZ PRS and non-problem cannabis use and severe cannabis dependence, and (D) SCZ PRS and severe cocaine dependence. These results suggest that shared covariance from common genetic variation contributes to psychiatric and substance involvement comorbidity.

  16. Helping Students Design HyperCard Stacks.

    ERIC Educational Resources Information Center

    Dunham, Ken

    1995-01-01

    Discusses how to teach students to design HyperCard stacks. Highlights include introducing HyperCard, developing storyboards, introducing design concepts and scripts, presenting stacks, evaluating storyboards, and continuing projects. A sidebar presents a HyperCard stack evaluation form. (AEF)

  17. 23. Brick coke quencher, brick stack, metal stack to right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Brick coke quencher, brick stack, metal stack to right, coke gas pipe to left; in background, BOF building, limestone piles, Levy's Slag Dump. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  18. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus.

    PubMed

    Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai

    2016-02-10

    Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.

  19. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.

    PubMed

    Cong, W L; Pei, Z J; Treadwell, C

    2014-08-01

    Reported drilling methods for CFRP/Ti stacks include twist drilling, end milling, core grinding, and their derived methods. The literature does not have any report on drilling of CFRP/Ti stacks using rotary ultrasonic machining (RUM). This paper, for the first time, reports a study on drilling of CFRP/Ti stacks using RUM. It also compares results on drilling of CFRP/Ti stacks using RUM with reported results on drilling of CFRP/Ti stacks using other methods. When drilling CFRP/Ti stacks using RUM, cutting force, torque, and CFRP surface roughness were lower, hole size variation was smaller, CFRP groove depth was smaller, tool life was longer, and there was no obvious Ti exit burr and CFRP entrance delamination. Ti surface roughness when drilling of CFRP/Ti stacks using RUM was about the same as those when using other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Horizontal high speed stacking for batteries with prismatic cans

    DOEpatents

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  1. Effect of product form, compaction, vibration and comminution on energywood bulk density

    Treesearch

    Tim P. McDonald; Bryce J. Stokes; J.F. McNeel

    1995-01-01

    A study was performed to examine the changes in density of stacked roundwood, chips, and chunks as affected by various compaction treatments. Density of stacked roundwood bolts was tested for the effect of stacking orientation, binding of the stack ends, and species. Stacked bolt wood occupied less than 50 percent of the total rack space for all species, giving final...

  2. The Role of Standards in Cloud-Computing Interoperability

    DTIC Science & Technology

    2012-10-01

    services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift

  3. Attention deficit hyperactivity disorder in cocaine-dependent adults: a psychiatric comorbidity analysis.

    PubMed

    Daigre, Constanza; Roncero, Carlos; Grau-López, Lara; Martínez-Luna, Nieves; Prat, Gemma; Valero, Sergi; Tejedor, Rosa; Ramos-Quiroga, Josep A; Casas, Miguel

    2013-01-01

    Attention deficit hyperactivity disorder (ADHD) is highly prevalent among drug abusers. We studied the psychiatric comorbidity and characteristics of cocaine use in relation to the presence of ADHD among patients with cocaine dependence. A total of 200 cocaine-dependent patients attending an Outpatient Drug Clinic participated in the study. A systematic evaluation of ADHD (CAADID-II), the severity of addiction (EuropASI) and other axes I and II psychiatric disorders was made (SCID-I and SCID-II). A descriptive, bivariate, and multivariate analysis of the data was performed. In the multivariate analysis, the identified risk factors for the development of ADHD were a history of behavioral disorder in childhood (OR: 3.04), a lifetime history of cannabis dependence in the course of life (OR: 2.68), and age at the start of treatment (OR: 1.08). The bivariate analysis showed ADHD to be associated with other factors such as male gender, age at start of cocaine use and dependence, the amount of cocaine consumed weekly, increased occupational alteration, alcohol consumption, general psychological discomfort, depressive disorder, and antisocial personality disorder. We conclude that ADHD is associated with increased psychiatric comorbidity and greater severity of addiction. Copyright © American Academy of Addiction Psychiatry.

  4. Disorder dependence electron phonon scattering rate of V82Pd18 - xFex alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Jana, R. N.; Meikap, A. K.

    2018-04-01

    We have systematically investigated the disorder dependence electron phonon scattering rate in three dimensional disordered V82Pd18 - xFex alloys. A minimum in temperature dependence resistivity curve has been observed at low temperature T =Tm. In the temperature range 5 K ≤ T ≤Tm the resistivity correction follows ρo 5 / 2T 1 / 2 law. The dephasing scattering time has been calculated from analysis of magnetoresistivity by weak localization theory. The electron dephasing time is dominated by electron-phonon scattering and follows anomalous temperature (T) and disorder (ρ0) dependence behaviour like τe-ph-1 ∝T2 /ρ0, where ρ0 is the impurity resistivity. The magnitude of the saturated dephasing scattering time (τ0) at zero temperature decreases with increasing disorder of the samples. Such anomalous behaviour of dephasing scattering rate is still unresolved.

  5. Rethinking dependent personality disorder: comparing different human relatedness in cultural contexts.

    PubMed

    Chen, YuJu; Nettles, Margaret E; Chen, Shun-Wen

    2009-11-01

    We argue that the Diagnostic and Statistical Manual of Mental Disorders dependent personality disorder is a culturally related concept reflecting deeply rooted values, beliefs, and assumptions of American individualistic convictions about self and interpersonal relationship. This article integrates social psychology concepts into the exploration of psychopathology. Beginning with the construct of individualism and collectivism, we demonstrate the limitations of this commonly used framework. The indigenous Chinese concept of Confucianism and Chinese Relationalism is introduced to highlight that a well-differentiated self is not a universal premise of human beings, healthy existence. In East Asian Confucianism the manifestation of dependence and submission may be considered individuals' proper behavior and required for their social obligation, rather than a direct display of individuals' personality. Thus, the complexity of dependent personality disorder is beyond the neo-Kraepelinian approach assumed by the Diagnostic and Statistical Manual of Mental Disorders system.

  6. Develop and test fuel cell powered on site integrated total energy sysems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1986-01-01

    A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.

  7. Design and assembly considerations for Redox cells and stacks

    NASA Technical Reports Server (NTRS)

    Stalnaker, D. K.; Lieberman, A.

    1981-01-01

    Individual redox flow cells are arranged electrically in series and hydraulically in parallel to form a single assembly called a stack. The hardware currently being tested in the laboratory has an active electrode area of either 310 sq cm or 929 sq cm. Four 310 sq cm stacks, each consisting of 39 active cells, were incorporated into a 1.0 kW preprototype system. The physical design of the stack is very critical to the performance and efficiency of the redox storage sytem. This report will discuss the mechanical aspects of the cell and stack design for the current Redox hardware, with regard to sealing the stack internally as well as externally, minimizing shunt currents and minimizing the electrical resistance of the stack.

  8. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder

    PubMed Central

    Karchemskiy, Asya; Garrett, Amy; Howe, Meghan; Adleman, Nancy; Simeonova, Diana I.; Alegria, Dylan; Reiss, Allan; Chang, Kiki

    2011-01-01

    Children of parents with bipolar disorder (BD), especially those with attention deficit hyperactivity disorder (ADHD) and symptoms of depression or mania, are significantly at high-risk for developing BD. As we have previously shown amygdalar reductions in pediatric BD, the current study examined amygdalar volumes in offspring of parents with (BD offspring) who have not yet developed a full manic episode. Youth participating in the study included 22 BD offspring and 22 healthy controls of comparable age, gender, handedness, and IQ. Subjects had no history of a manic episode, but met criteria for ADHD and moderate mood symptoms. MRI was performed on a 3T GE scanner, using a 3D volumetric spoiled gradient echo series. Amygdalae were manually traced using BrainImage Java software on positionally normalized brain stacks. Bipolar offspring had similar amygdalar volumes compared to the control group. Exploratory analyses yielded no differences in hippocampal or thalamic volumes. Bipolar offspring do not show decreased amygdala volume, possibly because these abnormalities occur after more prolonged illness rather than as a preexisting risk factor. Longitudinal studies are needed to determine whether amygdalar volumes change during and after the development of BD. PMID:22041532

  9. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder.

    PubMed

    Karchemskiy, Asya; Garrett, Amy; Howe, Meghan; Adleman, Nancy; Simeonova, Diana I; Alegria, Dylan; Reiss, Allan; Chang, Kiki

    2011-12-30

    Children of parents with bipolar disorder (BD), especially those with attention deficit hyperactivity disorder (ADHD) and symptoms of depression or mania, are at significantly high risk for developing BD. As we have previously shown amygdalar reductions in pediatric BD, the current study examined amygdalar volumes in offspring of parents (BD offspring) who have not yet developed a full manic episode. Youth participating in the study included 22 BD offspring and 22 healthy controls of comparable age, gender, handedness, and IQ. Subjects had no history of a manic episode, but met criteria for ADHD and moderate mood symptoms. MRI was performed on a 3T GE scanner, using a 3D volumetric spoiled gradient echo series. Amygdalae were manually traced using BrainImage Java software on positionally normalized brain stacks. Bipolar offspring had similar amygdalar volumes compared to the control group. Exploratory analyses yielded no differences in hippocampal or thalamic volumes. Bipolar offspring do not show decreased amygdalar volume, possibly because these abnormalities occur after more prolonged illness rather than as a preexisting risk factor. Longitudinal studies are needed to determine whether amygdalar volumes change during and after the development of BD. 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    PubMed

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  11. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  12. Personality Disorders Classification and Symptoms in Cocaine and Opioid Addicts.

    ERIC Educational Resources Information Center

    Malow, Robert M.; And Others

    1989-01-01

    Examined extent to which personality disorders and associated symptom criteria were found among 117 cocaine- and opioid-dependent men in drug dependence treatment unit. Drug groups were distinguished by higher rates of antisocial and borderline symptomatology rather than by features associated with other personality disorders. Different…

  13. "Psychiatric disorders in smokers seeking treatment for tobacco dependence: Relations with tobacco dependence and cessation": Correction to Piper et al. (2010).

    PubMed

    2017-09-01

    Reports an error in "Psychiatric disorders in smokers seeking treatment for tobacco dependence: Relations with tobacco dependence and cessation" by Megan E. Piper, Stevens S. Smith, Tanya R. Schlam, Michael F. Fleming, Amy A. Bittrich, Jennifer L. Brown, Cathlyn J. Leitzke, Mark E. Zehner, Michael C. Fiore and Timothy B. Baker ( Journal of Consulting and Clinical Psychology , 2010[Feb], Vol 78[1], 13-23). There was an error in the Method section in the World Mental Health Survey Initiative version of the CIDI subsection. The authors characterized one of the anxiety conditions analyzed as "panic disorder". However, this should have been labeled as "panic attacks", consequently making the occurrence rates and relations the authors reported actually pertain to panic attacks, social phobia, and generalized anxiety disorder. (The following abstract of the original article appeared in record 2010-00910-005.) Objective: The present research examined the relation of psychiatric disorders to tobacco dependence and cessation outcomes. Data were collected from 1,504 smokers (58.2% women; 83.9% White; mean age = 44.67 years, SD = 11.08) making an aided smoking cessation attempt as part of a clinical trial. Psychiatric diagnoses were determined with the Composite International Diagnostic Interview structured clinical interview. Tobacco dependence was assessed with the Fagerström Test of Nicotine Dependence (FTND) and the Wisconsin Inventory of Smoking Dependence Motives (WISDM). Diagnostic groups included those who were never diagnosed, those who had ever been diagnosed (at any time, including in the past year), and those with past-year diagnoses (with or without prior diagnosis). Some diagnostic groups had lower follow-up abstinence rates than did the never diagnosed group ( ps < .05). At 8 weeks after quitting, strong associations were found between cessation outcome and both past-year mood disorder and ever diagnosed anxiety disorder. At 6 months after quitting, those ever diagnosed with an anxiety disorder ( OR = .72, p = .02) and those ever diagnosed with more than one psychiatric diagnosis ( OR = .74, p = .03) had lower abstinence rates. The diagnostic categories did not differ in smoking heaviness or the FTND, but they did differ in dependence motives assessed with the WISDM. Information on recent or lifetime psychiatric disorders may help clinicians gauge relapse risk and may suggest dependence motives that are particularly relevant to affected patients. These findings also illustrate the importance of using multidimensional tobacco dependence assessments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Hamiltonian approach to slip-stacking dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Ng, K. Y.

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  15. Hamiltonian approach to slip-stacking dynamics

    DOE PAGES

    Lee, S. Y.; Ng, K. Y.

    2017-06-29

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  16. Design on an Enhanced Interactive Satellite Communications System Analysis Program

    DTIC Science & Technology

    1991-09-01

    openStack message is sent from the stack up the hierarchy to HyperCard. When the stack opens, the first card in the stack is displayed and an openCard... openStack global orbitPage,groundPage.commPage,beginmuRe,c.dBker2d.d2r,we global earth-e.NoiseTIV.Losses put false into orbitPage put false into groundPage...menultem 2 of menu "Options" to D end openStack function FreqToWave freq global c put c)(freq* 109) into wave return wave end FreqToWave function log

  17. Respiratory Plasticity Following Spinal Injury: Role of Chloride-Dependent Inhibitory Neurotransmission

    DTIC Science & Technology

    2015-10-01

    compensation in unanesthetized rats. 15. SUBJECT TERMS Spinal Injury, Treatment , Intermittent hypoxia, rats, spontaneous recovery, induced recovery, rAIH, PKC...After immunofluoresence for KCC1/NKCC2, confocal z-stacks of cholera - toxin back-labeled phrenic motor neurons were made ipsilateral and contralateral...enhanced excitatory neurotransmission) also did not pan out, we suspect that the timing of rAIH treatment in our studies was not optimal. Indeed

  18. Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer

    NASA Astrophysics Data System (ADS)

    Sun, Xian-Wen; Jia, Cai-Hong; Liu, Xian-Sheng; Li, Guo-Qiang; Zhang, Wei-Feng

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11404093), the Foundation of Henan Provincial Science and Technology Department, China (Grant No. 132102210258), the Research Funding from Henan Province, China (Grant Nos. 15A140001, 2015GGJS-021, and 17HASTIT014), and the Henan University Emerging Cross and Characteristic Discipline Cultivation Program, China (Grant No. xxjc20140016).

  19. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  20. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

Top