Sample records for stacking fault probability

  1. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less

  2. Stacking-fault nucleation on Ir(111).

    PubMed

    Busse, Carsten; Polop, Celia; Müller, Michael; Albe, Karsten; Linke, Udo; Michely, Thomas

    2003-08-01

    Variable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces.

  3. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  4. In-situ observation of stacking fault evolution in vacuum-deposited C60

    NASA Astrophysics Data System (ADS)

    Hardigree, J. F. M.; Ramirez, I. R.; Mazzotta, G.; Nicklin, C.; Riede, M.

    2017-12-01

    We report an in-situ study of stacking fault evolution in C60 thin films using grazing-incidence x-ray scattering. A Williamson-Hall analysis of the main scattering features during growth of a 15 nm film on glass indicates lattice strain as high as 6% in the first 5 nm of the film, with a decrease to 2% beyond 8 nm thickness. Deformation stacking faults along the {220} plane are found to occur with 68% probability and closely linked to the formation of a nanocrystalline powder-like film. Our findings, which capture monolayer-resolution growth, are consistent with previous work on crystalline and powder C60 films, and provide a crystallographic context for the real-time study of organic semiconductor thin films.

  5. TEM study on relationship between stacking faults and non-basal dislocations in Mg

    NASA Astrophysics Data System (ADS)

    Zhang, Dalong; Jiang, Lin; Schoenung, Julie M.; Mahajan, Subhash; Lavernia, Enrique J.

    2015-12-01

    Recent interest in the study of stacking faults and non-basal slip in Mg alloys is partly based on the argument that these phenomena positively influence mechanical behaviour. Inspection of the published literature, however, reveals that there is a lack of fundamental information on the mechanisms that govern the formation of stacking faults, especially I1-type stacking faults (I1 faults). Moreover, controversial and sometimes contradictory mechanisms have been proposed concerning the interactions between stacking faults and dislocations. Therefore, we describe a fundamental transmission electron microscope investigation on Mg 2.5 at. % Y (Mg-2.5Y) processed via hot isostatic pressing (HIP) and extrusion at 623 K. In the as-HIPed Mg-2.5Y, many and dislocations, together with some dislocations were documented, but no stacking faults were observed. In contrast, in the as-extruded Mg-2.5Y, a relatively high density of stacking faults and some non-basal dislocations were documented. Specifically, there were three different cases for the configurations of observed stacking faults. Case (I): pure I2 faults; Case (II): mixture of I1 faults and non-basal dislocations having component, together with basal dislocations; Case (III): mixture of predominant I2 faults and rare I1 faults, together with jog-like dislocation configuration. By comparing the differences in extended defect configurations, we propose three distinct stacking fault formation mechanisms for each case in the context of slip activity and point defect generation during extrusion. Furthermore, we discuss the role of stacking faults on deformation mechanisms in the context of dynamic interactions between stacking faults and non-basal slip.

  6. Experimental verification of the model for formation of double Shockley stacking faults in highly doped regions of PVT-grown 4H–SiC wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide

    Recently, we reported on the formation of overlapping rhombus-shaped stacking faults from scratches left over by the chemical mechanical polishing during high temperature annealing of PVT-grown 4H–SiC wafer. These stacking faults are restricted to regions with high N-doped areas of the wafer. The type of these stacking faults were determined to be Shockley stacking faults by analyzing the behavior of their area contrast using synchrotron white beam X-ray topography studies. A model was proposed to explain the formation mechanism of the rhombus shaped stacking faults based on double Shockley fault nucleation and propagation. In this paper, we have experimentally verifiedmore » this model by characterizing the configuration of the bounding partials of the stacking faults on both surfaces using synchrotron topography in back reflection geometry. As predicted by the model, on both the Si and C faces, the leading partials bounding the rhombus-shaped stacking faults are 30° Si-core and the trailing partials are 30° C-core. Finally, using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.« less

  7. The measurement of the stacking fault energy in copper, nickel and copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Leighly, H. P., Jr.

    1982-01-01

    The relationship of hydrogen solubility and the hydrogen embrittlement of high strength, high performance face centered cubic alloys to the stacking fault energy of the alloys was investigated. The stacking fault energy is inversely related to the distance between the two partial dislocations which are formed by the dissociation of a perfect dislocation. The two partial dislocations define a stacking fault in the crystal which offers a region for hydrogen segregation. The distance between the partial dislocations is measured by weak beam, dark field transmission electron microscopy. The stacking fault energy is calculated. Pure copper, pure nickel and copper-nickel single crystals are used to determine the stacking fault energy.

  8. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.

    2015-10-01

    Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.

  9. Stacking fault effects in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Schmidt, T. M.; Miwa, R. H.; Orellana, W.; Chacham, H.

    2002-01-01

    First-principles total energy calculations are performed to investigate the interaction of a stacking fault with a p-type impurity in both zinc-blende and wurtzite GaN. For both structures we find that, in the presence of a stacking fault, the impurity level is a more localized state in the band gap. In zinc-blende GaN, the minimum energy position of the substitutional Mg atom is at the plane of the stacking fault. In contrast, in wurtzite GaN the substitutional Mg atom at the plane of the stacking fault is a local minimum and the global minimum is the substitutional Mg far from the fault. This behavior can be understood as a packing effect which induces a distinct strain relief process, since the local structure of the stacking fault in zinc-blende GaN is similar to fault-free wurtzite GaN and vice-versa.

  10. Hydrogen Embrittlement And Stacking-Fault Energies

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  11. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  12. The behaviour of stacking fault energy upon interstitial alloying.

    PubMed

    Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun

    2017-09-11

    Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

  13. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  14. Deformation induced microtwins and stacking faults in aluminum single crystal.

    PubMed

    Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F

    2008-09-12

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  15. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...

    2015-06-18

    In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less

  16. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: a first-principles study.

    PubMed

    Aas, C J; Szunyogh, L; Evans, R F L; Chantrell, R W

    2013-07-24

    In terms of the fully relativistic screened Korringa-Kohn-Rostoker method we investigate the effect of stacking faults on the magnetic properties of hexagonal close-packed (hcp) cobalt. In particular, we consider the formation energy and the effect on the magnetocrystalline anisotropy energy (MAE) of four different stacking faults in hcp cobalt-an intrinsic growth fault, an intrinsic deformation fault, an extrinsic fault and a twin-like fault. We find that the intrinsic growth fault has the lowest formation energy, in good agreement with previous first-principles calculations. With the exception of the intrinsic deformation fault which has a positive impact on the MAE, we find that the presence of a stacking fault generally reduces the MAE of bulk Co. Finally, we consider a pair of intrinsic growth faults and find that their effect on the MAE is not additive, but synergic.

  17. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  18. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  19. Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron

    2018-01-01

    We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.

  20. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE PAGES

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; ...

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  1. X-Ray Diffuse Scattering Study of the Kinetics of Stacking Fault Growth and Annihilation in Boron-Implanted Silicon.

    NASA Astrophysics Data System (ADS)

    Patel, J. R.

    2002-06-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.

  2. The determination of the stacking fault energy in copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Leighly, H. P., Jr.

    1982-01-01

    Methods for determining the stacking fault energies of a series of nickel-copper alloys to gain an insight into the embrittling effect of hydrogen are evaluated. Plans for employing weak beam dark field electron microscopy to determine stacking fault energies are outlined.

  3. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  4. Theoretical investigation of the formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Chisato; Ichimura, Aiko; Ohtani, Noboru, E-mail: ohtani.noboru@kwansei.ac.jp

    The formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals was theoretically investigated. A novel theoretical model based on the so-called quantum well action mechanism was proposed; the model considers several factors, which were overlooked in a previously proposed model, and provides a detailed explanation of the annealing-induced formation of double layer Shockley-type stacking faults in heavily nitrogen-doped 4H-SiC crystals. We further revised the model to consider the carrier distribution in the depletion regions adjacent to the stacking fault and successfully explained the shrinkage of stacking faults during annealing at even higher temperatures. The model also succeeded inmore » accounting for the aluminum co-doping effect in heavily nitrogen-doped 4H-SiC crystals, in that the stacking fault formation is suppressed when aluminum acceptors are co-doped in the crystals.« less

  5. Self-Catalyzed Growth of Axial GaAs/GaAsSb Nanowires by Molecular Beam Epitaxy for Photodetectors

    DTIC Science & Technology

    2015-06-01

    blende structure with mixture of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically...a) TEM image of the core NW (b) HR-TEM image displaying the stacking faults and twinning defects. (c)SAED pattern showing the ZB crystal structure...of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically etched substrates. For

  6. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test.

    PubMed

    Ma, Yan; Song, Wenwen; Bleck, Wolfgang

    2017-09-25

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.

  7. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  8. Driving force of stacking-fault formation in SiC p-i-n diodes.

    PubMed

    Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K

    2004-04-30

    The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.

  9. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  10. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  11. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    NASA Astrophysics Data System (ADS)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  12. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, C. H.; Ouyang, Chuenhou, E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw; Yao, Y. D.

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples preparedmore » at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.« less

  13. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.

    PubMed

    Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L

    2013-11-29

    Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.

  14. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus.

    PubMed

    Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai

    2016-02-10

    Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.

  15. Suzuki segregation in a binary Cu-Si alloy.

    PubMed

    Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E

    2004-01-01

    Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.

  16. Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8.

    PubMed

    Hegde, Vinay I; Tan, Jin-Chong; Waghmare, Umesh V; Cheetham, Anthony K

    2013-10-17

    We determine the nonlinear mechanical behavior of a prototypical zeolitic imidazolate framework (ZIF-8) along two modes of mechanical failure in response to tensile and shear forces using first-principles simulations. Our generalized stacking fault energy surface reveals an intrinsic stacking fault of surprisingly low energy comparable to that in copper, though the energy barrier associated with its formation is much higher. The lack of vibrational spectroscopic evidence for such faults in experiments can be explained with the structural instability of the barrier state to form a denser and disordered state of ZIF-8 seen in our analysis, that is, large shear leads to its amorphization rather than formation of faults.

  17. High spatial resolution correlated investigation of Zn segregation to stacking faults in ZnTe/CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Grenier, Adeline; Gerard, Lionel; Jouneau, Pierre-Henri; André, Regis; Blavette, Didier; Bougerol, Catherine

    2018-02-01

    The correlative use of atom probe tomography (APT) and energy dispersive x-ray spectroscopy in scanning transmission electron microscopy (STEM) allows us to characterize the structure of ZnTe/CdSe superlattices at the nanometre scale. Both techniques reveal the segregation of zinc along [111] stacking faults in CdSe layers, which is interpreted as a manifestation of the Suzuki effect. Quantitative measurements reveal a zinc enrichment around 9 at. % correlated with a depletion of cadmium in the stacking faults. Raw concentration data were corrected so as to account for the limited spatial resolution of both STEM and APT techniques. A simple calculation reveals that the stacking faults are almost saturated in Zn atoms (˜66 at. % of Zn) at the expense of Cd that is depleted.

  18. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  19. Experimental and computational studies on stacking faults in zinc titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, W.; Ageh, V.; Mohseni, H.

    Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as γ-surfaces were computed for themore » (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup ¯}] direction and the most favorable glide system is (104) 〈451{sup ¯}〉 that is responsible for the experimentally observed sliding-induced ductility.« less

  20. Effect of stacking faults on the photoluminescence spectrum of zincblende GaN

    NASA Astrophysics Data System (ADS)

    Church, S. A.; Hammersley, S.; Mitchell, P. W.; Kappers, M. J.; Lee, L. Y.; Massabuau, F.; Sahonta, S. L.; Frentrup, M.; Shaw, L. J.; Wallis, D. J.; Humphreys, C. J.; Oliver, R. A.; Binks, D. J.; Dawson, P.

    2018-05-01

    The photoluminescence spectra of a zincblende GaN epilayer grown via metal-organic chemical vapour deposition upon 3C-SiC/Si (001) substrates were investigated. Of particular interest was a broad emission band centered at 3.4 eV, with a FWHM of 200 meV, which extends above the bandgap of both zincblende and wurtzite GaN. Photoluminescence excitation measurements show that this band is associated with an absorption edge centered at 3.6 eV. Photoluminescence time decays for the band are monoexponential, with lifetimes that reduce from 0.67 ns to 0.15 ns as the recombination energy increases. TEM measurements show no evidence of wurtzite GaN inclusions which are typically used to explain emission in this energy range. However, dense stacking fault bunches are present in the epilayers. A model for the band alignment at the stacking faults was developed to explain this emission band, showing how both electrons and holes can be confined adjacent to stacking faults. Different stacking fault separations can change the carrier confinement energies sufficiently to explain the width of the emission band, and change the carrier wavefunction overlap to account for the variation in decay time.

  1. Characterization of individual straight and kinked boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Zhiguang

    Boron carbides represent a class of ceramic materials with p-type semiconductor natures, complex structures and a wide homogeneous range of carbon compositions. Bulk boron carbides have long been projected as promising high temperature thermoelectric materials, but with limited performance. Bringing the bulk boron carbides to low dimensions (e.g., nanowires) is believed to be an option to enhance their thermoelectric performance because of the quantum size effects. However, the fundamental studies on the microstructure-thermal property relation of boron carbide nanowires are elusive. In this dissertation work, systematic structural characterization and thermal conductivity measurement of individual straight and kinked boron carbide nanowires were carried out to establish the true structure-thermal transport relation. In addition, a preliminary Raman spectroscopy study on identifying the defects in individual boron carbide nanowires was conducted. After the synthesis of single crystalline boron carbide nanowires, straight nanowires accompanied by the kinked ones were observed. Detailed structures of straight boron carbide nanowires have been reported, but not the kinked ones. After carefully examining tens of kinked nanowires utilizing Transmission Electron Microscopy (TEM), it was found that they could be categorized into five cases depending on the stacking faults orientations in the two arms of the kink: TF-TF, AF-TF, AF-AF, TF-IF and AF-IF kinks, in which TF, AF and IF denotes transverse faults (preferred growth direction perpendicular to the stacking fault planes), axial faults (preferred growth direction in parallel with the stacking fault planes) and inclined faults (preferred growth direction neither perpendicular to nor in parallel with the stacking fault planes). Simple structure models describing the characteristics of TF-TF, AF-TF, AF-AF kinked nanowires are constructed in SolidWorks, which help to differentiate the kinked nanowires viewed from the zone axes where stacking faults are invisible. In collaboration with the experts in the field of thermal property characterization of one dimensional nanostructures, thermal conductivities of over 60 nanowires including both straight and kinked ones have been measured in the temperature range of 20 - 420 K and the parameters (i.e., carbon contents, diameters, stacking faults densities/orientations and kinks) affecting the phonon transport were explored. The results disclose strong carbon content and diameter dependence of thermal conductivities of boron carbide nanowires, which decreases as lowering the carbon content and diameter. Stacking fault orientations do modulate the phonon transport (kappaTF < kappa AF), while stacking fault densities seems to only have obvious effects on phonon transport when meeting certain threshold ( 39%). The most interesting discovery is significant reduction of thermal conductivity (15% - 40%) in kinked boron carbide nanowires due to phonon mode conversions and scattering at the kink site. Last but not least, micro-Raman spectroscopy study on individual boron carbide nanowires has been performed for the first time, to the best of our knowledge. Based on the preliminary data, it is found that the stacking fault orientations have no apparent effect on the Raman scattering, but the stacking fault densities do. In addition, up as the size going down to nanoscale, some Raman modes are inactive while some new ones show up, which is largely ascribed to the quantum confinement effects. One more important finding is that the carbon content also plays important role in the Raman scattering of boron carbide nanowires in the low frequency region (< 600 cm-1), which mainly comes from the 3-atom chains (C-B-C or C-B-B).

  2. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  3. Stacking fault energies and slip in nanocrystalline metals.

    PubMed

    Van Swygenhoven, H; Derlet, P M; Frøseth, A G

    2004-06-01

    The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

  4. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    NASA Astrophysics Data System (ADS)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  5. Atomic-scale study of stacking faults in Zr hydrides and implications on hydride formation.

    PubMed

    Besson, Remy; Thuinet, L; Louchez, Marc-Antoine

    2018-06-25

    We performed atomic-scale ab initio calculations to investigate the stacking fault (SF) properties of the metastable zeta-Zr2H zirconium hydride. The effect of H near the SF was found to entail the existence of negative SF energies, showing that the zeta compound is probably unstable with respect to shearing in the basal plane. The effect of temperature on SFs was investigated by means of free energy calculations in the quasiharmonic approximation. This evidenced unexpectedly large temperature effects, confirming the main conclusions drawn at 0 K, in particular the zeta mechanical instability. The complex behaviour of H atoms during the shear process suggested zeta-hcp --> Zr2H[111]-fcc as a plausible shear path leading to an fcc compound with same composition as zeta. Finally, as shown by an analysis based on microelasticity, this Zr2H[111]-fcc intermediate compound may be relevant for better interpreting the currently intricate issue of hydride habit planes in zirconium. © 2018 IOP Publishing Ltd.

  6. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN.

    PubMed

    Ouyang, Bin; Chen, Cheng; Song, J

    2018-03-02

    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  7. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  8. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun

    2017-11-01

    Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.

  9. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    PubMed

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  10. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin; Chen, Cheng; Song, J.

    2018-03-01

    Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes dislocation behaviors in materials. In this paper, utilizing first-principle calculations and chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene and h-BN. It has been shown that the π bond formation plays a critical role in the existence of metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions. Chemical functionalization was then proposed as an effective means to engineer the π bond, and subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a representative functionalization method, we demonstrated that, with the preferential adsorption of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the atomic mechanism of MSF formation in graphene-like materials, and more generally, provides important insights towards predictive tuning of mechanic properties in two-dimensional nanomaterials.

  11. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test

    PubMed Central

    Song, Wenwen; Bleck, Wolfgang

    2017-01-01

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692

  12. Zn-dopant dependent defect evolution in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-01

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires. Electronic supplementary information (ESI) available: HRTEM image of undoped GaN nanowires and first-principles calculations of Zn doped WZ-GaN. See DOI: 10.1039/c5nr04771d

  13. Floating stacking faults on the (111) surface of FCC metals: a finite-temperature first-principles study

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola

    2003-03-01

    The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.

  14. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  15. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Misra, A.; Hirth, J. P.

    2011-02-01

    Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.

  16. Zn-dopant dependent defect evolution in GaN nanowires.

    PubMed

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-21

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.

  17. Kinetic effects in InP nanowire growth and stacking fault formation: the role of interface roughening.

    PubMed

    Chiaramonte, Thalita; Tizei, Luiz H G; Ugarte, Daniel; Cotta, Mônica A

    2011-05-11

    InP nanowire polytypic growth was thoroughly studied using electron microscopy techniques as a function of the In precursor flow. The dominant InP crystal structure is wurtzite, and growth parameters determine the density of stacking faults (SF) and zinc blende segments along the nanowires (NWs). Our results show that SF formation in InP NWs cannot be univocally attributed to the droplet supersaturation, if we assume this variable to be proportional to the ex situ In atomic concentration at the catalyst particle. An imbalance between this concentration and the axial growth rate was detected for growth conditions associated with larger SF densities along the NWs, suggesting a different route of precursor incorporation at the triple phase line in that case. The formation of SFs can be further enhanced by varying the In supply during growth and is suppressed for small diameter NWs grown under the same conditions. We attribute the observed behaviors to kinetically driven roughening of the semiconductor/metal interface. The consequent deformation of the triple phase line increases the probability of a phase change at the growth interface in an effort to reach local minima of system interface and surface energy.

  18. Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.

    2018-06-01

    In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.

  19. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  20. Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com

    Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.

  1. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  2. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    PubMed

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  3. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  4. Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.; Kioussis, Nicholas; Herbranson, M.

    2000-02-01

    We have used the Naval Research Laboratory (NRL) tight-binding (TB) method to calculate the generalized stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb. The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We compared our results with full potential linear-muffin-tin orbital and embedded atom method (EAM) calculations, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault energy.

  5. Growth of non-polar and semi-polar gallium nitride with plasma assisted molecular beam epitaxy: Relatonships between film microstructure, reciprocal lattice and transport properties

    NASA Astrophysics Data System (ADS)

    McLaurin, Melvin Barker

    2007-12-01

    The group-III nitrides exhibit significant spontaneous and piezoelectric polarization parallel to the [0001] direction, which are manifested as sheet charges at heterointerfaces. While polarization can be used to engineer the band-structure of a device, internal electric fields generated by polarization discontinuities can also have a number of negative consequences for the performance and design of structures utilizing heterojunctions. The most direct route to polarization free group-III nitride devices is growth on either one of the "non-polar" prismatic faces of the crystal (m-plane (1010) or a-plane (1120)) where the [0001] direction lies in the plane of any heterointerfaces. This dissertation focuses on the growth of non-polar and semi-polar GaN by MBE and on how the dominant feature of the defect structure of non-polar and semi-polar films, basal plane stacking faults, determines the properties of the reciprocal lattice and electrical transport of the films. The first part is a survey of the MBE growth of the two non-polar planes (10 10) and (1120) and three semi-polar planes (1011), (1013) and {11 22} investigated in this work. The relationship between basal plane stacking faults and broadening of the reciprocal lattice is discussed and measured with X-ray diffraction using a lateral-variant of the Williamson-Hall analysis. The electrical properties of m-plane films are investigated using Hall-effect and TLM measurements. Anisotropic mobilities were observed for both electrons and holes along with record p-type conductivities and hole concentrations. By comparison to both inversion-domain free c-plane films and stacking-fault-free free-standing m-plane GaN wafers it was determined that basal plane stacking faults were the source of both the enhanced p-type conductivity and the anisotropic carrier mobilities. Finally, we propose a possible source of anisotropic mobilities and enhanced p-type conduction in faulted films is proposed. Basal plane stacking faults are treated as heterostructures of the wurtzite and zincblende polytypes of GaN. The band parameter and polarization differences between the polytypes result in large offsets in both the conduction and valence band edges at the stacking faults. Anisotropy results from scattering from the band-edge offsets and enhanced mobility from screening due to charge accumulation at these band edge offsets.

  6. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  7. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  8. Effect of Na presence during CuInSe{sub 2} growth on stacking fault annihilation and electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, H., E-mail: helena.stange@helmholtz-berlin.de; Brunken, S.; Hempel, H.

    While presence of Na is essential for the performance of high-efficiency Cu(In,Ga)Se{sub 2} thin film solar cells, the reasons why addition of Na by post-deposition treatment is superior to pre-deposition Na supply—particularly at low growth temperatures—are not yet fully understood. Here, we show by X-ray diffraction and electron microscopy that Na impedes annihilation of stacking faults during the Cu-poor/Cu-rich transition of low temperature 3-stage co-evaporation and prevents Cu homogeneity on a microscopic level. Lower charge carrier mobilities are found by optical pump terahertz probe spectroscopy for samples with remaining high stacking fault density, indicating a detrimental effect on electronic propertiesmore » if Na is present during growth.« less

  9. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium.

    PubMed

    Xue, Sichuang; Fan, Zhe; Lawal, Olawale B; Thevamaran, Ramathasan; Li, Qiang; Liu, Yue; Yu, K Y; Wang, Jian; Thomas, Edwin L; Wang, Haiyan; Zhang, Xinghang

    2017-11-21

    Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy. Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses. The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This study sheds lights on a deformation mechanism in metals with high stacking fault energies.

  10. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation

    PubMed Central

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-01-01

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures. PMID:25998415

  11. Magnetic fabric of fault breccia: Revealing the direction of the Cretaceous nappe-stacking in the Inner Western Carpathians by AMS analyses

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah; Kövér, Szilvia; Fodor, László

    2017-04-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia, fault rocks with clast-in-matrix textures. A noteworthy feature of the breccia is the presence of a fabric defined by the preferred orientation of clasts and grains in the matrix. However, this fabric is often not visible in the field or in thin sections but can be detected by AMS analyses. The sample area of the present study is located within the Cretaceous thin-skinned nappe-system of the Inner Western Carpathians. This Alpine-type orogenic belt is built up by large-scale, few km thick nappes without connection to their root areas. These thin rock slices thrust over large distances without sign of mayor deformation within the nappe slice. All the deformation took place along highly strained, narrow shear zones lubricated by hot fluids. These hydrostatically pressurized zones develop on the bases of the nappes, where basal tectonic breccia was formed. Newly formed, syn-kinematic minerals are growing from the overpressured fluids. These polymict breccias have typical block-in-matrix texture with clast size vary between mm and few cm. The matrix is mainly submillimetre-scale rock fragments and cement. In spite of detailed studies about the physical conditions of nappe movements, there is no information about the tectonic transport direction. Analyses of brittle fault kinematics within the different tectonic slices suggest either NW-SE or N-S compressional stress field during the nappe-stacking. With this study we want to test if the magnetic fabric of tectonic breccia can help to determine the transport direction. The first results are very promising: Area 1 (basal tectonic breccia from Tisovec): the magnetic lineation is well defined and plunges gently towards N-NNW. The stretching lineation observable in the field within the uppermost part of the footwall dips towards ENE and is probably related to an ENE-WSW extensional event affecting the whole nappe-pile after the nappe-stacking. However, the detected magnetic foliation fits nicely into the supposed NW/N-SE/S oriented compressional stress field during the nappe-stacking, prior to the extensional event. Following this interpretation the breccia was formed during nappe stacking and its magnetic fabric was not overprinted by the following extensional event. Area 2 (basal tectonic breccia from Puste Pole): two magnetic fabrics can be measured in different sites: a well-defined magnetic lineation plunging towards NNW/SSE, and a weaker fabric with either WSW or E dipping magnetic lineation. The first fabric can be interpreted in the same way as in area 1. However, the WSW or E oriented magnetic lineation is parallel to the structural stretching lineation associated to the later extensional event. Area 3 (basal tectonic breccia from Telgárt): the magnetic lineation is well defined and dips gently to W, which is parallel to the post-stacking stretching direction. This preliminary results show, that AMS-study of the basal tectonic breccia of thin-skinned nappes can be a powerful method in the future for detecting the hidden anisotropic fabric related to the tectonic movements, even if there are several tectonic events with different directions of movement.

  12. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2017-12-01

    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.

  13. Influence of preliminary ultrasonic treatment upon the steady-state creep of metals of different stacking fault energies.

    PubMed

    Rusinko, A

    2014-01-01

    This paper addresses the issue of the ultrasound effects upon the creep deformation of metals with different levels of stacking fault energy. The influence of preliminary ultrasound irradiation time upon the steady state creep rate is considered. Synthetic theory of irrecoverable deformation is taken as a mathematical apparatus. The analytical results show good agreement with experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Solute effect on basal and prismatic slip systems of Mg.

    PubMed

    Moitra, Amitava; Kim, Seong-Gon; Horstemeyer, M F

    2014-11-05

    In an effort to design novel magnesium (Mg) alloys with high ductility, we present a first principles data based on the Density Functional Theory (DFT). The DFT was employed to calculate the generalized stacking fault energy curves, which can be used in the generalized Peierls-Nabarro (PN) model to study the energetics of basal slip and prismatic slip in Mg with and without solutes to calculate continuum scale dislocation core widths, stacking fault widths and Peierls stresses. The generalized stacking fault energy curves for pure Mg agreed well with other DFT calculations. Solute effects on these curves were calculated for nine alloying elements, namely Al, Ca, Ce, Gd, Li, Si, Sn, Zn and Zr, which allowed the strength and ductility to be qualitatively estimated based on the basal dislocation properties. Based on our multiscale methodology, a suggestion has been made to improve Mg formability.

  15. Electronically decoupled stacking fault tetrahedra embedded in Au(111) films

    PubMed Central

    Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris

    2016-01-01

    Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910

  16. Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.

    PubMed

    Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris

    2016-12-23

    Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.

  17. Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2016-12-01

    In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.

  18. Seismic images of a Grenvillian terrane boundary

    USGS Publications Warehouse

    Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1992-01-01

    A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.

  19. Structural instabilities and wrinkles at the grain boundaries in 2-D h-BN: a first-principles analysis.

    PubMed

    Singh, Anjali; Waghmare, Umesh V

    2014-10-21

    The structure of grain boundaries (GBs) or interfaces between nano-forms of carbon determines their evolution into 3-D forms with nano-scale architecture. Here, we present a general framework for the construction of interfaces in 2-D h-BN and graphene in terms of (a) stacking faults and (b) growth faults, using first-principles density functional theoretical analysis. Such interfaces or GBs involve deviation from their ideal hexagonal lattice structure. We show that a stacking fault involves a linkage of rhombal and octagonal rings (4 : 8), and a growth fault involves a linkage of paired pentagonal and octagonal rings (5 : 5 : 8). While a growth fault is energetically more stable than a stacking fault in graphene, the polarity of B and N leads to the reversal of their relative stability in h-BN. We show that the planar structure of these interfacing grains exhibits instability with respect to buckling (out-of-plane deformation), which results in the formation of a wrinkle at the grain boundary (GB) and rippling of the structure. Our analysis leads to prediction of new types of low-energy GBs of 2-D h-BN and graphene. Our results for electronic and vibrational signatures of these interfaces and an STM image of the most stable interface will facilitate their experimental characterization, particularly of the wrinkles forming spontaneously at these interfaces.

  20. Application of Phase-Weighted Stacking to Low-Frequency Earthquakes near the Alpine Fault, Central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Townend, J.; Chamberlain, C. J.; Savage, M. K.

    2015-12-01

    Characterising seismicity in the vicinity of the Alpine Fault, a major transform boundary late in its typical earthquake cycle, may provide constraints on the state of stress preceding a large earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated major rupture. We work with a continuous seismic dataset collected between 2009 and 2012 from a network of short-period seismometers, the Southern Alps Microearthquake Borehole Array (SAMBA). Fourteen primary LFE templates have been used to scan the dataset using a matched-filter technique based on an iterative cross-correlation routine. This method allows the detection of similar signals and establishes LFE families with common hypocenter locations. The detections are then combined for each LFE family using phase-weighted stacking (Thurber et al., 2014) to produce a signal with the highest possible signal to noise ratio. We find this method to be successful in increasing the number of LFE detections by roughly 10% in comparison with linear stacking. Our next step is to manually pick polarities on first arrivals of the phase-weighted stacked signals and compute preliminary locations. We are working to estimate LFE focal mechanism parameters and refine the focal mechanism solutions using an amplitude ratio technique applied to the linear stacks. LFE focal mechanisms should provide new insight into the geometry and rheology of the Alpine Fault and the stress field prevailing in the central Southern Alps.

  1. The defective nature of ice Ic and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Kuhs, W. F.; Hansen, T. C.

    2009-04-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [4] T Peter, C Marcolli, P Spaichinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [5] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [6] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [7] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [8] WF Kuhs, G Genov, DK Staykova & AN Salamatin (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [9] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.

  2. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7-x films and nanocomposites

    NASA Astrophysics Data System (ADS)

    Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.

    2018-07-01

    In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.

  3. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress field in the central Southern Alps.

  4. The synchronous improvement of strength and plasticity (SISP) in new Ni-Co based disc superalloys by controling stacking fault energy.

    PubMed

    Xu, H; Zhang, Z J; Zhang, P; Cui, C Y; Jin, T; Zhang, Z F

    2017-08-14

    It is a great challenge to improve the strength of disc superalloys without great loss of plasticity together since the microstructures benefiting the strength always do not avail the plasticity. Interestingly, this study shows that the trade-off relationship between strength and plasticity can be broken through decreasing stacking fault energy (SFE) in newly developed Ni-Co based disc superalloys. Axial tensile tests in the temperature range of 25 to 725 °C were carried out in these alloys with Co content ranging from 5% to 23% (wt.%). It is found that the ultimate tensile strength (UTS) and uniform elongation (UE) are improved synchronously when microtwinning is activated by decreasing the SFE at 650 and 725 °C. In contrast, only UTS is improved when stacking fault (SF) dominates the plastic deformation at 25 and 400 °C. These results may be helpful for designing advanced disc superalloys with relatively excellent strength and plasticity simultaneously.

  5. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Uberuaga, Blas P.

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  6. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE PAGES

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  7. Mobility and coalescence of stacking fault tetrahedra in Cu

    PubMed Central

    Martínez, Enrique; Uberuaga, Blas P.

    2015-01-01

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs can diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects. PMID:25765711

  8. Generalized stacking fault energies of alloys.

    PubMed

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  9. Injected carrier concentration dependence of the expansion of single Shockley-type stacking faults in 4H-SiC PiN diodes

    NASA Astrophysics Data System (ADS)

    Tawara, T.; Matsunaga, S.; Fujimoto, T.; Ryo, M.; Miyazato, M.; Miyazawa, T.; Takenaka, K.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; Kato, T.; Okumura, H.; Kimoto, T.; Tsuchida, H.

    2018-01-01

    We investigated the relationship between the dislocation velocity and the injected carrier concentration on the expansion of single Shockley-type stacking faults by monitoring the electroluminescence from 4H-SiC PiN diodes with various anode Al concentrations. The injected carrier concentration was calculated using a device simulation that took into account the measured accumulated charge in the drift layer during diode turn-off. The dislocation velocity was strongly dependent on the injected hole concentration, which represents the excess carrier concentration. The activation energy of the dislocation velocity was quite small (below 0.001 eV between 310 and 386 K) over a fixed range of hole concentrations. The average threshold hole concentration required for the expansion of bar-shaped single Shockley-type stacking faults at the interface between the buffer layer and the substrate was determined to be 1.6-2.5 × 1016 cm-3 for diodes with a p-type epitaxial anode with various Al concentrations.

  10. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  11. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  12. Direct observation of a stacking fault in Si(1 - x)Ge(x) semiconductors by spherical aberration-corrected TEM and conventional ADF-STEM.

    PubMed

    Yamasaki, Jun; Kawai, Tomoyuki; Tanaka, Nobuo

    2004-01-01

    Spherical aberration (C(S))-corrected transmission electron microscopy (TEM) and annular dark-field scanning TEM (ADF-STEM) are applied to high-resolution observation of stacking faults in Si(1 - x)Ge(x) alloy films prepared on a Si(100) buffer layer by the chemical vapor deposition method. Both of the images clarify the individual nature of stacking faults from their directly interpretable image contrast and also by using image simulation in the case of the C(S)-corrected TEM. Positions of the atomic columns obtained in the ADF-STEM images almost agree with a projection of the theoretical model studied by Chou et al. (Phys. Rev. B 32(1985): 7979). Comparison between the C(S)-corrected TEM and ADF-STEM images shows that their resolution is at a similar level, but directly interpretable image contrast is obtained in ultrathin samples for C(S)-corrected TEM and in slightly thicker samples for ADF-STEM.

  13. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.

    PubMed

    Shang, S L; Wang, W Y; Wang, Y; Du, Y; Zhang, J X; Patel, A D; Liu, Z K

    2012-04-18

    Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the <112> and <110> directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}<112>; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}<110>. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.

  14. Surface dislocation nucleation controlled deformation of Au nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less

  15. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE PAGES

    Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...

    2014-12-04

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  16. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lihua; Su, Dong; Kisslinger, Kim

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  17. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction.

    PubMed

    Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav

    2017-09-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

  18. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction

    PubMed Central

    Davtyan, Arman; Lehmann, Sebastian; Zamani, Reza R.; Dick, Kimberly A.; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J.; Pietsch, Ullrich; Holý, Václav

    2017-01-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the direction in the vicinity of the wurtzite Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire. PMID:28862620

  19. Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few-Layer Molybdenum Diselenide by Raman Spectroscopy

    DOE PAGES

    Lu, Xin; Utama, M. Iqbal Bakti; Lin, Junhao; ...

    2015-07-02

    Various combinations of interlayer shear modes emerge in few-layer molybdenum diselenide grown by chemical vapor deposition depending on the stacking configuration of the sample. Raman measurements may also reveal polytypism and stacking faults, as supported by first principles calculations and high-resolution transmission electron microscopy. Thus, Raman spectroscopy is an important tool in probing stacking-dependent properties in few-layer 2D materials.

  20. New twinning route in face-centered cubic nanocrystalline metals.

    PubMed

    Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2017-12-15

    Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.

  1. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  2. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  3. Ductilizing bulk metallic glass composite by tailoring stacking fault energy.

    PubMed

    Wu, Y; Zhou, D Q; Song, W L; Wang, H; Zhang, Z Y; Ma, D; Wang, X L; Lu, Z P

    2012-12-14

    Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.

  4. Dislocation Dissociation Strongly Influences on Frank—Read Source Nucleation and Microplasticy of Materials with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan

    2014-04-01

    The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.

  5. New Growth Mode through Decorated Twin Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleikamp, Sebastian; Thoma, Arne; Polop, Celia

    2006-03-24

    Scanning tunneling microscopy and low energy electron diffraction were used to investigate the growth of partly twinned Ir thin films on Ir(111). A transition from the expected layer-by-layer to a defect dominated growth mode with a fixed lateral length scale and increasing roughness is observed. During growth, the majority of the film is stably transformed to twinned stacking. This transition is initiated by the energetic avoidance of the formation of intrinsic stacking faults compared to two independent twin faults. The atomistic details of the defect kinetics are outlined.

  6. New growth mode through decorated twin boundaries.

    PubMed

    Bleikamp, Sebastian; Thoma, Arne; Polop, Celia; Pirug, Gerhard; Linke, Udo; Michely, Thomas

    2006-03-24

    Scanning tunneling microscopy and low energy electron diffraction were used to investigate the growth of partly twinned Ir thin films on Ir(111). A transition from the expected layer-by-layer to a defect dominated growth mode with a fixed lateral length scale and increasing roughness is observed. During growth, the majority of the film is stably transformed to twinned stacking. This transition is initiated by the energetic avoidance of the formation of intrinsic stacking faults compared to two independent twin faults. The atomistic details of the defect kinetics are outlined.

  7. Analyzing checkpointing trends for applications on the IBM Blue Gene/P system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, H.; Gupta, R.; Beckman, P.

    Current petascale systems have tens of thousands of hardware components and complex system software stacks, which increase the probability of faults occurring during the lifetime of a process. Checkpointing has been a popular method of providing fault tolerance in high-end systems. While considerable research has been done to optimize checkpointing, in practice the method still involves a high-cost overhead for users. In this paper, we study the checkpointing overhead seen by applications running on leadership-class machines such as the IBM Blue Gene/P at Argonne National Laboratory. We study various applications and design a methodology to assist users in understanding andmore » choosing checkpointing frequency and reducing the overhead incurred. In particular, we study three popular applications -- the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application, and a Nek5000 computational fluid dynamics application -- and analyze their memory usage and possible checkpointing trends on 32,768 processors of the Blue Gene/P system.« less

  8. Mesoscale models for stacking faults, deformation twins and martensitic transformations: Linking atomistics to continuum

    NASA Astrophysics Data System (ADS)

    Kibey, Sandeep A.

    We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available qualitative models do not necessarily account for. Finally, we extend the present work to martensitic transformations and determine the energy pathway for B2→B19 transformation in NiTi. Based on our ab initio DFT calculations, we propose a combined distortion-shuffle pathway for B2→B19 transformation in NiTi. Our results indicate that in NiTi, a barrier of 0.48 mRyd/atom (relative to B2 phase) must be overcome to transform the parent B2 into orthorhombic B19 phase.

  9. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the linemore » in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED« less

  10. Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods.

    PubMed

    Forsberg, Mathias; Serban, Elena Alexandra; Hsiao, Ching-Lien; Junaid, Muhammad; Birch, Jens; Pozina, Galia

    2017-04-26

    Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

  11. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less

  12. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  13. Anisotropy of Earth's D'' layer and stacking faults in the MgSiO3 post-perovskite phase.

    PubMed

    Oganov, Artem R; Martonák, Roman; Laio, Alessandro; Raiteri, Paolo; Parrinello, Michele

    2005-12-22

    The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earth's lowermost mantle (the D'' layer). Its properties explain numerous geophysical observations associated with this layer-for example, the D'' discontinuity, its topography and seismic anisotropy within the layer. Here we use a novel simulation technique, first-principles metadynamics, to identify a family of low-energy polytypic stacking-fault structures intermediate between the perovskite and post-perovskite phases. Metadynamics trajectories identify plane sliding involving the formation of stacking faults as the most favourable pathway for the phase transition, and as a likely mechanism for plastic deformation of perovskite and post-perovskite. In particular, the predicted slip planes are {010} for perovskite (consistent with experiment) and {110} for post-perovskite (in contrast to the previously expected {010} slip planes). Dominant slip planes define the lattice preferred orientation and elastic anisotropy of the texture. The {110} slip planes in post-perovskite require a much smaller degree of lattice preferred orientation to explain geophysical observations of shear-wave anisotropy in the D'' layer.

  14. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    PubMed

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  15. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes

    PubMed Central

    Tian, Y. Z.; Zhao, L. J.; Chen, S.; Shibata, A.; Zhang, Z. F.; Tsuji, N.

    2015-01-01

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE. PMID:26582568

  16. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    2016-08-01

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.

  17. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  18. Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films

    DOE PAGES

    Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.; ...

    2017-12-15

    The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less

  19. Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.

    The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less

  20. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.

  1. A first principles study of commonly observed planar defects in Ti/TiB system

    DOE PAGES

    Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.; ...

    2018-04-20

    Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less

  2. A first principles study of commonly observed planar defects in Ti/TiB system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Peeyush; Gupta, Niraj; Srinivasan, Srivilliputhur G.

    Here, TiB exhibits a hexagonal cross-section with growth faults on (1 0 0) planes and contains B27-B f bicrystals. The hexagonal cross-section is presently explained by surface free energy minimization principle. We show that interfacial energy calculations explain the longer (1 0 0) facet compared to (1 0 1) type facets whereas free surface energy arguments do not provide the true picture. No quantitative explanation of stacking faults and B27-B f interfaces in TiB exists. We show that the low formation energy of stacking faults and B27-B f interfaces explain their abundance. The low energy barrier for B f formationmore » is shown to be responsible for their presence in TiB.« less

  3. Order-disorder twinning model and stacking faults in alpha-NTO.

    PubMed

    Schwarzenbach, Dieter; Kirschbaum, Kristin; Pinkerton, A Alan

    2006-10-01

    Crystals of the recently published [Bolotina, Kirschbaum & Pinkerton (2005). Acta Cryst. B61, 577-584] triclinic (P\\overline1) structure of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (alpha-NTO) occur as fourfold twins. There are Z' = 4 independent molecules per asymmetric unit. We show that the structure contains layers with 2-periodic layer-group symmetry p2(1)/b 1 (1). This symmetry is lost through the stacking of the layers, which is a possible explanation for Z' = 4. A layer can assume four different but equivalent positions with respect to its nearest neighbor. Twinning arises through stacking faults and is an instructive example of the application of order-disorder theory using local symmetry operations. The near-neighbor relations between molecules remain unchanged through all twin boundaries. The four structures with maximum degree of order, one of which is the observed one, and the family reflections common to all domains are identified. Rods of weak diffuse scattering confirm the stacking model.

  4. The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kobayashi, T.

    1983-12-01

    The possibility of the formation of a metastable cubic (diamond) structure and its role in freezing of a supercooled water droplet on an ice substrate are discussed in terms of two-dimensional nucleation. The mode of stacking sequence of new layers formed by two-dimensional nucleation is divided into single and multi-nucleation according to the degree of supercooling and to the size of the supercooled droplet. In the case of single nucleation a frozen droplet develops into a complete hexagonal single crystal or an optically single crystal (containing discontinuous stacking faults). In the case of multi-nucleation attention is paid to the size effect and the stacking direction of the nucleus to calculate the waiting time in the nucleation. Then the frozen droplets are crystallographically divided into three categories: completely single crystals, optically single crystals (containing a small cubic structure, i.e. stacking faults) and polycrystals with a misorientation of 70.53° between the c-axes.

  5. Frequency domain analysis of errors in cross-correlations of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri

    2016-12-01

    We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.

  6. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    NASA Astrophysics Data System (ADS)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  7. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  8. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  9. An improved low-frequency earthquakes catalogue in the vicinity of the late-interseismic central Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2017-04-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tectonic tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates, found through visual inspection within previously identified tectonic tremor, are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase picks. We then compute non-linear earthquake locations using a 3D velocity model and find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. To gain insight into deep fault slip behaviour, a detailed study of the spatial-temporal evolution of LFEs is required. We thus generate a more extensive catalogue of LFEs spanning the years 2009 to 2016 using a different technique to detect LFEs more efficiently. This time 638 synthetic waveforms are used as primary templates in the match-filter routine. Of those, 38 templates yield no detections over our 7-yr study period. The remaining 600 templates end up detecting between 370 and 730 events each totalling ˜310 000 detections. We then focus on only keeping the detections that robustly stack (i.e. representing real LFEs) for each synthetic template hence creating new LFE templates. From there, we rerun the match-filter routine with our new LFE templates. Finally, each LFE template and its subsequent detections form a LFE family, itself associated with a single source. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly thirtyfold. Our next step is to study in detail the spatial and temporal activity of our LFEs. This new catalogue should provide new insight into the deep central Alpine Fault structure and its slip behaviour.

  10. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    USGS Publications Warehouse

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  11. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    NASA Technical Reports Server (NTRS)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  12. Synthesis and crystal structure of a new aluminum-silicon-nitride phosphor containing boron, Ba5B2Al4Si32N52:Eu

    NASA Astrophysics Data System (ADS)

    Yoshimura, Fumitaka; Yamane, Hisanori; Nagasako, Makoto

    2017-07-01

    Single crystals of Ba5B2Al4Si32N52:Eu were grown on the wall of a boron nitride crucible by heating a starting mixture of binary nitrides at 2050 °C and a N2 pressure of 0.85 MPa. The fundamental reflections of X-ray diffraction (XRD) for the crystals were indexed with triclinic cell parameters, a=9.7879(11) Å, b=9.7920(11) Å, c=12.7226(15) Å, α=96.074(4)°, β=112.330(3)°, and γ=94.080(4)°. Streak lines were observed between the fundamental reflections in the direction of the c* axis in the oscillation XRD images and selected area electron diffraction (SAED) patterns, indicating stacking faults in the structure. The atomic images of stacking faults with a slip system of (0 0 1)[-1 1 0]/3, and displacement of a Ba atom layer with (0 0 1)[-1 -1 0]/6 were observed with a scanning transmission electron microscope (STEM). The models of the basic (normal-stacking) structure with space group P1 and local structures of the stacking faults are herein presented. The single crystals emitted blue light with a peak wavelength of 472 nm and a full width at half maximum of 78 nm under 365 nm excitation.

  13. Reliability analysis and initial requirements for FC systems and stacks

    NASA Astrophysics Data System (ADS)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  14. Investigations of stacking fault density in perpendicular recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less

  15. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance

    NASA Astrophysics Data System (ADS)

    Güvenç, O.; Roters, F.; Hickel, T.; Bambach, M.

    2015-01-01

    During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.

  16. Generalized stacking fault energies, cleavage energies, ionicity and brittleness of Cu(Al/Ga/In)Se2 and CuGa(S/Se/Te)2

    NASA Astrophysics Data System (ADS)

    Xue, H. T.; Tang, F. L.; Gruhn, T.; Lu, W. J.; Wan, F. C.; Rui, Z. Y.; Feng, Y. D.

    2014-04-01

    We calculate the generalized stacking fault (GSF) energies and cleavage energies γcl of the chalcopyrite compounds CuAlSe2, CuGaSe2, CuInSe2, CuGaS2 and CuGaTe2 using first principles. From the GSF energies, we obtain the unstable stacking fault energies γus and intrinsic stacking fault energies γisf. By analyzing γus and γisf, we find that the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) direction is the easiest slip direction for these five compounds. Also, for CuInSe2, it is most possible to undergo a dislocation-nucleation-induced plastic deformation along the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) slip direction. We show that the (1 1 2) plane is the preferable plane for fracture in the five compounds by comparing γcl of the (0 0 1) and (1 1 2) planes. It is also found that both γus and γcl decrease as the cationic or anionic radius increases in these chalcopyrites, i.e. along the sequences CuAlSe2 → CuGaSe2 → CuInSe2 and CuGaS2 → CuGaSe2 → CuGaTe2. Based on the values of the ratio γcl/γus, we discuss the brittle-ductile properties of these compounds. All of the compounds can be considered as brittle materials. In addition, a strong relationship between γcl/γus and the total proportion of ionic bonding in these compounds is found.

  17. Introduction

    NASA Astrophysics Data System (ADS)

    de Laat, Cees; Develder, Chris; Jukan, Admela; Mambretti, Joe

    This topic is devoted to communication issues in scalable compute and storage systems, such as parallel computers, networks of workstations, and clusters. All aspects of communication in modern systems were solicited, including advances in the design, implementation, and evaluation of interconnection networks, network interfaces, system and storage area networks, on-chip interconnects, communication protocols, routing and communication algorithms, and communication aspects of parallel and distributed algorithms. In total 15 papers were submitted to this topic of which we selected the 7 strongest papers. We grouped the papers in two sessions of 3 papers each and one paper was selected for the best paper session. We noted a number of papers dealing with changing topologies, stability and forwarding convergence in source routing based cluster interconnect network architectures. We grouped these for the first session. The authors of the paper titled: “Implementing a Change Assimilation Mechanism for Source Routing Interconnects” propose a mechanism that can obtain the new topology, and compute and distribute a new set of fabric paths to the source routed network end points to minimize the impact on the forwarding service. The article entitled “Dependability Analysis of a Fault-tolerant Network Reconfiguration Strateg” reports on a case study analyzing the effects of network size, mean time to node failure, mean time to node repair, mean time to network repair and coverage of the failure when using a 2D mesh network with a fault-tolerant mechanism (similar to the one used in the BlueGene/L system), that is able to remove rows and/or columns in the presence of failures. The last paper in this session: “RecTOR: A New and Efficient Method for Dynamic Network Reconfiguration” presents a new dynamic reconfiguration method, that ensures deadlock-freedom during the reconfiguration without causing performance degradation such as increased latency or decreased throughput. The second session groups 3 papers presenting methods, protocols and architectures that enhance capacities in the Networks. The paper titled: “NIC-assisted Cache-Efficient Receive Stack for Message Passing over Ethernet” presents the addition of multiqueue support in the Open-MX receive stack so that all incoming packets for the same process are treated on the same core. It then introduces the idea of binding the target end process near its dedicated receive queue. In general this multiqueue receive stack performs better than the original single queue stack, especially on large communication patterns where multiple processes are involved and manual binding is difficult. The authors of: “A Multipath Fault-Tolerant Routing Method for High-Speed Interconnection Networks” focus on the problem of fault tolerance for high-speed interconnection networks by designing a fault tolerant routing method. The goal was to solve a certain number of link and node failures, considering its impact, and occurrence probability. Their experiments show that their method allows applications to successfully finalize their execution in the presence of several faults, with an average performance value of 97% with respect to the fault-free scenarios. The paper: “Hardware implementation study of the Self-Clocked Fair Queuing Credit Aware (SCFQ-CA) and Deficit Round Robin Credit Aware (DRR-CA) scheduling algorithms” proposes specific implementations of the two schedulers taking into account the characteristics of current high-performance networks. A comparison is presented on the complexity of these two algorithms in terms of silicon area and computation delay. Finally we selected one paper for the special paper session: “A Case Study of Communication Optimizations on 3D Mesh Interconnects”. In this paper the authors present topology aware mapping as a technique to optimize communication on 3-dimensional mesh interconnects and hence improve performance. Results are presented for OpenAtom on up to 16,384 processors of Blue Gene/L, 8,192 processors of Blue Gene/P and 2,048 processors of Cray XT3.

  18. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  19. Le cône sous-marin du Nil et son réseau de chenaux profonds : nouveaux résultats (campagne Fanil)The Nile Cone and its channel system: new results after the Fanil cruise

    NASA Astrophysics Data System (ADS)

    Bellaiche, Gilbert; Loncke, Lies; Gaullier, Virginie; Mascle, Jean; Courp, Thierry; Moreau, Alain; Radan, Silviu; Sardou, Olivier

    2001-10-01

    The meandrous leveed channels of the Nile Cone show clear evidence of avulsions. Their sedimentary architecture is founded on numerous stacked lens-shaped acoustic units. In the areas of the distal fan, lobe deposits are apparent from multichannel imagery. Huge debris flow deposits, sometimes associated with pockmarks, are recognized. Mud volcanoes and gas seeping are closely associated with faulting. In the East, a very long north-trending channel, originating from the Egyptian coast, merges with a network of channels, very probably originating from the Levantine coasts. Both networks outlet in the sedimentary basin located south of Cyprus.

  20. Effect of Alloying on the Strength Properties and the Hardening Mechanisms of Nitrogen-Bearing Austenitic Steels after Hot Deformation and Annealing

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2017-11-01

    The main mechanisms of hardening nitrogen-bearing austenitic steels that operate under various thermomechanical treatment conditions at various steel compositions are considered. The strength properties of the steels are shown to depend on the content of interstitial elements, namely, carbon and nitrogen, and the influence of these elements on the stacking fault energy is estimated. The ratios of the main alloying elements that favor an increase or a decrease in the stacking fault energy are found to achieve the desirable level of strain hardening provided that an austenitic structure of steel is retained.

  1. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.; Sridharan, K.

    2017-08-01

    The stacking fault energy (SFE) plays an important role in deformation behavior and radiation damage of FCC metals and alloys such as austenitic stainless steels. In the present communication, existing expressions to calculate SFE in those steels from chemical composition are reviewed and an improved multivariate linear regression with random intercepts is used to analyze a new database of 144 SFE measurements collected from 30 literature references. It is shown that the use of random intercepts can account for experimental biases in these literature references. A new expression to predict SFE from austenitic stainless steel compositions is proposed.

  2. Interaction of sodium atoms with stacking faults in silicon with different Fermi levels

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Morito, Haruhiko; Kutsukake, Kentaro; Yonenaga, Ichiro; Yokoi, Tatsuya; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2018-06-01

    Variation in the formation energy of stacking faults (SFs) with the contamination of Na atoms was examined in Si crystals with different Fermi levels. Na atoms agglomerated at SFs under an electronic interaction, reducing the SF formation energy. The energy decreased with the decrease of the Fermi level: it was reduced by more than 10 mJ/m2 in p-type Si, whereas it was barely reduced in n-type Si. Owing to the energy reduction, Na atoms agglomerating at SFs in p-type Si are stable compared with those in n-type Si, and this hypothesis was supported by ab initio calculations.

  3. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, Andras; Ney, A.; Duchamp, Martial

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  4. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng

    2015-10-01

    In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

  5. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2017-04-26

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  6. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  7. Strain-induced structure transformations on Si(111) and Ge(111) surfaces: a combined density-functional and scanning tunneling microscopy study.

    PubMed

    Zhachuk, R; Teys, S; Coutinho, J

    2013-06-14

    Si(111) and Ge(111) surface formation energies were calculated using density functional theory for various biaxial strain states ranging from -0.04 to 0.04, and for a wide set of experimentally observed surface reconstructions: 3 × 3, 5 × 5, 7 × 7 dimer-adatom-stacking fault reconstructions and c(2 × 8), 2 × 2, and √3×√3 adatoms based surfaces. The calculations are compared with scanning tunneling microscopy data obtained on stepped Si(111) surfaces and on Ge islands grown on a Si(111) substrate. It is shown that the surface structure transformations observed in these strained systems are accounted for by a phase diagram that relates the equilibrium surface structure to the applied strain. The calculated formation energy of the unstrained Si(111)-9 × 9 dimer-adatom-stacking fault surface is reported for the first time and it is higher than corresponding energies of Si(111)-5 × 5 and Si(111)-7 × 7 dimer-adatom-stacking fault surfaces as expected. We predict that the Si(111) surface should adopt a c(2 × 8) reconstruction when tensile strain is above 0.03.

  8. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along <1 1 1> {1 1 0} direction, <1 1 0> {1 1 0} direction and <1 0 0> {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, <1 1 0> and <1 1 1> directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along <1 1 1> direction of AlSc will easily split into two superpartials.

  9. Dislocation imaging for orthopyroxene using an atom-resolved scanning transmission electron microscopy.

    PubMed

    Kumamoto, Akihito; Kogure, Toshihiro; Raimbourg, Hugues; Ikuhara, Yuichi

    2014-11-01

    Dislocations, one-dimensional lattice defects, appear as a microscopic phenomenon while they are formed in silicate minerals by macroscopic dynamics of the earth crust such as shear stress. To understand ductile deformation mechanisms of silicates, atomic structures of the dislocations have been examined using transmission electron microscopy (TEM). Among them, it has been proposed that {100}<001> primary slip system of orthopyroxene (Opx) is dissociated into partial dislocations, and a stacking fault with the clinopyroxene (Cpx) structure is formed between the dislocations. This model, however, has not been determined completely due to the complex structures of silicates. Scanning transmission electron microscopy (STEM) has a potential to determine the structure of dislocations with single-atomic column sensitivity, particularly by using high-angle annular dark field (HAADF) and annular bright field (ABF) imaging with a probing aberration corrector.[1] Furthermore, successive analyses from light microscopy to atom-resolved STEM have been achieved by focused ion beam (FIB) sampling techniques.[2] In this study, we examined dislocation arrays at a low-angle grain boundary of ∼1° rotation about the b-axis in natural deformed Opx using a simultaneous acquisition of HAADF/ABF (JEM-ARM200F, JEOL) equipped with 100 mm2 silicon drift detector (SDD) for energy dispersive X-ray spectroscopy (EDS). Figure 1 shows averaged STEM images viewed along the b- axis of Opx extracted from repeating units. HAADF provides the cation-site arrangement, and ABF distinguishes the difference of slightly rotated SiO4 tetrahedron around the a- axis. This is useful to distinguish the change of stacking sequence between the partial dislocations. Two types of stacking faults with Cpx and protopyroxene (Ppx) structures were identified between three partial dislocations. Furthermore, Ca accumulation in M2 (Fe) site around the stacking faults was detected by STEM-EDS. Interestingly, Ca is distributed not only in these stacking faults but also Opx matrix around the faults. jmicro;63/suppl_1/i17/DFU063F1F1DFU063F1Fig. 1. (a) HAADF and (b) ABF of Opx view of [010] direction with inset simulation images and models of its unit cell (a = 0.52, c = 1.83 nm). © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)

    NASA Astrophysics Data System (ADS)

    Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael

    2018-05-01

    We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.

  11. Why self-catalyzed nanowires are most suitable for large-scale hierarchical integrated designs of nanowire nanoelectronics

    NASA Astrophysics Data System (ADS)

    Noor Mohammad, S.

    2011-10-01

    Nanowires are grown by a variety of mechanisms, including vapor-liquid-solid, vapor-quasiliquid-solid or vapor-quasisolid-solid, oxide-assisted growth, and self-catalytic growth (SCG) mechanisms. A critical analysis of the suitability of self-catalyzed nanowires, as compared to other nanowires, for next-generation technology development has been carried out. Basic causes of superiority of self-catalyzed (SCG) nanowires over other nanowires have been described. Polytypism in nanowires has been studied, and a model for polytypism has been proposed. The model predicts polytypism in good agreement with available experiments. This model, together with various evidences, demonstrates lower defects, dislocations, and stacking faults in SCG nanowires, as compared to those in other nanowires. Calculations of carrier mobility due to dislocation scattering, ionized impurity scattering, and acoustic phonon scattering explain the impact of defects, dislocations, and stacking faults on carrier transports in SCG and other nanowires. Analyses of growth mechanisms for nanowire growth directions indicate SCG nanowires to exhibit the most controlled growth directions. In-depth investigation uncovers the fundamental physics underlying the control of growth direction by the SCG mechanism. Self-organization of nanowires in large hierarchical arrays is crucial for ultra large-scale integration (ULSI). Unique features and advantages of self-organized SCG nanowires, unlike other nanowires, for this ULSI have been discussed. Investigations of nanowire dimension indicate self-catalyzed nanowires to have better control of dimension, higher stability, and higher probability, even for thinner structures. Theoretical calculations show that self-catalyzed nanowires, unlike catalyst-mediated nanowires, can have higher growth rate and lower growth temperature. Nanowire and nanotube characteristics have been found also to dictate the performance of nanoelectromechanical systems. Defects, such as stacking faults, dislocations, and nanopipes, which are common in catalyst-mediated nanowires and nanotubes, adversely affect the efficiency of nanowire (nanotube) nanoelectro-mechanical devices. The influence of seed-to-seed distance and collection area radius on the self-catalyzed, self-aligned nanowire growths in large arrays of seeds has been examined. A hypothesis has been presented for this. The present results are in good agreement with experiments. These results suggest that the SCG nanowires are perhaps the best vehicles for revolutionary advancement of tomorrow's nanotechnology.

  12. A Reference Stack for PHM Architectures

    DTIC Science & Technology

    2014-10-02

    components, fault modes and prognostics such as that described by MIMOSA (2009) and ISO 13374-3:2012 (2012). Section 2.6 described a semantic...architecture, and the use of a SOA is further discussed in Section 3.3.2. MIMOSA is a stack-oriented data architecture. Figure 11 shows its stack of...format (US Army PEWG, 2011). The tagging in ABCD format respects the data layers that are found in the MIMOSA standard ( MIMOSA , 2009) and in ISO

  13. Investigation of possibility of surface rupture derived from PFDHA and calculation of surface displacement based on dislocation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Irikura, K.

    2013-12-01

    A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.

  14. Stacking faults density driven collapse of magnetic energy in hcp-cobalt nano-magnets

    NASA Astrophysics Data System (ADS)

    Nong, H. T. T.; Mrad, K.; Schoenstein, F.; Piquemal, J.-Y.; Jouini, N.; Leridon, B.; Mercone, S.

    2017-06-01

    Cobalt nanowires with different shape parameters were synthesized via the polyol process. By calculating the magnetic energy product (BH max) both for dried nano-powder and for nanowires in their synthesis solution, we observed unexpected independent BH max values from the nanowires shape. A good alignment of the nanowires leads to a higher BH max value. Our results show that the key parameter driving the magnetic energy product of the cobalt nanowires is the stacking fault density. An exponential collapse of the magnetic energy is observed at very low percentage of structural faults. Cobalt nanowires with almost perfect hcp crystalline structures should present high magnetic energy, which is promising for application in rare earth-free permanent magnets. Oral talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  15. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  16. Deformation mechanisms of nanotwinned Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinghang

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, suchmore » as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in high-stacking-energy metals: use Ag as a template to introduce high density growth twins in epitaxial Al; and the film thickness is important in determination of volume fraction of growth twins. 3) We prove that high density twin boundaries can lead to significant work hardening capability in nanotwinned Al. We have published 13 articles, including Nature Communications, Nano Letters, and two review articles, one in Annual Review of Materials Research; and one in MRS Bulletin. Two postdocs and three graduate students have worked on the project. Two of them have become postdoc at Sandia National Laboratory and Los Alamos National Laboratory. One of the postdoc has become a faculty at a University. One patent has been filed.« less

  17. Characterization of double Shockley-type stacking faults formed in lightly doped 4H-SiC epitaxial films

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Hayashi, S.; Naijo, T.; Momose, K.; Osawa, H.; Senzaki, J.; Kojima, K.; Kato, T.; Okumura, H.

    2018-05-01

    Double Shockley-type stacking faults (2SSFs) formed in 4H-SiC epitaxial films with a dopant concentration of 1.0 × 1016 cm-3 were characterized using grazing incident X-ray topography and high-resolution scanning transmission electron microscopy. The origins of 2SSFs were investigated, and it was found that 2SSFs in the epitaxial layer originated from narrow SFs with a double Shockley structure in the substrate. Partial dislocations formed between 4H-type and 2SSF were also characterized. The shapes of 2SSFs are related with Burgers vectors and core types of the two Shockley partial dislocations.

  18. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  19. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  20. Structure and energetics of extended defects in ice Ih

    NASA Astrophysics Data System (ADS)

    Silva Junior, Domingos L.; de Koning, Maurice

    2012-01-01

    We consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice Ih. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30∘ and 90∘ partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice Ih are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30∘ dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90∘ partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice Ih should be based on the idea of reconstructed partial dislocations.

  1. Structural and dynamic characteristics in monolayer square ice.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-07-28

    When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.

  2. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  3. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    NASA Astrophysics Data System (ADS)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Köhler force.

  4. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    PubMed

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  5. A novel micro-Raman technique to detect and characterize 4H-SiC stacking faults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piluso, N., E-mail: nicolo.piluso@imm.cnr.it; Camarda, M.; La Via, F.

    A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 10{sup 16} at/cm{sup −3}), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LOmore » phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.« less

  6. Sediment Accretion During Horst and Graben Subduction associated with the Tohoku Oki M9 Earthquake, Northern Japan

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Chester, F. M.

    2015-12-01

    The stratigraphic sequence within the frontal accretionary prism of the Japan Trench, the site of large slip during the Tohoku earthquake, is unique due to horst and graben subduction. Boreholes at IODP Site C0019, penetrating the toe of the Tohoku accretionary prism, document a younger over older intraprism thrust contact with a 9 Ma age gap across the basal plate boundary fault. The anomalously young (Quaternary to Pliocene), fault-bounded sediment package is 130 m thick, of a total of 820 m of sediment above the plate boundary fault. In contrast, typical accretionary prism structure consists of stacked sediment packages on imbricate faults above the basal decollement resulting in an overall increase in age downward. Site C0019 penetrates the prism directly above a horst of the subducting Pacific oceanic crust. Here the plate-boundary fault consists of a thin, weak smectitic pelagic clay that is probably the principal slip surface of ~50 m offset in the 2011 Tohoku earthquake. The fault continues seaward deepening off the seaward edge of the horst and beneath the sediment fill of the adjacent graben, dying out at the landward base of the next incoming horst. The plate boundary fault and its splays in the graben form a narrow-taper protoprism and a small sedimentary basin of trench fill marking the seaward edge of the upper plate. The modern fault and sediment distributions within the graben are used to motivate a viable model for the presence of anomalously young sediments directly above the plate boundary fault. In this model sediments in the trench are thrust over the incoming horst by propagation of the plate boundary thrust up the landward-dipping fault of the incoming horst and along the smectitic clay layer to emplace Quaternary and Pliocene trench deposits directly on top of the incoming horst. These young deposits are in turn overlain by sediments 9 Ma or older that have been transported out of the graben along imbricate faults associated with the necessary increase in the taper of the prism above the graben. The Quaternary to Pliocene units thicken due to internal deformation accounting for the 130 m thickness now observed over the plate boundary fault at Site C0019. Conversely emplacement of very young sediment directly above a basal detachment would be unexpected in accretionary prisms subducting smoother oceanic crust.

  7. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  8. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown tomore » be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.« less

  9. Seismic Reflectivity of the Crust in the Northern Salton Trough

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.

    2015-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.

  10. Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference

    USGS Publications Warehouse

    Wesson, R.L.; Bakun, W.H.; Perkins, D.M.

    2003-01-01

    Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.

  11. M≥7 Earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey

    USGS Publications Warehouse

    Murru, Maura; Akinci, Aybige; Falcone, Guiseppe; Pucci, Stefano; Console, Rodolfo; Parsons, Thomas E.

    2016-01-01

    We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault-segmentation model. We also augment time-dependent Brownian Passage Time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the Northern branch of the North Anatolian Fault Zone (NNAF) beneath the Marmara Sea. A total of 10 different Mw=7.0 to Mw=8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30-year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT+ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30-yr probability, with a Poisson value of 29%, and a time-dependent interaction probability of 48%. We find an aggregated 30-yr Poisson probability of M >7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a 2-fold probability gain (ratio time-dependent to time-independent) on the southern strands of the North Anatolian Fault Zone.

  12. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-04

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs.

  13. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  14. Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic cycle model of fault interactions

    USGS Publications Warehouse

    Pollitz, F.F.; Schwartz, D.P.

    2008-01-01

    We construct a viscoelastic cycle model of plate boundary deformation that includes the effect of time-dependent interseismic strain accumulation, coseismic strain release, and viscoelastic relaxation of the substrate beneath the seismogenic crust. For a given fault system, time-averaged stress changes at any point (not on a fault) are constrained to zero; that is, kinematic consistency is enforced for the fault system. The dates of last rupture, mean recurrence times, and the slip distributions of the (assumed) repeating ruptures are key inputs into the viscoelastic cycle model. This simple formulation allows construction of stress evolution at all points in the plate boundary zone for purposes of probabilistic seismic hazard analysis (PSHA). Stress evolution is combined with a Coulomb failure stress threshold at representative points on the fault segments to estimate the times of their respective future ruptures. In our PSHA we consider uncertainties in a four-dimensional parameter space: the rupture peridocities, slip distributions, time of last earthquake (for prehistoric ruptures) and Coulomb failure stress thresholds. We apply this methodology to the San Francisco Bay region using a recently determined fault chronology of area faults. Assuming single-segment rupture scenarios, we find that fature rupture probabilities of area faults in the coming decades are the highest for the southern Hayward, Rodgers Creek, and northern Calaveras faults. This conclusion is qualitatively similar to that of Working Group on California Earthquake Probabilities, but the probabilities derived here are significantly higher. Given that fault rupture probabilities are highly model-dependent, no single model should be used to assess to time-dependent rupture probabilities. We suggest that several models, including the present one, be used in a comprehensive PSHA methodology, as was done by Working Group on California Earthquake Probabilities.

  15. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches

    NASA Astrophysics Data System (ADS)

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  16. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-05

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  17. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC

    PubMed Central

    Jiang, M.; Peng, S. M.; Zhang, H. B.; Xu, C. H.; Xiao, H. Y.; Zhao, F. A.; Liu, Z. J.; Zu, X. T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to investigate how the existence of stacking faults (SFs) influences the response of SiC to low energy irradiation. It reveals that the C and Si atoms around the SFs are generally more difficult to be displaced than those in unfaulted SiC, and the corresponding threshold displacement energies for them are generally larger, indicative of enhanced radiation tolerance caused by the introduction of SFs, which agrees well with the recent experiment. As compared with the unfaulted state, more localized point defects are generated in faulted SiC. Also, the efficiency of damage production for Si recoils is generally higher than that of C recoils. The calculated potential energy increases for defect generation in SiC with intrinsic and extrinsic SFs are found to be higher than those in unfaulted SiC, due to the stronger screen-Coulomb interaction between the PKA and its neighbors. The presented results provide a fundamental insight into the underlying mechanism of displacement events in faulted SiC and will help to advance the understanding of the radiation response of SiC with and without SFs. PMID:26880027

  18. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver.

    PubMed

    Chakraborty, Indrani; Shirodkar, Sharmila N; Gohil, Smita; Waghmare, Umesh V; Ayyub, Pushan

    2014-03-19

    The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.

  19. 42. VIEW EAST OF PLASTIC STACK (PROBABLY PVC) WHICH VENTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW EAST OF PLASTIC STACK (PROBABLY PVC) WHICH VENTED FUMES FROM THE DIPPING OPERATIONS IN BUILDING 49A; BUILDING 49 IS AT THE LEFT OF THE PHOTOGRAPH - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  20. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels. Seismic stratigraphic analysis shows that the valley developed around the same time as the adjacent TMF, however, the valley morphology and evidence for repeated slope failure suggests that the processes responsible for its formation were different than the processes that formed the nearby TMF. Age control provided from piston cores suggest that the last major slope failure that contributed to valley formation probably occurred at ~29 ka. Geotechnical measurements from piston cores show slightly underconsolidated sediments. The results indicate that this part of the margin is more unstable than Orphan Basin and Labrador slope regions. Given the low factor of safety and the complex fault system, low energy earthquake from the surrounding area could be enough to potentially trigger landslides.

  1. Reliability computation using fault tree analysis

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.

  2. Improvement of optical quality of semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire by in-situ epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Izyumskaya, Natalia; Müller, Marcus; Metzner, Sebastian; Veit, Peter; Can, Nuri; Das, Saikat; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis; Avrutin, Vitaliy

    2016-04-01

    Among the major obstacles for development of non-polar and semipolar GaN structures on foreign substrates are stacking faults which deteriorate the structural and optical quality of the material. In this work, an in-situ SiNx nano-network has been employed to achieve high quality heteroepitaxial semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire with reduced stacking fault density. This approach involves in-situ deposition of a porous SiNx interlayer on GaN that serves as a nano-mask for the subsequent growth, which starts in the nanometer-sized pores (window regions) and then progresses laterally as well, as in the case of conventional epitaxial lateral overgrowth (ELO). The inserted SiNx nano-mask effectively prevents the propagation of defects, such as dislocations and stacking faults, in the growth direction and thus reduces their density in the overgrown layers. The resulting semipolar (11 2 ¯ 2 ) GaN layers exhibit relatively smooth surface morphology and improved optical properties (PL intensity enhanced by a factor of 5 and carrier lifetimes by 35% to 85% compared to the reference semipolar (11 2 ¯ 2 ) GaN layer) which approach to those of the c-plane in-situ nano-ELO GaN reference and, therefore, holds promise for light emitting and detecting devices.

  3. Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates

    NASA Astrophysics Data System (ADS)

    Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.

    2017-07-01

    The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.

  4. Chemical spray pyrolyzed kesterite Cu2ZnSnS4 (CZTS) thin films

    NASA Astrophysics Data System (ADS)

    Khalate, S. A.; Kate, R. S.; Deokate, R. J.

    2018-04-01

    Pure kesterite phase thin films of Cu2ZnSnS4 (CZTS) were synthesized at different substrate temperatures using sulphate precursors by spray pyrolysis method. The significance of synthesis temperature on the structural, morphological and optical properties has been studied. The X-ray analysis assured that synthesized CZTS thin films showing pure kesterite phase. The value of crystallite size was found maximum at the substrate temperature 400 °C. At the same temperature, microstructural properties such as dislocation density, micro-strain and stacking fault probability were found minimum. The morphological examination designates the development of porous and uniform CZTS thin films. The synthesized CZTS thin films illustrate excellent optical absorption (105 cm-1) in the visible band and the optical band gap varies in the range of 1.489 eV to 1.499 eV.

  5. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles.

    PubMed

    Li, Luying; Gan, Zhaofeng; McCartney, Martha R; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J

    2013-11-15

    The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status.

  6. Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Montazeri, M.; Fomel, S.; Nielsen, L.

    2016-12-01

    In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.

  7. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE PAGES

    Yadav, S. K.; Shao, S.; Wang, J.; ...

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  8. Structural modifications due to interface chemistry at metal-nitride interfaces

    PubMed Central

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.

    2015-01-01

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces. PMID:26611639

  9. Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Heteroepitaxial semipolar and nonpolar GaN layers often suffer from high densities of extended defects including basal plane stacking faults (BSFs). BSFs which are considered as inclusions of cubic zinc-blende phase in wurtzite matrix act as quantum wells strongly affecting device performance. Band alignment in BSFs has been discussed as type of band alignment at the wurtzite/zinc blende interface governs the response in differential transmission; fast decay after the pulse followed by slow recovery due to spatial splitting of electrons and heavy holes for type- II band alignment in contrast to decay with no recovery in case of type I band alignment. Based on the results, band alignment is demonstrated to be of type II in zinc-blende segments in wurtzite matrix as in BSFs.

  10. Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities

    USGS Publications Warehouse

    Duross, Christopher; Olig, Susan; Schwartz, David

    2015-01-01

    Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.

  11. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.

    2000-01-01

    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  12. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  13. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE PAGES

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  14. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  15. Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction

    NASA Astrophysics Data System (ADS)

    Takayanagi, Kunio; Tanishiro, Yasumasa; Takahashi, Shigeki; Takahashi, Masaetsu

    1985-12-01

    The atomic structure of the 7 × 7 reconstructed Si(111) surface has been analysed by ultra-high vacuum (UHV) transmission electron diffraction (TED). A possible projected structure of the surface is deduced from the intensity distribution in TED patterns of normal electron incidence and from Patterson and Fourier syntheses of the intensities. A new three-dimensional structure model, the DAS model, is proposed: The model consists of 12 adatoms arranged locally in the 2 × 2 structure, a stacking fault layer and a layer with a vacancy at the corner and 9 dimers on the sides of each of the two triangular subcells of the 7 × 7 unit cell. The silicon layers in one subcell are stacked with the normal sequence, CcAaB + adatoms, while those in the other subcell are stacked with a faulted sequence, CcAa/C + adatoms. The model has only 19 dangling bonds, the smallest number among models so far proposed. Previously proposed models are tested quantitatively by the TED intensity. Advantages and limits of the TED analysis are discussed.

  16. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  17. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.

    PubMed

    Gong, Lei; Young, Robert J; Kinloch, Ian A; Haigh, Sarah J; Warner, Jamie H; Hinks, Jonathan A; Xu, Ziwei; Li, Li; Ding, Feng; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S

    2013-08-27

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (~0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed.

  18. Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites

    PubMed Central

    2013-01-01

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed. PMID:23899378

  19. Time-dependent earthquake probabilities

    USGS Publications Warehouse

    Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.

    2005-01-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.

  20. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    USGS Publications Warehouse

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Herein, we summarize and expand on an investigation of the sources of aeromagnetic anomalies related to faults along the eastern margin of the San Luis Basin, northern Rio Grande Rift, Colorado (Grauch et al., 2010). Similar to the faults examined in the central Rio Grande Rift, magnetic sources can be completely explained by tectonic juxtaposition and produce multiple, vertically stacked magnetic contrasts at individual faults. However, the geologic sources are different. They arise from both the sedimentary cover and the underlying bedrock rather than from stratified sediments. In addition, geologic evidence for secondary growth or destruction of magnetic minerals at the fault zone is lacking.

  1. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  2. Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p–i–n diodes

    NASA Astrophysics Data System (ADS)

    Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime

    2018-06-01

    To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.

  3. First-principles study of the atomic and electronic properties of (1 0 0) stacking faults in BaSnO3 crystal

    NASA Astrophysics Data System (ADS)

    Xue, Yuanbin; Wang, Wenyuan; Guo, Yao

    2018-02-01

    We investigated the atomic and electronic properties of (1 0 0) stacking fault (SF) in undoped and La-doped BaSnO3 by first-principles calculations. It was found that 1/2[1 1 1] (1 0 0) SF is energetically favorable when Ba atoms occupy the interface while 1/2 (1 0 0) [1 0 1] SF becomes the most stable when the SF interface is occupied by Sn atoms. SF influences the distribution of La dopant and the electric properties of the system. In the presence of SF, electronic states near the Fermi level decrease and the bandgap expands by about 0.6 eV. Our results suggest that SF is one of the possible origins for the performance degradation.

  4. Basic criteria for formation of growth twins in high stacking fault energy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K. Y.; Zhang, X.; Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843

    Nanotwinned metals received significant interest lately as twin boundaries may enable simultaneous enhancement of strength, ductility, thermal stability, and radiation tolerance. However, nanotwins have been the privilege of metals with low-to-intermediate stacking fault energy (SFE). Recent scattered studies show that nanotwins could be introduced into high SFE metals, such as Al. In this paper, we examine several sputter-deposited, (111) textured Ag/Al, Cu/Ni, and Cu/Fe multilayers, wherein growth twins were observed in Al, Ni, and face-centered cubic (fcc) Fe. The comparisons lead to two important design criteria that dictate the introduction of growth twins in high SFE metals. The validity ofmore » these criteria was then examined in Ag/Ni multilayers. Furthermore, another twin formation mechanism in high SFE metals was discovered in Ag/Ni system.« less

  5. Morphology of single Shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuhata, Hirofumi; Sekiguchi, Takashi

    2018-04-01

    Morphology of single Shockley-type stacking faults (SFs) generated by recombination enhanced dislocation glide (REDG) in 4H-SiC are discussed and analysed. A complete set of the 12 different dissociated states of basal-plane dislocation loops is obtained using the crystallographic space group operations. From this set, six different double rhombic-shaped SFs are derived. These tables indicate the rules that connect shapes of SFs with the locations of partial dislocations having different core structures, the positions of slip planes in a unit cell, and the Burgers vectors of partial dislocations. We applied these tables for the analysis of SFs generated by the REDG effect reported in the past articles. Shapes, growing process of SFs and perfect dislocations for origins of SFs were well analysed systematically.

  6. Microstructural defects in He-irradiated polycrystalline α-SiC at 1000 °C

    NASA Astrophysics Data System (ADS)

    Han, Wentuo; Li, Bingsheng

    2018-06-01

    In order to investigate the effect of the high-temperature irradiation on microstructural evolutions of the polycrystalline SiC, an ion irradiation at 1000 °C with the 500 keV He2+ was imposed to the α-SiC. The platelets, He bubbles, dislocation loops, and particularly, their interaction with the stacking fault and grain boundaries were focused on and characterized by the cross-sectional transmission electron microscopy (XTEM). The platelets expectably exhibit a dominant plane of (0001), while planes of (01-10) and (10-16) are also found. Inside the platelet, the over-pressurized bubbles exist and remarkably cause a strong-strain zone surrounding the platelet. The disparate roles between the grain boundaries and stacking faults in interacting with the bubbles and loops are found. The results are compared with the previous weighty findings and discussed.

  7. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  8. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.

    PubMed

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-03

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c+a⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c+a⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {21[over ¯]1[over ¯]2} plane "slither" in the {011[over ¯]1} plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {21[over ¯]1[over ¯]2} and {011[over ¯]1} slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {21[over ¯]1[over ¯]2} planes.

  9. A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.

    2013-08-22

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less

  10. The time-dependence of the defective nature of ice Ic (cubic ice) and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.

    2010-05-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather flat low-indexed crystal faces. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] RS Gao & 19 other authors (2004) Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 516-520. [3] T Peter, C Marcolli, P Spichtinger, T Corti, MC Baker & T Koop (2006) When dry air is too humid. Science 314, 1399-1402. [4] JE Shilling, MA Tolbert, OB Toon, EJ Jensen, BJ Murray & AK Bertram (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys.Res.Lett. 33, 026671. [5] TC Hansen, MM Koza & WF Kuhs (2008) Formation and annealing of cubic ice: I Modelling of stacking faults. J.Phys.Cond.Matt. 20, 285104. [6] TC Hansen, MM Koza, P Lindner & WF Kuhs (2008) Formation and annealing of cubic ice: II. Kinetic study. J.Phys.Cond.Matt. 20, 285105. [7] WF Kuhs, G Genov, DK Staykova & AN Salamatin, T Hansen (2004) Ice perfection and the onset of anomalous preservation of gas hydrates. Phys.Chem.Chem.Phys. 6, 4917-4920. [8] BJ Murray, DA Knopf & AK Bertram (2005) The formation of cubic ice under conditions relevant to Earth's atmosphere. Nature 434, 292-205.

  11. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  12. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.

  13. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  14. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031; Wang, L.

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{supmore » −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.« less

  15. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  16. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  17. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    NASA Astrophysics Data System (ADS)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was extensionally reactivated by a branch fault of the Frontal Range Fault. Extension may be ductile (limestone mylonites), ductile and brittle (ooid deformation, boudinaged belemnite rostra, shear bands) or brittle. Extension is heterogeneously distributed within the Frontal Range. Extension is mainly related to orogenic/gravitational collapse of the Oman Mountains. Collapse may have been associated with isostatic rebound and rise of the two domes. In the western part of the study area, the Frontal Range Fault has a listric morphology. It is probably horizontal at a depth of 15 km below the Batinah coastal area. The fault seems to use the clay- and tuff-bearing Aruma Group as shear horizon. The depth of 15 km may coincide with the brittle-ductile transition of quartz- and feldspar-rich rocks. Close to this depth, the listric Batinah Coast Fault curves into the Frontal Range Fault. Extension along the Frontal Range and Batinah Coast faults probably reactivated preexisting late Cretaceous thrust faults during post-late Eocene time. The latter fault is likely mechanically related to the Wadi Kabir Fault via the Fanja Graben Fault and the Sunub fault segment. Listwaenite and serpentinite cluster preferably around the extensional faults. The Semail Gap probably functioned as a sinistral transform fault or fault zone during the Permian.

  18. Long-Term Fault Memory: A New Time-Dependent Recurrence Model for Large Earthquake Clusters on Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.

    2017-12-01

    A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would appear quasiperiodic, while at other times, the events can appear more Poissonian. Hence a given paleoseismic or instrumental record may not reflect the long-term seismicity of a fault, which has important implications for hazard assessment.

  19. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  20. Probabilistic fault tree analysis of a radiation treatment system.

    PubMed

    Ekaette, Edidiong; Lee, Robert C; Cooke, David L; Iftody, Sandra; Craighead, Peter

    2007-12-01

    Inappropriate administration of radiation for cancer treatment can result in severe consequences such as premature death or appreciably impaired quality of life. There has been little study of vulnerable treatment process components and their contribution to the risk of radiation treatment (RT). In this article, we describe the application of probabilistic fault tree methods to assess the probability of radiation misadministration to patients at a large cancer treatment center. We conducted a systematic analysis of the RT process that identified four process domains: Assessment, Preparation, Treatment, and Follow-up. For the Preparation domain, we analyzed possible incident scenarios via fault trees. For each task, we also identified existing quality control measures. To populate the fault trees we used subjective probabilities from experts and compared results with incident report data. Both the fault tree and the incident report analysis revealed simulation tasks to be most prone to incidents, and the treatment prescription task to be least prone to incidents. The probability of a Preparation domain incident was estimated to be in the range of 0.1-0.7% based on incident reports, which is comparable to the mean value of 0.4% from the fault tree analysis using probabilities from the expert elicitation exercise. In conclusion, an analysis of part of the RT system using a fault tree populated with subjective probabilities from experts was useful in identifying vulnerable components of the system, and provided quantitative data for risk management.

  1. Wide-angle Marine Seismic Refraction Imaging of Vertical Faults: Pre-Stack Turning Wave Migrations of Synthetic Data and Implications for Survey Design

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.

    2006-12-01

    We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.

  2. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  3. Interseismic secular deformation in Southern California from InSAR-derived maps over the time period between 1992 and 2006

    NASA Astrophysics Data System (ADS)

    Rivet, D. N.; Fialko, Y.

    2007-12-01

    We analyzed secular deformation in Southern California using an extensive catalog of InSAR data that spans 15 years between 1992 and 2006. We generated a map of the satellite line-of-sight displacements based on a stack of ~300 interferograms from 6 adjacent tracks of the ERS-1 and ERS-2 satellites covering Southern California. The main limitation to the accuracy of InSAR measurements of tectonic deformation is the atmospheric phase delay. We introduce a new method aimed to improve the signal-to-noise ratio in the InSAR- derived maps of secular deformation. The method involves identifying SAR acquisitions that are highly affected by atmospheric noise, and an optimal choice of interferometric pairs for stacking. We begin by generating a set of all possible interferometric pairs having baselines and time spans within prescribed limits. We then select interferograms with sufficiently high correlation. Subsequently, we identify noisy SAR acquisitions by means of calculating RMS of the phase signal. Finally, we generate a stack of interferograms by following a "connectivity tree" that minimizes contributions of noisy scenes. Using this method we obtained a continuous velocity field characterizing surface deformation in Southern California over the last 15 years. We identify interseismic deformation on a number of major faults, including those of the southern San Andreas system, and the Eastern California Shear Zone (ECSZ). We study the time dependency from 1992 to 2006 of those deformation patterns. Variations in the line-of- sight velocity across the Eastern California Shear Zone are non-monotonic, with the maximum along the strike of the Hector Mine fault of ~4 mm/yr, and total LOS velocity between the eastern and western boundaries of the shear zone of less than 2 mm/yr. We observe increases in the radar range to the east of ECSZ. This signal most likely results from subsidence east of the Death Valley-Mule Springs fault system, either due to hydrologic effects, or dip-slip tectonics. No resolvable interseismic deformation is detected across the Garlock fault. The Blackwater fault is associated with line-of-sight velocity of 2 mm/yr. By combining data from the ascending and descending satellite orbits, we infer that most of that strain is associated with the differential vertical motion across the fault (east side up), so that the accelerated strike-slip motion on the deep extension of the Blackwater fault is not required.

  4. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  5. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  6. High-resolution transmission electron microscopy of hexagonal and rhombohedral molybdenum disulfide crystals.

    PubMed

    Isshiki, T; Nishio, K; Saijo, H; Shiojiri, M; Yabuuchi, Y; Takahashi, N

    1993-07-01

    Natural (molybdenite) and synthesized molybdenum disulfide crystals have been studied by high-resolution transmission electron microscopy. The image simulation demonstrates that the [0001] and [0110] HRTEM images of hexagonal and rhombohedral MoS2 crystals hardly disclose their stacking sequences, and that the [2110] images can distinguish the Mo and S columns along the incident electron beam and enable one to determine not only the crystal structure but also the fault structure. Observed [0001] images of cleaved molybdenite and synthesized MoS2 crystals, however, reveal the strain field around partial dislocations limiting an extended dislocation. A cross-sectional image of a single molecular (S-Mo-S) layer cleaved from molybdenite has been observed. Synthesized MoS2 flakes which were prepared by grinding have been found to be rhombohedral crystals containing many stacking faults caused by glides between S/S layers.

  7. Charge optimized many-body potential for aluminum.

    PubMed

    Choudhary, Kamal; Liang, Tao; Chernatynskiy, Aleksandr; Lu, Zizhe; Goyal, Anuj; Phillpot, Simon R; Sinnott, Susan B

    2015-01-14

    An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the [Formula: see text] direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

  8. First principles pseudopotential calculation of electron energy loss near edge structures of lattice imperfections.

    PubMed

    Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Tochigi, Eita; Ikuhara, Yuichi

    2012-01-01

    Theoretical calculations of electron energy loss near edge structures (ELNES) of lattice imperfections, particularly a Ni(111)/ZrO₂(111) heterointerface and an Al₂O₃ stacking fault on the {1100} plane, are performed using a first principles pseudopotential method. The present calculation can qualitatively reproduce spectral features as well as chemical shifts in experiment by employing a special pseudopotential designed for the excited atom with a core-hole. From the calculation, spectral changes observed in O-K ELNES from a Ni/ZrO₂ interface can be attributable to interfacial oxygen-Ni interactions. In the O-K ELNES of Al₂O₃ stacking faults, theoretical calculation suggests that the spectral feature reflects coordination environment and chemical bonding. Powerful combinations of ELNES with a pseudopotential method used to investigate the atomic and electronic structures of lattice imperfections are demonstrated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Atomistic Origin of Deformation Twinning in Biomineral Aragonite.

    PubMed

    Liu, Jialin; Huang, Zaiwang; Pan, Zhiliang; Wei, Qiuming; Li, Xiaodong; Qi, Yue

    2017-03-10

    Deformation twinning rarely occurs in mineral materials which typically show brittle fracture. Surprisingly, it has recently been observed in the biomineral aragonite phase in nacre under high rate impact loading. In this Letter, the twinning tendency and the competition between fracture and deformation twinning were revealed by first principles calculations. The ratio of the unstable stacking fault energy and the stacking fault energy in orthorhombic aragonite is hitherto the highest in a broad range of metallic and oxide materials. The underlining physics for this high ratio is the multineighbor shared ionic bonds and the unique relaxation process during sliding in the aragonite structure. Overall, the unique deformation twining along with other highly coordinated deformation mechanisms synergistically work in the hierarchical structure of nacre, leading to the remarkable strengthening and toughening of nacre upon dynamic loading, and thus protecting the mother-of-pearl from predatory attacks.

  10. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin, E-mail: chenbinmse@gmail.com; Chen, Jun; Yao, Yuanzhao

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ∼100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed inmore » the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.« less

  11. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE PAGES

    Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...

    2016-04-01

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  12. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  13. Replace with abstract title

    NASA Astrophysics Data System (ADS)

    Coho, Aleksander; Kioussis, Nicholas

    2003-03-01

    We use the semidiscrete variational generelized Peierls-Nabarro model to study the effect of Cu alloying on the dislocation properties of Al. First-principles density functional theory (DFT) is used to calculate the generalized-stacking-fault (GSF) energy surface when a <111> plane, on which one in four Al atoms has been replaced with a Cu atom, slips over a pure Al <111> plane. Various dislocation core properties (core width, energy, Peierls stress, dissociation tendency) are investigated and compared with the pure Al case. Cu alloying lowers the intrinsic stacking fault (ISF) energy, which makes dislocations more likely to dissociate into partials. We also try to understand the lowering of ISF energy in terms of Al-Cu and Al-Al bond formation and braking during shearing along the <112> direction. From the above we draw conclusions about the effects of Cu alloying on the mechanical properties of Al.

  14. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  15. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Wang, Morris; Liu, Yue

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  16. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  17. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  18. Site-to-Source Finite Fault Distance Probability Distribution in Probabilistic Seismic Hazard and the Relationship Between Minimum Distances

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Gutierrez, E.; Carciumaru, D. D.; Huesca-Perez, E.

    2017-12-01

    We present a method to compute the conditional and no-conditional probability density function (PDF) of the finite fault distance distribution (FFDD). Two cases are described: lines and areas. The case of lines has a simple analytical solution while, in the case of areas, the geometrical probability of a fault based on the strike, dip, and fault segment vertices is obtained using the projection of spheres in a piecewise rectangular surface. The cumulative distribution is computed by measuring the projection of a sphere of radius r in an effective area using an algorithm that estimates the area of a circle within a rectangle. In addition, we introduce the finite fault distance metrics. This distance is the distance where the maximum stress release occurs within the fault plane and generates a peak ground motion. Later, we can apply the appropriate ground motion prediction equations (GMPE) for PSHA. The conditional probability of distance given magnitude is also presented using different scaling laws. A simple model of constant distribution of the centroid at the geometrical mean is discussed, in this model hazard is reduced at the edges because the effective size is reduced. Nowadays there is a trend of using extended source distances in PSHA, however it is not possible to separate the fault geometry from the GMPE. With this new approach, it is possible to add fault rupture models separating geometrical and propagation effects.

  19. Cordilleran front range structural features in northwest Montana interpreted from vintage seismic reflection data

    NASA Astrophysics Data System (ADS)

    Porter, Mason C.; Rutherford, Bradley S.; Speece, Marvin A.; Mosolf, Jesse G.

    2016-04-01

    Industry seismic reflection data spanning the Rocky Mountain Cordillera front ranges of northwest Montana were reprocessed and interpreted in this study. Five seismic profiles represent 160 km of deep reflection data collected in 1983 that span the eastern Purcell anticlinorium, Rocky Mountain Trench (RMT), Rocky Mountain Basal Décollement (RMBD), and Lewis thrust. The data were reprocessed using modern techniques including refraction statics, pre-stack time migration (PSTM), and pre- and post-stack depth migration. Results indicate the RMBD is 8-13 km below the Earth's surface and dip 3-10° west. Evidence for the autochthonous Mesoproterozoic Belt and basal Cambrian rocks beneath the RMBD is present in all of the profiles and appears to extend east of the RMT. The Lewis thrust was identified in the seismic profiles and appears to sole into the RMBD east of the RMT. The RMT fault system has a dip displacement of 3-4 km and forms a half graben filled with 1 km of unconsolidated Tertiary sedimentary deposits. The RMT and adjacent Flathead fault systems are interpreted to be structurally linked and may represent a synthetic, en echelon fault system.

  20. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin

    NASA Astrophysics Data System (ADS)

    Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw

    2014-04-01

    Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.

  1. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  2. The Effect of Grain Size on the Radiation Response of Silicon Carbide and its Dependence on Irradiation Species and Temperature

    NASA Astrophysics Data System (ADS)

    Jamison, Laura

    In recent years the push for green energy sources has intensified, and as part of that effort accident tolerant and more efficient nuclear reactors have been designed. These reactors demand exceptional material performance, as they call for higher temperatures and doses. Silicon carbide (SiC) is a strong candidate material for many of these designs due to its low neutron cross-section, chemical stability, and high temperature resistance. The possibility of improving the radiation resistance of SiC by reducing the grain size (thus increasing the sink density) is explored in this work. In-situ electron irradiation and Kr ion irradiation was utilized to explore the radiation resistance of nanocrystalline SiC (nc-SiC), SiC nanopowders, and microcrystalline SiC. Electron irradiation simplifies the experimental results, as only isolated Frenkel pairs are produced so any observed differences are simply due to point defect interactions with the original microstructure. Kr ion irradiation simulates neutron damage, as large radiation cascades with a high concentration of point defects are produced. Kr irradiation studies found that radiation resistance decreased with particle size reduction and grain refinement (comparing nc-SiC and microcrystalline SiC). This suggests that an interface-dependent amorphization mechanism is active in SiC, suggested to be interstitial starvation. However, under electron irradiation it was found that nc-SiC had improved radiation resistance compared to single crystal SiC. This was found to be due to several factors including increased sink density and strength and the presence of stacking faults. The stacking faults were found to improve radiation response by lowering critical energy barriers. The change in radiation response between the electron and Kr ion irradiations is hypothesized to be due to either the change in ion type (potential change in amorphization mechanism) or a change in temperature (at the higher temperatures of the Kr ion irradiation, critical energy barriers can be overcome without the assistance of stacking faults). The dependence of the radiation response of SiC on grain size is not as straight forward as initially presumed. The stacking faults present in many nc-SiC materials boost radiation resistance, but an increased number of interfaces may lead to a reduction in radiation response.

  3. Significance of stress transfer in time-dependent earthquake probability calculations

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    A sudden change in stress is seen to modify earthquake rates, but should it also revise earthquake probability? Data used to derive input parameters permits an array of forecasts; so how large a static stress change is require to cause a statistically significant earthquake probability change? To answer that question, effects of parameter and philosophical choices are examined through all phases of sample calculations, Drawing at random from distributions of recurrence-aperiodicity pairs identifies many that recreate long paleoseismic and historic earthquake catalogs. Probability density funtions built from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts under a point process renewal model. Consequences of choices made in stress transfer calculations, such as different slip models, fault rake, dip, and friction are, tracked. For interactions among large faults, calculated peak stress changes may be localized, with most of the receiving fault area changed less than the mean. Thus, to avoid overstating probability change on segments, stress change values should be drawn from a distribution reflecting the spatial pattern rather than using the segment mean. Disparity resulting from interaction probability methodology is also examined. For a fault with a well-understood earthquake history, a minimum stress change to stressing rate ratio of 10:1 to 20:1 is required to significantly skew probabilities with >80-85% confidence. That ratio must be closer to 50:1 to exceed 90-95% confidence levels. Thus revision to earthquake probability is achievable when a perturbing event is very close to the fault in question or the tectonic stressing rate is low.

  4. Surface slip during large Owens Valley earthquakes

    NASA Astrophysics Data System (ADS)

    Haddon, E. K.; Amos, C. B.; Zielke, O.; Jayko, A. S.; Bürgmann, R.

    2016-06-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ˜1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ˜0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ˜6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ˜7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ˜0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  5. Computer Simulations to Study Diffraction Effects of Stacking Faults in Beta-SiC: II. Experimental Verification. 2; Experimental Verification

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)

    2000-01-01

    Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.

  6. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  7. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  8. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  9. Morphology and tectonics of the Andaman Forearc, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cochran, James R.

    2010-08-01

    The Andaman Sea has developed as the result of highly oblique subduction at the western Sunda Trench, leading to partitioning of convergence into trench-perpendicular and trench-parallel components and the formation of a northward-moving sliver plate to accommodate the trench parallel motion. The Andaman forearc contains structures resulting from both components of motion. The main elements of the forearc are the accretionary prism and outerarc ridge, a series of forearc basins and major N-S faults. The accretionary prism is an imbricate stack of fault slices and folds consisting of ophiolites and sediments scrapped off the subducting Indian Plate. The western, outer slope of the accretionary prism is very steep, rising to depths of 1500-2000 m within a distance of 30 km. There is a difference in the short wavelength morphology between the western and eastern portions of the accretionary prism. The outer portion consists of a series of faulted anticlines and synclines with amplitudes of a few 100 to ~1000 m and widths of 5-15 km resulting from ongoing deformation of the sediments. The inner portion is smoother with lower slopes and forms a strong backstop. The width of the deforming portion of the accretionary prism narrows from 80 to 100 km in the south to about 40 km between 10°N and 11° 30'N. It remains at about 40 km to ~14°40'N. North of there, the inner trench wall becomes a single steep slope up to the Myanmar shelf. The eastern edge of the outerarc ridge is fault bounded and, north of the Nicobar Islands, a forearc basin is located immediately to the east. A deep gravity low with very steep gradients lies directly over the forearc basin. The West Andaman Fault (WAF) and/or the Seulimeum strand of the Sumatra Fault System form the boundary between the Burma and Sunda plates south of the Andaman spreading centre. The WAF is the most prominent morphologic feature of the Andaman Sea and divides the sea into a shallow forearc and a deeper backarc region. The Diligent Fault runs through the forearc basin east of Little Andaman Island. Although it has the general appearance of a normal fault, multichannel seismic data show that it is a compressional feature that probably resulted from deformation of the hanging wall of the Eastern Margin Fault. This could occur if the forearc basins were formed by subduction erosion of the underlying crust rather than by east-west extension.

  10. Conditional, Time-Dependent Probabilities for Segmented Type-A Faults in the WGCEP UCERF 2

    USGS Publications Warehouse

    Field, Edward H.; Gupta, Vipin

    2008-01-01

    This appendix presents elastic-rebound-theory (ERT) motivated time-dependent probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models of the 2007 Working Group on California Earthquake Probabilities (WGCEP). These probabilities are included as one option in the WGCEP?s Uniform California Earthquake Rupture Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and an ?Empirical? model based on observed seismicity rate changes. A more general discussion of the pros and cons of all methods for computing time-dependent probabilities, as well as the justification of those chosen for UCERF 2, are given in the main body of this report (and the 'Empirical' model is also discussed in Appendix M). What this appendix addresses is the computation of conditional, time-dependent probabilities when both single- and multi-segment ruptures are included in the model. Computing conditional probabilities is relatively straightforward when a fault is assumed to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP (1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume basic familiarity with conditional probability calculations). However, and as we?ll see below, the calculation is not straightforward when multi-segment ruptures are included, in essence because we are attempting to apply a point-process model to a non point process. The next section gives a review and evaluation of the single- and multi-segment rupture probability-calculation methods used in the most recent statewide forecast for California (WGCEP UCERF 1; Petersen et al., 2007). We then present results for the methodology adopted here for UCERF 2. We finish with a discussion of issues and possible alternative approaches that could be explored and perhaps applied in the future. A fault-by-fault comparison of UCERF 2 probabilities with those of previous studies is given in the main part of this report.

  11. Seafloor Age-Stacking Reveals No Evidence for Milankovitch Cycle Influence on Abyssal Hills at Intermediate, Fast and Super-Fast Spreading Rates

    NASA Astrophysics Data System (ADS)

    Goff, J.; Zahirovic, S.; Müller, D.

    2017-12-01

    Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The random nature of abyssal hills is consistent with a primarily faulted origin. .

  12. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  13. A set-associative, fault-tolerant cache design

    NASA Technical Reports Server (NTRS)

    Lamet, Dan; Frenzel, James F.

    1992-01-01

    The design of a defect-tolerant control circuit for a set-associative cache memory is presented. The circuit maintains the stack ordering necessary for implementing the Least Recently Used (LRU) replacement algorithm. A discussion of programming techniques for bypassing defective blocks is included.

  14. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  15. The Sparta Fault, Southern Greece: From segmentation and tectonic geomorphology to seismic hazard mapping and time dependent probabilities

    NASA Astrophysics Data System (ADS)

    Papanikolaοu, Ioannis D.; Roberts, Gerald P.; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel

    2013-06-01

    The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and post-glacial throw, emphasising how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn < 83) and central parts (121 < ksn < 138) of the Sparta Fault along strike the fault system. Based on fault throw-rates and the bedrock geology a seismic hazard map has been constructed that extracts a locality specific long-term earthquake recurrence record. Based on this map the town of Sparta would experience a destructive event similar to that in 464 B.C. approximately every 1792 ± 458 years. Since no other major earthquake M ~ 7.0 has been generated by this system since 464 B.C., a future event could be imminent. As a result, not only time-independent but also time-dependent probabilities, which incorporate the concept of the seismic cycle, have been calculated for the town of Sparta, showing a considerably higher time-dependent probability of 3.0 ± 1.5% over the next 30 years compared to the time-independent probability of 1.66%. Half of the hanging wall area of the Sparta Fault can experience intensities ≥ IX, but belongs to the lowest category of seismic risk of the national seismic building code. On view of these relatively high calculated probabilities, a reassessment of the building code might be necessary.

  16. The Sparta Fault, Southern Greece: From Segmentation and Tectonic Geomorphology to Seismic Hazard Mapping and Time Dependent Probabilities

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Ioannis; Roberts, Gerald; Deligiannakis, Georgios; Sakellariou, Athina; Vassilakis, Emmanuel

    2013-04-01

    The Sparta Fault system is a major structure approximately 64 km long that bounds the eastern flank of the Taygetos Mountain front (2.407 m) and shapes the present-day Sparta basin. It was activated in 464 B.C., devastating the city of Sparta. This fault is examined and described in terms of its geometry, segmentation, drainage pattern and postglacial throw, emphasizing how these parameters vary along strike. Qualitative analysis of long profile catchments shows a significant difference in longitudinal convexity between the central and both the south and north parts of the fault system, leading to the conclusion of varying uplift rate along strike. Catchments are sensitive in differential uplift as it is observed by the calculated differences of the steepness index ksn between the outer (ksn<83) and central parts (121

  17. Ultrareliable fault-tolerant control systems

    NASA Technical Reports Server (NTRS)

    Webster, L. D.; Slykhouse, R. A.; Booth, L. A., Jr.; Carson, T. M.; Davis, G. J.; Howard, J. C.

    1984-01-01

    It is demonstrated that fault-tolerant computer systems, such as on the Shuttles, based on redundant, independent operation are a viable alternative in fault tolerant system designs. The ultrareliable fault-tolerant control system (UFTCS) was developed and tested in laboratory simulations of an UH-1H helicopter. UFTCS includes asymptotically stable independent control elements in a parallel, cross-linked system environment. Static redundancy provides the fault tolerance. A polling is performed among the computers, with results allowing for time-delay channel variations with tight bounds. When compared with the laboratory and actual flight data for the helicopter, the probability of a fault was, for the first 10 hr of flight given a quintuple computer redundancy, found to be 1 in 290 billion. Two weeks of untended Space Station operations would experience a fault probability of 1 in 24 million. Techniques for avoiding channel divergence problems are identified.

  18. Promise and problems in using stress triggering models for time-dependent earthquake hazard assessment

    NASA Astrophysics Data System (ADS)

    Cocco, M.

    2001-12-01

    Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to the stressing history perturbing the faults (such as dynamic stress changes, post-seismic stress changes caused by viscolelastic relaxation or fluid flow). If, for instance, we believe that dynamic stress changes can trigger aftershocks or earthquakes years after the passing of the seismic waves through the fault, the perspective of calculating interaction probability is untenable. It is therefore clear we have learned a lot on earthquake interaction incorporating fault constitutive properties, allowing to solve existing controversy, but leaving open questions for future research.

  19. Anatomy of anomalously thick sandstone units in the Brent Delta of the northern North Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Ma, Yinsheng

    2018-05-01

    Some potentially attractive reservoirs, containing anomalously thick (10s to a few 100 m), cross-stratified sandstone, have been locally encountered within both the classic regressive (lower Brent) and the transgressive (upper Brent) segments of the Brent Delta. Three documented cases of these sandstone bodies are re-examined. They are internally dominated by simple or compound dunes, and typified by two types of deepening-upward succession, recording a retrogradational or transgressive shoreline history. Type I is expressed as a single estuarine succession changing upwards from erosive, coarse-grained channelized deposits into outer estuary tidal bar deposits. The estuary is underlain and overlain by deltaic deposits. Type II lacks significant basal river deposits but is composed by stacked mixed-energy and tide-dominated estuarine deposits. It is underlain by deltaic deposits and overlain by open marine sediments. Considering the structural evolution in the northern North Sea basin, we suggest (as did some earlier researchers) that these sandstone bodies were local, but sometimes broad transgressive estuaries, formed at any time during large-scale Brent Delta growth and decay. The estuary generation was likely triggered by fluvial incision coupled with active faulting, producing variable accommodation embayments, where tidal currents became focused and deposition became transgressive. The spatial variations of the interpreted estuary deposits were linked with variable, fault-generated accommodation. The relatively simple, lower Brent estuarine units were created by short-lived, fault activity in places, whereas the complex, stacked upper-Brent estuarine units were likely a result of more long-lived, punctuated fault-induced subsidence leading into the northern North Sea main rifting stage. The thick cross-stratified units potentially accumulated in the hangingwall of large bounding faults.

  20. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  1. Seismic Modeling of the Alasehir Graben, Western Turkey

    NASA Astrophysics Data System (ADS)

    Gozde Okut, Nigar; Demirbag, Emin

    2014-05-01

    The purpose of this study is to develop a depth model to make synthetic seismic reflection sections, such as stacked and migrated sections with different velocity models. The study area is east-west trending Alasehir graben which is one of the most prominent structure in the western Anatolia, proved to have geothermal energy potential by researchers and exploration companies. Geological formations were taken from Alaşehir-1 borehole drilled by Turkish Petroleum Corporation (Çiftçi, 2007) and seismic interval velocities were taken from check-shots in the same borehole (Kolenoǧlu-Demircioǧlu, 2009). The most important structure is the master graben bounding fault (MGBF) in the southern margin of the Alasehir graben. Another main structure is the northern bounding fault called the antithetic fault of the MGBF with high angle normal fault characteristic. MGBF is a crucial contact between sedimentary cover and the metamorphic basement. From basement to the surface, five different stratigraphic units constitute graben fill . All the sedimentary units thicknesses get thinner from the southern margin to the northern margin of the Alasehir graben displaying roll-over geometry. A commercial seismic data software was used during modeling. In the first step, a 2D velocity/depth model was defined. Ray tracing was carried out with diffraction option to produce the reflection travel times. The reflection coefficients were calculated and wavelet shaping was carried out by means of band-pass filtering. Finally synthetic stacked section of the Alasehir graben was obtained. Then, migrated sections were generated with different velocity models. From interval velocities, average and RMS velocities were calculated for the formation entires to test how the general features of the geological model may change against different seismic models after the migration. Post-stack time migration method was used. Pseudo-velocity analysis was applied at selected CDP locations. In theory, seismic migration moves events to their correct spatial locations and collapse energy from diffractions back to their scattering points. This features of migration can be distinguished in the migrated sections. When interval velocities used, all the diffractions are removed and fault planes can be seen clearly. When average velocities used, MGBF plane extends to greater depths. Additionally, slope angles and locations of antithetic faults in the northern margin of the graben changes. When RMS velocities used, a migrated section was obtained for which to make an interpretation was quite hard, especially for the main structures along the northern margin and reflections related to formations.

  2. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    PubMed

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  3. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    PubMed Central

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  4. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015 Sabah earthquake offers a case in point.

  5. Creep deformation mechanism mapping in nickel base disk superalloys

    DOE PAGES

    Smith, Timothy M.; Unocic, Raymond R.; Deutchman, Hallee; ...

    2016-05-10

    We investigated the creep deformation mechanisms at intermediate temperature in ME3, a modern Ni-based disk superalloy, using diffraction contrast imaging. Both conventional transmission electron microscopy (TEM) and scanning TEM were utilised. Distinctly different deformation mechanisms become operative during creep at temperatures between 677-815 °C and at stresses ranging from 274 to 724 MPa. Both polycrystalline and single-crystal creep tests were conducted. The single-crystal tests provide new insight into grain orientation effects on creep response and deformation mechanisms. Creep at lower temperatures (≤760 °C) resulted in the thermally activated shearing modes such as microtwinning, stacking fault ribbons and isolated superlattice extrinsicmore » stacking faults. In contrast, these faulting modes occurred much less frequently during creep at 815 °C under lower applied stresses. Instead, the principal deformation mode was dislocation climb bypass. In addition to the difference in creep behaviour and creep deformation mechanisms as a function of stress and temperature, it was also observed that microstructural evolution occurs during creep at 760 °C and above, where the secondary coarsened and the tertiary precipitates dissolved. Based on this work, a creep deformation mechanism map is proposed, emphasising the influence of stress and temperature on the underlying creep mechanisms.« less

  6. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  7. Design for Fe-high Mn alloy with an improved combination of strength and ductility.

    PubMed

    Lee, Seung-Joon; Han, Jeongho; Lee, Sukjin; Kang, Seok-Hyeon; Lee, Sang-Min; Lee, Young-Kook

    2017-06-15

    Recently, Fe-Mn twinning-induced plasticity steels with an austenite phase have been the course of great interest due to their excellent combination of tensile strength and ductility, which carbon steels have never been able to attain. Nevertheless, twinning-induced plasticity steels also exhibit a trade-off between strength and ductility, a longstanding dilemma for physical metallurgists, when fabricated based on the two alloy design parameters of stacking fault energy and grain size. Therefore, we investigated the tensile properties of three Fe-Mn austenitic steels with similar stacking fault energy and grain size, but different carbon concentrations. Surprisingly, when carbon concentration increased, both strength and ductility significantly improved. This indicates that the addition of carbon resulted in a proportionality between strength and ductility, instead of a trade-off between those characteristics. This new design parameter, C concentration, should be considered as a design parameter to endow Fe-Mn twinning-induced plasticity steel with a better combination of strength and ductility.

  8. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  9. Influence of antisite defects and stacking faults on the magnetocrystalline anisotropy of FePt

    NASA Astrophysics Data System (ADS)

    Wolloch, M.; Suess, D.; Mohn, P.

    2017-09-01

    We present density functional theory (DFT) calculations of the magnetic anisotropy energy (MAE) of FePt, which is of great interest for magnetic recording applications. Our data, and the majority of previously calculated results for perfectly ordered crystals, predict a MAE of ˜3.0 meV per formula unit, which is significantly larger than experimentally measured values. Analyzing the effects of disorder by introducing stacking faults (SFs) and antisite defects (ASDs) in varying concentrations we are able to reconcile calculations with experimental data and show that even a low concentration of ASDs are able to reduce the MAE of FePt considerably. Investigating the effect of exact exchange and electron correlation within the adiabatic-connection dissipation fluctuation theorem in the random phase approximation (ACDFT-RPA) reveals a significantly smaller influence on the MAE. Thus the effect of disorder, and more specifically ASDs, is the crucial factor in explaining the deviation of common DFT calculations of FePt to experimental measurements.

  10. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.

    PubMed

    Li, Zuocheng; Yan, Xingxu; Tang, Zhenkun; Huo, Ziyang; Li, Guoliang; Jiao, Liying; Liu, Li-Min; Zhang, Miao; Luo, Jun; Zhu, Jing

    2017-08-16

    Electronic properties of two-dimensional (2D) MoS 2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS 2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS 2 sheet as directly observed using an aberration-corrected transmission electron microscope (TEM). Our analyses show that these RSFs originate from cracks and dislocations within the bilayer MoS 2 . First-principles calculations indicate that RSFs with different rotational angles change the electronic structures of bilayer MoS 2 and produce two new symmetries in their bandgaps and offset crystal momentums. Therefore, employing RSFs and their coexistence is a promising route in defect engineering of MoS 2 to fabricate suitable devices for electronics, optoelectronics, and energy conversion.

  11. Plasticity mechanisms in HfN at elevated and room temperature.

    PubMed

    Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B

    2016-10-06

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

  12. The effects of intrinsic properties and defect structures on the indentation size effect in metals

    NASA Astrophysics Data System (ADS)

    Maughan, Michael R.; Leonard, Ariel A.; Stauffer, Douglas D.; Bahr, David F.

    2017-08-01

    The indentation size effect has been linked to the generation of geometrically necessary dislocations that may be impacted by intrinsic materials properties, such as stacking fault energy, and extrinsic defects, such as statistically stored dislocations. Nanoindentation was carried out at room temperature and elevated temperatures on four different metals in a variety of microstructural conditions. A size effect parameter was determined for each material set combining the effects of temperature and existing dislocation structure. Extrinsic defects, particularly dislocation density, dominate the size effect parameter over those due to intrinsic properties such as stacking fault energy. A multi-mechanism description using a series of mechanisms, rather than a single mechanism, is presented as a phenomenological explanation for the observed size effect in these materials. In this description, the size effect begins with a volume scale dominated by sparse sources, next is controlled by the ability of dislocations to cross-slip and multiply, and then finally at larger length scales work hardening and recovery dominate the effect.

  13. Effect of interstitial and substitution alloying elements on the intrinsic stacking fault energy of nanocrystalline fcc-iron by atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh

    2017-11-01

    The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.

  14. Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature.

    PubMed

    Yuan, Y; Gu, Y F; Zhong, Z H; Osada, T; Cui, C Y; Tetsui, T; Yokokawa, T; Harada, H

    2012-10-01

    The microstructures of a new Ni-Co-base disc superalloy, TMW-4M3, before and after the creep test at 725 °C/630 MPa have been systematically investigated by transmission electron microscopy (TEM). The crept microstructures were marked as three different deformation stages (I, II and III) corresponding to the gradually increased strain. At stage I, stacking fault (SF) shearing was the main deformation mechanism. The SF was extrinsic and lay on {111} plane. However, deformation microtwinning became the dominant mode at stage II and III. The average spacing of deformation twins decreased from 109 ± 15 nm at stage II to 76 ± 12 nm at stage III, whereas the twin thickness did not change significantly. The influence of stacking fault energy (SFE) of γ matrix on the deformation mechanism is discussed. It is suggested that lower SFE in TMW-4M3 is partly responsible for the enhanced creep resistance. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  15. Phase transformation strengthening of high-temperature superalloys

    PubMed Central

    Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.

    2016-01-01

    Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ′ to η phase along stacking faults in γ′ precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties. PMID:27874007

  16. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    NASA Astrophysics Data System (ADS)

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; Jensen, Mallory Ann; Morishige, Ashley E.; Lai, Barry; Hao, Ruiying; Ravi, T. S.; Buonassisi, Tonio

    2018-02-01

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 104 cm-2), localized areas with a defect density > 105 cm-2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stacking faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. The impact of the defects on material performance and substrate re-use is also discussed.

  17. From 2012 HAITI-SIS Survey: thick-skin versus thin-skin tectonics partitioned along offshore strike-slip Faults-Haïti

    NASA Astrophysics Data System (ADS)

    Ellouz, N.; Leroy, S. D.; Momplaisir, R.; Mercier de Lepinay, B.

    2013-12-01

    The characterization of the deformation along large strike-slip fault-systems like transpressive boundaries between N. Caribbean/N America is a challenging topic, which requires a multi-scale approach. Thanks to Haiti-sis new data, the precise description of the fault segmentation pattern, the sedimentogical distribution, the uplift/subsidence rates, the along-fault and intra-basin fluids circulations, allows to actualize the evolution of the deformation history up to present-day . All the co-seismic surface to near-surface events, have to be also identified in order to integrate geophysical solutions for the earthquake, within the present-day geological and structural pattern. These two approaches, ranging from geological to instantaneous time-scales have been used during multi-tools Haiti-Sis oceanographic survey, allowing to document and image these different aspects at a large scale. The complex strike-slip North Caribbean boundary registered significative stress partitioning. Oblique convergence is expressed by along-strike evolution; from rifted segments (Cayman Through) to transpressive ones (Haiti, Dominican Rep.), to subduction (Porto Rico). In the Haiti-Sis survey, we acquired new offshore data surrounding the active fault areas, in the Gonâve Bay, the Jamaica Channel and along Southern Peninsula. Mapping the sea-floor, and HR seismic acquisition were our main objectives, in order to characterize the fault and fold architecture, with a new delineation of active segments. Offshore piston cores, have been used as representative of the modern basin sedimentation, and to document the catastrophic events (earthquakes, massive flood or sudden destabilization of the platform ) represented by turbiditic or mass-flow sequences, with the objective to track the time recurrence of seismic events by dating some of these catastrophic sediment deposition. At surface, the other markers of the fault activity are linked with along-fault permeability and fluid circulation pathway changes. Geochemical signature and temperature of the fluids and gas, change drastically depending on location and depth provenance. Our first results show that 1) the present-day EPGF geometry results from oblique shortening processes along different segments of the fault. Deep basins previously localized south and north of the fault are inverted at different degrees, 2) the Gonâve Island is only the emerged part of a NW-SE, either growing large " anti-formal stack" or basement inversion responsible for the large present-day fold amplitude, or both of them successively. It separates two sub-basins South and North Gonâve with independant sedimentary and deformation evolution 3) the Jeremie Basin probably has a specific long-living evolution, allowing to precise the geodynamic evolution of the Western Hispaniola Margin.

  18. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line was also run across a large active scarp in Queen Valley near Boundary Peak. Due to slope steepness and extensive boulder armoring shot and receiver locations had to be skipped within several meters of the actual scarp location. Initial structural and stratigraphic interpretations are similar to those in the Fish Lake Valley location. Overall the data prove that the actively deforming fans can be imaged in detail sufficient to perform structural and possibly seismic stratigraphic analysis within the upper one hundred meters of the fans, if not deeper.

  19. Fallon, Nevada FORGE Seismic Reflection Profiles

    DOE Data Explorer

    Blankenship, Doug; Faulds, James; Queen, John; Fortuna, Mark

    2018-02-01

    Newly reprocessed Naval Air Station Fallon (1994) seismic lines: pre-stack depth migrations, with interpretations to support the Fallon FORGE (Phase 2B) 3D Geologic model. Data along seven profiles (>100 km of total profile length) through and adjacent to the Fallon site were re-processed. The most up-to-date, industry-tested seismic processing techniques were utilized to improve the signal strength and coherency in the sedimentary, volcanic, and Mesozoic crystalline basement sections, in conjunction with fault diffractions in order to improve the identification and definition of faults within the study area.

  20. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  1. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

  2. Imaging Subsurface Structure of Central Zagros Zone/Iran Using Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Vahidravesh, Shaghayegh; Pakzad, Mehrdad, ,, Dr.; Hatami, Mohammad Reza, ,, Dr.

    2017-04-01

    The Central Zagros zone, of west Iran & east Iraq, is surrounded by many active faults (including Main Zagros Reversed Fault, Main Recent Fault, High Zagros Fault, Zagros Fold, & Thrust Belt). Recent studies show that cross-correlation of a long-term ambient seismic noise data recorded in station-pair, includes important information regarding empirical Green's functions (EGFs) between stations. Hence, ambient seismic noise carries valuable information of the wave propagation path (which can be extracted). The 2D model of surface waves (Rayleigh & Love) velocities for the studied area is obtained by seismic ambient noise tomography (ANT) method. Throughout this research, we use continuous records of all three vertical, radial, and tangential components (obtained by rotation) recorded by IRSC (Iranian Seismological Center) and IIEES (International Institute of Earthquake Engineering) networks for this area of interest. The IRSC & IIEES networks are equipped by SS-1 kinematics and Guralp CMG-3T sensors respectively. Data of 20 stations were used for 12 months from 2014/Nov. to 2015/Nov. The performed data processing is similar to the one, put into words in detail by Bensen et al. (2007) including the processed daily base data. Mean, trend, and instrument response were removed and the data were decimated to 5 sps (sample per second) to reduce the amount of storage space and computational time required. We then applied merge to handle data gaps. One-bit time-domain normalization was also applied to suppress the influence of instrument irregularities and earthquake signals followed by spectral (frequency-domain) normalization between 0.05-0.2 Hz (period 5-20 sec). After cross-correlation (processing step), we perform rms stacking (new approach of stacking) to stack many cross-correlation functions based on the highest energy in a time interval which we accordingly anticipate to receive Rayleigh & Love waves fundamental modes. To evaluate quality of the stacking process stability quantitatively, we calculate signal-to-noise ratio (SNR), defined as a ratio of the peak amplitude within a time window to the root-mean-square of noise trailing the signal arrival window (Bensen et al., 2007), for each cross-correlation. The cross-correlated time-series is equivalent to the Green's functions between pairs of receivers. We then apply multiple phase-matched filter method of Herrmann (2005) to measure the correct group velocity dispersion of the interferometric surface waves. Eventually, we apply fast marching surface wave tomography (FMST), the iterative nonlinear inversion package developed by Rawlinson, 2005, to extract the velocity model of shallow structure in Central Zagros zone /Iran.

  3. Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Kaj M.

    2018-03-01

    Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.

  4. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network

    NASA Astrophysics Data System (ADS)

    Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke

    2018-06-01

    Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.

  5. Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis.

    PubMed

    Duong, Bach Phi; Kim, Jong-Myon

    2018-04-07

    The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance.

  6. Impact of coverage on the reliability of a fault tolerant computer

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.

    1975-01-01

    A mathematical reliability model is established for a reconfigurable fault tolerant avionic computer system utilizing state-of-the-art computers. System reliability is studied in light of the coverage probabilities associated with the first and second independent hardware failures. Coverage models are presented as a function of detection, isolation, and recovery probabilities. Upper and lower bonds are established for the coverage probabilities and the method for computing values for the coverage probabilities is investigated. Further, an architectural variation is proposed which is shown to enhance coverage.

  7. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na 3Ni 2BiO 6 Cathodes for Na-Ion Batteries

    DOE PAGES

    Liu, Jue; Yin, Liang; Wu, Lijun; ...

    2016-08-17

    Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less

  8. Quantification of Honeycomb Number-Type Stacking Faults: Application to Na 3Ni 2BiO 6 Cathodes for Na-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Yin, Liang; Wu, Lijun

    Here, ordered and disordered samples of honeycomb-lattice Na 3Ni 2BiO 6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs Na +/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycombmore » layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. We demonstrate that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li 2MnO 3 and related Li-excess cathode compositions.« less

  9. Multimillion-Year Evolution of a Sublacustrine Fan System: Source-to-Sink History of the South Rukuru and Ruhuhu River Drainages, Lake Malawi (Nyasa) Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Shillington, D. J.; McCartney, T.

    2017-12-01

    The development of long-lived continental rifts can be markedly influenced by surface processes, including sediment input and footwall erosion. This occurs through modifying crustal thickness and loading, as well as by influencing behaviors of individual faults. Here we report on the evolution of a long-lived system of sublacustrine fans in the Central Basin of the Lake Malawi (Nyasa) rift, East Africa. An extensive suite of crustal-scale seismic reflection data was acquired in 2015 as part of the SEGMeNT project, which resulted superb images of the syn-rift section. These data are augmented by legacy single-channel high resolution reflection data that provide detailed information on facies geometries and stacking architecture of the deep-water fan systems. The ages and lithologic character of the stratal surfaces observed in the reflection seismic data are constrained by ties to the 2005 scientific drill cores acquired during the Lake Malawi Scientific Drilling Project. The South Rukuru River is an eastward flowing regional drainage (11,900 km2) that enters Lake Malawi through an incision in the western border fault of the rift's Central Basin. The Rukuru River drainage (17,230 km2) enters the eastern side of the lake at an accommodation zone margin between the North and Central Basins. Both are antecedent drainages that prior to rifting may have delivered sediments to the Indian Ocean continental margin. Both systems now deliver sediment to a highly confined and focused depocenter in the Central Basin. The complex interplay of extension, mainly on the border fault systems, and high-frequency and high-amplitude lake levels shifts, has led to unique coarse sediment facies stacking architectures, with vertical stacking controlled by hydroclimate, and lateral positioning localized by fault behavior. Focused deep-water (700 m) deposition has resulted in overpressure within the sedimentary section in the localized depocenter, producing dramatic mud diapirs. Long-lived channel-levee systems observed in the seismic data demonstrate that both drainages systems have been operative for the past several million years.

  10. Fault tree analysis for urban flooding.

    PubMed

    ten Veldhuis, J A E; Clemens, F H L R; van Gelder, P H A J M

    2009-01-01

    Traditional methods to evaluate flood risk generally focus on heavy storm events as the principal cause of flooding. Conversely, fault tree analysis is a technique that aims at modelling all potential causes of flooding. It quantifies both overall flood probability and relative contributions of individual causes of flooding. This paper presents a fault model for urban flooding and an application to the case of Haarlem, a city of 147,000 inhabitants. Data from a complaint register, rainfall gauges and hydrodynamic model calculations are used to quantify probabilities of basic events in the fault tree. This results in a flood probability of 0.78/week for Haarlem. It is shown that gully pot blockages contribute to 79% of flood incidents, whereas storm events contribute only 5%. This implies that for this case more efficient gully pot cleaning is a more effective strategy to reduce flood probability than enlarging drainage system capacity. Whether this is also the most cost-effective strategy can only be decided after risk assessment has been complemented with a quantification of consequences of both types of events. To do this will be the next step in this study.

  11. A Multi-Scale Simulation Approach to Deformation Mechanism Prediction in Superalloys

    NASA Astrophysics Data System (ADS)

    Lv, Duchao

    High-temperature alloys in general and superalloys in particular are crucial for manufacturing gas turbines for aircraft and power generators. Among the superalloy family, the Ni-based superalloys are the most frequently used due to their excellent strength-to-weight ratio. Their strength results from their ordered intermetallic phases (precipitates), which are relatively stable at elevated temperatures. The major deformation processes of Ni-based and Co-based superalloys are precipitate shearing and Orowan looping. The key to developing physics-based models of creep and yield strength of aircraft engine components is to understand the two deformation mechanisms mentioned above. Recent discoveries of novel dislocation structures and stacking-fault configurations in deformed superalloys implied that the traditional anti-phase boundary (APB)-type, yield-strength model is unable to explain the shearing mechanisms of the gamma" phase in 718-type (Ni-based) superalloys. While the onset of plastic deformation is still related to the formation of highly-energetic stacking faults, the physics-based yield strength prediction requires that the novel dislocation structure and the correct intermediate stacking-fault be considered in the mathematical expressions. In order to obtain the dependence of deformation mechanisms on a materials chemical composition, the relationship between the generalized-stacking-fault (GSF) surface and its chemical composition must be understood. For some deformation scenarios in which one precipitate phase and one mechanism are dominant (e.g., Orowan looping), their use in industry requires a fast-acting model that can capture the features of the deformation (e.g., the volume fraction of the sheared matrix) and reduces lost time by not repeating fine-scale simulations. The objective of this thesis was to develop a multi-scale, physics-based simulation approach that can be used to optimize existing superalloys and to accelerate the design of new alloys. In particular, density functional theory (DFT) was used to calculate the GSF surface of the gamma" phase in the 718-type superalloy. In addition, the deformation pathways inside the gamma" particles were identified, and the dislocation emissions were predicted. Many novel dislocation sources inside the gamma" particles were simulated by using the phase-field method, which predicts and explains the dislocation configurations that appear during the deformation process or that are left as debris. Moreover, based on the stacking-fault energies in the available literature, we calculated the dependence of the chemical composition of the GSF surface of the gamma' phase in Co-based, CoNi-based, and Ni-based superalloys. The phase-field simulation, which used the GSF surfaces as inputs, explained the relationship between the shearing mechanism and chemical composition. Thus, two fast-acting models were developed by using the modified analytic expressions of particle shearing and Orowan looping. These expressions were calibrated by using the GSF surface and the simulation of the phase-field, and they were used to predict the yield strength of 718-type superalloy and the localized creep features of the gamma/gamma' microstructure. The fast-acting yield models were trained by the available experimental results. Since the chemical re-ordering and the segregation effects are not considered in this work, the fast-acting models are designed to the predict mechanical behaviors at the room temperature and the intermediate temperature.

  12. Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Maluski, Henri; Leloup, P. Hervé; Tapponnier, Paul; Hinthong, Chaiyan; Siribhakdi, Kanchit; Chuaviroj, Saengathit; Charoenravat, Adul

    1997-05-01

    The Wang Chao and Three Pagodas fault zones cut the western part of the Indochina block and run parallel to the Red River Fault. Evidence of intense ductile left-lateral shear is found in the Lansang gneisses, which form a 5 km wide elongated core along the Wang Chao fault zone. Dating by 40Ar/39Ar shows that such deformation probably terminated around 30.5 Ma. The Wang Chao and Three Pagodas faults offset the north striking lower Mesozoic metamorphic and magmatic belt of northern Thailand. 40Ar/39Ar results suggest that this belt suffered rapid cooling in the Tertiary, probably around 23 Ma. These results imply that the extrusion of the southwestern part of Indochina occurred in the upper Eocene-lower Oligocene. It probably induced rifting in some basins of the Gulf of Thailand and in the Malay and Mekong basins. In the Oligo-Miocene, the continuing penetration of India into Asia culminated with the extrusion of all of Indochina along the Ailao Shan-Red River fault. This occurred concurrently with the onset of E-W extension more to the south. Plotting in a geographical reference frame the diachronic time spans of movement on left-lateral faults east and southeast of Tibet implies that the northward movement of the Indian indenter successively initiated new strike-slip faults located farther and farther north along its path.

  13. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  14. Health Monitoring of a Satellite System

    NASA Technical Reports Server (NTRS)

    Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell

    2004-01-01

    A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.

  15. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  16. Thermoelectric Properties and Microstructure of Ca3 Co 4 O 9 thin films on SrTiO3 and Al2 O 3 Substrates

    NASA Astrophysics Data System (ADS)

    Paulauskas, T.; Qiao, Q.; Gulec, A.; Klie, R. F.; Ozdemir, M.; Boyraz, C.; Mazumdar, D.; Gupta, A.

    2011-03-01

    Ca 3 Co 4 O9 (CCO), a misfit layered structure exhibiting large Seebeck coefficient at temperatures up to 1000K has attracted increasing attention as a novel high-temperature thermoelectric material. In this work, we investigate CCO thin films grown on SrTi O3 (001) and Al 2 O3 (0001) using pulsed laser deposition. Quality of the thin films was examined using high-resolution transmission electron microscopy and thermoelectric transport measurements. HRTEM images show incommensurate stacks of Cd I2 -type Co O2 layer alternating with rock-salt-type Ca 2 Co O3 layer along the c-axis. Perovskite buffer layer about 10nm thick was found present between CCO and SrTi O3 accompanied by higher density of stacking faults. The CCO grown on Al 2 O3 exhibited numerous misoriented grains and presence of Ca x Co O2 phase. Seebeck coefficient measurements yield an improvement for both samples compared to the bulk value. We suggest that thermoelectric properties of CCO increase due to additional phonon scattering at the stacking faults as well as at the film surfaces/interfaces. This research was supported by the US Army Research Office (W911NF-10-1-0147) and the Sivananthan Undergraduate Research Fellowship.

  17. Long‐term time‐dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David A.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin; Page, Morgan T.; Parsons, Thomas E.; Powers, Peter; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua

    2015-01-01

    The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model, published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for un-segmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5,760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30-year M≥6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault slip rates), with relaxation of segmentation and inclusion of multi-fault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 sized events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region, and depend on the evaluation metric of interest. For example, M≥6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.

  18. Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario

    2015-04-01

    The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.

  19. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis

    PubMed Central

    Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon

    2017-01-01

    Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908

  20. A Probability Model for Belady's Anomaly

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel E.; Anderson, Nicole

    2010-01-01

    In demand paging virtual memory systems, the page fault rate of a process varies with the number of memory frames allocated to the process. When an increase in the number of allocated frames leads to an increase in the number of page faults, Belady's anomaly is said to occur. In this paper, we present a probability model for Belady's anomaly. We…

  1. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-09-01

    The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.

  2. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    PubMed

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  4. Automatic Fault Characterization via Abnormality-Enhanced Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less

  5. Active faulting in the central Betic Cordillera (Spain): Palaeoseismological constraint of the surface-rupturing history of the Baza Fault (Central Betic Cordillera, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.

    2018-06-01

    This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.

  6. Reliable High Performance Peta- and Exa-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G

    2012-04-02

    As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continuemore » to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty operation. By synthesizing models of individual components into a whole-system behavior models my work is making it possible to automatically understand the behavior of arbitrary real-world systems to enable them to tolerate a wide range of system faults. My project is following a multi-pronged research strategy. Section II discusses my work on modeling the behavior of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a system should be designed from the ground up to make resilience natural and easy.« less

  7. Enhanced low-temperature critical current by reduction of stacking faults in REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Puichaud, A.-H.; Wimbush, S. C.; Knibbe, R.

    2017-07-01

    The effect of stacking faults (SF) on flux pinning and critical current (I c) in rare earth based coated conductors was investigated. The SF density in YBa2Cu3O7-δ (YBCO) films with and without Dy addition, produced by metal organic deposition, was modified by altering the oxygenation temperature. A detailed microstructural analysis of the coated conductors was performed by x-ray diffraction, scanning and transmission electron microscopy and energy dispersive spectroscopy, and the observed defect population was correlated with both the self-field and in-field I c. We report that the best self-field I c was obtained for samples having a low SF density, in spite of the SF being effective flux pinning defects at 77 K for magnetic fields applied within the ab plane. We also show that the SF have no observable flux pinning effect at low temperatures. This study demonstrates that for devices operated at low temperatures, the elimination of SF in the conductor wires is essential to attain higher I c.

  8. Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.

    PubMed

    Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang

    2014-03-27

    We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.

  9. Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies

    NASA Astrophysics Data System (ADS)

    Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina

    2017-12-01

    The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.

  10. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  11. Long exciton lifetimes in stacking-fault-free wurtzite GaAs nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furthmeier, Stephan, E-mail: stephan.furthmeier@ur.de; Dirnberger, Florian; Hubmann, Joachim

    We present a combined photoluminescence and transmission electron microscopy study of single GaAs nanowires. Each wire was characterized both in microscopy and spectroscopy, allowing a direct correlation of the optical and the structural properties. By tuning the growth parameters, the nanowire crystal structure is optimized from a highly mixed zincblende–wurtzite structure to pure wurtzite. We find the latter one to be stacking-fault-free over nanowire lengths up to 4.1 μm. We observe the emission of purely wurtzite nanowires to occur only with polarization directions perpendicular to the wurtzite c{sup ^}-axis, as expected from the hexagonal unit cell symmetry. The free exciton recombinationmore » energy in the wurtzite structure is 1.518 eV at 5 K with a narrow linewidth of 4 meV. Most notably, these pure wurtzite nanowires display long carrier recombination lifetimes of up to 11.2 ns, exceeding reported lifetimes in bulk GaAs and state-of-the-art 2D GaAs/AlGaAs heterostructures.« less

  12. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  13. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  14. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.

    PubMed

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-28

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  15. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  16. Twinning and martensite in a 304 austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yongfeng; Li, Xi; Sun, Xin

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less

  17. Stacking-fault strengthening of biomedical Co-Cr-Mo alloy via multipass thermomechanical processing.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Sato, Shigeo; Chiba, Akihiko

    2017-09-07

    The strengthening of metallic biomaterials, such as Co-Cr-Mo and titanium alloys, is of crucial importance to the improvement of the durability of orthopedic implants. In the present study, we successfully developed a face-centered cubic (fcc) Co-Cr-Mo alloy with an extremely high yield strength (1400 MPa) and good ductility (12%) by multipass hot-rolling, which is suitable for industrial production, and examined the relevant strengthening mechanisms. Using an X-ray diffraction line-profile analysis, we revealed that a substantial increase in the number of stacking faults (SFs) in the fcc γ-matrix occurred at a greater height reduction (r), while physical modeling demonstrated that the contribution of the accumulated SFs (i.e., the reduction in SF spacing) with an increase in r successfully explains the entire strengthening behavior of the hot-rolled alloy. The present study sheds light on the importance of the SF strengthening mechanism, and will help to guide the design and manufacturing strategy for the high-strength Co-Cr-Mo alloys used in highly durable medical devices.

  18. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-01

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  19. Influence of Austenite Stability on Steel Low Cycle Fatigue Response

    NASA Astrophysics Data System (ADS)

    Lehnhoff, G. R.; Findley, K. O.

    Austenitic steels were subjected to tensile and total strain controlled, fully reversed axial low cycle fatigue (LCF) testing to determine the influence of stacking fault energy on austenite stability, or resistance to strain induced martensitic transformation during tensile and fatigue deformation. Expected differences in stacking fault energy were achieved by modifying alloys with different amounts of silicon and aluminum. Al alloying was found to promote martensite formation during both tensile and LCF loading, while Si was found to stabilize austenite. Martensite formation increases tensile work hardening rates, though Si additions also increase the work hardening rate without martensite transformation. Similarly, secondary cyclic strain hardening during LCF is attributed to strain induced martensite formation, but Si alloying resulted in less secondary cyclic strain hardening. The amount of secondary cyclic hardening scales linearly with martensite fraction and depends only on the martensite fraction achieved and not on the martensite (i.e. parent austenite) chemistry. Martensite formation was detrimental to LCF lives at all strain amplitudes tested, although the total amount of martensitic transformation during LCF did not always monotonically increase with strain amplitude nor correlate to the amount of tensile transformation.

  20. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults

    PubMed Central

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-01-01

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg–8Er–1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances. PMID:26349676

  1. Using Ambient Seismic Noise to Monitor Post-Seismic Relaxation After the 2010 Mw 7.1 Darfield Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Heckels, R.; Townend, J.

    2015-12-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into the crustal response of the earth. The use of ambient seismic noise to monitor these changes is becoming increasingly widespread. Cross-correlations of long-duration ambient noise records can be used to give stable impulse response functions without the need for repeated seismic events. Temporal velocity changes were detected in the four months following the September 2010 Mw 7.1 Darfield event in South Island, New Zealand, using temporary seismic networks originally deployed to record aftershocks in the region. The arrays consisted of stations lying on and surrounding the fault, with a maximum inter-station distance of 156km. The 2010-2011 Canterbury earthquake sequence occurred largely on previously unknown and buried faults. The Darfield earthquake was the first and largest in a sequence of events that hit the region, rupturing the Greendale Fault. A surface rupture of nearly 30km was observed. The sequence also included the Mw 6.3 February 2011 Christchurch event, which caused widespread damage throughout the city and resulted in almost 200 deaths. Nine-component, day-long Green's functions were computed for frequencies between 0.1 - 1.0 Hz for full waveform seismic data from immediately after the 4th September 2010 earthquake until mid-January 2011. Using the moving window cross-spectral method, stacks of daily functions covering the study period (reference functions), were compared to consecutive 10 day stacks of cross-correlations to measure time delays between them. These were then inverted for seismic velocity changes with respect to the reference functions. Over the study period an increase in seismic velocity of 0.25% ± 0.02% was determined proximal to the Greendale fault. These results are similar to studies in other regions, and we attribute the changes to post-seismic relaxation through crack-healing of the Greendale Fault and throughout the region.

  2. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  3. The Fault Tree Compiler (FTC): Program and mathematics

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1989-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.

  4. Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis

    PubMed Central

    Kim, Jong-Myon

    2018-01-01

    The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance. PMID:29642466

  5. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    NASA Astrophysics Data System (ADS)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  6. Demonstrating the Safety and Reliability of a New System or Spacecraft: Incorporating Analyses and Reviews of the Design and Processing in Determining the Number of Tests to be Conducted

    NASA Technical Reports Server (NTRS)

    Vesely, William E.; Colon, Alfredo E.

    2010-01-01

    Design Safety/Reliability is associated with the probability of no failure-causing faults existing in a design. Confidence in the non-existence of failure-causing faults is increased by performing tests with no failure. Reliability-Growth testing requirements are based on initial assurance and fault detection probability. Using binomial tables generally gives too many required tests compared to reliability-growth requirements. Reliability-Growth testing requirements are based on reliability principles and factors and should be used.

  7. High-Resolution Source Parameter and Site Characteristics Using Near-Field Recordings - Decoding the Trade-off Problems Between Site and Source

    NASA Astrophysics Data System (ADS)

    Chen, X.; Abercrombie, R. E.; Pennington, C.

    2017-12-01

    Recorded seismic waveforms include contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. With near-field recordings, the path effect is relatively small, so the trade-off problem can be simplified to between source and site effects (commonly referred as "kappa value"). This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of kappa values, so direct spectrum fitting often leads to systematic biases due to corner frequency and magnitude. In response to the significantly increased seismicity rate in Oklahoma, several local networks have been deployed following major earthquakes: the Prague, Pawnee and Fairview earthquakes. Each network provides dense observations within 20 km surrounding the fault zone, recording tens of thousands of aftershocks between M1 to M3. Using near-field recordings in the Prague area, we apply a stacking approach to separate path/site and source effects. The resulting source parameters are consistent with parameters derived from ground motion and spectral ratio methods from other studies; they exhibit spatial coherence within the fault zone for different fault patches. We apply these source parameter constraints in an analysis of kappa values for stations within 20 km of the fault zone. The resulting kappa values show significantly reduced variability compared to those from direct spectral fitting without constraints on the source spectrum; they are not biased by earthquake magnitudes. With these improvements, we plan to apply the stacking analysis to other local arrays to analyze source properties and site characteristics. For selected individual earthquakes, we will also use individual-pair empirical Green's function (EGF) analysis to validate the source parameter estimations.

  8. Structural and Depositional Evolution of the Stevenson Basin, a Gulf of Alaska Forearc Basin: Insights from Legacy Seismic and Borehole Data

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Liberty, L. M.; Almeida, R. V.; Hubbard, J.

    2016-12-01

    We explore the structural and depositional evolution of the Stevenson Basin, Gulf of Alaska from a dense network of 2-D marine seismic profiles that span the Gulf of Alaska continental margin. The grid of 71 seismic profiles was acquired as part of a 1975 Mineral Management Services (MMS) exploration project to assess basin architecture along the Alaska continental shelf. We obtained unmigrated and stacked seismic profiles in TIFF format. We converted the data to SEGY format and migrated each profile. Within the Stevenson Basin, we identify key seismic horizons, including the regional Eocene-Miocene unconformity, that provide insights into its depositional and structural history. Using these observations combined with stacking velocities, sonic logs from wells, and refraction velocities from the Edge profile of Ye et al. (1997), we develop a local 3D velocity model that we use to depth-convert the seismic reflection profiles. By using ties to >2.5 km deep exploration wells, we note the Stevenson Basin is one of many Eocene and younger depocenters that span the forearc between Kodiak and Prince William Sound. Well logs and seismic data suggest basal strata consist of Eocene sediments than are unconformably overlain by Neogene and younger strata. Faults that breach the sea floor suggest active deformation within and at the bounds of this basin, including on new faults that do not follow any pre-existing structural trends. This assessment is consistent with slip models that place tsunamigenic faults that ruptured during the 1964 Great Alaska earthquake in the vicinity of the basin. The catalog of faults, their slip history and the depositional evolution of the Stevenson Basin, all suggest that the basin evolution may be controlled by heterogeneities along the incoming plate.

  9. Nanoscale heterogeneity as remnant hexagonal-type local structures in shocked Cu-Pb and Zr

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Conradson, Steven D.; Batuk, Olga N.; Fensin, Saryu; Cerreta, Ellen; Gray, George T.; Saxena, Avadh

    2017-09-01

    Extended X-ray absorption fine structure spectroscopy was used to determine the local structure in: (1) Zr that had undergone quasistatic elongation; (2) Zr that had undergone plastic deformation by shock at pressures above and below the ω-phase transformation; and (3) shocked Cu that contained a few percent of insoluble Pb. Below the transition pressure, Zr samples showed only general disorder as increases in the widths of the Zr-Zr pair distributions. Above this pressure, Zr that was a mixture of the original hcp and the high pressure ω-phase when measured by diffraction showed two sets of peaks in its distribution corresponding to these two phases. Some of the ones from the ω-phase were at distances substantially different from those calculated from the diffraction pattern, although they are still consistent with small domains exhibiting stacking faults associated with hexagonal-type structural components exhibiting variability in the [0001] basal plane spacing. A similar result, new pairs at just over 3 and 4 Å consistent with hexagonal-type stacking faults in addition to the original fcc structure, is found in shocked Cu despite the absence of a second diffraction pattern and peak pressures being far below those expected to induce an fcc to hcp transition. This result, therefore, demonstrates that the correlation between high strain rates and reduced stacking fault energy continues down to the length scale of atom pairs. These findings are significant as: (1) a microscopic description of the behavior of systems far from equilibrium; (2) a demonstration of the importance of strain rate at short length scales; and (3) a bridge between the abruptness of macroscopic pressure-induced phase transitions and the continuity of martensitic ones over their fluctuation region in terms of the inverse relationship between the length scale of the martensitic texture, manifested here as ordered lattice distortions and the lower pressure at which such texture first appears relative to the bulk transition pressure.

  10. Discussion Starter: The Case for Duplexing without Channel Flow During the Development and Emplacement of the Himalayan Middle Crust

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; He, D.; Yu, H.

    2015-12-01

    This presentation and another presentation led by Dawn Kellett will preface a ten-minute open discussion on how the Himalayan middle crust was developed and emplaced. Current hypotheses are transitioning from a set including wedge extrusion, channel flow with focused denudation, and tectonic wedging to a revised dichotomy: models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and critical taper wedge behavior) versus models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). Critical taper and duplexing offer a simple contrast that can be illustrated via food analogies. If a wedge is critical, it churns internally like a pile of CheeriosTM cereal pushed up an inclined plane. Stacking of a duplex acts like a deli meat-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. Thus critical taper and channel tunneling models predict much processing via out-of-sequence deformation, whereas duplexing predicts in-sequence thrusting. The two concepts may be considered end-members. Recent work shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. Out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. Flattening fabrics developed prior to thrusting have been interpreted to record either (1) southwards channel tunneling across the upper plate, or (2) fabric development during metamorphism of the down-going plate. We will argue that the thrust faults dominantly represent in-sequence duplexing, and therefore conclude that the Himalaya and analogous hot orogens behave like other accretionary orogens.

  11. A Spatially and Temporally Continuous LFE Catalogue for the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Chamberlain, C. J.; Townend, J.; Baratin, L. M.

    2015-12-01

    Using a brightness-based beamforming approach coupled with a matched-filter correlation method, we have developed a 6.5 year record of low-frequency earthquakes (LFEs) occuring on and near the deep extent of New Zealand's Alpine Fault. Our brightness template detection method, based on that of Frank et al. (2014), scans a pre-determined grid of possible seismic sources to automatically find LFE templates based on the stack of bandpassed squared seismic data. Previous work (Wech et al., 2012, Chamberlain et al., 2014) has shown that the depths of standard seismicity are anti-correlated with those of tremor and LFEs in the central Southern Alps: hence, by careful grid selection, shallow seismic sources can effectively be discriminated against. This beamforming approach produces many (>900) possible events. Initial beamforming detections are grouped by moveout and stacked to produce a subset of higher-quality events for use as templates in a cross-correlation detector. Events detected by cross-correlation are stacked to increase their signal-to-noise charectaristics before being located using a 3D velocity model. This method produces a spatially and temporally continuous catalogue of LFEs throughout the 6.5 year study period. The catalogue highlights quasi-continuous slow deformation occuring beneath the seismogenic zone near the Alpine Fault, punctuated by periods of increased LFE generation associated with tremor, and following large regional earthquakes. To date we have found no evidence of LFE generation north-east of Mt. Cook, the highest point in the Southern Alps, despite systematic searching throughout the region. We suggest that the along-strike cessation of tremor is due to changes in the fault's dip and the hypothesised presence of partially subducted passive margin material. This remnant passive margin would lie benath the tremor-generating region and has been linked to along-strike changes in subcrustal earthquake distributions (Boese et al., 2013).

  12. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach for the interpretation of geological structures in a thrust belt.

  13. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    NASA Astrophysics Data System (ADS)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  14. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering

    USGS Publications Warehouse

    Stein, R.S.; Barka, A.A.; Dieterich, J.H.

    1997-01-01

    10 M ??? 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939-1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1-10 bar, equivalent to 3-30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ??? 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.

  15. Holocene paleoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    McCalpin, J.P.; Nishenko, S.P.

    1996-01-01

    The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.

  16. Surface slip during large Owens Valley earthquakes

    USGS Publications Warehouse

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  17. Probability and possibility-based representations of uncertainty in fault tree analysis.

    PubMed

    Flage, Roger; Baraldi, Piero; Zio, Enrico; Aven, Terje

    2013-01-01

    Expert knowledge is an important source of input to risk analysis. In practice, experts might be reluctant to characterize their knowledge and the related (epistemic) uncertainty using precise probabilities. The theory of possibility allows for imprecision in probability assignments. The associated possibilistic representation of epistemic uncertainty can be combined with, and transformed into, a probabilistic representation; in this article, we show this with reference to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic computational framework for the joint propagation of the epistemic uncertainty on the values of the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use possibility-probability (probability-possibility) transformations for propagating the epistemic uncertainty within purely probabilistic and possibilistic settings. The results of the different approaches (hybrid, probabilistic, and possibilistic) are compared with respect to the representation of uncertainty about the top event (limiting relative frequency) probability. Both the rationale underpinning the approaches and the computational efforts they require are critically examined. We conclude that the approaches relevant in a given setting depend on the purpose of the risk analysis, and that further research is required to make the possibilistic approaches operational in a risk analysis context. © 2012 Society for Risk Analysis.

  18. Limiting the Magnitude of Potential Injection-Induced Seismicity Associated With Waste-Water Disposal, Hydraulic Fracturing and CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Zoback, Mark

    2017-04-01

    In this talk, I will address the likelihood for fault slip to occur in response to fluid injection and the likely magnitude of potentially induced earthquakes. First, I will review a methodology that applies Quantitative Risk Assessment to calculate the probability of a fault exceeding Mohr-Coulomb slip criteria. The methodology utilizes information about the local state of stress, fault strike and dip and the estimated pore pressure perturbation to predict the probability of the fault slip as a function of time. Uncertainties in the input parameters are utilized to assess the probability of slip on known faults due to the predictable pore pressure perturbations. Application to known faults in Oklahoma has been presented by Walsh and Zoback (Geology, 2016). This has been updated with application to the previously unknown faults associated with M >5 earthquakes in the state. Second, I will discuss two geologic factors that limit the magnitudes of earthquakes (either natural or induced) in sedimentary sequences. Fundamentally, the layered nature of sedimentary rocks means that seismogenic fault slip will be limited by i) the velocity strengthening frictional properties of clay- and carbonate-rich rock sequences (Kohli and Zoback, JGR, 2013; in prep) and ii) viscoplastic stress relaxation in rocks with similar composition (Sone and Zoback, Geophysics, 2013a, b; IJRM, 2014; Rassouli and Zoback, in prep). In the former case, if fault slip is triggered in these types of rocks, it would likely be aseismic due the velocity strengthening behavior of faults. In the latter case, the stress relaxation could result in rupture termination in viscoplastic formations. In both cases, the stratified nature of sedimentary rock sequences could limit the magnitude of potentially induced earthquakes. Moreover, even when injection into sedimentary rocks initiates fault slip, earthquakes large enough to cause damage will usually require slip on faults sufficiently large that they extend into basement. This suggests that an important criterion for large-scale CO2 sequestration projects is that the injection zone is isolated from crystalline basement rocks by viscoplastic shales to prevent rupture propagation from extending down into basement.

  19. The Hayward-Rodgers Creek Fault System: Learning from the Past to Forecast the Future

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Lienkaemper, J. J.; Hecker, S.

    2007-12-01

    The San Francisco Bay area is located within the Pacific-North American plate boundary. As a result, the region has the highest density of active faults per square kilometer of any urban center in the US. Between the Farallon Islands and Livermore, the faults of the San Andreas fault system are slipping at a rate of about 40 mm/yr. Approximately 25 percent of this rate is accommodated by the Hayward fault and its continuation to the north, the Rodgers Creek fault. The Hayward fault extends 88 km from Warm Springs on the south into San Pablo Bay on the north, traversing the most heavily urbanized part of the Bay Area. The Rodgers Creek fault extends another 63 km, passing through Santa Rosa and ending south of Healdsburg. Geologic, seismologic, and geodetic studies during the past ten years have significantly increased our knowledge of this system. In particular, paleoseismic studies of the timing of past earthquakes have provided critical new information for improving our understanding of how these faults may work in time and space, and for estimating the probability of future earthquakes. The most spectacular result is an 11-earthquake record on the southern Hayward fault that extends back to A.D. 170. It suggests an average time interval between large earthquakes of 170 years for this period, with a shorter interval of 140 years for the five most recent earthquakes. Paleoseismic investigations have also shown that prior to the most recent large earthquake on the southern Hayward fault in 1868, large earthquakes occurred on the southern Hayward fault between 1658 and1786, on the northern Hayward fault between 1640 and 1776, and on the Rodgers Creek fault between 1690 and 1776. These could have been three separate earthquakes. However, the overlapping radiocarbon dates for these paleoearthquakes allow the possibility that these faults may have ruptured together in several different combinations: a combined southern and northern Hayward fault earthquake, a Rodgers Creek-northern Hayward fault earthquake, or a rupture of all three fault sections. Each of these rupture combinations would produce a magnitude larger than 1868 (M~6.9). In 2003, the Working Group on California Earthquake Probabilities released a new earthquake forecast for the Bay Area. Using the earthquake timing data and alternative fault rupture models, the Working Group estimated a 27 percent likelihood of a M?6.7 earthquake along the Hayward-Rodgers Creek fault zone by the year 2031. This is this highest probability of any individual fault system in the Bay Area. New paleoseismic data will allow updating of this forecast.

  20. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  1. Geomorphology, kinematic history, and earthquake behavior of the active Kuwana wedge thrust anticline, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Togo, Masami; Okada, Atsumasa; Takemura, Keiji

    2004-12-01

    We combine surface mapping of fault and fold scarps that deform late Quaternary alluvial strata with interpretation of a high-resolution seismic reflection profile to develop a kinematic model and determine fault slip rates for an active blind wedge thrust system that underlies Kuwana anticline in central Japan. Surface fold scarps on Kuwana anticline are closely correlated with narrow fold limbs and angular hinges on the seismic profile that suggest at least ˜1.3 km of fault slip completely consumed by folding in the upper 4 km of the crust. The close coincidence and kinematic link between folded terraces and the underlying thrust geometry indicate that Kuwana anticline has accommodated slip at an average rate of 2.2 ± 0.5 mm/yr on a 27°, west dipping thrust fault since early-middle Pleistocene time. In contrast to classical fault bend folds the fault slip budget in the stacked wedge thrusts also indicates that (1) the fault tip propagated upward at a low rate relative to the accrual of fault slip and (2) fault slip is partly absorbed by numerous bedding plane flexural-slip faults above the tips of wedge thrusts. An historic earthquake that occurred on the Kuwana blind thrust system possibly in A.D. 1586 is shown to have produced coseismic surface deformation above the doubly vergent wedge tip. Structural analyses of Kuwana anticline coupled with tectonic geomorphology at 103-105 years timescales illustrate the significance of active folds as indicators of slip on underlying blind thrust faults and thus their otherwise inaccessible seismic hazards.

  2. Resolution Analysis of finite fault inversions: A back-projection approach.

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2007-12-01

    The resolution of inverted source models of large earthquakes is controlled by frequency contents of "coherent" (or "useful") seismic observations and their spatial distribution. But it is difficult to distinguish whether some features consistent during different inversions are really required by data or a consequence of "prior" information, such as velocity structures, fault geometry, model parameterizations. Here, we investigate the model spatial resolution by first back projecting and stacking the data at the source regions and then analyzing the spatial- temporal variations of the focusing regions, which arbitrarily defined as the regions with 90% of the peak focusing amplitude. Our preliminary results indicated 1) The spatial-temporal resolution at a particularly direction is controlled by the region of directivity parameter [pcos(θ)] within the seismic network, where p is the horizontal slowness from the hypocenter and θ is the difference between the station azimuth and this orientation. Therefore, the network aperture is more important than the number of stations. 2) Simple stacking method is a robust method to capture the asperities but the sizes of focusing regions are usually much larger than what data could resolve. By carefully weighting the data before the stacking could enhance the spatial resolution in a particular direction. 3) The results based on the teleseismic P waves of a local network usually surfers the trade-off between the source's spatial location and its rupture time. The resolution of the 2001 Kunlunshan earthquake and 2006 Kuril island earthquake will be investigated.

  3. USGS-WHOI-DPRI Coulomb Stress-Transfer Model for the January 12, 2010, MW=7.0 Haiti Earthquake

    USGS Publications Warehouse

    Lin, Jian; Stein, Ross S.; Sevilgen, Volkan; Toda, Shinji

    2010-01-01

    Using calculated stress changes to faults surrounding the January 12, 2010, rupture on the Enriquillo Fault, and the current (January 12 to 26, 2010) aftershock productivity, scientists from the U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), and Disaster Prevention Research Institute, Kyoto University (DPRI) have made rough estimates of the chance of a magnitude (Mw)=7 earthquake occurring during January 27 to February 22, 2010, in Haiti. The probability of such a quake on the Port-au-Prince section of the Enriquillo Fault is about 2 percent, and the probability for the section to the west of the January 12, 2010, rupture is about 1 percent. The stress changes on the Septentrional Fault in northern Haiti are much smaller, although positive.

  4. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  5. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  6. 3D seismic detection of shallow faults and fluid migration pathways offshore Southern Costa Rica: Application of neural-network meta-attributes

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.

    2013-12-01

    We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.

  7. Fault-Tree Compiler Program

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1992-01-01

    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  8. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  9. Crustal structure of the alaska range orogen and denali fault along the richardson highway

    USGS Publications Warehouse

    Fisher, M.A.; Pellerin, L.; Nokleberg, W.J.; Ratchkovski, N.A.; Glen, J.M.G.

    2007-01-01

    A suite of geophysical data obtained along the Richardson Highway crosses the eastern Alaska Range and Denali fault and reveals the crustal structure of the orogen. Strong seismic reflections from within the orogen north of the Denali fault dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal what is probably a shear zone that transects most of the crust and is part of a crustal-scale duplex structure that probably formed during the Late Cretaceous. These structures, however, appear to be relict because over the past 20 years, they have produced little or no seismicity despite the nearby Mw = 7.9 Denali fault earthquake that struck in 2002. The Denali fault is nonreflective, but we interpret modeled magnetotelluric (MT), gravity, and magnetic data to propose that the fault dips steeply to vertically. Modeling of MT data shows that aftershocks of the 2002 Denali fault earthquake occurred above a rock body that has low electrical resistivity (>10 ohm-m), which might signify the presence of fluids in the middle and lower crust. Copyright ?? 2007 The Geological Society of America.

  10. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  11. Timing of paleoearthquakes on the northern Hayward Fault: preliminary evidence in El Cerrito, California

    USGS Publications Warehouse

    Lienkaemper, J.J.; Schwartz, D.P.; Kelson, K.I.; Lettis, W.R.; Simpson, Gary D.; Southon, J.R.; Wanket, J.A.; Williams, P.L.

    1999-01-01

    The Working Group on California Earthquake Probabilities estimated that the northern Hayward fault had the highest probability (0.28) of producing a M7 Bay Area earthquake in 30 years (WGCEP, 1990). This probability was based, in part, on the assumption that the last large earthquake occurred on this segment in 1836. However, a recent study of historical documents concludes that the 1836 earthquake did not occur on the northern Hayward fault, thereby extending the elapsed time to at least 220 yr ago, the beginning of the written record. The average recurrence interval for a M7 on the northern Hayward is unknown. WGCEP (1990) assumed an interval of 167 years. The 1996 Working Group on Northern California Earthquake Potential estimated ~210 yr, based on extrapolations from southern Hayward paleoseismological studies and a revised estimate of 1868 slip on the southern Hayward fault. To help constrain the timing of paleoearthquakes on the northern Hayward fault for the 1999 Bay Area probability update, we excavated two trenches that cross the fault and a sag pond on the Mira Vista golf course. As the site is on the second fairway, we were limited to less than ten days to document these trenches. Analysis was aided by rapid C-14 dating of more than 90 samples which gave near real-time results with the trenches still open. A combination of upward fault terminations, disrupted strata, and discordant angular relations indicates at least four, and possibly seven or more, surface faulting earthquakes occurred during a 1630-2130 yr interval. Hence, average recurrence time could be <270 yr, but is no more than 710 yr. The most recent earthquake (MRE) occurred after AD 1640. Preliminary analysis of calibrated dates supports the assumption that no large historical (post-1776) earthquakes have ruptured the surface here, but the youngest dates need more corroboration. Analyses of pollen for presence of non-native species help to constrain the time of the MRE. The earthquake recurrence estimates described in this report are preliminary and should not be used as a basis for hazard estimates. Additional trenching is planned for this location to answer questions raised during the initial phase of trenching.

  12. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  13. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE PAGES

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-05-19

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  14. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  15. Long-range empirical potential model: extension to hexagonal close-packed metals.

    PubMed

    Dai, Y; Li, J H; Liu, B X

    2009-09-23

    An n-body potential is developed and satisfactorily applied to hcp metals, Co, Hf, Mg, Re, Ti, and Zr, in the form of long-range empirical potential. The potential can well reproduce the lattice constants, c/a ratios, cohesive energies, and the bulk modulus for their stable structures (hcp) and metastable structures (bcc or fcc). Meanwhile, the potential can correctly predict the order of structural stability and distinguish the energy differences between their stable hcp structure and other structures. The energies and forces derived by the potential can smoothly go to zero at cutoff radius, thus completely avoiding the unphysical behaviors in the simulations. The developed potential is applied to study the vacancy, surface fault, stacking fault and self-interstitial atom in the hcp metals. The calculated formation energies of vacancy and divacancy and activation energies of self-diffusion by vacancies are in good agreement with the values in experiments and in other works. The calculated surface energies and stacking fault energies are also consistent with the experimental data and those obtained in other theoretical works. The calculated formation energies generally agree with the results in other works, although the stable configurations of self-interstitial atoms predicted in this work somewhat contrast with those predicted by other methods. The proposed potential is shown to be relevant for describing the interaction of bcc, fcc and hcp metal systems, bringing great convenience for researchers in constructing potentials for metal systems constituted by any combination of bcc, fcc and hcp metals.

  16. Computing elastic‐rebound‐motivated rarthquake probabilities in unsegmented fault models: a new methodology supported by physics‐based simulators

    USGS Publications Warehouse

    Field, Edward H.

    2015-01-01

    A methodology is presented for computing elastic‐rebound‐based probabilities in an unsegmented fault or fault system, which involves computing along‐fault averages of renewal‐model parameters. The approach is less biased and more self‐consistent than a logical extension of that applied most recently for multisegment ruptures in California. It also enables the application of magnitude‐dependent aperiodicity values, which the previous approach does not. Monte Carlo simulations are used to analyze long‐term system behavior, which is generally found to be consistent with that of physics‐based earthquake simulators. Results cast doubt that recurrence‐interval distributions at points on faults look anything like traditionally applied renewal models, a fact that should be considered when interpreting paleoseismic data. We avoid such assumptions by changing the "probability of what" question (from offset at a point to the occurrence of a rupture, assuming it is the next event to occur). The new methodology is simple, although not perfect in terms of recovering long‐term rates in Monte Carlo simulations. It represents a reasonable, improved way to represent first‐order elastic‐rebound predictability, assuming it is there in the first place, and for a system that clearly exhibits other unmodeled complexities, such as aftershock triggering.

  17. Lacustrine fan delta deposition alongside intrabasinal structural highs in rift basins: an example from the Early Cretaceous Jiuquan Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun

    2018-01-01

    Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.

  18. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  19. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  20. The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California

    USGS Publications Warehouse

    Ryberg, T.; Fuis, G.S.

    1998-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault zones, where 'fault-valve' action has been postulated. Less likely alternative explanations for this velocity reduction include the presence of magma and a change in composition to serpentinite or metagraywacke. (2) It occurs at or near the brittle-ductile transition, at least in the southern San Gabriel Mountains, a possible zone of concentrated shear. (3) A thin reflection rising from its top in the southern San Gabriel Mountains projects to the hypocenter of the 1987 M 5.9 Whittier Narrows earthquake, a blind thrust-fault earthquake with one focal plane subparallel to the reflection. Alternatively, one could argue that the bends or disruptions in the reflective zone seen at the San Gabriel and San Andreas faults are actually offsets and that the reflective zone is therefore an older feature, possibly an older fault zone. ?? 1998 Elsevier Science B.V. All rights reserved.

  1. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yang, Zhenwei; Kang, Mei

    2018-01-01

    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  2. Evaluation of fault-tolerant parallel-processor architectures over long space missions

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1989-01-01

    The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration.

  3. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  4. Evidence for surface rupture in 1868 on the Hayward Fault in North Oakland and major rupturing in prehistoric earthquakes

    NASA Astrophysics Data System (ADS)

    Lienkaemper, James J.; Williams, Patrick L.

    1999-07-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776.

  5. Evidence for surface rupture in 1868 on the Hayward fault in north Oakland and major rupturing in prehistoric earthquakes

    USGS Publications Warehouse

    Lienkaemper, J.J.; Williams, P.L.

    1999-01-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776. Copyright 1999 by the American Geophysical Union.

  6. [Impact of water pollution risk in water transfer project based on fault tree analysis].

    PubMed

    Liu, Jian-Chang; Zhang, Wei; Wang, Li-Min; Li, Dai-Qing; Fan, Xiu-Ying; Deng, Hong-Bing

    2009-09-15

    The methods to assess water pollution risk for medium water transfer are gradually being explored. The event-nature-proportion method was developed to evaluate the probability of the single event. Fault tree analysis on the basis of calculation on single event was employed to evaluate the extent of whole water pollution risk for the channel water body. The result indicates, that the risk of pollutants from towns and villages along the line of water transfer project to the channel water body is at high level with the probability of 0.373, which will increase pollution to the channel water body at the rate of 64.53 mg/L COD, 4.57 mg/L NH4(+) -N and 0.066 mg/L volatilization hydroxybenzene, respectively. The measurement of fault probability on the basis of proportion method is proved to be useful in assessing water pollution risk under much uncertainty.

  7. Estimating earthquake-induced failure probability and downtime of critical facilities.

    PubMed

    Porter, Keith; Ramer, Kyle

    2012-01-01

    Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.

  8. Role of stress triggering in earthquake migration on the North Anatolian fault

    USGS Publications Warehouse

    Stein, R.S.; Dieterich, J.H.; Barka, A.A.

    1996-01-01

    Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.

  9. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  10. Configuration of twins in glass-embedded silver nanoparticles of various origin

    NASA Astrophysics Data System (ADS)

    Hofmeister, H.; Dubiel, M.; Tan, G. L.; Schicke, K.-D.

    2005-09-01

    Structural characterization using high resolution electron microscopy and diffractogram analysis of silver nanoparticles embedded in glass by various routes of fabrication was aimed at revealing the characteristic features of twin faults occuring in such particles. Nearly spherical silver nanoparticles well below 10 nm size embedded in commercial soda-lime silicate float glass have been fabricated either by silver/sodium ion exchange or by Ag+ ion implantation. Twinned nanoparticles, besides single crystalline species, have frequently been observed for both fabrication routes, mainly at sizes above 5 nm, but also at smaller sizes, even around 1 nm. The variety of particle forms comprises single crystalline particles of nearly cuboctahedron shape, particles containing single twin faults, and multiply twinned particles containing parallel twin lamellae, or cyclic twinned segments arranged around axes of fivefold symmetry. Parallel twinning is distinctly favoured by ion implantation whereas cyclic twinning preferably occurs upon ion exchange processing. Regardless of single or repeated twinning, parallel or cyclic twin arrangement, one may classify simple twin faults of regular atomic configuration and compound twin faults whose irregular configuration consists of additional planar defects like associated stacking faults or secondary twin faults. Besides, a particular superstructure composed of parallel twin lamellae of only three atomic layers thickness is observed.

  11. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes

    NASA Astrophysics Data System (ADS)

    Tranos, Markos D.

    2018-02-01

    Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.

  12. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  13. Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa

    NASA Astrophysics Data System (ADS)

    Tufts, B. Randall; Greenberg, Richard; Hoppa, Gregory; Geissler, Paul

    1999-09-01

    Astypalaea Linea is an 810-km strike-slip fault, located near the south pole of Europa. In length, it rivals the San Andreas Fault in California, and it is the largest strike-slip fault yet known on Europa. The fault was discovered using Voyager 2 images, based upon the presence of familiar strike-slip features including linearity, pull-aparts, and possible braids, and upon the offset of multiple piercing points. Fault displacement is 42 km, right-lateral, in the southern and central parts and probably throughout. Pull-aparts present along the fault trace probably are gaps in the lithosphere bounded by vertical cracks, and which opened due to fault motion and filled with material from below. Crosscutting relationships suggest the fault to be of intermediate relative age. The fault may have initiated as a crack due to tension from combined diurnal tides and nonsynchronous rotation, according to the tectonic model of R. Greenberg et al. (1998a, Icarus135, 64-78). Under the influence of varying diurnal tides, strike-slip offset may have occurred through a process called “walking,” which depends upon an inelastic lithospheric response to displacement. Alternatively, fault displacement may have been driven by currents in the theorized Europan ocean, which may have created simple shear structures such as braids. The discovery of Astypalaea Linea extends the geographical range of lateral motion on Europa. Such motion requires the presence of a decoupling zone of ductile ice or liquid water, a sufficiently rigid lithosphere, and a mechanism to consume surface area.

  14. Finding Kuiper Belt Objects Below the Detection Limit

    NASA Astrophysics Data System (ADS)

    Whidden, Peter; Kalmbach, Bryce; Bektesevic, Dino; Connolly, Andrew; Jones, Lynne; Smotherman, Hayden; Becker, Andrew

    2018-01-01

    We demonstrate a novel approach for uncovering the signatures of moving objects (e.g. Kuiper Belt Objects) below the detection thresholds of single astronomical images. To do so, we will employ a matched filter moving at specific rates of proposed orbits through a time-domain dataset. This is analogous to the better-known "shift-and-stack" method; however it uses neither direct shifting nor stacking of the image pixels. Instead of resampling the raw pixels to create an image stack, we will instead integrate the object detection probabilities across multiple single-epoch images to accrue support for a proposed orbit. The filtering kernel provides a measure of the probability that an object is present along a given orbit, and enables the user to make principled decisions about when the search has been successful, and when it may be terminated. The results we present here utilize GPUs to speed up the search by two orders of magnitudes over CPU implementations.

  15. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    USGS Publications Warehouse

    Clement, C.R.; Pratt, T.L.; Holmes, M.L.; Sherrod, B.L.

    2010-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ???350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ???2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ???3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  16. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    USGS Publications Warehouse

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  17. First-principles Calculations of Twin-boundary and Stacking-fault Energies in Magnesium

    DTIC Science & Technology

    2010-01-01

    Vasu KI. Scripta Mater 1969;3:927. [7] Couret A, Caillard D. Acta Metall 1985;33:1455. [8] Fleischer RL . Scripta Mater 1986;20:223. [9] Liu ZK. J...Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys Rev B 1992;46:6671. [17] Kresse G, Furthmuller J. Phys Rev B 1996;54:11169. [18] Kresse G, Joubert

  18. Expansion of Shockley stacking fault observed by scanning electron microscope and partial dislocation motion in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko

    2018-04-01

    We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.

  19. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  20. The shear instability energy: a new parameter for materials design?

    NASA Astrophysics Data System (ADS)

    Kanani, M.; Hartmaier, A.; Janisch, R.

    2017-10-01

    Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.

  1. Nitrogen in chromium-manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics.

    PubMed

    Mosecker, Linda; Saeed-Akbari, Alireza

    2013-06-01

    Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE) has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe-Cr-Mn-N system. An assessment of the thermodynamic effective Gibbs free energy, [Formula: see text], model for the [Formula: see text] phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, б γ / ε , required to consider the effect of nitrogen on SFE in these systems.

  2. Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics

    PubMed Central

    Mosecker, Linda; Saeed-Akbari, Alireza

    2013-01-01

    Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE) has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe–Cr–Mn–N system. An assessment of the thermodynamic effective Gibbs free energy, , model for the phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, бγ/ε, required to consider the effect of nitrogen on SFE in these systems. PMID:27877573

  3. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE PAGES

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...

    2014-03-27

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  4. Mechanical properties and phase stability of monoborides using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Kim, Hyojung; Trinkle, Dallas R.

    2017-06-01

    We compute the structural energies, elastic constants, and stacking fault energies, and investigate the phase stability of monoborides with different compositions (" close=")X1-x 1Xx2)">X1-x 1Xx2B (X =Ti/Fe/Mo/Nb/V ) using density functional theory in order to search for Ti monoborides with improved mechanical properties. Our computed Young's modulus and Pugh's modulus ratio, which correlate with stiffness and toughness, agree well with predictions from Vegard's law with the exceptions of mixed monoborides containing Mo and Fe. Among all the monoborides considered in this paper, TiB has the smallest Pugh's ratio, which suggests that the addition of solutes can improve the toughness of a Ti matrix. When X1B and X2B are respectively most stable in the B27 and Bf structures, the mixed monoborides (X0.51X0.52)B , mixed (Ti0.5Mo0.5 )B and mixed (Ti0.5V0.5 )B have a higher Young's modulus, a higher Pugh's ratio, and a smaller stacking fault energy than TiB. We also construct phase diagrams and find large solubility limits for solid solutions containing Ti compared to those containing Fe.

  5. Influence of stacking fault energy on defect structures and microhardness of Cu and Cu alloys.

    PubMed

    Tao, Jing-Mei; Li, Dai; Li, Cai-Ju; Zhu, Xin-Kun

    2011-12-01

    Nano-structured Cu, Cu-10 wt%Zn and Cu-2 wt%Al with stacking fault energies (SFE) of 78, 35 and 37 mJ/m2, respectively, were preprared through high energy ball milling. X-ray diffraction and Vickers microharness test were used to investigate the microstructure and microhardness of all the samples after ball milling. X-ray diffraction measurements indicate that lower SFEs lead both to decrease in grain size and increase in microstrain, dislocation and twin densities for Cu-10 wt%Zn and Cu-2 wt%Al after 5 h of ball milling. The microhardnesses of Cu-10 wt%Zn and Cu-2 wt%Al reach to nearly the same values of 2.5 GPa after 5 h of ball milling, which is higher than that of Cu of 2.0 GPa. Two factors are considered to contribute to the finer grian size and higher microhardness of Cu-10 wt%Zn and Cu-2 wt%Al: (1) the effect of solid solution strengthening, which result in the interaction of solute atoms with screw dislocations; (2) the introduction of deformation twins during ball milling process by the decreasing of SFE, which results in the grain refinement.

  6. Effect of carbon tetrabromide on the morphology of GaAs nanowires.

    PubMed

    Salehzadeh, O; Watkins, S P

    2011-04-22

    Carbon is a commonly used p-type dopant in planar III-V semiconductors, however its use in nanowire (NW) growth has been much less reported. In this work we show that the morphology of gold assisted GaAs NWs can be strongly modified by the presence of CBr(4) vapor during growth by metalorganic vapor phase epitaxy. GaAs NWs were grown under conditions which result in strong tapering and lateral growth at low growth temperatures by the use of triethylgallium (TEGa) instead of the more usual precursor, trimethylgallium (TMGa). Under these conditions, NWs grown in the presence of CBr(4) exhibit higher axial and lower radial growth rates, and negligible tapering compared with NWs grown in the absence of CBr(4) under the same conditions. We attribute this primarily to the suppression of the 2d growth rate by CBr(4), which enhances the axial growth rate of the nanowires. NWs grown with CBr(4) show stacking-fault-free zincblende structure, while the NWs grown without CBr(4) show a high density of stacking faults. This work underlines the striking effects which precursor chemistry can have on nanowire morphology.

  7. Segregation-Assisted Plasticity in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Barba, D.; Smith, T. M.; Miao, J.; Mills, M. J.; Reed, R. C.

    2018-03-01

    Correlative high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy are used to study deformation-induced planar faults in the single-crystal superalloy MD2 crept at 800 °C and 650 MPa. Segregation of Cr and Co at microtwins, anti-phase boundaries (APB), and complex/superlattice extrinsic and intrinsic stacking faults (CESF/SESF and CISF/SISF) is confirmed and quantified. The extent of this is found to depend upon the fault type, being most pronounced for the APB. The CESF/SESF is studied in detail due to its role as a precursor of the microtwins causing the majority of plasticity under these conditions. Quantitative modeling is carried out to rationalize the findings; the experimental results are consistent with a greater predicted velocity for the lengthening of the CESF/SESF—compared with the other types of fault—and hence confirm its role in the diffusion-assisted plasticity needed for the microtwinning mechanism to be operative.

  8. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part simultaneously. Alternatively, extension may have varied in direction spatially if it were a rotation about a pole located to the north.

  9. ESR dating marine terraces along the Mediterranean coast of the Antakya Graben, SE Turkey: Sea level change and tectonic implications

    NASA Astrophysics Data System (ADS)

    Tari, Ufuk; Tüysüz, Okan; Blackwell, Bonnie; Genç, Ş. Can; İmren, Caner; Florentin, Jonathan A.; Skinner, Anne

    2015-04-01

    In southeastern Turkey, NE-trending Antakya Graben forms an asymmetric depression filled by Pliocene marine siliciclastic sediment, Pleistocene to Recent fluvial terrace sediment and alluvium. A multi-segmented, dominantly sinistral fault lying along the graben possibly connects the Cyprus Arc in the west to the Amik Triple Junction on the Dead Sea Fault (DSF) in the east. Normal faults, bounding the southeastern margin caused the graben to tilt southeastward and these faults are younger than the sinistral ones. Westward escape of the continental İskenderun Block along the sinistral faults belonging to the DSF in the east and to the Eastern Anatolian Fault in the north caused Antakya Graben to open since Pliocene. In the later stages of this opening, normal faults developed along the southeastern of the graben, leading to differential uplift of the Mediterranean coastal terraces. Tectonic uplift coupled with sea level fluctuations has produced several stacked marine terraces at elevations ranging from 0.25 m to 180 m above current sea level along the Mediterranean coast. In this study we dated these terrace deposits by using electron spin resonance (ESR) method. In the NW part of the graben, terraces at 30 m above mean sea level (amsl) yield 63±8 ka and correlate with Marine Isotope Stage (MIS) 4. Older units dating to MIS 7 and 5 likely were being eroded to supply some fossils found in this terrace. On the 45 m amsl terrace dates to 114±7 ka, which is the MIS 5d/5e boundary. Terrace deposits at 105 m amsl belong to MIS 5c boundary at 91±13 ka. At Samandağ site at 39 m amsl, molluscs deposited in a large tidal channel indicate MIS 5d/5e boundary at 116 ± 5 ka. Contemporary sediments are seen in different elevations in the SE part of the graben. The youngest samples suggest an age 14±1 ka in the late MIS 2 for the slump topping the 8 m amsl terrace. At the 50 m amsl terrace dates to 89±5 ka and correlate with MIS 5a/5c. Here 180 m amsl terrace gave a preliminary age of 398 ± 24 ka, correlating with MIS 11. These data support that differential uplifting occurred in the Antakya Graben during the Quaternary and eustatic sea level changes in the Mediterranean have controlled the morphological evolution of the region. Uplift on the Mediterranean coast probably still continues, since the Paleolithic Merdivenli Cave sits at ~ 50 m amsl and the Middle Paleolithic Üçağızlı Cave sits at ~ 20 m amsl, and the ancient harbour, Seleucia Pierria now sits above sea level.

  10. Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault: The possible role of rheology

    USGS Publications Warehouse

    ten Brink, Uri S.; Miller, Nathaniel; Andrews, Brian; Brothers, Daniel; Haeussler, Peter J.

    2018-01-01

    The Pacific/North America (PA/NA) plate boundary between Vancouver Island and Alaska is similar to the PA/NA boundary in California in its kinematic history and the rate and azimuth of current relative motion, yet their deformation styles are distinct. The California plate boundary shows a broad zone of parallel strike slip and thrust faults and folds, whereas the 49‐mm/yr PA/NA relative plate motion in Canada and Alaska is centered on a single, narrow, continuous ~900‐km‐long fault, the Queen Charlotte Fault (QCF). Using gravity analysis, we propose that this plate boundary is centered on the continent/ocean boundary (COB), an unusual location for continental transform faults because plate boundaries typically localize within the continental lithosphere, which is weaker. Because the COB is a boundary between materials of contrasting elastic properties, once a fault is established there, it will probably remain stable. We propose that deformation progressively shifted to the COB in the wake of Yakutat terrane's northward motion along the margin. Minor convergence across the plate boundary is probably accommodated by fault reactivation on Pacific crust and by an eastward dipping QCF. Underthrusting of Pacific slab under Haida Gwaii occurs at convergence angles >14°–15° and may have been responsible for the emergence of the archipelago. The calculated slab entry dip (5°–8°) suggests that the slab probably does not extend into the asthenosphere. The PA/NA plate boundary at the QCF can serve as a structurally simple site to investigate the impact of rheology and composition on crustal deformation and the initiation of slab underthrusting.

  11. Earthquake Rate Model 2.2 of the 2007 Working Group for California Earthquake Probabilities, Appendix D: Magnitude-Area Relationships

    USGS Publications Warehouse

    Stein, Ross S.

    2007-01-01

    Summary To estimate the down-dip coseismic fault dimension, W, the Executive Committee has chosen the Nazareth and Hauksson (2004) method, which uses the 99% depth of background seismicity to assign W. For the predicted earthquake magnitude-fault area scaling used to estimate the maximum magnitude of an earthquake rupture from a fault's length, L, and W, the Committee has assigned equal weight to the Ellsworth B (Working Group on California Earthquake Probabilities, 2003) and Hanks and Bakun (2002) (as updated in 2007) equations. The former uses a single relation; the latter uses a bilinear relation which changes slope at M=6.65 (A=537 km2).

  12. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  13. Imaging the Moon's Core with Seismology

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe

    2011-01-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.

  14. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  15. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2015-12-01

    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  16. Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting

    NASA Astrophysics Data System (ADS)

    Almeida, Rafael V.; Hubbard, Judith; Liberty, Lee; Foster, Anna; Sapkota, Soma Nath

    2018-07-01

    Because great earthquakes in the Himalaya have an average recurrence interval exceeding 500 yr, most of what we know about past earthquakes comes from paleoseismology and tectonic geomorphology studies of the youngest fault system there, the Main Frontal Thrust (MFT). However, these data are sparse relative to fault segmentation and length, and interpretations are often hard to validate in the absence of information about fault geometry. Here, we image the upper two km of strata in the vicinity of the fault tip of the MFT in central Nepal (around the town of Bardibas) applying a pre-stack migration approach to two new seismic reflection profiles that we interpret using quantitative fault-bend folding theory. Our results provide direct evidence that a shallow décollement produces both emergent (Patu thrust) and blind (Bardibas thrust) fault strands. We show that the décollement lies about 2 km below the land surface near the fault tip, and steps down to a regional 5 km deep décollement level to the north. This implies that there is significant variation in the depth of the décollement. We demonstrate that some active faults do not reach the surface, and therefore paleoseismic trenching alone cannot characterize the earthquake history at these locations. Although blind, these faults have associated growth strata that allow us to infer their most recent displacement history. We present the first direct evidence of fault dip on two fault strands of the MFT at depth that can allow terrace uplift measurements to be more accurately converted to fault slip. We identify a beveled erosional surface buried beneath Quaternary sediments, indicating that strath surface formation is modulated by both climate-related base level changes and tectonics. Together, these results indicate that subsurface imaging, in conjunction with traditional paleoseismological tools, can best characterize the history of fault slip in the Himalaya and other similar thrust fault systems.

  17. Contributory fault and level of personal injury to drivers involved in head-on collisions: Application of copula-based bivariate ordinal models.

    PubMed

    Wali, Behram; Khattak, Asad J; Xu, Jingjing

    2018-01-01

    The main objective of this study is to simultaneously investigate the degree of injury severity sustained by drivers involved in head-on collisions with respect to fault status designation. This is complicated to answer due to many issues, one of which is the potential presence of correlation between injury outcomes of drivers involved in the same head-on collision. To address this concern, we present seemingly unrelated bivariate ordered response models by analyzing the joint injury severity probability distribution of at-fault and not-at-fault drivers. Moreover, the assumption of bivariate normality of residuals and the linear form of stochastic dependence implied by such models may be unduly restrictive. To test this, Archimedean copula structures and normal mixture marginals are integrated into the joint estimation framework, which can characterize complex forms of stochastic dependencies and non-normality in residual terms. The models are estimated using 2013 Virginia police reported two-vehicle head-on collision data, where exactly one driver is at-fault. The results suggest that both at-fault and not-at-fault drivers sustained serious/fatal injuries in 8% of crashes, whereas, in 4% of the cases, the not-at-fault driver sustained a serious/fatal injury with no injury to the at-fault driver at all. Furthermore, if the at-fault driver is fatigued, apparently asleep, or has been drinking the not-at-fault driver is more likely to sustain a severe/fatal injury, controlling for other factors and potential correlations between the injury outcomes. While not-at-fault vehicle speed affects injury severity of at-fault driver, the effect is smaller than the effect of at-fault vehicle speed on at-fault injury outcome. Contrarily, and importantly, the effect of at-fault vehicle speed on injury severity of not-at-fault driver is almost equal to the effect of not-at-fault vehicle speed on injury outcome of not-at-fault driver. Compared to traditional ordered probability models, the study provides evidence that copula based bivariate models can provide more reliable estimates and richer insights. Practical implications of the results are discussed. Published by Elsevier Ltd.

  18. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  19. Fault Tree Analysis: A Research Tool for Educational Planning. Technical Report No. 1.

    ERIC Educational Resources Information Center

    Alameda County School Dept., Hayward, CA. PACE Center.

    This ESEA Title III report describes fault tree analysis and assesses its applicability to education. Fault tree analysis is an operations research tool which is designed to increase the probability of success in any system by analyzing the most likely modes of failure that could occur. A graphic portrayal, which has the form of a tree, is…

  20. Evidential Networks for Fault Tree Analysis with Imprecise Knowledge

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Huang, Hong-Zhong; Liu, Yu; Li, Yan-Feng

    2012-06-01

    Fault tree analysis (FTA), as one of the powerful tools in reliability engineering, has been widely used to enhance system quality attributes. In most fault tree analyses, precise values are adopted to represent the probabilities of occurrence of those events. Due to the lack of sufficient data or imprecision of existing data at the early stage of product design, it is often difficult to accurately estimate the failure rates of individual events or the probabilities of occurrence of the events. Therefore, such imprecision and uncertainty need to be taken into account in reliability analysis. In this paper, the evidential networks (EN) are employed to quantify and propagate the aforementioned uncertainty and imprecision in fault tree analysis. The detailed conversion processes of some logic gates to EN are described in fault tree (FT). The figures of the logic gates and the converted equivalent EN, together with the associated truth tables and the conditional belief mass tables, are also presented in this work. The new epistemic importance is proposed to describe the effect of ignorance degree of event. The fault tree of an aircraft engine damaged by oil filter plugs is presented to demonstrate the proposed method.

  1. Paleoearthquake recurrence on the East Paradise fault zone, metropolitan Albuquerque, New Mexico

    USGS Publications Warehouse

    Personius, Stephen F.; Mahan, Shannon

    2000-01-01

    A fortuitous exposure of the East Paradise fault zone near Arroyo de las Calabacillas has helped us determine a post-middle Pleistocene history for a long-forgotten Quaternary fault in the City of Albuquerque, New Mexico. Mapping of two exposures of the fault zone allowed us to measure a total vertical offset of 2.75 m across middle Pleistocene fluvial and eolian deposits and to estimate individual surface-faulting events of about 1, 0.5, and 1.25 m. These measurements and several thermoluminescence ages allow us to calculate a long-term average slip rate of 0.01 ± 0.001 mm/yr and date two surface-faulting events to 208 ± 25 ka and 75 ± 7 ka. The youngest event probably occurred in the late Pleistocene, sometime after 75 ± 7 ka. These data yield a single recurrence interval of 133 ± 26 ka and an average recurrence interval of 90 ± 10 ka. However, recurrence intervals are highly variable because the two youngest events occurred in less than 75 ka. Offsets of 0.5-1.25 m and a fault length of 13-20 km indicate that surface-rupturing paleoearthquakes on the East Paradise fault zone had probable Ms or Mw magnitudes of 6.8-7.0. Although recurrence intervals are long on the East Paradise fault zone, these data are significant because they represent some of the first published slip rate, paleoearthquake magnitude, and recurrence information for any of the numerous Quaternary faults in the rapidly growing Albuquerque-Rio Rancho metropolitan area.

  2. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation

    USGS Publications Warehouse

    Parsons, T.; Toda, S.; Stein, R.S.; Barka, A.; Dieterich, J.H.

    2000-01-01

    We calculate the probability of strong shaking in Istanbul, an urban center of 10 million people, from the description of earthquakes on the North Anatolian fault system in the Marmara Sea during the past 500 years and test the resulting catalog against the frequency of damage in Istanbul during the preceding millennium, departing from current practice, we include the time-dependent effect of stress transferred by the 1999 moment magnitude M = 7.4 Izmit earthquake to faults nearer to Istanbul. We find a 62 ± 15% probability (one standard deviation) of strong shaking during the next 30 years and 32 ± 12% during the next decade.

  3. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  4. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR.

    PubMed

    Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique

    2018-04-16

    This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

  5. Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey

    USGS Publications Warehouse

    Parsons, T.

    2004-01-01

    New earthquake probability calculations are made for the Sea of Marmara region and the city of Istanbul, providing a revised forecast and an evaluation of time-dependent interaction techniques. Calculations incorporate newly obtained bathymetric images of the North Anatolian fault beneath the Sea of Marmara [Le Pichon et al., 2001; Armijo et al., 2002]. Newly interpreted fault segmentation enables an improved regional A.D. 1500-2000 earthquake catalog and interevent model, which form the basis for time-dependent probability estimates. Calculations presented here also employ detailed models of coseismic and postseismic slip associated with the 17 August 1999 M = 7.4 Izmit earthquake to investigate effects of stress transfer on seismic hazard. Probability changes caused by the 1999 shock depend on Marmara Sea fault-stressing rates, which are calculated with a new finite element model. The combined 2004-2034 regional Poisson probability of M≥7 earthquakes is ~38%, the regional time-dependent probability is 44 ± 18%, and incorporation of stress transfer raises it to 53 ± 18%. The most important effect of adding time dependence and stress transfer to the calculations is an increase in the 30 year probability of a M ??? 7 earthquake affecting Istanbul. The 30 year Poisson probability at Istanbul is 21%, and the addition of time dependence and stress transfer raises it to 41 ± 14%. The ranges given on probability values are sensitivities of the calculations to input parameters determined by Monte Carlo analysis; 1000 calculations are made using parameters drawn at random from distributions. Sensitivities are large relative to mean probability values and enhancements caused by stress transfer, reflecting a poor understanding of large-earthquake aperiodicity.

  6. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault

    USGS Publications Warehouse

    Shelly, David R.

    2010-01-01

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15–80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  7. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies thatmore » are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power eciency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important constraints and opportunities for solutions deployed at various layers of the system stack. The framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also enables optimization of the cost-benefit trade-os among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-ecient manner in spite of frequent faults, errors, and failures of various types.« less

  8. Cenozoic volcanic geology and probable age of inception of basin-range faulting in the southeasternmost Chocolate Mountains, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.

    1978-02-01

    A complex sequence of Oligocene-age volcanic and volcaniclastic rocks form a major volcanic center in the Picacho area of the southeasternmost Chocolate Mountains, Imperial County, California. Basal-volcanic rocks consist of lava flows and flow breccia of trachybasalt, pyroxene rhyodacite, and pyroxene dacite (32 My old). These volcanic rocks locally overlie fanglomerate and rest unconformably on pre-Cenozoic basement rocks. South and southeast of a prominent arcuate fault zone in the central part of the area, the rhyolite ignimbrite (26 My old) forms a major ash-flow sheet. In the southwestern part of the Picacho area the rhyolite ignimbrite interfingers with and ismore » overlain by dacite flows and laharic breccia. The rhyolite ignimbrite and the dacite of Picacho Peak are overlapped by lava flows and breccia of pyroxene andesite (25 My old) that locally rest on pre-Cenozoic basement rocks. The volcanic rocks of the Picacho area form a slightly bimodal volcanic suite consisting chiefly of silicic volcanic rocks with subordinate andesite. Late Miocene augite-olivine basalt is most similar in major-element abundances to transitional alkali-olivine basalt of the Basin and Range province. Normal separation faults in the Picacho area trend northwest and north parallel to major linear mountain ranges in the region. The areal distribution of the 26-My-old rhyolite ignimbrite and the local presence of megabreccia and fanglomerate flanking probable paleohighs suggest that the ignimbrite was erupted over irregular topography controlled by northwest- and north-trending probable basin-range faults. These relations date the inception of faulting in southeasternmost California at pre-26 and probably pre-32 My ago. A transition of basaltic volcanism in the area is dated at 13 My ago. 9 figures, 2 tables.« less

  9. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  10. Manipulation of domain-wall solitons in bi- and trilayer graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng

    2018-01-01

    Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.

  11. An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis

    DTIC Science & Technology

    2012-09-01

    0 : t) denotes all measurements observed up to time t. The goal of prognosis is to determine the end of (use- ful) life ( EOL ) of a system, and/or its...remaining useful life (RUL). For a given fault, f , using the fault estimate, p(xf (t),θf (t)|y(0 : t)), a probability distribution of EOL , p(EOLf (tP...is stochas- tic, EOL /RUL are random variables and we represent them by probability distributions. The acceptable behavior of the system is expressed

  12. Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    Analysis of the material protection, control, and accountability (MPC&A) system is necessary to understand the limits and vulnerabilities of the system to internal threats. A self-appraisal helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) fault tree was developed to depict the failure of the MPC&A system as a result of poor practices and random failures in the MC&A system. It can also be employed as a basis for assessing deliberate threats against a facility. MSET uses faultmore » tree analysis, which is a top-down approach to examining system failure. The analysis starts with identifying a potential undesirable event called a 'top event' and then determining the ways it can occur (e.g., 'Fail To Maintain Nuclear Materials Under The Purview Of The MC&A System'). The analysis proceeds by determining how the top event can be caused by individual or combined lower level faults or failures. These faults, which are the causes of the top event, are 'connected' through logic gates. The MSET model uses AND-gates and OR-gates and propagates the effect of event failure using Boolean algebra. To enable the fault tree analysis calculations, the basic events in the fault tree are populated with probability risk values derived by conversion of questionnaire data to numeric values. The basic events are treated as independent variables. This assumption affects the Boolean algebraic calculations used to calculate results. All the necessary calculations are built into the fault tree codes, but it is often useful to estimate the probabilities manually as a check on code functioning. The probability of failure of a given basic event is the probability that the basic event primary question fails to meet the performance metric for that question. The failure probability is related to how well the facility performs the task identified in that basic event over time (not just one performance or exercise). Fault tree calculations provide a failure probability for the top event in the fault tree. The basic fault tree calculations establish a baseline relative risk value for the system. This probability depicts relative risk, not absolute risk. Subsequent calculations are made to evaluate the change in relative risk that would occur if system performance is improved or degraded. During the development effort of MSET, the fault tree analysis program used was SAPHIRE. SAPHIRE is an acronym for 'Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.' Version 1 of the SAPHIRE code was sponsored by the Nuclear Regulatory Commission in 1987 as an innovative way to draw, edit, and analyze graphical fault trees primarily for safe operation of nuclear power reactors. When the fault tree calculations are performed, the fault tree analysis program will produce several reports that can be used to analyze the MPC&A system. SAPHIRE produces reports showing risk importance factors for all basic events in the operational MC&A system. The risk importance information is used to examine the potential impacts when performance of certain basic events increases or decreases. The initial results produced by the SAPHIRE program are considered relative risk values. None of the results can be interpreted as absolute risk values since the basic event probability values represent estimates of risk associated with the performance of MPC&A tasks throughout the material balance area (MBA). The RRR for a basic event represents the decrease in total system risk that would result from improvement of that one event to a perfect performance level. Improvement of the basic event with the greatest RRR value produces a greater decrease in total system risk than improvement of any other basic event. Basic events with the greatest potential for system risk reduction are assigned performance improvement values, and new fault tree calculations show the improvement in total system risk. The operational impact or cost-effectiveness from implementing the performance improvements can then be evaluated. The improvements being evaluated can be system performance improvements, or they can be potential, or actual, upgrades to the system. The RIR for a basic event represents the increase in total system risk that would result from failure of that one event. Failure of the basic event with the greatest RIR value produces a greater increase in total system risk than failure of any other basic event. Basic events with the greatest potential for system risk increase are assigned failure performance values, and new fault tree calculations show the increase in total system risk. This evaluation shows the importance of preventing performance degradation of the basic events. SAPHIRE identifies combinations of basic events where concurrent failure of the events results in failure of the top event.« less

  13. Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.

    2013-06-01

    We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  14. The Alpine nappe stack in western Austria: a crustal-scale cross section

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah; Ortner, Hugo; Zerlauth, Michael; Fügenschuh, Bernhard

    2015-04-01

    Based on an N-S-oriented crustal-scale cross section running east of the Rhine Valley in Vorarlberg, western Austria, we address the Alpine nappe stack and discuss the boundary between Central and Eastern Alps. For our cross section, we used surface geology, drillings and reinterpreted seismic lines, together with published sections. The general architecture of the examined area can be described as a typical foreland fold-and-thrust belt, comprising the tectonic units of the Subalpine Molasse, (Ultra-)Helvetic, Penninic and Austroalpine nappes. These units overthrusted the autochthonous Molasse along the south-dipping listric Alpine basal thrust. The European Basement, together with its autochthonous cover, dips gently towards the south and is dissected by normal faults and trough structures. The seismic data clearly show an offset not only of the top of the European Basement, but also of the Mesozoic cover and the Lower Marine Molasse. This indicates an activity of the structures as normal faults after the sedimentation of the Lower Marine Molasse. The Subalpine Molasse is multiply stacked, forming a triangle zone at the boundary with the foreland Molasse. The shortening within the Subalpine Molasse amounts to approximately 45 km (~67 %), as deduced from our cross section with the Lower Marine Molasse as a reference. The hinterland-dipping duplex structure of the Helvetic nappes is deduced from surface and borehole data. There are at least two Helvetic nappes needed to fill the available space between the Molasse below and the Northpenninic above. This is in line with the westerly located NRP20-East transect (Schmid et al., Tectonics 15(5):1047-1048, 1996; Schmid et al., The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle, 2004), where the two Helvetic nappes are separated by the Säntis thrust. Yet in contrast to the Helvetic nappes in the NRP20-East transect, both of our Helvetic nappes comprise Cretaceous and Jurassic strata. This change is explained by an eastward down-stepping of the Säntis thrust along a pre-existing, approximately N-S striking lateral ramp bounding an inverted Jurassic graben structure below the Rhine Valley. This causes the Säntis thrust to detach the base Cretaceous west of the Rhine Valley and the base Jurassic units east of it. This graben-controlled change in detachment level leads to the formation of quite different nappe stacks on either side of the Rhine Valley and a "fault-controlled" appearance of the boundary between the Central and Eastern Alps.

  15. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  16. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.

    PubMed

    Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin

    2015-12-09

    In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting and environment processing.

  17. Physical Properties of NiFeCrCo-based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zaddach, Alexander Joseph

    Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.

  18. Lithospheric structure beneath Mainland China from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Huang, J.; Peng, J.; Liu, Z.

    2017-12-01

    The Chinese continent is composed of several Precambrian craton blocks and Phanerozoic orogenic belts. To better understand the complex geological structure and tectonic evolution, it is important to develop a high-resolution shear velocity model of the lithosphere. In this study, we try to use ambient noise tomography to image the lithospheric structure beneath mainland China. However, in contrast with most of the existing ambient noise tomography studies which focus on the surface wave at periods shorter than 60 s, we apply the technique of phase-weighted stack (PWS) (Schimmel et al., 2011) when stacking the cross-correlations of ambient noise. We could extract long-period ( 125 s) dispersions to image the high-resolution lithospheric structure. We collected continuous seismic records from the broadband stations of China Regional Seismic Networks and NECESSArray between Sept., 2009 and Aug., 2011. We constructed Rayleigh wave group and phase velocity maps on 0.25 ×0.25 degree grids, and then inverted a high-resolution lithospheric 3D shear velocity model up to 150 km depth. The results exhibited pronounced lateral heterogeneity of the lithospheric structure of the study area. It is obvious that the high velocities beneath the Ordos and Sichuan Basin exceeds 150 km, representing the strong and thick lithosphere. The lithospheric thickness gradually thins from west to east for the North China Craton (NCC) and the Yangtze Craton (YZC). The lithospheric thickness of the eastern NCC is about 80-90 km, and which beneath the Bohai Bay is thinnest, only 60-80 km. For the lower YZC and the Cathaysia block, the lithospheric thickness is about 70-80 km, slightly thinner than the eastern NCC. The observed thin lithosphere (about 60-80 km) beneath the eastern Northeast China is likely to be associated with the Tanlu fault and the Quaternary Changbaishan and Jingpohu volcano. The lithosphere thickness beneath the Tanlu fault is thin or absent, which possibly be related to the upwelling of the hot asthenosphere, and the fault provides channels. *This work was supported by National Key R&D Plan (Grant No. 2017YFC0601406). KEYWORDS: Ambient noise, Phase-weighted stack, Lithosphere, Shear velocity

  19. Structure of the Red Dog District, western Brooks Range, Alaska

    USGS Publications Warehouse

    de Vera, Jean-Pierre P.; McClay, K. R.

    2004-01-01

    The Red Dog district of the western Brooks Range of northern Alaska, which includes the sediment-hosted Zn-Pb-Ag ± Ba deposits at Red Dog, Su-Lik, and Anarraaq, contains one of the world's largest reserves of zinc. This paper presents a new model for the structural development of the area and shows that understanding the structure is crucial for future exploration efforts and new mineral discoveries in the district. In the Red Dog district, a telescoped Late Devonian through Jurassic continental passive margin is exposed in a series of subhorizontally stacked, internally imbricated, and regionally folded thrust sheets. These sheets were emplaced during the Middle Jurassic to Late Cretaceous Brookian orogeny and subsequently were uplifted by late tectonic activity in the Tertiary. The thrust sheet stack comprises seven tectonostratigraphically distinct allochthonous sheets, three of which have been subject to regional and detailed structural analysis. The lowermost of these is the Endicott Mountains allochthon, which is overlain by the structurally higher Picnic Creek and Kelly River allochthons. Each individual allochthon is itself internally imbricated into a series of tectonostratigraphically coherent and distinct thrust plates and subplates. This structural style gives rise to duplex development and imbrication at a range of scales, from a few meters to tens of kilometers. The variable mechanical properties of the lithologic units of the ancient passive margin resulted in changes in structural styles and scales of structures across allochthon boundaries. Structural mapping and analysis of the district indicate a dominant northwest to west-northwest direction of regional tectonic transport. Local north to north-northeast transport of thrust sheets is interpreted to reflect the influence of underlying lateral and/or oblique ramps, which may have been controlled by inherited basin margin structures. Some thrust-sheet stacking patterns suggest out-of-sequence thrusting. The west-northwest-east-southeast-trending Wrench Creek and Sivukat Mountain faults were previously interpreted to be strike-slip faults, but this study shows that they are Tertiary (Eocene?) late extensional faults with little or no lateral displacement.

  20. Effects of neutron irradiation of Ti 3SiC 2 and Ti 3AlC 2 in the 121–1085 °C temperature range

    DOE PAGES

    Tallman, Darin J.; He, Lingfeng; Gan, Jian; ...

    2016-11-19

    Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti 3SiC 2 and Ti 3AlC 2 samples exposed to doses of 0.14±0.01, 1.6±0.1, and 3.4±0.1 displacements per atom (dpa) at irradiation temperatures of 121±12, 735±6 and 1085±68 °C. After irradiation to 0.14 dpa at 121 °C and 735 °C, black spots are observed in both Ti 3SiC 2 and Ti 3AlC 2. After irradiation to 1.6 and 3.4 dpa at 735 °C, basal dislocation loops, with a Burgers vector of b = ½ [0001] are observed in Ti 3SiC 2, with loop diameters ofmore » 21±6 and 30±8 nm for 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75±34 nm in diameter are observed after 3.4 dpa at 735 °C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Voids are observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive void formation in the TiC regions at 1085 °C. Remarkably, denuded zones on the order of 1 µm are observed in Ti 3SiC 2 after irradiation to 3.4 dpa at 735 °C. Small grains, 3-5 µm in diameter, are damage free after irradiation at 1085 °C at this dose. The presence of the A-layer in the MAX phases is seen to provide enhanced irradiation tolerance. Based on these results, and up to 3.41 dpa, Ti 3SiC 2 remains a promising candidate for high temperature nuclear applications.« less

  1. Effects of neutron irradiation of Ti 3SiC 2 and Ti 3AlC 2 in the 121–1085 °C temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallman, Darin J.; He, Lingfeng; Gan, Jian

    Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti 3SiC 2 and Ti 3AlC 2 samples exposed to doses of 0.14±0.01, 1.6±0.1, and 3.4±0.1 displacements per atom (dpa) at irradiation temperatures of 121±12, 735±6 and 1085±68 °C. After irradiation to 0.14 dpa at 121 °C and 735 °C, black spots are observed in both Ti 3SiC 2 and Ti 3AlC 2. After irradiation to 1.6 and 3.4 dpa at 735 °C, basal dislocation loops, with a Burgers vector of b = ½ [0001] are observed in Ti 3SiC 2, with loop diameters ofmore » 21±6 and 30±8 nm for 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75±34 nm in diameter are observed after 3.4 dpa at 735 °C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Voids are observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive void formation in the TiC regions at 1085 °C. Remarkably, denuded zones on the order of 1 µm are observed in Ti 3SiC 2 after irradiation to 3.4 dpa at 735 °C. Small grains, 3-5 µm in diameter, are damage free after irradiation at 1085 °C at this dose. The presence of the A-layer in the MAX phases is seen to provide enhanced irradiation tolerance. Based on these results, and up to 3.41 dpa, Ti 3SiC 2 remains a promising candidate for high temperature nuclear applications.« less

  2. Health Monitoring Survey of Bell 412EP Transmissions

    NASA Technical Reports Server (NTRS)

    Tucker, Brian E.; Dempsey, Paula J.

    2016-01-01

    Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.

  3. Probabilistic seismic hazard analyses for ground motions and fault displacement at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stepp, J.C.; Wong, I.; Whitney, J.; Quittmeyer, R.; Abrahamson, N.; Toro, G.; Young, S.R.; Coppersmith, K.; Savy, J.; Sullivan, T.

    2001-01-01

    Probabilistic seismic hazard analyses were conducted to estimate both ground motion and fault displacement hazards at the potential geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The study is believed to be the largest and most comprehensive analyses ever conducted for ground-shaking hazard and is a first-of-a-kind assessment of probabilistic fault displacement hazard. The major emphasis of the study was on the quantification of epistemic uncertainty. Six teams of three experts performed seismic source and fault displacement evaluations, and seven individual experts provided ground motion evaluations. State-of-the-practice expert elicitation processes involving structured workshops, consensus identification of parameters and issues to be evaluated, common sharing of data and information, and open exchanges about the basis for preliminary interpretations were implemented. Ground-shaking hazard was computed for a hypothetical rock outcrop at -300 m, the depth of the potential waste emplacement drifts, at the designated design annual exceedance probabilities of 10-3 and 10-4. The fault displacement hazard was calculated at the design annual exceedance probabilities of 10-4 and 10-5.

  4. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  5. Seismic Imaging and Characterization of Bright Spots in the West Bohemia Seismic Zone (Germany and Czech Republic)

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Schreiter, L.; Hlousek, F.; Jusri, T.; Buske, S.

    2017-12-01

    In crystalline environments, imaging faults, layer boundaries and small scale structures is challenging due to the complex geometry of the structures themselves and the influence of the hardrock environment on the seismic wavefield. Optimally designed active seismic surveys and careful processing can produce a clear image of the subsurface structures. However, if little is known about the local geology and tectonic state of the area, the imaged reflections can be difficult to interpret. This is the case in the West Bohemia Seismic Zone, located along the border of Germany and Czech Republic. This geodynamically active area is spotted with springs and gas vents, and frequently experiences low magnitude seismic swarms. The most active region is located in the Cheb basin and coincides with the junction of a northwest trending fault with a north-south trending shear zone, making for a structurally complex hardrock setting. In the early 1990s, two long-offset reflection seismic profiles were collected along the boundary of the Cheb basin: MVE-90 along the northern edge, and 9HR-91 in the east. These profiles were recently reprocessed using Kirchhoff PreStack Depth Migration, revealing high amplitude reflections, or bright spots, that correlate to nearby seismicity. Several studies have hypothesized that the 9HR-91 bright spots image a fluid trap, where mantle-sourced fluids accumulate, thereby facilitating slip on the faults and triggering the swarms. However, the exact nature of the bright spots remains an open question. They may be a change in lithology and/or porosity, an infilled vein or an impermeable fault. We aim to answer this question by first using Coherency-Based PreStack Depth Migration to produce detailed images of the bright spots. We then forward model the waveforms guided by the reflection coefficients in order to derive rock-physical parameters. Finally, the best-fitting models are interpreted in terms of their possible relationship to the West Bohemia swarms.

  6. Performance Evaluation of Cloud Service Considering Fault Recovery

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Tan, Feng; Dai, Yuan-Shun; Guo, Suchang

    In cloud computing, cloud service performance is an important issue. To improve cloud service reliability, fault recovery may be used. However, the use of fault recovery could have impact on the performance of cloud service. In this paper, we conduct a preliminary study on this issue. Cloud service performance is quantified by service response time, whose probability density function as well as the mean is derived.

  7. Photomosaics and logs of trenches on the San Andreas Fault, Thousand Palms Oasis, California

    USGS Publications Warehouse

    Fumal, Thomas E.; Frost, William T.; Garvin, Christopher; Hamilton, John C.; Jaasma, Monique; Rymer, Michael J.

    2004-01-01

    We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Thousand Palms Oasis (Fig. 1). The site is located on the Mission Creek strand of the San Andreas fault zone, one of two major active strands of the fault in the Indio Hills along the northeast margin of the Coachella Valley (Fig. 2). The Coachella Valley section is the most poorly understood major part of the San Andreas fault with regard to slip rate and timing of past large-magnitude earthquakes, and therefore earthquake hazard. No large earthquakes have occurred for more than three centuries, the longest elapsed time for any part of the southern San Andreas fault. In spite of this, the Working Group on California Earthquake Probabilities (1995) assigned the lowest 30-year conditional probability on the southern San Andreas fault to the Coachella Valley. Models of the behavior of this part of the fault, however, have been based on very limited geologic data. The Thousand Palms Oasis is an attractive location for paleoseismic study primarily because of the well-bedded late Holocene sedimentary deposits with abundant layers of organic matter for radiocarbon dating necessary to constrain the timing of large prehistoric earthquakes. Previous attempts to develop a chronology of paleoearthquakes for the region have been hindered by the scarcity of in-situ 14C-dateable material for age control in this desert environment. Also, the fault in the vicinity of Thousand Palms Oasis consists of a single trace that is well expressed, both geomorphically and as a vegetation lineament (Figs. 2, 3). Results of our investigations are discussed in Fumal et al. (2002) and indicate that four and probably five surface-rupturing earthquakes occurred along this part of the fault during the past 1200 years. The average recurrence time for these earthquakes is 215 ± 25 years, although interevent times may have been as short as a few decades or as long as 400 years. Thus, although the elapsed time since the most recent earthquake, about 320 years, is about 50% longer than the average recurrence time, it is not necessarily unprecedented.

  8. Liquefaction along Late Pleistocene to early Holocene Faults as Revealed by Lidar in Northwest Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Webb, J.; Gardner, T.

    2016-12-01

    In northwest Tasmania well-preserved mid-Holocene beach ridges with maximum radiocarbon ages of 5.25 ka occur along the coast; inland are a parallel set of lower relief beach ridges of probable MIS 5e age. The latter are cut by northeast-striking faults clearly visible on LIDAR images, with a maximum vertical displacement (evident as difference in topographic elevation) of 3 m. Also distinct on the LIDAR images are large sand boils along the fault lines; they are up to 5 m in diameter and 2-3 m high and mostly occur on the hanging wall close to the fault traces. Without LIDAR it would have been almost impossible to distinguish either the fault scarps or the sand boils. Excavations through the sand boils show that they are massive, with no internal structure, suggesting that they formed in a single event. They are composed of well-sorted, very fine white sand, identical to the sand in the underlying beach ridges. The sand boils overlie a peaty paleosol; this formed in the tea-tree swamp that formerly covered the area, and has been offset along the faults. Radiocarbon dating of the buried organic-rich paleosol gave ages of 14.8-7.2 ka, suggesting that the faulting is latest Pleistocene to early Holocene in age; it occurred prior to deposition of the mid-Holocene beach ridges, which are not offset. The beach ridge sediments are up to 7 m thick and contain an iron-cemented hard pan 1-3 m below the surface. The water table is very shallow and close to the ground surface, so the sands of the beach ridges are mostly saturated. During faulting these sands experienced extensive liquefaction. The resulting sand boils rose to a substantial height of 2-3 m, probably possibly reflecting the elevation of the potentiometric surface within the confined part of the beach ridge sediments below the iron-cemented hard pan. Motion on the faults was predominantly dip slip (shown by an absence of horizontal offset) and probably reverse, which is consistent with the present-day northwest-southeast compressive stress in this area.

  9. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    NASA Astrophysics Data System (ADS)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  10. Along-strike variations of geometry and kinematics on the border fault of Nanpu sag, Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ren, J.; Liu, X.; Sun, Z.; Su, M.

    2010-12-01

    Nanpu sag is located in the north-eastern portion of the Huanghua depression, covering an area of approximately 1900km2, and comprises one of the most important petroliferous basins of the Bohai Bay Basin. The Nanpu sag is bordered by two master faults with long-term activity: the Xi’nanzhuang (XNZ) and Bogezhuang (BGZ) fault. By analysis of horizontal slices, gravity anomaly map and seismic reflection sections, we found there is no cutting relationship, and thus considered the XNZ and BGZ fault as a same one. However it showed striking differences between the XNZ and BGZ segment in fault occurrence, fault throw and residual formation thickness and so on. The BGZ fault was NW trending fault with a steep inclination. Taken section across the northern region in Nanpu sag for example, its controlling depocenter is located in eastern subsag (Fig.1); the XNZ fault was a NE fault and displayed a Shovel-shaped to plate-like geometry, with its controlling depocenter located in western subsag. We qualitify the fault throw, showing that the XNZ fault strongly acted during the sedimentary period of Es3-Es2, while the BGZ fault presented weak activity, and especially during Es31 submember-Es2 member, the XNZ fault acted so strongly that the hanging wall of BGZ fault was tilt-lifted and suffered erosion (Fig.1), which created Es1 uncomformity; The BGZ fault acted strongly during the sedimentary period of Es1-Ed, which led the hanging wall of XNZ fault to be tilt-lifted. Controlled by such segmented activity of the whole border fault, which we suggested a "seesaw" model for its evolution, the northern part in the Nanpu sag experienced an alternative variation between a deposition center and an erosion region after tilt-lifting. Combination of the sediment stacking patterns, we further classified the history of "seesaw" activities into four stages: 1) Early double-break stage (Es35-Es31), both of the XNZ and BGZ fault acted; 2) Middle the XNZ segment throw and the BGZ tilting (Es2); 3) Late the XNZ segment tilting and BGZ throw (Es1-Ed3); 4) End weak double-break stage (Ed2-Present), the whole fault acted weakly and were superposed by neotectonic movement. Fig.1 Seesaw activity of the whole border fault

  11. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available for further slip and for subsequent earthquakes. This suite of models reveals that efficiency may be a useful tool for determining the relative seismic hazard of different segmented fault systems, while accounting for coseismic damage zone production is critical in assessing fault interactions and the associated energy budgets of specific systems.

  12. Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments

    USGS Publications Warehouse

    Stankiewicz, J.; Munoz, G.; Ritter, O.; Bedrosian, P.A.; Ryberg, T.; Weckmann, U.; Weber, M.

    2011-01-01

    In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of ???3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault. 

  13. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  14. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch.

    PubMed

    de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.

  15. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch

    PubMed Central

    Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment. PMID:28961264

  16. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data

    USGS Publications Warehouse

    Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.

    2005-01-01

    We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.

  17. Fault Tree Analysis as a Planning and Management Tool: A Case Study

    ERIC Educational Resources Information Center

    Witkin, Belle Ruth

    1977-01-01

    Fault Tree Analysis is an operations research technique used to analyse the most probable modes of failure in a system, in order to redesign or monitor the system more closely in order to increase its likelihood of success. (Author)

  18. A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.

    2017-01-01

    Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.

  19. Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in the process industry.

    PubMed

    Yazdi, Mohammad; Korhan, Orhan; Daneshvar, Sahand

    2018-05-09

    This study aimed at establishing fault tree analysis (FTA) using expert opinion to compute the probability of an event. To find the probability of the top event (TE), all probabilities of the basic events (BEs) should be available when the FTA is drawn. In this case, employing expert judgment can be used as an alternative to failure data in an awkward situation. The fuzzy analytical hierarchy process as a standard technique is used to give a specific weight to each expert, and fuzzy set theory is engaged for aggregating expert opinion. In this regard, the probability of BEs will be computed and, consequently, the probability of the TE obtained using Boolean algebra. Additionally, to reduce the probability of the TE in terms of three parameters (safety consequences, cost and benefit), the importance measurement technique and modified TOPSIS was employed. The effectiveness of the proposed approach is demonstrated with a real-life case study.

  20. Probability estimates of seismic event occurrence compared to health hazards - Forecasting Taipei's Earthquakes

    NASA Astrophysics Data System (ADS)

    Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.

    2014-12-01

    Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.

  1. California Fault Parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities 2007

    USGS Publications Warehouse

    Wills, Chris J.; Weldon, Ray J.; Bryant, W.A.

    2008-01-01

    This report describes development of fault parameters for the 2007 update of the National Seismic Hazard Maps and the Working Group on California Earthquake Probabilities (WGCEP, 2007). These reference parameters are contained within a database intended to be a source of values for use by scientists interested in producing either seismic hazard or deformation models to better understand the current seismic hazards in California. These parameters include descriptions of the geometry and rates of movements of faults throughout the state. These values are intended to provide a starting point for development of more sophisticated deformation models which include known rates of movement on faults as well as geodetic measurements of crustal movement and the rates of movements of the tectonic plates. The values will be used in developing the next generation of the time-independent National Seismic Hazard Maps, and the time-dependant seismic hazard calculations being developed for the WGCEP. Due to the multiple uses of this information, development of these parameters has been coordinated between USGS, CGS and SCEC. SCEC provided the database development and editing tools, in consultation with USGS, Golden. This database has been implemented in Oracle and supports electronic access (e.g., for on-the-fly access). A GUI-based application has also been developed to aid in populating the database. Both the continually updated 'living' version of this database, as well as any locked-down official releases (e.g., used in a published model for calculating earthquake probabilities or seismic shaking hazards) are part of the USGS Quaternary Fault and Fold Database http://earthquake.usgs.gov/regional/qfaults/ . CGS has been primarily responsible for updating and editing of the fault parameters, with extensive input from USGS and SCEC scientists.

  2. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis

    USGS Publications Warehouse

    Parsons, T.

    2002-01-01

    The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.

  3. Dynamic rupture simulations on a fault network in the Corinth Rift

    NASA Astrophysics Data System (ADS)

    Durand, V.; Hok, S.; Boiselet, A.; Bernard, P.; Scotti, O.

    2017-03-01

    The Corinth rift (Greece) is made of a complex network of fault segments, typically 10-20 km long separated by stepovers. Assessing the maximum magnitude possible in this region requires accounting for multisegment rupture. Here we apply numerical models of dynamic rupture to quantify the probability of a multisegment rupture in the rift, based on the knowledge of the fault geometry and on the magnitude of the historical and palaeoearthquakes. We restrict our application to dynamic rupture on the most recent and active fault network of the western rift, located on the southern coast. We first define several models, varying the main physical parameters that control the rupture propagation. We keep the regional stress field and stress drop constant, and we test several fault geometries, several positions of the faults in their seismic cycle, several values of the critical distance (and so several fracture energies) and two different hypocentres (thus testing two directivity hypothesis). We obtain different scenarios in terms of the number of ruptured segments and the final magnitude (between M = 5.8 for a single segment rupture to M = 6.4 for a whole network rupture), and find that the main parameter controlling the variability of the scenarios is the fracture energy. We then use a probabilistic approach to quantify the probability of each generated scenario. To do that, we implement a logical tree associating a weight to each model input hypothesis. Combining these weights, we compute the probability of occurrence of each scenario, and show that the multisegment scenarios are very likely (52 per cent), but that the whole network rupture scenario is unlikely (14 per cent).

  4. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.

  5. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  6. GPR investigations along the North Anatolian Fault near Izmit (Turkey): Constraints on the right-lateral movement and slip history

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Meghraoui, M.; Rockwell, T. K.; Kozaci, Ö.; Akyuz, S.; Girard, J.-F.; Barka, A.

    2003-04-01

    The 1999 Ms 7.4 Izmit earthquake produced more than 110 km of surface rupture along the North Anatolian fault. We present here ground-penetrating radar (GPR) profiles surveyed across and parallel to the 1999 Izmit earthquake ruptures at two sites along the Izmit-Sapanca segment. Fine sandy and coarse gravels favor the penetration depth and processed radar profiles image clearly visible reflectors within the uppermost 10 m. In Köseköy, they document cumulative right-lateral offset of a stream channel by the fault. Old fluvial channel deposits also visible in trenches show a maximum 13.5 to 14 m lateral displacement. Younger channel units display 4 m of right-lateral displacement at 2.5 m depth and correlation with dated trench units yields an average slip rate of 15 mm/yr. At site 2, GPR profiles display the successive faulting of a medieval Ottoman Canal which excavation probably took place in 1591 A.D.. GPR profiles image the corresponding surface as well as numerous faults that affect it. A following trench study confirmed these results as they provide consistent results with the occurrence of three faulting events post-1591 A.D., one of which probably as large as the 1999 Izmit earthquake.

  7. A novel method of fuzzy fault tree analysis combined with VB program to identify and assess the risk of coal dust explosions

    PubMed Central

    Li, Jia; Wang, Deming; Huang, Zonghou

    2017-01-01

    Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348

  8. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  9. A novel method of fuzzy fault tree analysis combined with VB program to identify and assess the risk of coal dust explosions.

    PubMed

    Wang, Hetang; Li, Jia; Wang, Deming; Huang, Zonghou

    2017-01-01

    Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents.

  10. Reconnaissance engineering geology of the Metlakatla area, Annette Island, Alaska, with emphasis on evaluation of earthquakes and other geologic hazards

    USGS Publications Warehouse

    Yehle, Lynn A.

    1977-01-01

    A program to study the engineering geology of most larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about the Metlakatla area, Annette Island, is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are tentative. Landscape of the Metlakatla Peninsula, on which the city of Metlakatla is located, is characterized by a muskeg-covered terrane of very low relief. In contrast, most of the rest of Annette Island is composed of mountainous terrane with steep valleys and numerous lakes. During the Pleistocene Epoch the Metlakatla area was presumably covered by ice several times; glaciers smoothed the present Metlakatla Peninsula and deeply eroded valleys on the rest. of Annette Island. The last major deglaciation was completed probably before 10,000 years ago. Rebound of the earth's crust, believed to be related to glacial melting, has caused land emergence at Metlakatla of at least 50 ft (15 m) and probably more than 200 ft (61 m) relative to present sea level. Bedrock in the Metlakatla area is composed chiefly of hard metamorphic rocks: greenschist and greenstone with minor hornfels and schist. Strike and dip of beds are generally variable and minor offsets are common. Bedrock is of late Paleozoic to early Mesozoic age. Six types of surficial geologic materials of Quaternary age were recognized: firm diamicton, emerged shore, modern shore and delta, and alluvial deposits, very soft muskeg and other organic deposits, and firm to soft artificial fill. A combination map unit is composed of bedrock or diamicton. Geologic structure in southeastern Alaska is complex because, since at least early Paleozoic time, there have been several cycles of tectonic deformation that affected different parts of the region. Southeastern Alaska is transected by numerous faults and possible faults that attest to major movements of the earth's crust. The latest of the major tectonic events in the Metlakatla region occurred in middle Tertiary time; some minor fault activity probably continues today at depth. Along the outer coast of southeastern Alaska and British Columbia, major faulting activity occurs in the form of active, strike-slip movement along the Queen Charlotte fault about 100 mi (160 kin) west-southwest of Metlakatla. Some branching subsidiary faults also may be active, at least one of which may be the Sandspit fault. Many major and smaller earthquakes occur along the outer coast. These shocks are related to movements along the Queen Charlotte fault. A few small earthquakes occur in the region between the outer coast and the Coast Mountains, which includes Metlakatla. 0nly a few earthquakes have been reported as felt at Metlakatla; these shocks and others felt in the region are tabulated. Historically, the closest major earthquake was the magnitude 8.1 Queen Charlotte Islands earthquake of August 22, 1949, which occurred along the Queen Charlotte fault 125 mi (200 km) southwest of Metlakatla. No damage was reported at Metlakatla. The probability of destructive earthquakes affecting Metlakatla is unknown. A consideration of the tectonics and earthquake history of the region, however, suggests that sometime in the future an earthquake with a magnitude of about 8 will occur along that segment of the Queen Charlotte fault nearest to Metlakatla. Smaller earthquakes with magnitudes of 6 or more might occur elsewhere in the Metlakatla region or south-southeastward near Dixon Entrance or Hecate Strait. Several geologic effects that have characterized large earthquakes elsewh6re may be expected to accompany some of the possible major earthquakes that might affect the Metlakatla area in the future. Evaluation of effects indicates that fault displacement and tectonic uplift or subsidence are probably unlikely, and ground shaking in general probably would be strongest

  11. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Langenheim, V.E.

    1995-12-31

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flankmore » of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting.« less

  12. Structure and U-Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting (Kulidzhik area, Eastern Rhodopes, Bulgaria)

    NASA Astrophysics Data System (ADS)

    Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.

    2016-10-01

    The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.

  13. IR-LTS a powerful non-invasive tool to observe crystal defects in as-grown silicon, after device processing, and in heteroepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissinger, G.; Richter, H.; Vanhellemont, J.

    1996-12-01

    One of the main advantages of infrared light scattering tomography (IR-LST) is the wide range of defect densities that can be studied using this technique. As-grown defects of low density and very small size as well as oxygen precipitation related defects that appear in densities up to some 1010 cm{sup -3} can be observed. As-grown wafers with a {open_quotes}stacking fault ring{close_quotes} were investigated in order to correlate the defects observed by IR-LST with the results of Secco etching and alcaline cleaning solution (SC1) treatment revealing flow pattern defects (FPDs) and crystal originated particles (COPs), respectively. These wafers were studied aftermore » a wet oxidation at 1100{degrees}C for 100 min. In processed CZ silicon wafers it was possible to identify stacking faults and prismatic punching systems directly from the IR-LST image. Brewster angle illumination is a special mode to reveal defects in epitaxial layers in a non-destructive way. Misfit dislocations in the interface between a Ge{sub 0.92}Si{sub 0.08} layer and a silicon substrate were studied using this mode that allows to observe very low dislocation densities.« less

  14. Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy

    NASA Astrophysics Data System (ADS)

    McCarley, Joshua; Alabbad, B.; Tin, S.

    2018-03-01

    The influence of varying fractions of primary gamma prime precipitates on the hot deformation and annealing behavior of an experimental Nickel-based superalloy containing 24 wt pct. Co was investigated. Billets heat treated at 1110 °C or 1135 °C were subjected to hot compression tests at temperatures ranging from 1020 °C to 1060 °C and strain rates ranging from 0.001 to 0.1/s. The microstructures were characterized using electron back scatter diffraction in the as-deformed condition as well as following a super-solvus anneal heat treatment at 1140 °C for 1 hour. This investigation sought to quantify and understand what effect the volume fraction of primary gamma prime precipitates has on the dynamic recrystallization behavior and resulting length fraction ∑3 twin boundaries in the low stacking fault superalloy following annealing. Although deformation at the lower temperatures and higher strain rates led to dynamic recrystallization for both starting microstructures, comparatively lower recrystallized fractions were observed in the 1135 °C billet microstructures deformed at strain rates of 0.1/s and 0.05/s. Subsequent annealing of the 1135 °C billet microstructures led to a higher proportion of annealing twins when compared to the annealed 1110 °C billet microstructures.

  15. Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy

    NASA Astrophysics Data System (ADS)

    Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop

    2017-12-01

    Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.

  16. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the < c + a > edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the < c + a > edge dislocations can cut through the basal SFs although the interactions between the < c + a > dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  17. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazioti, C.; Kehagias, Th.; Pavlidou, E.

    2015-10-21

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults andmore » threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.« less

  18. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.

    2014-11-01

    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ɛxx and ɛyy, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ɛxx and ɛyy strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  19. Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yeonjoon; Cich, Michael J.; Zhao, Rian

    2000-05-01

    The formation of twin is common during GaAs(111) and GaN(0001) molecular beam epitaxy (MBE) metalorganic chemical vapor deposition growth. A stacking fault in the zinc-blende (ZB)(111) direction can be described as an insertion of one monolayer of wurtzite structure, sandwiched between two ZB structures that have been rotated 60 degree sign along the growth direction. GaAs(111)A/B MBE growth within typical growth temperature regimes is complicated by the formation of pyramidal structures and 60 degree sign rotated twins, which are caused by faceting and stacking fault formation. Although previous studies have revealed much about the structure of these twins, a well-establishedmore » simple nondestructive characterization method which allows the measurement of total aerial density of the twins does not exist at present. In this article, the twin density of AlGaAs layers grown on 1 degree sign miscut GaAs(111)B substrates has been measured using high resolution x-ray diffraction, and characterized with a combination of Nomarski microscopy, atomic force microscopy, and transmission electron microscopy. These comparisons permit the relationship between the aerial twin density and the growth condition to be determined quantitatively. (c) 2000 American Vacuum Society.« less

  20. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  1. A molecular dynamics simulation study of irradiation induced defects in gold nanowire

    NASA Astrophysics Data System (ADS)

    Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai

    2017-08-01

    Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.

  2. Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions.

    PubMed

    Bickmore, B R; Nagy, K L; Young, J S; Drexler, J W

    2001-11-15

    Caustic NaNO3 solutions containing dissolved Al were reacted with quartz sand at 89 degrees C to simulate possible reactions between leaked nuclear waste and primary subsurface minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began to precipitate onto the quartz after 2-10 days, cementing the grains together. Estimates of the equilibrium constant for the precipitation reaction differ for solutions with 0.1 or 1.0 m OH- (log Keq = 30.4 +/- 0.8 and 36.2 +/- 0.6, respectively). The difference in solubility may be attributable to more perfect crystallinity (i.e., fewer stacking faults) in the higher-pH cancrinite structure. This is supported by electron micrographs of crystal morphology and measured rates of Na volatilization under an electron beam. Precipitate crystallinity may affect radionuclide mobility, because stacking faults in the cancrinite structure can diminish its zeolitic cation exchange properties. The precipitation rate near the onset of nucleation depends on the total Al and Si concentrations in solution. The evolution of experimental Si concentrations was modeled by considering the dependence of quartz dissolution rate on AI(OH)4- activity, cancrinite precipitation, and the reduction of reactive surface area of quartz due to coverage by cancrinite.

  3. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  4. Fault Tree Analysis: An Emerging Methodology for Instructional Science.

    ERIC Educational Resources Information Center

    Wood, R. Kent; And Others

    1979-01-01

    Describes Fault Tree Analysis, a tool for systems analysis which attempts to identify possible modes of failure in systems to increase the probability of success. The article defines the technique and presents the steps of FTA construction, focusing on its application to education. (RAO)

  5. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    NASA Astrophysics Data System (ADS)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  6. Analysis of the impact of error detection on computer performance

    NASA Technical Reports Server (NTRS)

    Shin, K. C.; Lee, Y. H.

    1983-01-01

    Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.

  7. Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.

    2007-05-01

    Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations from previous seismic lines that suggest that the peninsula is a tectonic block not completely transferred to the Pacific plate. In agreement with the seismic facies and the correlations with the available stratigraphic columns of Deep Sea Drilling Program 471 and 474, we generally identify at least three seismostratigraphic units over the acoustic basement. The lower unit reflectors dip towards the palaeo-trench. We identified a Bottom Simulating Reflector (BSR) probably associated to the presence of gas hydrates, which extends at least 200 km along three seismic lines.

  8. Liquefaction Hazard Maps for Three Earthquake Scenarios for the Communities of San Jose, Campbell, Cupertino, Los Altos, Los Gatos, Milpitas, Mountain View, Palo Alto, Santa Clara, Saratoga, and Sunnyvale, Northern Santa Clara County, California

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2008-01-01

    Maps showing the probability of surface manifestations of liquefaction in the northern Santa Clara Valley were prepared with liquefaction probability curves. The area includes the communities of San Jose, Campbell, Cupertino, Los Altos, Los Gatos Milpitas, Mountain View, Palo Alto, Santa Clara, Saratoga, and Sunnyvale. The probability curves were based on complementary cumulative frequency distributions of the liquefaction potential index (LPI) for surficial geologic units in the study area. LPI values were computed with extensive cone penetration test soundings. Maps were developed for three earthquake scenarios, an M7.8 on the San Andreas Fault comparable to the 1906 event, an M6.7 on the Hayward Fault comparable to the 1868 event, and an M6.9 on the Calaveras Fault. Ground motions were estimated with the Boore and Atkinson (2008) attenuation relation. Liquefaction is predicted for all three events in young Holocene levee deposits along the major creeks. Liquefaction probabilities are highest for the M7.8 earthquake, ranging from 0.33 to 0.37 if a 1.5-m deep water table is assumed, and 0.10 to 0.14 if a 5-m deep water table is assumed. Liquefaction probabilities of the other surficial geologic units are less than 0.05. Probabilities for the scenario earthquakes are generally consistent with observations during historical earthquakes.

  9. Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery

    NASA Technical Reports Server (NTRS)

    Uy, O. Manuel; Maurer, R. H.

    1987-01-01

    The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons.

  10. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

    USGS Publications Warehouse

    ,

    2008-01-01

    California?s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast?a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval. This report describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007).

  11. A seismic refraction and reflection study across the central San Jacinto Basin, Southern California

    USGS Publications Warehouse

    Lee, T.-C.; Biehler, S.; Park, S.K.; Stephenson, W.J.

    1996-01-01

    The San Jacinto Basin is a northwest-trending, pullapart basin in the San Jacinto fault zone of the San Andreas fault system in southern California. About 24 km long and 2 to 4 km wide, the basin sits on a graben bounded by two strands of the San Jacinto fault zone: the Claremont Fault on the northeast and the Casa Loma Fault on the southwest. We present a case study of shallow structure (less than 1 km) in the central basin. A 2.75-km refraction line running from the northeast to southwest across the regional structural trend reveals a groundwater barrier (Offset I). Another line, bent southward and continued for 1.65-km, shows a crystalline basement offset (Offset III) near an inferred trace of the Casa Loma Fault. Although a basement refractor was not observed along the 2.75-km line, a mismatch between the estimate of its minimum depth and the basement depth determined for the 1.65-km line suggests that an offset in the basement (greater than 260 m) exists around the junction of the two refraction lines (Offset II). By revealing more faults and subtle sedimentary structures, the reflection stack sections confirm the two refraction offsets as faults. Offsets I and III each separate sediments of contrasting structures and, in addition. Offset III disrupts an unconformity. However, the sense and amount of the offset across Offset III contradict what may be expected across the Casa Loma Fault, which has its basinward basement down-thrown to about 2.5 km in the better defined southeastern part of the graben. The Casa Loma Fault trace has been mislinked in the existing geological maps and the trace should be remapped to Offset II where the reflector disruptions spread over a 400-m wide zone. Our Offset III is an unnamed, concealed fault.

  12. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  13. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is high near Hualien, where an uplift of at least 0.6 m and probably more than 1 m occurred in the 1951 earthquake, and near and south of the 1946 faulting. Sudden uplifts can have serious consequences for installations near the shore. Investigation of this process, study of recently active faults, and continuing study of seismicity are necessary parts of a practical earthquake-hazard reduction program.

  14. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.

  15. Use of hydrogen etching to remove existing dislocations in GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yeh, Yen-Hsien; Chu, Chung-Ming; Wu, Yin-Hao; Hsu, Ying-Chia; Yu, Tzu-Yi; Lee, Wei-I.

    2015-08-01

    In this paper, based on the anisotropic nature of hydrogen (H2) etching on GaN, we describe a new approach to the removal of threading dislocations in GaN layers. The top surfaces of c-plane (Ga-face) and a-plane GaNs are considered stable in H2; therefore, H2 etches only crystal imperfections such as dislocation and basal plane stacking fault (BSF) sites. We used H2 to etch undoped c-plane GaN, n-type c-plane GaN, a-plane GaN, and an InGaN/GaN multiple quantum well structure. Several examinations were performed, indicating deep cavities on the c-plane GaN samples after H2 etching; furthermore, gorge-like grooves were observed on the a-plane GaN samples. The deep cavities on the c-plane GaN were considered the etched dislocation sites, and the gorge-like grooves on the a-plane GaN were considered the etched BSF sites. Photoluminescence measurements were performed and the results indicated that the H2-etched samples demonstrate superior optoelectronic properties, probably because of the elimination of dislocations.

  16. Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University

    2016-06-17

    Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less

  17. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  18. CIT-9: A Fault-Free Gmelinite Zeolite.

    PubMed

    Dusselier, Michiel; Kang, Jong Hun; Xie, Dan; Davis, Mark E

    2017-10-16

    A synthetic, fault-free gmelinite (GME) zeolite is prepared using a specific organic structure-directing agent (OSDA), cis-3,5-dimethylpiperidinium. The cis-isomers align in the main 12-membered ring (MR) channel of GME. Trans-isomer OSDA leads to the small-pore zeolite SSZ-39 with the OSDA in its cages. Data from N 2 -physisorption and rotation electron diffraction provide evidence for the openness of the 12 MR channel in the GME 12×8×8 pore architecture and the absence of stacking faults, respectively. CIT-9 is hydrothermally stable when K + -exchanged, while in the absence of exchange, the material transforms into an aluminous AFI-zeolite. The process of this phase-change was followed by in situ variable temperature powder X-ray diffraction. CIT-9 has the highest Si/Al ratio reported for GME, and along with its good porosity, opens the possibility of using GME in a variety of applications including catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu

    2017-01-01

    High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases.

  20. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy

    PubMed Central

    Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu

    2017-01-01

    High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases. PMID:28134297

  1. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We present model results to assess the influence of anthropogenic processes on surface deformation and fault mechanics.

  2. Timing of activity of two fault systems on Mercury

    NASA Astrophysics Data System (ADS)

    Galluzzi, V.; Guzzetta, L.; Giacomini, L.; Ferranti, L.; Massironi, M.; Palumbo, P.

    2015-10-01

    Here we discuss about two fault systems found in the Victoria and Shakespeare quadrangles of Mercury. The two fault sets intersect each other and show probable evidence for two stages of deformation. The most prominent system is N-S oriented and encompasses several tens to hundreds of kilometers long and easily recognizable fault segments. The other system strikes NE- SW and encompasses mostly degraded and short fault segments. The structural framework of the studied area and the morphological appearance of the faults suggest that the second system is older than the first one. We intend to apply the buffered crater counting technique on both systems to make a quantitative study of their timing of activity that could confirm the already clear morphological evidence.

  3. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm that the Banning strand has been the most probable rupture path for earthquakes nucleated on the southern San Andreas Fault over the past few thousand years, and is likely to remain so in the near future. This clarification of slip partitioning within the northwest Coachella Valley is timely given that the southern San Andreas Fault is considered overdue for a large earthquake.

  4. The most recent large earthquake on the Rodgers Creek fault, San Francisco bay area

    USGS Publications Warehouse

    Hecker, S.; Pantosti, D.; Schwartz, D.P.; Hamilton, J.C.; Reidy, L.M.; Powers, T.J.

    2005-01-01

    The Rodgers Creek fault (RCF) is a principal component of the San Andreas fault system north of San Francisco. No evidence appears in the historical record of a large earthquake on the RCF, implying that the most recent earthquake (MRE) occurred before 1824, when a Franciscan mission was built near the fault at Sonoma, and probably before 1776, when a mission and presidio were built in San Francisco. The first appearance of nonnative pollen in the stratigraphic record at the Triangle G Ranch study site on the south-central reach of the RCF confirms that the MRE occurred before local settlement and the beginning of livestock grazing. Chronological modeling of earthquake age using radiocarbon-dated charcoal from near the top of a faulted alluvial sequence at the site indicates that the MRE occurred no earlier than A.D. 1690 and most likely occurred after A.D. 1715. With these age constraints, we know that the elapsed time since the MRE on the RCF is more than 181 years and less than 315 years and is probably between 229 and 290 years. This elapsed time is similar to published recurrence-interval estimates of 131 to 370 years (preferred value of 230 years) and 136 to 345 years (mean of 205 years), calculated from geologic data and a regional earthquake model, respectively. Importantly, then, the elapsed time may have reached or exceeded the average recurrence time for the fault. The age of the MRE on the RCF is similar to the age of prehistoric surface rupture on the northern and southern sections of the Hayward fault to the south. This suggests possible rupture scenarios that involve simultaneous rupture of the Rodgers Creek and Hayward faults. A buried channel is offset 2.2 (+ 1.2, - 0.8) m along one side of a pressure ridge at the Triangle G Ranch site. This provides a minimum estimate of right-lateral slip during the MRE at this location. Total slip at the site may be similar to, but is probably greater than, the 2 (+ 0.3, - 0.2) m measured previously at the nearby Beebe Ranch site.

  5. Multiple large earthquakes in the past 1500 years on a fault in metropolitan Manila, the Philippines

    USGS Publications Warehouse

    Nelson, A.R.; Personius, S.F.; Rimando, R.E.; Punongbayan, R.S.; Tungol, N.; Mirabueno, H.; Rasdas, A.

    2000-01-01

    The first 14C-based paleoseismic study of an active fault in the Philippines shows that a right-lateral fault on the northeast edge of metropolitan Manila poses a greater seismic hazard than previously thought. Faulted hillslope colluvium, stream-channel alluvium, and debris-flow deposits exposed in trenches across the northern part of the west Marikina Valley fault record two or three surface-faulting events. Three eroded, clay-rich soil B horizons suggest thousands of years between surface faulting events, whereas 14C ages on detrital charcoal constrain the entire stratigraphic sequence to the past 1300-1700 years. We rely on the 14C ages to infer faulting recurrence of hundreds rather than thousands of years. Minimal soil development and modern 14C ages from colluvium overlying a faulted debris-flow deposit in a nearby stream exposure point to a historic age for a probable third or fourth (most recent) faulting event.

  6. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less

  7. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  8. SEGR in SiO$${}_2$$ –Si$$_3$$ N$$_4$$ Stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javanainen, Arto; Ferlet-Cavrois, Veronique; Bosser, Alexandre

    2014-04-17

    This work presents experimental SEGR data for MOS-devices, where the gate dielectrics are are made of stacked SiO 2–Si 3N 4 structures. Also a semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is proposed. Then statistical interrelationship between SEGR cross-section data and simulated energy deposition probabilities in thin dielectric layers is discussed.

  9. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ekren, E.B.

    1984-01-01

    Two northeast-trending buried right-lateral faults are inferred in the quadrangle; one in the southeast and one in the northwest. The one in the northwest probably offsets the comendite dike swarm about 3 km. This fault appears to be part of a broad right-lateral fault and flexure zone that juxtaposes the Hadn formation on the west against the Hulayfah group on the east.

  10. Robust real-time fault tracking for the 2011 Mw 9.0 Tohoku earthquake based on the phased-array-interference principle

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Parolai, Stefano; Zschau, Jochen

    2013-04-01

    Based on the principle of the phased array interference, we have developed an Iterative Deconvolution Stacking (IDS) method for real-time kinematic source inversion using near-field strong-motion and GPS networks. In this method, the seismic and GPS stations work like an array radar. The whole potential fault area is scanned patch by patch by stacking the apparent source time functions, which are obtained through deconvolution between the recorded seismograms and synthetic Green's functions. Once some significant source signals are detected any when and where, their signatures are removed from the observed seismograms. The procedure is repeated until the accumulative seismic moment being found converges and the residual seismograms are reduced below the noise level. The new approach does not need any artificial constraint used in the source parameterization such as, for example, fixing the hypocentre, restricting the rupture velocity and rise time, etc. Thus, it can be used for automatic real-time source inversion. In the application to the 2011 Tohoku earthquake, the IDS method is proved to be robust and reliable on the fast estimation of moment magnitude, fault area, rupture direction, and maximum slip, etc. About at 100 s after the rupture initiation, we can get the information that the rupture mainly propagates along the up-dip direction and causes a maximum slip of 17 m, which is enough to release a tsunami early warning. About two minutes after the earthquake occurrence, the maximum slip is found to be 31 m, and the moment magnitude reaches Mw8.9 which is very close to the final moment magnitude (Mw9.0) of this earthquake.

  11. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.

  12. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  13. Seismic Imaging of the West Napa Fault in Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Sickler, R. R.; Nevitt, J. M.; Criley, C.

    2017-12-01

    In October 2016, we acquired high-resolution P- and S-wave seismic data along a 120-m-long, SW-NE-trending profile in Napa, California. Our seismic survey was designed to image a strand of the West Napa Fault Zone (WNFZ), which ruptured during the 24 August 2014 Mw 6.0 South Napa Earthquake. We separately acquired P- and S-wave data at every station using multiple hammer hits, which were edited and stacked into individual shot gathers in the lab. Each shot was co-located with and recorded by 118 P-wave (40-Hz) geophones, spaced at 1 m, and by 180 S-wave (4.5-Hz) geophones, spaced at 1 m. We developed both P- and S-wave tomographic velocity models, as well as Poisson's ratio and a Vp/Vs ratio models. We observed a well-defined zone of elevated Vp/Vs ratios below about 10 m depth, centered beneath the observed surface rupture. P-wave reflection images show that the fault forms a flower-structure in the upper few tens of meters. This method has been shown to delineate fault structures even in areas of rough terrain.

  14. Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska

    USGS Publications Warehouse

    Biggs, Juliet; Wright, Tim; Lu, Zhong; Parsons, Barry

    2007-01-01

    Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 ?? 5.0 mm yr-1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  15. Probability of one or more M ≥7 earthquakes in southern California in 30 years

    USGS Publications Warehouse

    Savage, J.C.

    1994-01-01

    Eight earthquakes of magnitude greater than or equal to seven have occurred in southern California in the past 200 years. If one assumes that such events are the product of a Poisson process, the probability of one or more earthquakes of magnitude seven or larger in southern California within any 30 year interval is 67% ?? 23% (95% confidence interval). Because five of the eight M ??? 7 earthquakes in southern California in the last 200 years occurred away from the San Andreas fault system, the probability of one or more M ??? 7 earthquakes in southern California but not on the San Andreas fault system occurring within 30 years is 52% ?? 27% (95% confidence interval). -Author

  16. Structure Deformation of the Minjiang and Huya Fault, the Eastern Margin of the Tibetan Plateau Revealed by Deep Seismic Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Gao, R.; Wang, H.; Li, W.; Li, H.

    2014-12-01

    The Minshan region, located along the eastern margin of the Tibetan Plateau north of the Sichuan Basin, provides an important natural laboratory in which to study the patterns of deformation and their relationship to mountain building at the margin of the plateau. The Minshan range is bounded by the Minjiang fault to the west and Huya fault to the east. Evidence from the Neotectonics sediments suggests that deformation along the western Min Shan may reflect the surface response to thickening of a weak lower crust at the margin of the Tibetan Plateau (Kirby et al., 2000). In 2014, two deep seismic profiles was carried out across the Minjiang fault (55 km long) and Huya fault (45 km long) respectively, supported by China geological survey project (No.1212011220260) and Crust Probe Project of China (SinoProbe-02-01). The recording of seismic waves from 4 big shots (500kg), 100 middle shots (120 kg) and 400 small shots (36 kg) were employed. The geophones spacing is 50 m. The preliminary stack sections provide us a detailed deformation mechanism of the Minshan region for the first time. The result shows that: (1) The Huya fault section shows different reflection characteristics on the west and east flank. (2) The Moho reflection beneath the Huya fault, which appeared at 12-13 s two-way time, tilts from the east to the west. (3) The Minjiang fault shows as a series of thrust nappe in the upper crust. (4) A strong reflector appears in the middle crust of the Minjiang section at 8-9 s two-way times, and it dips down to the lower crust from west to east.

  17. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  18. The lithosphere-asthenosphere boundary beneath the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Hua, Junlin; Fischer, Karen M.; Savage, Martha K.

    2018-02-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.

  19. Aftershocks of microearthquakes as probes of the mechanics of rupture

    NASA Astrophysics Data System (ADS)

    Rubin, Allan M.

    2002-07-01

    Using a waveform cross-correlation technique, Rubin and Gillard [2000] obtained precise relative locations for 4300 0.5 < M < 3.5 earthquakes occurring along 50 km of the San Andreas fault. This study adds to that another 5000 earthquakes distributed along 10 km of the San Andreas fault and 20 km of the Calaveras fault. Errors in relative location are typically tens of meters for earthquakes separated by hundreds of meters and, after correcting for time-dependent station delays, meters for earthquakes separated by tens of meters. Along both faults, the minimum separation between consecutive earthquakes scales with magnitude in a manner consistent with a magnitude-independent stress drop. By treating each earthquake on the San Andreas as if it were a main shock, scaling the distances to all subsequent earthquakes by main shock size, and stacking the results, a ``composite'' aftershock sequence is produced that has many of the characteristics predicted by rate-and-state friction models. Projected onto the fault surface, these aftershocks outline a quasi-elliptical, roughly 4-MPa stress drop main shock elongate in the slip-parallel direction by ~40%. At the ends of the major axes of this ellipse over twice as many aftershocks occur to the NW than to the SE, an asymmetry attributed to the contrast in material properties across the fault. Unlike the San Andreas, the Calaveras fault exhibits little P wave velocity contrast and no discernible aftershock asymmetry; however, the earliest part of the aftershock sequence on the Calaveras might be truncated by the ~30-s ``blind'' time of the network following a triggering event.

  20. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

Top