NASA Astrophysics Data System (ADS)
Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.
2015-07-01
A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.
Design Study of the Absorber Detector of a Compton Camera for On-Line Control in Ion Beam Therapy
NASA Astrophysics Data System (ADS)
Richard, M.-H.; Dahoumane, M.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Krimmer, J.; Letang, J. M.; Lojacono, X.; Maxim, V.; Montarou, G.; Ray, C.; Roellinghoff, F.; Testa, E.; Walenta, A. H.
2012-10-01
The goal of this study is to tune the design of the absorber detector of a Compton camera for prompt γ-ray imaging during ion beam therapy. The response of the Compton camera to a photon point source with a realistic energy spectrum (corresponding to the prompt γ-ray spectrum emitted during the carbon irradiation of a water phantom) is studied by means of Geant4 simulations. Our Compton camera consists of a stack of 2 mm thick silicon strip detectors as a scatter detector and of a scintillator plate as an absorber detector. Four scintillators are considered: LYSO, NaI, LaBr3 and BGO. LYSO and BGO appear as the most suitable materials, due to their high photo-electric cross-sections, which leads to a high percentage of fully absorbed photons. Depth-of-interaction measurements are shown to have limited influence on the spatial resolution of the camera. In our case, the thickness which gives the best compromise between a high percentage of photons that are fully absorbed and a low parallax error is about 4 cm for the LYSO detector and 4.5 cm for the BGO detector. The influence of the width of the absorber detector on the spatial resolution is not very pronounced as long as it is lower than 30 cm.
Development of a Compton camera for prompt-gamma medical imaging
NASA Astrophysics Data System (ADS)
Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.
2017-11-01
A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.
Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine
NASA Astrophysics Data System (ADS)
Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.
2017-01-01
Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-02-03
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.
Development of a Compton camera for safeguards applications in a pyroprocessing facility
NASA Astrophysics Data System (ADS)
Park, Jin Hyung; Kim, Young Su; Kim, Chan Hyeong; Seo, Hee; Park, Se-Hwan; Kim, Ho-Dong
2014-11-01
The Compton camera has a potential to be used for localizing nuclear materials in a large pyroprocessing facility due to its unique Compton kinematics-based electronic collimation method. Our R&D group, KAERI, and Hanyang University have made an effort to develop a scintillation-detector-based large-area Compton camera for safeguards applications. In the present study, a series of Monte Carlo simulations was performed with Geant4 in order to examine the effect of the detector parameters and the feasibility of using a Compton camera to obtain an image of the nuclear material distribution. Based on the simulation study, experimental studies were performed to assess the possibility of Compton imaging in accordance with the type of the crystal. Two different types of Compton cameras were fabricated and tested with a pixelated type of LYSO (Ce) and a monolithic type of NaI(Tl). The conclusions of this study as a design rule for a large-area Compton camera can be summarized as follows: 1) The energy resolution, rather than position resolution, of the component detector was the limiting factor for the imaging resolution, 2) the Compton imaging system needs to be placed as close as possible to the source location, and 3) both pixelated and monolithic types of crystals can be utilized; however, the monolithic types, require a stochastic-method-based position-estimating algorithm for improving the position resolution.
The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji
2014-11-01
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.
Development of compact Compton camera for 3D image reconstruction of radioactive contamination
NASA Astrophysics Data System (ADS)
Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.
2017-11-01
The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.
Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz
2016-02-02
A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.
Peterson, S W; Robertson, D; Polf, J
2011-01-01
In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295
Compton camera study for high efficiency SPECT and benchmark with Anger system
NASA Astrophysics Data System (ADS)
Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.
2017-12-01
Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.
Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics
Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei
2017-01-01
Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870
NASA Astrophysics Data System (ADS)
Moon, Sunghwan
2017-06-01
A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.
NASA Astrophysics Data System (ADS)
Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.
2014-12-01
After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.
Demonstration of in-vivo Multi-Probe Tracker Based on a Si/CdTe Semiconductor Compton Camera
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Odaka, Hirokazu; Ishikawa, Shin-nosuke; Watanabe, Shin; Aono, Hiroyuki; Takahashi, Tadayuki; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi
2012-02-01
By using a prototype Compton camera consisting of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors, originally developed for the ASTRO-H satellite mission, an experiment involving imaging multiple radiopharmaceuticals injected into a living mouse was conducted to study its feasibility for medical imaging. The accumulation of both iodinated (131I) methylnorcholestenol and 85Sr into the mouse's organs was simultaneously imaged by the prototype. This result implies that the Compton camera is expected to become a multi-probe tracker available in nuclear medicine and small animal imaging.
NASA Astrophysics Data System (ADS)
Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.
2017-07-01
Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.
Variance-reduction normalization technique for a compton camera system
NASA Astrophysics Data System (ADS)
Kim, S. M.; Lee, J. S.; Kim, J. H.; Seo, H.; Kim, C. H.; Lee, C. S.; Lee, S. J.; Lee, M. C.; Lee, D. S.
2011-01-01
For an artifact-free dataset, pre-processing (known as normalization) is needed to correct inherent non-uniformity of detection property in the Compton camera which consists of scattering and absorbing detectors. The detection efficiency depends on the non-uniform detection efficiency of the scattering and absorbing detectors, different incidence angles onto the detector surfaces, and the geometry of the two detectors. The correction factor for each detected position pair which is referred to as the normalization coefficient, is expressed as a product of factors representing the various variations. The variance-reduction technique (VRT) for a Compton camera (a normalization method) was studied. For the VRT, the Compton list-mode data of a planar uniform source of 140 keV was generated from a GATE simulation tool. The projection data of a cylindrical software phantom were normalized with normalization coefficients determined from the non-uniformity map, and then reconstructed by an ordered subset expectation maximization algorithm. The coefficient of variations and percent errors of the 3-D reconstructed images showed that the VRT applied to the Compton camera provides an enhanced image quality and the increased recovery rate of uniformity in the reconstructed image.
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...
2016-02-15
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
NASA Astrophysics Data System (ADS)
Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.
2013-04-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Yoshimura, S.; Seto, Y.; Kato, S.; Takahashi, M.; Momose, T.
2016-08-01
As well as pre-operative roadmapping by 18F-Fluoro-2-deoxy-2-D-glucose (FDG) positron emission tomography, intra-operative localization of the tracer is important to identify local margins for less-invasive surgery, especially FDG-guided surgery. The objective of this paper is to develop a laparoscopic Compton camera and system aimed at use for intra-operative FDG imaging for accurate and less-invasive dissections. The laparoscopic Compton camera consists of four layers of a 12-pixel cross-shaped array of GFAG crystals (2× 2× 3 mm3) and through silicon via multi-pixel photon counters and dedicated individual readout electronics based on a dynamic time-over-threshold method. Experimental results yielded a spatial resolution of 4 mm (FWHM) for a 10 mm working distance and an absolute detection efficiency of 0.11 cps kBq-1, corresponding to an intrinsic detection efficiency of ˜0.18%. In an experiment using a NEMA-like well-shaped FDG phantom, a φ 5× 10 mm cylindrical hot spot was clearly obtained even in the presence of a background distribution surrounding the Compton camera and the hot spot. We successfully obtained reconstructed images of a resected lymph node and primary tumor ex vivo after FDG administration to a patient having esophageal cancer. These performance characteristics indicate a new possibility of FDG-directed surgery by using a Compton camera intra-operatively.
NASA Astrophysics Data System (ADS)
Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.
2018-01-01
The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.
The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"
NASA Astrophysics Data System (ADS)
Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki
2016-01-01
The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.
NASA Astrophysics Data System (ADS)
Ilisie, V.; Giménez-Alventosa, V.; Moliner, L.; Sánchez, F.; González, A. J.; Rodríguez-Álvarez, M. J.; Benlloch, J. M.
2018-07-01
Current PET detectors have a very low sensitivity, of the order of a few percent. One of the reasons is the fact that Compton interactions are rejected. If an event involves multiple Compton scattering and the total deposited energy lays within the photoelectric peak, then an energy-weighted centroid is the given output for the coordinates of the reconstructed interaction point. This introduces distortion in the final reconstructed image. The aim of our work is to prove that Compton events are a very rich source of additional information as one can improve the resolution of the detector and implicitly the final reconstructed image. This could be a real breakthrough for PET detector technology as one should be able to obtain better results with less patient radiation. Using a PET as a double Compton camera, by means of Compton cone matching i.e., Compton cones coming from the same event should be compatible, is applied to discard randoms, patient scattered events and also, to perform a correct matching among events with multiple coincidences. In order to fully benefit experimentally from Compton events using monolithic scintillators a multi-layer configuration is needed and a good time-of-flight resolution.
NASA Astrophysics Data System (ADS)
Katsuta, Junichiro; Edahiro, Ikumi; Watanabe, Shin; Odaka, Hirokazu; Uchida, Yusuke; Uchida, Nagomi; Mizuno, Tsunefumi; Fukazawa, Yasushi; Hayashi, Katsuhiro; Habata, Sho; Ichinohe, Yuto; Kitaguchi, Takao; Ohno, Masanori; Ohta, Masayuki; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tajima, Hiroyasu; Yuasa, Takayuki; Itou, Masayoshi; SGD Team
2016-12-01
Gamma-ray polarization offers a unique probe into the geometry of the γ-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649-0.701 (inner part) and 0.637-0.653 (outer part) at 122.2 keV and 0.610-0.651 (inner part) and 0.564-0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ∼ 3 % .
"Stereo Compton cameras" for the 3-D localization of radioisotopes
NASA Astrophysics Data System (ADS)
Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.
2014-11-01
The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.
Directional Unfolded Source Term (DUST) for Compton Cameras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean
2018-03-01
A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.
Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe Compton camera.
Suzuki, Yoshiyuki; Yamaguchi, Mitsutaka; Odaka, Hirokazu; Shimada, Hirofumi; Yoshida, Yukari; Torikai, Kota; Satoh, Takahiro; Arakawa, Kazuo; Kawachi, Naoki; Watanabe, Shigeki; Takeda, Shin'ichiro; Ishikawa, Shin-nosuke; Aono, Hiroyuki; Watanabe, Shin; Takahashi, Tadayuki; Nakano, Takashi
2013-06-01
To develop a silicon (Si) and cadmium telluride (CdTe) imaging Compton camera for biomedical application on the basis of technologies used for astrophysical observation and to test its capacity to perform three-dimensional (3D) imaging. All animal experiments were performed according to the Animal Care and Experimentation Committee (Gunma University, Maebashi, Japan). Flourine 18 fluorodeoxyglucose (FDG), iodine 131 ((131)I) methylnorcholestenol, and gallium 67 ((67)Ga) citrate, separately compacted into micro tubes, were inserted subcutaneously into a Wistar rat, and the distribution of the radioisotope compounds was determined with 3D imaging by using the Compton camera after the rat was sacrificed (ex vivo model). In a separate experiment, indium 111((111)In) chloride and (131)I-methylnorcholestenol were injected into a rat intravenously, and copper 64 ((64)Cu) chloride was administered into the stomach orally just before imaging. The isotope distributions were determined with 3D imaging after sacrifice by means of the list-mode-expectation-maximizing-maximum-likelihood method. The Si/CdTe Compton camera demonstrated its 3D multinuclear imaging capability by separating out the distributions of FDG, (131)I-methylnorcholestenol, and (67)Ga-citrate clearly in a test-tube-implanted ex vivo model. In the more physiologic model with tail vein injection prior to sacrifice, the distributions of (131)I-methylnorcholestenol and (64)Cu-chloride were demonstrated with 3D imaging, and the difference in distribution of the two isotopes was successfully imaged although the accumulation on the image of (111)In-chloride was difficult to visualize because of blurring at the low-energy region. The Si/CdTe Compton camera clearly resolved the distribution of multiple isotopes in 3D imaging and simultaneously in the ex vivo model.
NASA Astrophysics Data System (ADS)
Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.
2014-11-01
After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.
Robertson, Daniel; Polf, Jerimy C; Peterson, Steve W; Gillin, Michael T; Beddar, Sam
2011-01-01
Prompt gamma rays emitted from biological tissues during proton irradiation carry dosimetric and spectroscopic information that can assist with treatment verification and provide an indication of the biological response of the irradiated tissues. Compton cameras are capable of determining the origin and energy of gamma rays. However, prompt gamma monitoring during proton therapy requires new Compton camera designs that perform well at the high gamma energies produced when tissues are bombarded with therapeutic protons. In this study we optimize the materials and geometry of a three-stage Compton camera for prompt gamma detection and calculate the theoretical efficiency of such a detector. The materials evaluated in this study include germanium, bismuth germanate (BGO), NaI, xenon, silicon and lanthanum bromide (LaBr3). For each material, the dimensions of each detector stage were optimized to produce the maximum number of relevant interactions. These results were used to predict the efficiency of various multi-material cameras. The theoretical detection efficiencies of the most promising multi-material cameras were then calculated for the photons emitted from a tissue-equivalent phantom irradiated by therapeutic proton beams ranging from 50 to 250 MeV. The optimized detector stages had a lateral extent of 10 × 10 cm2 with the thickness of the initial two stages dependent on the detector material. The thickness of the third stage was fixed at 10 cm regardless of material. The most efficient single-material cameras were composed of germanium (3 cm) and BGO (2.5 cm). These cameras exhibited efficiencies of 1.15 × 10−4 and 9.58 × 10−5 per incident proton, respectively. The most efficient multi-material camera design consisted of two initial stages of germanium (3 cm) and a final stage of BGO, resulting in a theoretical efficiency of 1.26 × 10−4 per incident proton. PMID:21508442
Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging
NASA Astrophysics Data System (ADS)
Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.
2011-02-01
The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.
NASA Astrophysics Data System (ADS)
Lojacono, Xavier; Richard, Marie-Hélène; Ley, Jean-Luc; Testa, Etienne; Ray, Cédric; Freud, Nicolas; Létang, Jean Michel; Dauvergne, Denis; Maxim, Voichiţa; Prost, Rémy
2013-10-01
The Compton camera is a relevant imaging device for the detection of prompt photons produced by nuclear fragmentation in hadrontherapy. It may allow an improvement in detection efficiency compared to a standard gamma-camera but requires more sophisticated image reconstruction techniques. In this work, we simulate low statistics acquisitions from a point source having a broad energy spectrum compatible with hadrontherapy. We then reconstruct the image of the source with a recently developed filtered backprojection algorithm, a line-cone approach and an iterative List Mode Maximum Likelihood Expectation Maximization algorithm. Simulated data come from a Compton camera prototype designed for hadrontherapy online monitoring. Results indicate that the achievable resolution in directions parallel to the detector, that may include the beam direction, is compatible with the quality control requirements. With the prototype under study, the reconstructed image is elongated in the direction orthogonal to the detector. However this direction is of less interest in hadrontherapy where the first requirement is to determine the penetration depth of the beam in the patient. Additionally, the resolution may be recovered using a second camera.
ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETRCRITICAL ...
ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETR-CRITICAL FACILITY BUILDING, ETR CONTROL BUILDING (ATTACHED TO HIGH-BAY ETR), ETR, ONE-STORY SECTION OF ETR BUILDING, ELECTRICAL BUILDING, COOLING TOWER PUMP HOUSE, COOLING TOWER. COMPRESSOR AND HEAT EXCHANGER BUILDING ARE PARTLY IN VIEW ABOVE ETR. DARK-COLORED DUCTS PROCEED FROM GROUND CONNECTION TO ETR WASTE GAS STACK. OTHER STACK IS MTR STACK WITH FAN HOUSE IN FRONT OF IT. RECTANGULAR STRUCTURE NEAR TOP OF VIEW IS SETTLING BASIN. INL NEGATIVE NO. 56-4102. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Feasibility Study of Compton Cameras for X-ray Fluorescence Computed Tomography with Humans
Vernekohl, Don; Ahmad, Moiz; Chinn, Garry; Xing, Lei
2017-01-01
X-ray fluorescence imaging is a promising imaging technique able to depict the spatial distributions of low amounts of molecular agents in vivo. Currently, the translation of the technique to preclinical and clinical applications is hindered by long scanning times as objects are scanned with flux-limited narrow pencil beams. The study presents a novel imaging approach combining x-ray fluorescence imaging with Compton imaging. Compton cameras leverage the imaging performance of XFCT and abolish the need of pencil beam excitation. The study examines the potential of this new imaging approach on the base of Monte-Carlo simulations. In the work, it is first presented that the particular option of slice/fan-beam x-ray excitation has advantages in image reconstruction in regard of processing time and image quality compared to traditional volumetric Compton imaging. In a second experiment, the feasibility of the approach for clinical applications with tracer agents made from gold nano-particles is examined in a simulated lung scan scenario. The high energy of characteristic x-ray photons from gold is advantageous for deep tissue penetration and has lower angular blurring in the Compton camera. It is found that Doppler broadening in the first detector stage of the Compton camera adds the largest contribution on the angular blurring; physically limiting the spatial resolution. Following the analysis of the results from the spatial resolution test, resolutions in the order of one centimeter are achievable with the approach in the center of the lung. The concept of Compton imaging allows to distinguish to some extend between scattered photons and x-ray fluorescent photons based on their difference in emission position. The results predict that molecular sensitivities down to 240 pM/l for 5 mm diameter lesions at 15 mGy for 50 nm diameter gold nano-particles are achievable. A 45-fold speed up time for data acquisition compared to traditional pencil beam XFCT could be achieved for lung imaging on cost of a small sensitivity decrease. PMID:27845933
Electron-tracking Compton gamma-ray camera for small animal and phantom imaging
NASA Astrophysics Data System (ADS)
Kabuki, Shigeto; Kimura, Hiroyuki; Amano, Hiroo; Nakamoto, Yuji; Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki; Kawashima, Hidekazu; Ueda, Masashi; Okada, Tomohisa; Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki; Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji; Ogawa, Koichi; Togashi, Kaori; Saji, Hideo; Tanimori, Toru
2010-11-01
We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.
X-ray Obscured AGN in the GOODS-N
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.
2010-07-01
We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.
Compton camera imaging and the cone transform: a brief overview
NASA Astrophysics Data System (ADS)
Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid
2018-05-01
While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.
A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio
2017-06-01
We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
NASA Astrophysics Data System (ADS)
Coffer, Amy Beth
Radiation imagers are import tools in the modern world for a wide range of applications. They span the use-cases of fundamental sciences, astrophysics, medical imaging, all the way to national security, nuclear safeguards, and non-proliferation verification. The type of radiation imagers studied in this thesis were gamma-ray imagers that detect emissions from radioactive materials. Gamma-ray imagers goal is to localize and map the distribution of radiation within their specific field-of-view despite the fact of complicating background radiation that can be terrestrial, astronomical, and temporal. Compton imaging systems are one type of gamma-ray imager that can map the radiation around the system without the use of collimation. Lack of collimation enables the imaging system to be able to detect radiation from all-directions, while at the same time, enables increased detection efficiency by not absorbing incident radiation in non-sensing materials. Each Compton-scatter events within an imaging system generated a possible cone-surface in space that the radiation could have originated from. Compton imaging is limited in its reconstructed image signal-to-background due to these source Compton-cones overlapping with background radiation Compton-cones. These overlapping cones limit Compton imaging's detection-sensitivity in image space. Electron-tracking Compton imaging (ETCI) can improve the detection-sensitivity by measuring the Compton-scattered electron's initial trajectory. With an estimate of the scattered electron's trajectory, one can reduce the Compton-back-projected cone to a cone-arc, thus enabling faster radiation source detection and localization. However, the ability to measure the Compton-scattered electron-trajectories adds another layer of complexity to an already complex methodology. For a real-world imaging applications, improvements are needed in electron-track detection efficiency and in electron-track reconstruction. One way of measuring Compton-scattered electron-trajectories is with high-resolution Charged-Coupled Devices (CCDs). The proof-of-principle CCD-based ETCI experiment demonstrated the CCDs' ability to measure the Compton-scattered electron-tracks as a 2-dimensional image. Electron-track-imaging algorithms using the electron-track-image are able to determine the 3-dimensional electron-track trajectory within +/- 20 degrees. The work presented here is the physics simulations developed along side the experimental proof-of-principle experiment. The development of accurate physics modeling for multiple-layer CCDs based ETCI systems allow for the accurate prediction of future ETCI system performance. The simulations also enable quick development insights for system design, and they guide the development of electron-track reconstruction methods. The physics simulation efforts for this project looked closely at the accuracy of the Geant4 Monte Carlo methods for medium energy electron transport. In older version of Geant4 there were some discrepancies between the electron-tracking experimental measurements and the simulation results. It was determined that when comparing the electron dynamics of electrons at very high resolutions, Geant4 simulations must be fine tuned with careful choices for physics production cuts and electron physics stepping sizes. One result of this work is a CCDs Monte Carlo model that has been benchmarked to experimental findings and fully characterized for both photon and electron transport. The CCDs physics model now match to within 1 percent error of experimental results for scattered-electron energies below 500 keV. Following the improvements of the CCDs simulations, the performance of a realistic two-layer CCD-stack system was characterized. The realistic CCD-stack system looked at the effect of thin passive-layers on the CCDs' front face and back-contact. The photon interaction efficiency was calculated for the two-layer CCD-stack, and we found that there is a 90 percent probability of scattered-electrons from a 662 keV source to stay within a single active layer. This demonstrates the improved detection efficiency, which is one of the strengths of the CCDs' implementation as a ETCI system. The CCD-stack simulations also established that electron-tracks scattering from one CCDs layer to another could be reconstructed. The passive-regions on the CCD-stack mean that these inter-layer scattered-electron-tracks will always loose both angular information and energy information. Looking at the angular changes of these electrons scattering between the CCDs layers showed us there is not a strong energy dependence on the angular changes due to the passive-regions of the CCDs. The angular changes of the electron track are, for the most part, a function of the thickness of the thin back-layer of the CCDs. Lastly, an approach using CCD-stack simulations was developed to reconstruct the energy transport across dead-layers and its feasibility was demonstrated. Adding back this lost energy will limit the loss of energy resolution of the scatter-interactions. Energy resolution losses would negatively impacted the achievable image resolution from image reconstruction algorithms. Returning some of the energy back to the reconstructed electron-track will help retain the expected performance of the electron-track trajectory determination algorithm.
X-ray obscured AGN in the GOODS-N
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, M.
2010-07-01
We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ/fR>1000. This population has been proposed to contain a significan fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is fla with Γ = 1+/-0.1 very similar to the stacked spectrum of the undetected DOGs (Γ = 0.8+/-0.2). However, many of our X-ray detected DOGs present only moderate absorption with column densities 1022
Study and comparison of different sensitivity models for a two-plane Compton camera.
Muñoz, Enrique; Barrio, John; Bernabéu, José; Etxebeste, Ane; Lacasta, Carlos; Llosá, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F
2018-06-25
Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with 22 Na sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.
NASA Astrophysics Data System (ADS)
Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo
2018-02-01
We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.
Astatine-211 imaging by a Compton camera for targeted radiotherapy.
Nagao, Yuto; Yamaguchi, Mitsutaka; Watanabe, Shigeki; Ishioka, Noriko S; Kawachi, Naoki; Watabe, Hiroshi
2018-05-24
Astatine-211 is a promising radionuclide for targeted radiotherapy. It is required to image the distribution of targeted radiotherapeutic agents in a patient's body for optimization of treatment strategies. We proposed to image 211 At with high-energy photons to overcome some problems in conventional planar or single-photon emission computed tomography imaging. We performed an imaging experiment of a point-like 211 At source using a Compton camera, and demonstrated the capability of imaging 211 At with the high-energy photons for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Soft gamma-ray detector for the ASTRO-H Mission
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki
2012-09-01
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.
The soft gamma-ray detector (SGD) onboard ASTRO-H
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki
2016-07-01
The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.
Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2010-02-01
We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.
NASA Astrophysics Data System (ADS)
Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.
2018-01-01
During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
Motion Imagery and Robotics Application (MIRA)
NASA Technical Reports Server (NTRS)
Martinez, Lindolfo; Rich, Thomas
2011-01-01
Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.
Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2012-10-01
In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.
Application of preconditioned alternating direction method of multipliers in depth from focal stack
NASA Astrophysics Data System (ADS)
Javidnia, Hossein; Corcoran, Peter
2018-03-01
Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.
Filtered back-projection algorithm for Compton telescopes
Gunter, Donald L [Lisle, IL
2008-03-18
A method for the conversion of Compton camera data into a 2D image of the incident-radiation flux on the celestial sphere includes detecting coincident gamma radiation flux arriving from various directions of a 2-sphere. These events are mapped by back-projection onto the 2-sphere to produce a convolution integral that is subsequently stereographically projected onto a 2-plane to produce a second convolution integral which is deconvolved by the Fourier method to produce an image that is then projected onto the 2-sphere.
MTR STACK, TRA710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY ...
MTR STACK, TRA-710, CONTEXTUAL VIEW, CAMERA FACING SOUTH. PERIMETER SECURITY FENCE AND SECURITY LIGHTING IN VIEW AT LEFT. INL NEGATIVE NO. HD52-1-1. Mike Crane, Photographer, 5/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A low-count reconstruction algorithm for Compton-based prompt gamma imaging
NASA Astrophysics Data System (ADS)
Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei
2018-04-01
The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.
In vivo verification of particle therapy: how Compton camera configurations affect 3D image quality
NASA Astrophysics Data System (ADS)
Mackin, D.; Draeger, E.; Peterson, S.; Polf, J.; Beddar, S.
2017-05-01
The steep dose gradients enabled by the Bragg peaks of particle therapy beams are a double edged sword. They enable highly conformal dose distributions, but even small deviations from the planned beam range can cause overdosing of healthy tissue or under-dosing of the tumour. To reduce this risk, particle therapy treatment plans include margins large enough to account for all the sources of range uncertainty, which include patient setup errors, patient anatomy changes, and CT number to stopping power ratios. Any system that could verify the beam range in vivo, would allow reduced margins and more conformal dose distributions. Toward our goal developing such a system based on Compton camera (CC) imaging, we studied how three configurations (single camera, parallel opposed, and orthogonal) affect the quality of the 3D images. We found that single CC and parallel opposed configurations produced superior images in 2D. The increase in parallax produced by an orthogonal CC configuration was shown to be beneficial in producing artefact free 3D images.
The space density of Compton-thick AGN at z ≈ 0.8 in the zCOSMOS-Bright Survey
NASA Astrophysics Data System (ADS)
Vignali, C.; Mignoli, M.; Gilli, R.; Comastri, A.; Iwasawa, K.; Zamorani, G.; Mainieri, V.; Bongiorno, A.
2014-11-01
Context. The obscured accretion phase in black hole growth is a crucial ingredient in many models linking the active galactic nuclei (AGN) activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing, although several attempts in this direction have been carried out recently, mostly in the hard X-rays and at mid-infrared wavelengths. Aims: The purpose of this work is to assess whether the [Ne v] emission line at 3426 Å can reliably pick up obscured AGN up to z ≈ 1 by assuming that it is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. Methods: A sample of 69 narrow-line (Type 2) AGN at z ≈ 0.65-1.20 were selected from the 20k-zCOSMOS Bright galaxy sample on the basis of the presence of the [Ne v]3426 Å emission. The X-ray properties of these galaxies were then derived using the Chandra-COSMOS coverage of the field; the X-ray-to-[Ne v] flux ratio, coupled with X-ray spectral and stacking analyses, was then used to infer whether Compton-thin or Compton-thick absorption is present in these sources. Then the [Ne v] luminosity function was computed to estimate the space density of Compton-thick AGN at z ≈ 0.8. Results: Twenty-three sources were detected by Chandra, and their properties are consistent with moderate obscuration (on average, ≈a few × 1022 cm-2). The X-ray properties of the remaining 46 X-ray undetected Type 2 AGN (among which we expect to find the most heavily obscured objects) were derived using X-ray stacking analysis. Current data, supported by Monte Carlo simulations, indicate that a fraction as high as ≈40% of the present sample is likely to be Compton thick. The space density of Compton-thick AGN with logL2-10 keV> 43.5 at z = 0.83 is ΦThick = (9.1 ± 2.1) × 10-6 Mpc-3, in good agreement with both X-ray background model expectations and the previously measured space density for objects in a similar redshift and luminosity range. We regard our selection technique for Compton-thick AGN as clean but not complete, since even a mild extinction in the narrow-line region can suppress [Ne v] emission. Therefore, our estimate of their space density should be considered as a lower limit.
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
Prototype of a single probe Compton camera for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Koyama, A.; Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Sakuma, I.
2017-02-01
Image-guided surgery (IGS) is performed using a real-time surgery navigation system with three-dimensional (3D) position tracking of surgical tools. IGS is fast becoming an important technology for high-precision laparoscopic surgeries, in which the field of view is limited. In particular, recent developments in intraoperative imaging using radioactive biomarkers may enable advanced IGS for supporting malignant tumor removal surgery. In this light, we develop a novel intraoperative probe with a Compton camera and a position tracking system for performing real-time radiation-guided surgery. A prototype probe consisting of Ce :Gd3 Al2 Ga3 O12 (GAGG) crystals and silicon photomultipliers was fabricated, and its reconstruction algorithm was optimized to enable real-time position tracking. The results demonstrated the visualization capability of the radiation source with ARM = ∼ 22.1 ° and the effectiveness of the proposed system.
NASA Astrophysics Data System (ADS)
Hogan, Matthew John
A positron emission tomography system designed to perform high resolution imaging of small volumes has been characterized. Two large area planar detectors, used to detect the annihilation gamma rays, formed a large aperture stationary positron camera. The detectors were multiwire proportional chambers coupled to high density lead stack converters. Detector efficiency was 8%. The coincidence resolving time was 500 nsec. The maximum system sensitivity was 60 cps/(mu)Ci for a solid angle of acceptance of 0.74(pi) St. The maximum useful coincidence count rate was 1500 cps and was limited by electronic dead time. Image reconstruction was done by performing a 3-dimensional deconvolution using Fourier transform methods. Noise propagation during reconstruction was minimized by choosing a 'minimum norm' reconstructed image. In the stationary detector system (with a limited angle of acceptance for coincident events) statistical uncertainty in the data limited reconstruction in the direction normal to the detector surfaces. Data from a rotated phantom showed that detector rotation will correct this problem. Resolution was 4 mm in planes parallel to the detectors and (TURN)15 mm in the normal direction. Compton scattering of gamma rays within a source distribution was investigated using both simulated and measured data. Attenuation due to scatter was as high as 60%. For small volume imaging the Compton background was identified and an approximate correction was performed. A semiquantitative blood flow measurement to bone in the leg of a cat using the ('18)F('-) ion was performed. The results were comparable to investigations using more conventional techniques. Qualitative scans using ('18)F labelled deoxy -D-glucose to assess brain glucose metabolism in a rhesus monkey were also performed.
LOFT, TAN650. Camera facing southeast. From left to right: stack ...
LOFT, TAN-650. Camera facing southeast. From left to right: stack in distance, pre-amp wing, dome, north side of loft "service building." Note poured concrete wall of pre-amp wing on lower section; pumice block above. Date: May 2004. INEEL negative no. HD-39-19-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Enhancing Close-Up Image Based 3d Digitisation with Focus Stacking
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Chliverou, R.; Koutsoudis, A.; Pavlidis, G.; Georgopoulos, A.
2017-08-01
The 3D digitisation of small artefacts is a very complicated procedure because of their complex morphological feature structures, concavities, rich decorations, high frequency of colour changes in texture, increased accuracy requirements etc. Image-based methods present a low cost, fast and effective alternative because laser scanning does not meet the accuracy requirements in general. A shallow Depth of Field (DoF) affects the image-based 3D reconstruction and especially the point matching procedure. This is visible not only in the total number of corresponding points but also in the resolution of the produced 3D model. The extension of the DoF is a very important task that should be incorporated in the data collection to attain a better quality of the image set and a better 3D model. An extension of the DoF can be achieved with many methods and especially with the use of the focus stacking technique. In this paper, the focus stacking technique was tested in a real-world experiment to digitise a museum artefact in 3D. The experiment conditions include the use of a full frame camera equipped with a normal lens (50mm), with the camera being placed close to the object. The artefact has already been digitised with a structured light system and that model served as the reference model in which 3D models were compared and the results were presented.
Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging
NASA Astrophysics Data System (ADS)
Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.
2008-10-01
98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.
Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.
Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro
2016-01-01
At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.
Mildly obscured active galaxies and the cosmic X-ray background
NASA Astrophysics Data System (ADS)
Esposito, V.; Walter, R.
2016-05-01
Context. The diffuse cosmic X-ray background (CXB) is the sum of the emission of discrete sources, mostly massive black-holes accreting matter in active galactic nuclei (AGN). The CXB spectrum differs from the integration of the spectra of individual sources, calling for a large population, undetected so far, of strongly obscured Compton-thick AGN. Such objects are predicted by unified models, which attribute most of the AGN diversity to their inclination on the line of sight, and play an important role for the understanding of the growth of black holes in the early Universe. Aims: The percentage of strongly obscured Compton-thick AGN at low redshift can be derived from the observed CXB spectrum, if we assume AGN spectral templates and luminosity functions. Methods: We show that high signal-to-noise stacked hard X-ray spectra, derived from more than a billion seconds of effective exposure time with the Swift/BAT instrument, imply that mildly obscured Compton-thin AGN feature a strong reflection and contribute massively to the CXB. Results: A population of Compton-thick AGN larger than that which is effectively detected is not required to reproduce the CXB spectrum, since no more than 6% of the CXB flux can be attributed to them. The stronger reflection observed in mildly obscured AGN suggests that the covering factor of the gas and dust surrounding their central engines is a key factor in shaping their appearance. These mildly obscured AGN are easier to study at high redshift than Compton-thick sources are.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
Stack of Layers at 'Payson' in Meridiani Planum
NASA Technical Reports Server (NTRS)
2006-01-01
The stack of fine layers exposed at a ledge called 'Payson' on the western edge of 'Erebus Crater' in Mars' Meridiani Planum shows a diverse range of primary and secondary sedimentary textures formed billions of years ago. These structures likely result from an interplay between windblown and water-involved processes. The panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity acquired the exposures for this image on the rover's 749th Martian day (March 3, 2006) This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.NASA Astrophysics Data System (ADS)
Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried
2007-02-01
We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60×60×1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5×5×6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ≈1 mm diameter 22Na source, showed a focal ray tracing FWHM of 1 mm.
The GSFC Advanced Compton Telescope (ACT)
NASA Technical Reports Server (NTRS)
Hartman, R.; Fichtel, C.; Kniffen, D.; Trombka, J.; Stacy, G.
1983-01-01
A new telescope is being developed at GSFC for the study of point sources of gamma rays in the energy range 1-30 MeV. Using the detection principle of a Compton scatter in a 2.5 cm thick NaI(Tl) detector followed by absorption in a 15 cm thick NaI(Tl) detector, the telescope uses a rocking collimator for field-of-view reduction and background subtraction. Background reduction techniques include lead-plastic scintillator shielding, pulse shape discrimination and Anger camera operation to both NaI detectors, as well as a time-of-flight measurement between them. The instrument configuration and status is described.
NASA Astrophysics Data System (ADS)
Kaufman, J.; Blaes, O. M.; Hirose, S.
2018-06-01
Warm Comptonization models for the soft X-ray excess in active galactic nuclei (AGN) do not self-consistently explain the relationship between the Comptonizing medium and the underlying accretion disc. Because of this, they cannot directly connect the fitted Comptonization temperatures and optical depths to accretion disc parameters. Since bulk velocities exceed thermal velocities in highly radiation pressure dominated discs, in these systems bulk Comptonization by turbulence may provide a physical basis in the disc itself for warm Comptonization models. We model the dependence of bulk Comptonization on fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and α. In addition to constraining warm Comptonization models, our model can help distinguish contributions from bulk Comptonization to the soft X-ray excess from those due to other physical mechanisms, such as absorption and reflection. By linking the time variability of bulk Comptonization to fluctuations in the disc vertical structure due to magnetorotational instability (MRI) turbulence, our results show that observations of the soft X-ray excess can be used to study disc turbulence in the radiation pressure dominated regime. Because our model connects bulk Comptonization to 1D vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes.
Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi
2010-03-01
Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi
2010-01-01
Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.
Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin
2012-09-01
MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.
NASA Astrophysics Data System (ADS)
Lee, Taewoong; Lee, Hyounggun; Lee, Wonho
2015-10-01
This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.
SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackin, D; Beddar, S; Polf, J
2016-06-15
Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less
Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy
NASA Astrophysics Data System (ADS)
Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.
2015-07-01
The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.
Methods for increasing the sensitivity of gamma-ray imagers
Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA
2012-02-07
Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.
Systems for increasing the sensitivity of gamma-ray imagers
Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.
2012-12-11
Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.
Nuclear medicine imaging system
Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George
1986-01-07
A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.
Nuclear medicine imaging system
Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George
1986-01-01
A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.
Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L
2014-11-01
Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.
NASA Astrophysics Data System (ADS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Paciesas, W.; Miller, R. S.; Andritschke, R.; Kanbach, G.; Zoglauer, A.; Bloser, P.; Hunter, S.; Cravens, J.; Cherry, M.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Di Cocco, G.; Hartmann, D.; Kippen, R. M.; Vestrand, W. T.; Kurfess, J.; Phlips, B.; Strickman, M.; Wulf, E.; Macri, J. R.; McConnell, M. L.; Ryan, J. M.; Reglero, V.; Zych, A. D.
2004-08-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ˜ 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ˜ 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...
ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF (PER620) north facade. Camera facing south. Small metal shed ...
PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
MeV gamma-ray observation with a well-defined point spread function based on electron tracking
NASA Astrophysics Data System (ADS)
Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.
2016-07-01
The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.
2014-11-15
Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detectormore » for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.« less
Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam
NASA Astrophysics Data System (ADS)
Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.
2014-05-01
In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton accelerators have also been performed and are currently under analysis.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
LOFT. Mobile test building (TAN624) is recycled from ANP program ...
LOFT. Mobile test building (TAN-624) is recycled from ANP program for placement before LOFT containment building door. It has not yet been connected to containment building. Note borated water tank at right of dome. Narrow, vertical structure at right of door is shroud is shroud for air exhaust duct. Filter vaults lie between duct shroud and stack. Camera facing westerly. Date: 1974. INEEL negative no. 74-1072 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Ryan, James M.; Andritschke, Robert; Bloser, Peter F.; Cravens, James P.; Cherry, Michael L.; Di Cocco, Guido; Guzik, T. G.; Hartmann, Dieter H.; Hunter, Stanley H.; Kanbach, Gottfried; Kippen, R. M.; Kurfess, James; Macri, John R.; McConnell, Mark L.; Miller, Richard S.; Paciesas, William S.; Phlips, Bernard; Reglero, Victor; Stacy, J. G.; Strickman, Mark; Vestrand, W. Thomas; Wefel, John P.; Wulf, Eric; Zoglauer, Andreas; Zych, Allen D.
2004-10-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy ?-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. The large field of view will allow MEGA to continuously monitor the sky for transient and variable sources. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ~30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ~10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga
2014-11-01
In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate accuracy is improved, as DOI resolution is high.
Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei
2016-01-01
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454
NASA Astrophysics Data System (ADS)
Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei
2016-11-01
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, E; Chen, H; Polf, J
Purpose: To test two new techniques, the distance-of-closest approach (DCA) and Compton line (CL) filters, developed as a means of improving the spatial resolution of Compton camera (CC) imaging. Methods: Gammas emitted from {sup 22}Na, {sup 137}Cs, and {sup 60}Co point sources were measured with a prototype 3-stage CC. The energy deposited and position of each interaction in each stage were recorded and used to calculate a “cone-of-origin” for each gamma that scattered twice in the CC. A DCA filter was developed which finds the shortest distance from the gamma’s cone-of-origin surface to the location of the gamma source. Themore » DCA filter was applied to the data to determine the initial energy of the gamma and to remove “bad” interactions that only contribute noise to the image. Additionally, a CL filter, which removes gamma events that do not follow the theoretical predictions of the Compton scatter equation, was used to further remove “bad” interactions from the measured data. Then images were reconstructed with raw, unfiltered data, DCA filtered data, and DCA+CL filtered data and the achievable image resolution of each dataset was compared. Results: Spatial resolutions of ∼2 mm, and better than 2 mm, were achievable with the DCA and DCA+CL filtered data, respectively, compared to > 5 mm for the raw, unfiltered data. Conclusion: In many special cases in medical imaging where information about the source position may be known, such as proton radiotherapy range verification, the application of the DCA and CL filters can result in considerable improvements in the achievable spatial resolutions of Compton imaging.« less
Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang
2016-01-01
Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473
PBF Cooling Tower. Camera facing southwest. Round piers will support ...
PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Refocusing distance of a standard plenoptic camera.
Hahne, Christopher; Aggoun, Amar; Velisavljevic, Vladan; Fiebig, Susanne; Pesch, Matthias
2016-09-19
Recent developments in computational photography enabled variation of the optical focus of a plenoptic camera after image exposure, also known as refocusing. Existing ray models in the field simplify the camera's complexity for the purpose of image and depth map enhancement, but fail to satisfyingly predict the distance to which a photograph is refocused. By treating a pair of light rays as a system of linear functions, it will be shown in this paper that its solution yields an intersection indicating the distance to a refocused object plane. Experimental work is conducted with different lenses and focus settings while comparing distance estimates with a stack of refocused photographs for which a blur metric has been devised. Quantitative assessments over a 24 m distance range suggest that predictions deviate by less than 0.35 % in comparison to an optical design software. The proposed refocusing estimator assists in predicting object distances just as in the prototyping stage of plenoptic cameras and will be an essential feature in applications demanding high precision in synthetic focus or where depth map recovery is done by analyzing a stack of refocused photographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.
2014-12-28
We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
PSF reconstruction for Compton-based prompt gamma imaging
NASA Astrophysics Data System (ADS)
Jan, Meei-Ling; Lee, Ming-Wei; Huang, Hsuan-Ming
2018-02-01
Compton-based prompt gamma (PG) imaging has been proposed for in vivo range verification in proton therapy. However, several factors degrade the image quality of PG images, some of which are due to inherent properties of a Compton camera such as spatial resolution and energy resolution. Moreover, Compton-based PG imaging has a spatially variant resolution loss. In this study, we investigate the performance of the list-mode ordered subset expectation maximization algorithm with a shift-variant point spread function (LM-OSEM-SV-PSF) model. We also evaluate how well the PG images reconstructed using an SV-PSF model reproduce the distal falloff of the proton beam. The SV-PSF parameters were estimated from simulation data of point sources at various positions. Simulated PGs were produced in a water phantom irradiated with a proton beam. Compared to the LM-OSEM algorithm, the LM-OSEM-SV-PSF algorithm improved the quality of the reconstructed PG images and the estimation of PG falloff positions. In addition, the 4.44 and 5.25 MeV PG emissions can be accurately reconstructed using the LM-OSEM-SV-PSF algorithm. However, for the 2.31 and 6.13 MeV PG emissions, the LM-OSEM-SV-PSF reconstruction provides limited improvement. We also found that the LM-OSEM algorithm followed by a shift-variant Richardson-Lucy deconvolution could reconstruct images with quality visually similar to the LM-OSEM-SV-PSF-reconstructed images, while requiring shorter computation time.
Virtual Compton scattering off a spinless target in AdS/QCD
NASA Astrophysics Data System (ADS)
Marquet, Cyrille; Roiesnel, Claude; Wallon, Samuel
2010-04-01
We study the doubly virtual Compton scattering off a spinless target γ* P → γ* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.
Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S
2014-04-16
Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.
Toward a digital camera to rival the human eye
NASA Astrophysics Data System (ADS)
Skorka, Orit; Joseph, Dileepan
2011-07-01
All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.
SFM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts
NASA Astrophysics Data System (ADS)
Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, L.
2016-06-01
Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.
NASA Astrophysics Data System (ADS)
Ferrari, S.; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Barucci, M. A.; Lucchetti, A.; Pajola, M.; Frattin, E.; Bertini, I.; Ferri, F.; Cremonese, G.
2017-09-01
The Rosetta/OSIRIS cameras unveiled the layered nature of comet 67P/Churyumov-Gerasimenko, suggesting that the comet bilobate shape results from the low-velocity merging of two independent onion-like objects. Several physiographical regions of the southern-hemisphere big lobe show stacks of layers forming high scarps, terraces and mesas. A spectrophotometric analysis of OSIRIS images based on multispectral data classifications was conducted in order to identify possible morphological, textural and/or compositional characters that allow to distinguish regional stacks of layers.
Some inversion formulas for the cone transform
NASA Astrophysics Data System (ADS)
Terzioglu, Fatma
2015-11-01
Several novel imaging applications have lead recently to a variety of Radon type transforms, where integration is made over a family of conical surfaces. We call them cone transforms (in 2D they are also called V-line or broken ray transforms). Most prominently, they are present in the so called Compton camera imaging that arises in medical diagnostics, astronomy, and lately in homeland security applications. Several specific incarnations of the cone transform have been considered separately. In this paper, we address the most general (and overdetermined) cone transform, obtain integral relations between cone and Radon transforms in {{{R}}}n, and a variety of inversion formulas. In many applications (e.g., in homeland security), the signal to noise ratio is very low. So, if overdetermined data is collected (as in the case of Compton imaging), attempts to reduce the dimensionality might lead to essential elimination of the signal. Thus, our main concentration is on obtaining formulas involving overdetermined data.
Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; ...
2016-11-28
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less
Coherent infrared imaging camera (CIRIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.
1995-07-01
New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerousmore » and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.« less
LOFT. Containment building (TAN650) detail. Camera facing east. Service building ...
LOFT. Containment building (TAN-650) detail. Camera facing east. Service building corner is at left of view above personnel access. Round feature at left of dome is tank that will contain borated water. Metal stack at right of view. Date: 1973. INEEL negative no. 73-1085 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Vacuum compatible miniature CCD camera head
Conder, Alan D.
2000-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2018-04-01
We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.
Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.
Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku
2018-05-25
Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.
NASA Astrophysics Data System (ADS)
Sales, Dinalva A.; Ruschel-Dutra, D.; Pastoriza, M. G.; Riffel, R.; Winge, Cláudia
2014-06-01
The mid-infrared (MIR) spectra observed with Gemini/Michelle have been used to study the nuclear region of the Compton-thick type 2 Seyfert galaxy, Markarian 3 (Mrk 3), at a spatial resolution of ˜200 pc. No polycyclic aromatic hydrocarbon emission bands were detected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 μm, [S IV] 10.5 μm and [Ne II] 12.8 μm ionic emission lines, as well as a silicate absorption feature at 9.7 μm, have been found in the nuclear extraction (˜200 pc). We also present a subarcsecond-resolution Michelle N-band image of Mrk 3, which resolves its circumnuclear region. This diffuse MIR emission shows up as a wing towards the east-west direction, closely aligned with the S-shape of the narrow-line region observed in the optical [O III] λ5007Å image from the Faint Object Camera onboard the Hubble Space Telescope. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution, suggesting that the nucleus of Mrk 3 might host a dusty toroidal structure, as predicted by the unified model of an active galactic nucleus (AGN). In addition, the hydrogen column density (N_H= 4.8^{+3.3}_{-3.1}× 10^{23} cm-2) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281 (both are Compton-thick galaxies), confirmed through fitting the 9.7-μm silicate band profile. These results might provide further evidence that silicate-rich dust can be associated with the AGN torus and might also be responsible for the absorption observed at X-ray wavelengths in those galaxies.
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera ...
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera facing southwesterly. Left to right: stack, entry building (TAN-624), door shroud, duct shroud and filter hatches, dome (painted white), pre-amp building, equipment and piping building, shielded control room (TAN-630), airplane hangar (TAN-629). Date: 1975. INEEL negative no. 75-3690 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Avery E.; Shalaby, Mohamad; Tiede, Paul
2016-12-01
Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicularmore » to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.« less
Printed circuit board for a CCD camera head
Conder, Alan D.
2002-01-01
A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.
CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...
CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.
2018-01-01
The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.
High-redshift Extremely Red Quasars in X-Rays
NASA Astrophysics Data System (ADS)
Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.
2018-03-01
Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.
PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...
PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2005-09-11
Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. The first two images in this sequence show gradual enhancements in the surface detail of Mars' largest moon, Phobos, made possible through a combination technique known as "stacking." In "stacking," scientists use a mathematical process known as Laplacian sharpening to reinforce features that appear consistently in repetitive images and minimize features that show up only intermittently. In this view of Phobos, the large crater named Stickney is just out of sight on the moon's upper right limb. Spirit acquired the first two images with the panoramic camera on the night of sol 585 (Aug. 26,2005). The far right image of Phobos, for comparison, was taken by the High Resolution Stereo Camera on Mars Express, a European Space Agency orbiter. The third image in this sequence was derived from the far right image by making it blurrier for comparison with the panoramic camera images to the left http://photojournal.jpl.nasa.gov/catalog/PIA06335
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Coded-aperture Compton camera for gamma-ray imaging
NASA Astrophysics Data System (ADS)
Farber, Aaron M.
This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.
Bulk Comptonization by Turbulence in Black Hole Accretion Discs
NASA Astrophysics Data System (ADS)
Kaufman, Jason
Radiation pressure dominated accretion discs may have turbulent velocities that exceed the electron thermal velocities. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. We discuss how to self-consistently resolve and interpret this effect in calculations of spectra of radiation MHD simulations. In particular, we show that this effect is dominated by radiation viscous dissipation and can be treated as thermal Comptonization with an equivalent temperature. We investigate whether bulk Comptonization may provide a physical basis for warm Comptonization models of the soft X-ray excess in AGN. We characterize our results with temperatures and optical depths to make contact with other models of this component. We show that bulk Comptonization shifts the Wien tail to higher energy and lowers the gas temperature, broadening the spectrum. More generally, we model the dependence of this effect on a wide range of fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and the alpha parameter. Because our model connects bulk Comptonization to one dimensional vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes. We also develop a global Monte Carlo code to study this effect in global radiation MHD simulations. This code can be used more broadly to compare global simulations with observed systems, and in particular to investigate whether magnetically dominated discs can explain why observed high Eddington accretion discs appear to be thermally stable.
LOFT complex, camera facing west. Mobile entry (TAN624) is position ...
LOFT complex, camera facing west. Mobile entry (TAN-624) is position next to containment building (TAN-650). Shielded roadway entrance in view just below and to right of stack. Borated water tank has been covered with weather shelter and is no longer visible. ANP hangar (TAN-629) in view beyond LOFT. Date: 1974. INEEL negative no. 74-4191 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Burke, Eric; Grubsky, Victor
2017-02-01
Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.
NASA Astrophysics Data System (ADS)
Boer, Marie
2017-09-01
Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes such as exclusive Compton processes, where two photons are exchanged with a quark of the nucleon, and at least one of them has a high virtuality. Exclusive Compton processes are considered ``golden'' channels, as the only non-perturbative part of the process corresponds to the GPDs. Deeply Virtual Compton Scattering (DVCS) corresponds to the lepto-production of a real photon and has been intensively studied in the past decade. We propose to access GPDs with the two other cases of exclusive Compton processes: Timelike Compton Scattering (TCS) corresponds to the photo-production of a lepton pair, and Double Deeply Virtual Compton Scattering (DDVCS) corresponds to the lepto-production of a lepton pair. The study of these two reactions is complementary to DVCS and will bring new constraints on our understanding of the nucleon structure, in particular for a tomographic interpretation of GPDs. We will discuss the interest of TCS and DDVCS in terms of GPD studies, and present the efforts held at Jefferson Lab for new experiments aiming at measuring TCS and DDVCS.
LOFT. Containment building (TAN650) with fourrail tracks in place. Stack ...
LOFT. Containment building (TAN-650) with four-rail tracks in place. Stack has been erected. Curved shroud over doorway and to the right is weather protection for railroad door seen in HAER photo ID-33-E-367. Motor-operated door rolls on wheels to open and close. Service portions of containment building can be seen at rear of dome on left and right. Camera facing north. Date: 1973. INEEL negative no. 73-1600 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less
Implementation of a Real-Time Stacking Algorithm in a Photogrammetric Digital Camera for Uavs
NASA Astrophysics Data System (ADS)
Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C.
2017-08-01
In the recent years, unmanned aerial vehicles (UAVs) have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery) need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn't seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real-time the gyrometers of the IMU.
Sitek, Arkadiusz
2016-12-21
The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).
NASA Astrophysics Data System (ADS)
Sitek, Arkadiusz
2016-12-01
The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).
Resolution recovery for Compton camera using origin ensemble algorithm.
Andreyev, A; Celler, A; Ozsahin, I; Sitek, A
2016-08-01
Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.
Optimization of hole generation in Ti/CFRP stacks
NASA Astrophysics Data System (ADS)
Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.
2018-03-01
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe
2017-01-01
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work. PMID:28718788
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian
2017-07-18
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.
MINER - A Mobile Imager of Neutrons for Emergency Responders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John E. M.; Brennan, James S.; Gerling, Mark D
2014-10-01
We have developed a mobile fast neutron imaging platform to enhance the capabilities of emergency responders in the localization and characterization of special nuclear material. This mobile imager of neutrons for emergency responders (MINER) is based on the Neutron Scatter Camera, a large segmented imaging system that was optimized for large-area search applications. Due to the reduced size and power requirements of a man-portable system, MINER has been engineered to fit a much smaller form factor, and to be operated from either a battery or AC power. We chose a design that enabled omnidirectional (4π) imaging, with only a ~twofoldmore » decrease in sensitivity compared to the much larger neutron scatter cameras. The system was designed to optimize its performance for neutron imaging and spectroscopy, but it does also function as a Compton camera for gamma imaging. This document outlines the project activities, broadly characterized as system development, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.« less
Bioinspired architecture approach for a one-billion transistor smart CMOS camera chip
NASA Astrophysics Data System (ADS)
Fey, Dietmar; Komann, Marcus
2007-05-01
In the paper we present a massively parallel VLSI architecture for future smart CMOS camera chips with up to one billion transistors. To exploit efficiently the potential offered by future micro- or nanoelectronic devices traditional on central structures oriented parallel architectures based on MIMD or SIMD approaches will fail. They require too long and too many global interconnects for the distribution of code or the access to common memory. On the other hand nature developed self-organising and emergent principles to manage successfully complex structures based on lots of interacting simple elements. Therefore we developed a new as Marching Pixels denoted emergent computing paradigm based on a mixture of bio-inspired computing models like cellular automaton and artificial ants. In the paper we present different Marching Pixels algorithms and the corresponding VLSI array architecture. A detailed synthesis result for a 0.18 μm CMOS process shows that a 256×256 pixel image is processed in less than 10 ms assuming a moderate 100 MHz clock rate for the processor array. Future higher integration densities and a 3D chip stacking technology will allow the integration and processing of Mega pixels within the same time since our architecture is fully scalable.
On the single-photon-counting (SPC) modes of imaging using an XFEL source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui
In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less
On the single-photon-counting (SPC) modes of imaging using an XFEL source
Wang, Zhehui
2015-12-14
In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less
Spin-dependent sum rules connecting real and virtual Compton scattering verified
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc; Kao, Chung Wen
2017-04-01
We present a detailed derivation of the two sum rules relating the spin polarizabilities measured in real, virtual, and doubly virtual Compton scattering. For example, the polarizability δL T , accessed in inclusive electron scattering, is related to the spin polarizability γE 1 E 1 and the slope of generalized polarizabilities P(M 1 ,M 1 )1-P(L 1 ,L 1 )1 , measured in, respectively, the real and the virtual Compton scattering. We verify these sum rules in different variants of chiral perturbation theory, discuss their empirical verification for the proton, and prospect their use in studies of the nucleon spin structure.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2017-03-21
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
NASA Astrophysics Data System (ADS)
Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.
2017-11-01
A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.
92. ARAIII. Overall view of GCRE area in 1959. From ...
92. ARA-III. Overall view of GCRE area in 1959. From left to right: ARA-607 (control building), ARA-608 (with high-bay, reactor building), ARA-610 (service building), ARA-609 (guard house), ARA-709 (water storage tank) ARA-710 in front of ARA-709 (fuel oil tank), ARA-611 (well pumphouse), and the cooling tower. Note petro-chem stack and other stacks emerging from reactor building. Camera facing northeast. August 1959. Ineel photo no. 59-4444. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Guanine base stacking in G-quadruplex nucleic acids
Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân
2013-01-01
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444
Yakami, Masahiro; Yamamoto, Akira; Yanagisawa, Morio; Sekiguchi, Hiroyuki; Kubo, Takeshi; Togashi, Kaori
2013-06-01
The purpose of this study is to verify objectively the rate of slice omission during paging on picture archiving and communication system (PACS) viewers by recording the images shown on the computer displays of these viewers with a high-speed movie camera. This study was approved by the institutional review board. A sequential number from 1 to 250 was superimposed on each slice of a series of clinical Digital Imaging and Communication in Medicine (DICOM) data. The slices were displayed using several DICOM viewers, including in-house developed freeware and clinical PACS viewers. The freeware viewer and one of the clinical PACS viewers included functions to prevent slice dropping. The series was displayed in stack mode and paged in both automatic and manual paging modes. The display was recorded with a high-speed movie camera and played back at a slow speed to check whether slices were dropped. The paging speeds were also measured. With a paging speed faster than half the refresh rate of the display, some viewers dropped up to 52.4 % of the slices, while other well-designed viewers did not, if used with the correct settings. Slice dropping during paging was objectively confirmed using a high-speed movie camera. To prevent slice dropping, the viewer must be specially designed for the purpose and must be used with the correct settings, or the paging speed must be slower than half of the display refresh rate.
Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, B.; Brandt, W. N.; Scott, A. E.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less
Compton echoes from nearby gamma-ray bursts
NASA Astrophysics Data System (ADS)
Beniamini, Paz; Giannios, Dimitrios; Younes, George; van der Horst, Alexander J.; Kouveliotou, Chryssa
2018-06-01
The recent discovery of gravitational waves from GW170817, associated with a short gamma-ray burst (GRB) at a distance of 40 Mpc, has demonstrated that short GRBs can occur locally and at a reasonable rate. Furthermore, gravitational waves enable us to detect close-by GRBs, even when we are observing at latitudes far from the jet's axis. We consider here Compton echoes, the scattered light from the prompt and afterglow emission. Compton echoes, an as yet undetected counterpart of GRBs, peak in X-rays and maintain a roughly constant flux for hundreds to thousands of years after the burst. Though too faint to be detected in typical cosmological GRBs, a fraction of close-by bursts with a sufficiently large energy output in X-rays, and for which the surrounding medium is sufficiently dense, may indeed be observed in this way. The detection of a Compton echo could provide unique insight into the burst properties and the environment's density structure. In particular, it could potentially determine whether or not there was a successful jet that broke through the compact binary merger ejecta. We discuss here the properties and expectations from Compton echoes and suggest methods for detectability.
NASA Astrophysics Data System (ADS)
Ono, Yoshiaki; Ouchi, Masami; Shimasaku, Kazuhiro; Dunlop, James; Farrah, Duncan; McLure, Ross; Okamura, Sadanori
2010-12-01
We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ~ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M UV, with a spectral slope β ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10) × 107 M sun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ~ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ion esc ~ 0.6 at z = 5.7 and ~0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365
NASA Technical Reports Server (NTRS)
Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.
2006-01-01
We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.
Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komura, S.; Takada, A.; Mizumura, Y.
2017-04-10
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less
Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera
NASA Astrophysics Data System (ADS)
Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.
2017-04-01
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon
2017-02-01
We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).
NASA Technical Reports Server (NTRS)
Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.
2017-01-01
We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.
Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less
Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...
2017-12-19
Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less
X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143
NASA Technical Reports Server (NTRS)
Keek, L.; Iwakiri, W.; Serino, M.; Ballantyne, D. R.; in’t Zand, J. J. M.; Strohmayer, T. E.
2017-01-01
Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI/Gas Slit Camera and Swift/XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI, Chandra, and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5x10(exp 10) g cm (exp -2), which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F gamma t (exp -1.15). The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at approximately 102 gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level.
Li, Xueming; Zheng, Shawn; Agard, David A.; Cheng, Yifan
2015-01-01
Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20 ~ 60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ~60 seconds/exposure. Here we report the technical details and configuration of this system. PMID:26370395
NASA Astrophysics Data System (ADS)
Binder, Breanna
2017-09-01
We propose an archival study of 2.8 Msec of ACIS images to search for X-ray emission from stellar-wind bow shocks and to characterize the X-ray properties of their driving stars. Bow shocks, particularly those produced by runaway OB stars, are theorized to up-scatter IR photons via inverse Compton scattering, and may produce a significant fraction of high-energy photons in our Galaxy. However, their low X-ray luminosity makes direct detection difficult. By stacking 106 archival observations containing >100 bow shocks, we will create the deepest X-ray exposure of bow shocks to date. We will perform the first detailed comparison of bow shock driving stars to the general massive star population.
Here Today, Here Tomorrow: The Imperative of Collections Security.
ERIC Educational Resources Information Center
Billington, James H.
1996-01-01
The Librarian of Congress addresses the increasing security threats to the collection at the Library of Congress that caused him to close library stacks, increase police patrol, install surveillance cameras and alarm systems, create material inventories, and limit patron privileges. Many of the security functions are being assessed and monitored…
NASA Astrophysics Data System (ADS)
Buchner, Johannes; Bauer, Franz E.
2017-03-01
The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.
Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.
Dong, Chuan-Ding; Beenken, Wichard J D
2016-10-10
In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
NASA Astrophysics Data System (ADS)
Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui
2016-11-01
A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
Focus collimator press for a collimator for gamma ray cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, R.N.; York, D.L.
A focus collimator press for collimators for gamma ray cameras is described comprising a pivot arm of fixed length mounted on a travelling pivot which is movable in the plane of a spaced apart work table surface in a direction toward and away from the work table. A press plate is carried at the opposite end of the fixed length pivot arm, and is maintained in registration with the same portion of the work table for pressing engagement with each undulating radiation opaque strip as it is added to the top of a collimator stack in process by movement ofmore » the travelling pivot inward toward the work table. This enables the press plate to maintain its relative position above the collimator stack and at the same time the angle of the press plate changes, becoming less acute in relation to the work table as the travelling pivot motes inwardly toward the work table. The fixed length of the pivot arm is substantially equal to the focal point of the converging apertures formed by each pair of undulating strips stacked together. Thus, the focal point of each aperture row falls substantially on the axis of the travelling pivot, and since it moves in the plane of the work table surface the focal point of each aperture row is directed to lie in the same common plane. When one of two collimator stacks made in this way is rotated 180 degrees and the two bonded together along their respective first strips, all focal points of every aperture row lie on the central axis of the completed collimator.« less
Determination of Algorithm Parallelism in NP Complete Problems for Distributed Architectures
1990-03-05
12 structure STACK declare OpenStack (S-.NODE **TopPtr) -+TopPtrI FlushStack(S.-NODE **TopPtr) -*TopPtr PushOnStack(S-.NODE **TopPtr, ITEM *NewltemPtr...OfCoveringSets, CoveringSets, L, Best CoverTime, Vertex, Set3end SCND ADT B.26 structure STACKI declare OpenStack (S-NODE **TopPtr) -+TopPtr FlushStack(S
A three-dimensional radiation image display on a real space image created via photogrammetry
NASA Astrophysics Data System (ADS)
Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.
2018-03-01
The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.
IR observations in gamma-ray blazars
NASA Technical Reports Server (NTRS)
Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.
1997-01-01
The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.
Method of determining whether radioactive contaminants are inside or outside a structure
Lattin, Kenneth R.
1977-01-01
A measure is obtained of the relative quantities of radioactive material inside and outside a structure such as a pipe by obtaining two spectra of gamma radiation on a dummy structure of the same shape and composition. A first spectrum is obtained with a quantity of the radioactive element to be measured located inside the structure and a second spectrum is obtained with a quantity of the same contaminant located outside the structure. The two spectra are normalized to the same equivalent value in a portion of the spectrum that does not reflect the presence of gamma rays resulting from Compton scattering in the structure. Comparison of that portion of the spectra obtained where Compton scattering is a factor gives a measure of the relative amounts of contaminants inside and outside the structure on a spectrum obtained from a test structure. The invention may also be practiced by obtaining a plurality of spectra at varying known concentrations inside and outside the dummy structure.
Infrared Camera Diagnostic for Heat Flux Measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Mastrovito; R. Maingi; H.W. Kugel
2003-03-25
An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.
IET. Aerial view of project, 95 percent complete. Camera facing ...
IET. Aerial view of project, 95 percent complete. Camera facing east. Left to right: stack, duct, mobile test cell building (TAN-624), four-rail track, dolly. Retaining wall between mobile test building and shielded control building (TAN-620) just beyond. North of control building are tank building (TAN-627) and fuel-transfer pump building (TAN-625). Guard house at upper right along exclusion fence. Construction vehicles and temporary warehouse in view near guard house. Date: June 6, 1955. INEEL negative no. 55-1462 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints
NASA Astrophysics Data System (ADS)
Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.
Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.
A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.
2018-06-01
The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.
NASA Technical Reports Server (NTRS)
Correia, E.; Kaufmann, P.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.
1986-01-01
The solar burst of 21 May 1984 presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency or approx. 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and or approx. 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-rays power law indices have been found. A synchrotron/inverse Compton model has been applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures.
NASA Technical Reports Server (NTRS)
Correia, E.; Kaufmann, P.; Costa, J. E. R.; Zodivaz, A. M.; Dennis, B. R.
1986-01-01
The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures.
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
Observations of long delays to detonation in propellant for tests with marginal card gaps
NASA Technical Reports Server (NTRS)
Olinger, B.
1980-01-01
Using the large-scale card gap tests with pin and high-speed framing camera techniques, VRP propellant, and presumably others, were found to transit to detonation at marginal gaps after a long delay. In addition, manganin-constantan gauge measurements were made in the card gap stack.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
Curiosity's Mars Hand Lens Imager (MAHLI) Investigation
Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter
2012-01-01
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.
Modular fuel-cell stack assembly
Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT
2008-01-29
A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.
Stacking fault density and bond orientational order of fcc ruthenium nanoparticles
NASA Astrophysics Data System (ADS)
Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2017-12-01
We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.
A code for optically thick and hot photoionized media
NASA Astrophysics Data System (ADS)
Dumont, A.-M.; Abrassart, A.; Collin, S.
2000-05-01
We describe a code designed for hot media (T >= a few 104 K), optically thick to Compton scattering. It computes the structure of a plane-parallel slab of gas in thermal and ionization equilibrium, illuminated on one or on both sides by a given spectrum. Contrary to the other photoionization codes, it solves the transfer of the continuum and of the lines in a two stream approximation, without using the local escape probability formalism to approximate the line transfer. We stress the importance of taking into account the returning flux even for small column densities (1022 cm-2), and we show that the escape probability approximation can lead to strong errors in the thermal and ionization structure, as well as in the emitted spectrum, for a Thomson thickness larger than a few tenths. The transfer code is coupled with a Monte Carlo code which allows to take into account Compton and inverse Compton diffusions, and to compute the spectrum emitted up to MeV energies, in any geometry. Comparisons with cloudy show that it gives similar results for small column densities. Several applications are mentioned.
An improved artifact removal in exposure fusion with local linear constraints
NASA Astrophysics Data System (ADS)
Zhang, Hai; Yu, Mali
2018-04-01
In exposure fusion, it is challenging to remove artifacts because of camera motion and moving objects in the scene. An improved artifact removal method is proposed in this paper, which performs local linear adjustment in artifact removal progress. After determining a reference image, we first perform high-dynamic-range (HDR) deghosting to generate an intermediate image stack from the input image stack. Then, a linear Intensity Mapping Function (IMF) in each window is extracted based on the intensities of intermediate image and reference image, the intensity mean and variance of reference image. Finally, with the extracted local linear constraints, we reconstruct a target image stack, which can be directly used for fusing a single HDR-like image. Some experiments have been implemented and experimental results demonstrate that the proposed method is robust and effective in removing artifacts especially in the saturated regions of the reference image.
X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keek, L.; Strohmayer, T. E.; Iwakiri, W.
Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI /Gas Slit Camera and Swift /XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI , Chandra , and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5×10{sup 10}more » g cm{sup −2}, which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t {sup −1.15}. The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ∼10{sup 2} gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level.« less
SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, S; Kaye, W; Jaworski, J
2015-06-15
Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinholemore » camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for various applications worldwide, including proton therapy imaging R&D.« less
Analysis of X-ray spectral variability and black hole mass determination of the NLS1 galaxy Mrk 766
NASA Astrophysics Data System (ADS)
Giacchè, S.; Gilli, R.; Titarchuk, L.
2014-02-01
We present an XMM-Newton time-resolved spectral analysis of the narrow-line Seyfert 1 galaxy Mrk 766. We analysed eight available observations taken between May 2000 and June 2005 with the EPIC-pn camera in order to investigate the X-ray spectral variability produced by changes in the mass accretion rate. The 0.2 - 10 keV spectra are extracted in time bins longer than 3 ks to have at least 3 × 104 net counts in each bin and then accurately trace the variations of the best-fit parameters of our adopted Comptonization spectral model. We tested a bulk-motion Comptonization (BMC) model which is in general applicable to any physical system powered by accretion onto a compact object, and assumes that soft seed photons are efficiently up-scattered via inverse Compton scattering in a hot and dense electron corona. The Comptonized spectrum has a characteristic power law shape, whose slope was found to increase for large values of the normalization of the seed component, which is proportional to the mass accretion rate ṁ (in Eddington units). Our baseline spectral model also includes a warm absorber lying on the line of sight and radiation reprocessing from the accretion disc or from outflowing matter in proximity to the central compact object. Our study reveals that the normalization-slope correlation, observed in Galactic black hole sources (GBHs), also holds for Mrk 766: variations of the photon index in the range Γ ~ 1.9-2.4 are indeed likely to be related to the variations of ṁ, as observed in X-ray binary systems. We finally applied a scaling technique based on the observed correlation to estimate the BH mass in Mrk 766. This technique is commonly and successfully applied to measure masses of GBHs, and this is the first time it has been applied in detail to estimate the BH mass in an AGN. We obtained a value of MBH = 1.26-0.77+1.00×106 M⊙, which is in very good agreement with that estimated by the reverberation mapping. Appendix A is available in electronic form at http://www.aanda.org
Spectral Monitoring of NGC 1365: Nucleus and Variable ULX
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Fabbiano, G.
2004-01-01
A letter has been submitted to ApJ, and is in the final stages of revision on the spectral variability of the nuclear source. We presented multiple Chandra and XMM-Newton observations of the Seyfert Galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an AGN: the source switched from reflection dominated to Compton- thin and back in just 6 weeks. During this time the soft thermal component, arising from a 1-kpc region around the center, remained constant. The reflection component is constant at all timescales, and its flux is a fraction of 5% or higher of the direct 2-10 keV emission, implying the presence of thick gas covering a big fraction of the solid angle. The presence of this gas, and the hst variability time scale, suggest that the Compton-thick to Compton thin change is due to variation in the line-of-sight absorber, rather than to extreme intrinsic emission variability. We discuss a structure of the circumnuclear absorbed reflector which can explain the observed X-ray spectral and temporal properties. But these important results come only from scratching the surface of the data, since we did not need any detailed spectral analysis to distinguish between the Compton thick and Compton thin states of the source, the difference in both spectral shape and flux being huge.
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
Cool white light-emitting three stack OLED structures for AMOLED display applications.
Springer, Ramon; Kang, Byoung Yeop; Lampande, Raju; Ahn, Dae Hyun; Lenk, Simone; Reineke, Sebastian; Kwon, Jang Hyuk
2016-11-28
This paper demonstrates 2-stack and 3-stack white organic light-emitting diodes (WOLEDs) with fluorescent blue and phosphorescent yellow emissive units. The 2-stack and 3-stack WOLED comprises blue-yellow and blue-blue-yellow (blue-yellow-blue) combinations. The position of the yellow emitter and possible cavity lengths in different stack architectures are theoretically and experimentally investigated to reach Commission Internationale de L'Eclairage (CIE) coordinates of near (0.333/0.333). Here, a maximum external quantum efficiency (EQE) of 23.6% and current efficiency of 62.2 cd/A at 1000 cd/m2 as well as suitable CIE color coordinates of (0.335/0.313) for the blue-blue-yellow 3-stack hybrid WOLED structure is reported. In addition, the blue-yellow-blue 3-stack architecture exhibits an improved angular dependence compared to the blue-blue-yellow structure at a decreased EQE of 19.1%.
An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio
2005-01-01
This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.
Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
Sedova, Ada; Banavali, Nilesh K
2017-03-14
Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.
LOFT. Containment building entry, an adapted use of TAN624, which ...
LOFT. Containment building entry, an adapted use of TAN-624, which originated as the mobile test building for the ANP program. Camera facing north. Note four-rail track entered building stack at right of view. Date: March 2004. INEEL negative no. HD-39-4-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Technical Note: Asteroid Detection Demonstration from SkySat-3 - B612 Data Using Synthetic Tracking
NASA Technical Reports Server (NTRS)
Zhai, C.; Shao, M.; Lai, S.; Boerner, P.; Dyer, J.; Lu, E.; Reitsema, H.; Buie, M.
2018-01-01
We report results from analyzing the data taken by the sCMOS cameras on board of SkySat3 using the synthetic tracking technique. The analysis demonstrates the expected sensitivity improvement in the signal-to-noise ratio of the faint asteroids from properly stacking up the short exposure images in post-processing.
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya
Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya; ...
2016-11-29
Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less
Statis omnidirectional stereoscopic display system
NASA Astrophysics Data System (ADS)
Barton, George G.; Feldman, Sidney; Beckstead, Jeffrey A.
1999-11-01
A unique three camera stereoscopic omnidirectional viewing system based on the periscopic panoramic camera described in the 11/98 SPIE proceedings (AM13). The 3 panoramic cameras are equilaterally combined so each leg of the triangle approximates the human inter-ocular spacing allowing each panoramic camera to view 240 degree(s) of the panoramic scene, the most counter clockwise 120 degree(s) being the left eye field and the other 120 degree(s) segment being the right eye field. Field definition may be by green/red filtration or time discrimination of the video signal. In the first instance a 2 color spectacle is used in viewing the display or in the 2nd instance LCD goggles are used to differentiate the R/L fields. Radially scanned vidicons or re-mapped CCDs may be used. The display consists of three vertically stacked 120 degree(s) segments of the panoramic field of view with 2 fields/frame. Field A being the left eye display and Field B the right eye display.
Data transmission protocol for Pi-of-the-Sky cameras
NASA Astrophysics Data System (ADS)
Uzycki, J.; Kasprowicz, G.; Mankiewicz, M.; Nawrocki, K.; Sitek, P.; Sokolowski, M.; Sulej, R.; Tlaczala, W.
2006-10-01
The large amount of data collected by the automatic astronomical cameras has to be transferred to the fast computers in a reliable way. The method chosen should ensure data streaming in both directions but in nonsymmetrical way. The Ethernet interface is very good choice because of its popularity and proven performance. However it requires TCP/IP stack implementation in devices like cameras for full compliance with existing network and operating systems. This paper describes NUDP protocol, which was made as supplement to standard UDP protocol and can be used as a simple-network protocol. The NUDP does not need TCP protocol implementation and makes it possible to run the Ethernet network with simple devices based on microcontroller and/or FPGA chips. The data transmission idea was created especially for the "Pi of the Sky" project.
PBF Cooling Tower detail. Camera facing southwest into north side ...
PBF Cooling Tower detail. Camera facing southwest into north side of Tower. Five horizontal layers of splash bars constitute fill decks, which will break up falling water into droplets, promoting evaporative cooling. Louvered faces, through which air enters tower, are on east and west sides. Louvers have been installed. Support framework for one of two venturi-shaped fan stacks (or "vents") is in center top. Orifices in hot basins (not in view) will distribute water over fill. Photographer: Kirsh. Date: May 15, 1969. INEEL negative no. 69-3032 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Bragg reflector based gate stack architecture for process integration of excimer laser annealing
NASA Astrophysics Data System (ADS)
Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.
2006-12-01
An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.
Analytical Tools for Cloudscope Ice Measurement
NASA Technical Reports Server (NTRS)
Arnott, W. Patrick
1998-01-01
The cloudscope is a ground or aircraft instrument for viewing ice crystals impacted on a sapphire window. It is essentially a simple optical microscope with an attached compact CCD video camera whose output is recorded on a Hi-8 mm video cassette recorder equipped with digital time and date recording capability. In aircraft operation the window is at a stagnation point of the flow so adiabatic compression heats the window to sublimate the ice crystals so that later impacting crystals can be imaged as well. A film heater is used for ground based operation to provide sublimation, and it can also be used to provide extra heat for aircraft operation. The compact video camera can be focused manually by the operator, and a beam splitter - miniature bulb combination provide illumination for night operation. Several shutter speeds are available to accommodate daytime illumination conditions by direct sunlight. The video images can be directly used to qualitatively assess the crystal content of cirrus clouds and contrails. Quantitative size spectra are obtained with the tools described in this report. Selected portions of the video images are digitized using a PCI bus frame grabber to form a short movie segment or stack using NIH (National Institute of Health) Image software with custom macros developed at DRI. The stack can be Fourier transform filtered with custom, easy to design filters to reduce most objectionable video artifacts. Particle quantification of each slice of the stack is performed using digital image analysis. Data recorded for each particle include particle number and centroid, frame number in the stack, particle area, perimeter, equivalent ellipse maximum and minimum radii, ellipse angle, and pixel number. Each valid particle in the stack is stamped with a unique number. This output can be used to obtain a semiquantitative appreciation of the crystal content. The particle information becomes the raw input for a subsequent program (FORTRAN) that synthesizes each slice and separates the new from the sublimating particles. The new particle information is used to generate quantitative particle concentration, area, and mass size spectra along with total concentration, solar extinction coefficient, and ice water content. This program directly creates output in html format for viewing with a web browser.
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-01-09
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between similar to 380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significantmore » correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M(circle dot)h(-1). We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The onehalo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one-and two-halo regimes, while groups with mass below 1013M(circle dot)h(-1) are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe: < bPe > = 1.50 +/- 0.226 x 10(-7) keV cm(-3) (sigma) at z approximate to 0.15.« less
A Measurement of the Galaxy Group-Thermal Sunyaev-Zel'dovich Effect Cross-Correlation Function
NASA Astrophysics Data System (ADS)
Vikram, Vinu; Lidz, Adam; Jain, Bhuvnesh
2017-05-01
Stacking cosmic microwave background maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zel'dovich (SZ) effect. A stacking analysis allows one to detect the average SZ signal around low-mass haloes, to extend measurements out to large scales and measure the redshift dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between ˜380 000 galaxy groups (at z = 0.01-0.2) from the Sloan Digital Sky Survey and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significant correlations in each of six separate mass bins, with halo masses ranging from 1011.5 to 1015.5 M⊙ h-1. We compare with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo contributions. The one-halo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighbouring haloes. For the massive groups, we find clear evidence for the one- and two-halo regimes, while groups with mass below 1013 M⊙ h-1 are dominated by the two-halo term, given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the Universe:
Laser pulsing in linear Compton scattering
Krafft, G. A.; Johnson, E.; Deitrick, K.; ...
2016-12-16
Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such anmore » approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. In addition, as discussed in the body of the paper, many of the results allow easy scaling estimates to be made of the expected spectrum. A misconception in the literature on Compton scattering of circularly polarized beams is corrected and recorded.« less
Hattawy, M.; Baltzell, N. A.; Dupré, R.; ...
2017-11-15
Here, we report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment used the 6 GeV electron beam from the CEBAF accelerator at Jefferson Lab incident on a pressurizedmore » $^4$He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron was detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber was used to detect the recoiling $^4$He nuclei. We measured beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $$\\cal H_A$$. This first measurement of coherent deeply virtual Compton scattering on the $^4$He nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant
Tomono, Dai; Mizumoto, Tetsuya; Takada, Atsushi; Komura, Shotaro; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Oda, Makoto; Tanimori, Toru
2017-01-01
We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays for the first time. Here, we present the results of our on-site pilot gamma-imaging-spectroscopy with ETCC at three contaminated locations in the vicinity of the Fukushima Daiichi Nuclear Power Plants in Japan in 2014. The obtained distribution of brightness (or emissivity) with remote-sensing observations is unambiguously converted into the dose distribution. We confirm that the dose distribution is consistent with the one taken by conventional mapping measurements with a dosimeter physically placed at each grid point. Furthermore, its imaging spectroscopy, boosted by Compton-edge-free spectra, reveals complex radioactive features in a quantitative manner around each individual target point in the background-dominated environment. Notably, we successfully identify a “micro hot spot” of residual caesium contamination even in an already decontaminated area. These results show that the ETCC performs exactly as the geometrical optics predicts, demonstrates its versatility in the field radiation measurement, and reveals potentials for application in many fields, including the nuclear industry, medical field, and astronomy. PMID:28155883
NASA Technical Reports Server (NTRS)
Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.
1981-01-01
Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south end of EBOR helium wing. Camera facing north. Monorail protrudes from upper-level door. Rust marks on concrete wall are from stack. Metal shed is post-1970 addition. INEEL negative no. HD-40-8-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
View of the ISS stack as seen during the fly-around by the STS-96 crew
2017-04-20
S96-E-5218 (3 June 1999) --- Partially silhouetted over clouds and a wide expanse of ocean waters, the unmanned International Space Station (ISS) moves away from the Space Shuttle Discovery. An electronic still camera (ESC) was aimed through aft flight deck windows to capture the image at 23:01:00 GMT, June 3, 1999.
Yankee Tank Creek Observatory Report No. 1: Forty-One Measures from 2012
NASA Astrophysics Data System (ADS)
Wiley, E. O.
2014-01-01
This report contains 41 measures of mostly STF pairs taken in 2012 and comprises those pairs not reported in other papers. All measures were taken with a 0.2M Dall-Kirkham and a DMK21 video camera working at F22.5. Both stacking and pixel correlation techniques were used to obtain measures using REDUC.
Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors.
Malinowski, Pawel E; Georgitzikis, Epimitheas; Maes, Jorick; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David
2017-12-10
Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 -6 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.
SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernekohl, D; Ahmad, M; Chinn, G
2016-06-15
Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distancesmore » are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polf, J; McCleskey, M; Brown, S
2014-06-01
Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less
Silicon detectors for combined MR-PET and MR-SPECT imaging
NASA Astrophysics Data System (ADS)
Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.
2013-02-01
Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.
Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B
2015-07-01
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.
Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...
2015-07-28
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less
The X-ray variability history of Markarian 3
NASA Astrophysics Data System (ADS)
Guainazzi, M.; La Parola, V.; Miniutti, G.; Segreto, A.; Longinotti, A. L.
2012-11-01
Context. The unified scenario for active galactic nuclei (AGN) postulates that our orientation with respect to a parsec-scale azimuthally-symmetric gas and dust system causes the difference in their phenomenology in the optical/UV and X-ray bands. Only recently have high-resolution radio (VLBI) and IR interferometric observations provided direct constraints on the size and structure of this obscuring system (known historically as the "torus"). On the other hand, variability in optically-thick X-ray absorption and reprocessing in heavily obscured AGN often probe smaller scales, down to the broad line region and beyond. Aims: We aim at constraining the geometry of the reprocessing matter in the nearby prototypical Seyfert 2 Galaxy Markarian 3 by studying the time evolution of the spectral components associated to the primary AGN emission and to its Compton-scattering. Methods: We analyzed archival spectroscopic observations of Markarian 3 taken over the last ≃ 12 years with the XMM-Newton, Suzaku and Swift observatories, as well as data taken during a monitoring campaign activated by us in 2012. Results: The timescale of the Compton-reflection component variability (originally discovered by ASCA in the mid-'90s) is ≲ 64 days. This upper limit improves by more than a factor of 15 on previous estimates of the Compton-reflection variability timescale for this source. When the light curve of the Compton-reflection continuum in the 4-5 keV band is correlated with the 15-150 keV Swift/BAT curve, a delay ≳1200 days is found. The cross-correlation results depend on the model used to fit the spectra, although the detection of the Compton-reflection component variability is independent of the range of models employed to fit the data. Reanalysis of an archival Chandra image of Markarian 3 indicates that the Compton-reflection and the Fe Kα emitting regions are extended to the north up to ≃300 pc. The combination of these findings suggests that the optically-thick reprocessor in Markarian 3 is clumpy. Conclusions: There is mounting experimental evidence that the structure of the optically-thick gas and dust in the nuclear environment of nearby heavily obscured AGN is extended and complex. We discuss possible modifications to the standard unification scenarios encompassing this complexity. Markarian 3, which exhibits X-ray absorption and reprocessing on widely different spatial scales, is an ideal laboratory to test these models.
Stacking interactions of hydrogen-bridged rings – stronger than the stacking of benzene molecules.
Blagojević, Jelena P; Zarić, Snežana D
2015-08-21
Analysis of crystal structures from the Cambridge Structural Database showed that 27% of all planar five-membered hydrogen-bridged rings, possessing only single bonds within the ring, form intermolecular stacking interactions. Interaction energy calculations show that interactions can be as strong as -4.9 kcal mol(-1), but dependent on ring structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami
In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into themore » structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.« less
Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.
Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K
2016-04-20
Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state.
Computer Center: 2 HyperCard Stacks for Biology.
ERIC Educational Resources Information Center
Duhrkopf, Richard, Ed.
1989-01-01
Two Hypercard stacks are reviewed including "Amino Acids," created to help students associate amino acid names with their structures, and "DNA Teacher," a tutorial on the structure and function of DNA. Availability, functions, hardware requirements, and general comments on these stacks are provided. (CW)
COBE limits on explosive structure formation scenarios
NASA Technical Reports Server (NTRS)
Levin, Janna J.; Freese, Katherine; Spergle, David N.
1992-01-01
The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.
NASA Astrophysics Data System (ADS)
D'Hose, N.
2011-02-01
The study of exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Meson Production is one major part of the future COMPASS program in order to investigate nucleon structure through Generalised Parton Distributions (GPD). The high energy of the muon beam allows to measure the xB-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. The use of positive and negative polarised muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsz, M.; Duchene, G.; Didierjean, F.
The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less
PROCESS WATER BUILDING, TRA605. FLASH EVAPORATORS ARE PLACED ON UPPER ...
PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATORS ARE PLACED ON UPPER LEVEL OF EAST SIDE OF BUILDING. WALLS WILL BE FORMED AROUND THEM. WORKING RESERVOIR BEYOND. CAMERA FACING EASTERLY. EXHAUST AIR STACK IS UNDER CONSTRUCTION AT RIGHT OF VIEW. INL NEGATIVE NO. 2579. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, Peter; Koch, Robert; Cladek, Bernadette
Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weightedmore » by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.« less
Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs
Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W.; Schalek, Richard; Hayworth, Kenneth J.; Hand, Arthur R.; Yankova, Maya; Huber, Greg; Lichtman, Jeff W.; Rapoport, Tom A.; Kozlov, Michael M.
2013-01-01
The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used novel staining and automated ultra-thin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. PMID:23870120
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
Compact Autonomous Hemispheric Vision System
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.
2012-01-01
Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.
“Orphan” γ-Ray Flares and Stationary Sheaths of Blazar Jets
NASA Astrophysics Data System (ADS)
MacDonald, Nicholas R.; Jorstad, Svetlana G.; Marscher, Alan P.
2017-11-01
Blazars exhibit flares across the entire electromagnetic spectrum. Many γ-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These “orphan” γ-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. MacDonald et al. have developed the Ring of Fire model to explain the origin of orphan γ-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ-ray flare. This model was successfully applied to modeling a prominent orphan γ-ray flare observed in the blazar PKS 1510-089. To further support the plausibility of this model, MacDonald et al. presented a stacked radio map of PKS 1510-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71.01, 3C 279, 1055+018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.
NASA Astrophysics Data System (ADS)
Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Salvo, R. Di; Hoorebeke, L. Van; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; de Leo, R.; Deur, A.; D'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fonvieille, H.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A. M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kamalov, S.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tiator, L.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; de Vyver, R. Van; der Meer, R. L. J. Van; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2009-01-01
We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)γ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at fixed Q2=1GeV2 and for the Q2 dependence at fixed W near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2 dependence is smooth. The measured ratio of H(e, e'p)γ to H(e, e'p)π0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to real Compton scattering (RCS) at high energy and large angles, our VCS data at the highest W (1.8-1.9 GeV) show a striking Q2 independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.
Revisiting the Bohr Atom 100 Years Later
NASA Astrophysics Data System (ADS)
Wall, Ernst
2013-03-01
We use a novel electron model wherein the electron is modeled as a point charge behaving as a trapped photon revolving in a Compton wavelength orbit at light speed. The revolving point charge gives rise to spiraling Compton wavelets around the electron, which give rise to de Broglie waves. When applied to the Bohr model, the orbital radius of the electron scales to the first Bohr orbit's radius via the fine structure constant. The orbiting electron's orbital velocity, Vb, scales to that of the electron's charge's internal velocity (the velocity of light, c) via the fine structure constant. The Compton wavelets, if they reflect off the nucleus, have a round trip time just long enough to allow the electron to move one of its diameters in distance in the first Bohr orbit. The ratio of the electron's rotational frequency, fe, to its rotational frequency in the Bohr orbit fb, is fe/fb = 1/α2, which is also the number of electron rotations in single orbit. If we scale the electron's rotational energy (h*fe) to that of the orbit using this, the orbital energy value (h*fb) would be 27.2114 eV. However, the virial theorem reduces it to 13.6057, the ground state energy of the first Bohr orbit. Ref: www.tachyonmodel.com.
On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study.
Nishimura, Y; Takahashi, S; Yamamoto, T; Tsuboi, M; Hattori, M; Miura, K; Yamaguchi, K; Ohtani, S; Hata, T
1980-01-01
The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside. PMID:7443542
Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid
Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.
2016-01-01
Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state. PMID:26947809
Forward Compton scattering with weak neutral current: Constraints from sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorchtein, Mikhail; Zhang, Xilin
2015-06-09
We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. Furthermore, we address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν, 0). For the dispersive γ Z-box correction to the proton’s weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributionsmore » by a factor of two. Finally, the finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.« less
Design and fabrication of vertically-integrated CMOS image sensors.
Skorka, Orit; Joseph, Dileepan
2011-01-01
Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.
Design and Fabrication of Vertically-Integrated CMOS Image Sensors
Skorka, Orit; Joseph, Dileepan
2011-01-01
Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860
NASA Technical Reports Server (NTRS)
Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)
1994-01-01
A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.
LPT. Shield test facility assembly and test building (TAN646). East ...
LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors †
Georgitzikis, Epimitheas; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David
2017-01-01
Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III–V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10−6 A/cm2 at −2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors. PMID:29232871
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
NASA Astrophysics Data System (ADS)
Barbiellini, Bernardo
2013-06-01
The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.
CHAMP (Camera, Handlens, and Microscope Probe)
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.
2005-01-01
CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.
NASA Astrophysics Data System (ADS)
Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.
2008-12-01
Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.
NASA Technical Reports Server (NTRS)
Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..;
2013-01-01
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, B.; Brandt, W. N.; Alexander, D. M.
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less
Arthur H. Compton and Compton Scattering
of X-rays, when he discovered the effect that is named after him in 1922. ... The Compton effect photon, when it interacts with matter. This effect demonstrates that light cannot be explained purely as overall momentum of the system is conserved. ... The explanation and measurement of the Compton effect
Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation
NASA Astrophysics Data System (ADS)
Yoshihara, Yuri; Shimazoe, Kenji; Mizumachi, Yuki; Takahashi, Hiroyuki
2017-11-01
Compton imaging has been used for various applications including astronomical observations, radioactive waste management, and biomedical imaging. The positions of radioisotopes are determined in the intersections of multiple cone traces through a large number of events, which reduces signal to noise ratio (SNR) of the images. We have developed an advanced Compton imaging method to localize radioisotopes with high SNR by using information of the interactions of Compton scattering caused by two gamma rays at the same time, as the double photon coincidence Compton imaging method. The targeted radioisotopes of this imaging method are specific nuclides that emit several gamma rays at the same time such as 60Co, 134Cs, and 111In, etc. Since their locations are determined in the intersections of two Compton cones, the most of cone traces would disappear in the three-dimensional space, which enhances the SNR and angular resolution. In this paper, the comparison of the double photon coincidence Compton imaging method and the single photon Compton imaging method was conducted by using GEANT4 Monte Carlo simulation.
Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs.
Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W; Schalek, Richard; Hayworth, Kenneth J; Hand, Arthur R; Yankova, Maya; Huber, Greg; Lichtman, Jeff W; Rapoport, Tom A; Kozlov, Michael M
2013-07-18
The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used improved staining and automated ultrathin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com
2016-12-01
We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, themore » humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.« less
NASA Astrophysics Data System (ADS)
Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.
2014-11-01
This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.
Prompt-gamma monitoring in hadrontherapy: A review
NASA Astrophysics Data System (ADS)
Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.
2018-01-01
Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.
NASA Astrophysics Data System (ADS)
Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki
2012-09-01
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
Orthogonal strip HPGe planar SmartPET detectors in Compton configuration
NASA Astrophysics Data System (ADS)
Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.
2007-10-01
The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.
On the V-Line Radon Transform and Its Imaging Applications
Morvidone, M.; Nguyen, M. K.; Truong, T. T.; Zaidi, H.
2010-01-01
Radon transforms defined on smooth curves are well known and extensively studied in the literature. In this paper, we consider a Radon transform defined on a discontinuous curve formed by a pair of half-lines forming the vertical letter V. If the classical two-dimensional Radon transform has served as a work horse for tomographic transmission and/or emission imaging, we show that this V-line Radon transform is the backbone of scattered radiation imaging in two dimensions. We establish its analytic inverse formula as well as a corresponding filtered back projection reconstruction procedure. These theoretical results allow the reconstruction of two-dimensional images from Compton scattered radiation collected on a one-dimensional collimated camera. We illustrate the working principles of this imaging modality by presenting numerical simulation results. PMID:20706545
Compact CdZnTe-based gamma camera for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.
2011-06-01
In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera have been completed. The results show better than 6-mm resolution at a distance of 1 cm. Details of the test results are discussed in this paper.
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
2002-09-01
Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.
Compton profiles of some composite materials normalized by a new method
NASA Astrophysics Data System (ADS)
Sankarshan, B. M.; Umesh, T. K.
2018-03-01
Recently, we have shown that as a novel approach, in the case of samples which can be treated as pure incoherent scatterers, the effective atomic number Zeff itself could be conveniently used to normalize their un-normalized Compton profiles. In the present investigation, we have attempted to examine the efficacy of this approach. For this purpose, we have first determined the single differential Compton scattering cross sections (SDCS) of the elements C and Al as well as of some H, C, N and O based polymer samples such as bakelite, epoxy, nylon and teflon which are pure incoherent scatterers. The measurements were made at 120° in a goniometer assembly that employs a high resolution high purity germanium detector. The SDCS values were used to obtain the Zeff and the un-normalized Compton profiles. These Compton profiles were separately normalized with their Zeff values (for Compton scattering) as well as with the normalization constant obtained by integrating their Hartree-Fock Biggs et al Compton profiles based on the mixture rule. These two sets of values agreed well within the range of experimental errors, implying that Zeff can be conveniently used to normalize the experimental Compton profiles of pure incoherent scatterers.
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-01-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction. PMID:26917151
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering.
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-03-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.
Compton suppression in BEGe detectors by digital pulse shape analysis.
Mi, Yu-Hao; Ma, Hao; Zeng, Zhi; Cheng, Jian-Ping; Li, Jun-Li; Zhang, Hui
2017-03-01
A new method of pulse shape discrimination (PSD) for BEGe detectors is developed to suppress Compton-continuum by digital pulse shape analysis (PSA), which helps reduce the Compton background level in gamma ray spectrometry. A decision parameter related to the rise time of a pulse shape was presented. The method was verified by experiments using 60 Co and 137 Cs sources. The result indicated that the 60 Co Peak to Compton ratio and the Cs-Peak to Co-Compton ratio could be improved by more than two and three times, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier
2016-12-01
Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.
CsI Calorimeter for a Compton-Pair Telescope
NASA Astrophysics Data System (ADS)
Grove, Eric J.
We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk-reduction prototype telescope, Proto-ComPair. We will: 1. Purchase CsI(Tl) crystals, Silicon Photomultipliers (SiPMs), and components for the analog and digital readout of the SiPMs; 2. Assemble and test Crystal Detector Elements (CDEs) from crystals, SiPMs and optical wrap; 3. Assemble and test analog and digital front-end and readout control boards; 4. Fabricate the mechanical structure that supports and contains the CDEs and electronics boards; and 5. Assemble and test the CsI calorimeter, and integrate it with the remainder of the Proto-ComPair subsystems. The PI team for this proposal conceived, designed, developed, assembled, tested, and currently operates the LAT calorimeter and is uniquely qualified to leverage the experience gained from that effort for ComPair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, A M; Anderson, S G; Betts, S
2005-05-19
PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattawy, M.; Baltzell, N. A.; Dupré, R.
We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized He-4 gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling He-4 nuclei.more » We measure beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we are able to extract, in a model-independent way, the real and imaginary parts of the only He-4 Compton form factor, HA. This first measurement of coherent deeply virtual Compton scattering on the He-4 nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattawy, M.; Baltzell, N. A.; Dupré, R.
Here, we report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment used the 6 GeV electron beam from the CEBAF accelerator at Jefferson Lab incident on a pressurizedmore » $^4$He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron was detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber was used to detect the recoiling $^4$He nuclei. We measured beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $$\\cal H_A$$. This first measurement of coherent deeply virtual Compton scattering on the $^4$He nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less
Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Senesi, R.; Pietropaolo, A.; Andreani, C.
2008-09-01
Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.
Study of electronic structure and Compton profiles of transition metal diborides
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.
2017-08-01
We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.
Sugioka, Hideyuki
2011-05-01
Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society
A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.
Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J
2018-02-01
This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.
NASA Technical Reports Server (NTRS)
Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.
1989-01-01
Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira
2016-05-15
The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-01-01
We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.
Comparison of dual-k spacer and single-k spacer for single NWFET and 3-stack NWFET
NASA Astrophysics Data System (ADS)
Ko, Hyungwoo; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol
2018-02-01
The investigation of the Dual-k spacer through comparative analysis of single nanowire-FET(NWFET)/3-stack NWFET and underlap/overlap channel is conducted. It is known that the dug 3-stack NWFET has better delay characteristics than single NWFET with the use of high permittivity material of Cin in Dual-k spacer structure. In addition, there is no difference of delay between overlap and underlap channel when it used Dual-k spacer structure but underlap channel of Dual-k 3-stack NWFET shows better short channel immunity.
Stacking and T-shape competition in aromatic-aromatic amino acid interactions.
Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo
2002-05-29
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Photovoltaic sub-cell interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne
2017-05-09
Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.
Fungal Melanins Differ in Planar Stacking Distances
Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R.; Eisner, Melvin
2012-01-01
Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments. PMID:22359541
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-09-01
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.
Stacking fault effects in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Schmidt, T. M.; Miwa, R. H.; Orellana, W.; Chacham, H.
2002-01-01
First-principles total energy calculations are performed to investigate the interaction of a stacking fault with a p-type impurity in both zinc-blende and wurtzite GaN. For both structures we find that, in the presence of a stacking fault, the impurity level is a more localized state in the band gap. In zinc-blende GaN, the minimum energy position of the substitutional Mg atom is at the plane of the stacking fault. In contrast, in wurtzite GaN the substitutional Mg atom at the plane of the stacking fault is a local minimum and the global minimum is the substitutional Mg far from the fault. This behavior can be understood as a packing effect which induces a distinct strain relief process, since the local structure of the stacking fault in zinc-blende GaN is similar to fault-free wurtzite GaN and vice-versa.
2005-06-01
has a layered structure consisting of lithium and cobalt sheets stacked alternatively between oxygen sheets. Li and Co occupy octahedral sites in...cobalt sheets stacked alternatively between ABCABC close-packed oxygen arrays. Li and Co occupy octahedral sites in alternating layers between the oxygen... Co 4.- o 4 Li Figure 1: Crystal structure of LiCoO2. LiCoO2 has a layered structure consisting of lithium and cobalt sheets stacked alternatively
The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity
NASA Astrophysics Data System (ADS)
Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.
2009-08-01
The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA and Onboard Processing. The DEA incorpo-rates the circuit elements required for data processing, compression, and buffering. It also includes all power conversion and regulation capabilities for both the DEA and the camera head. The DEA has an 8 GB non-volatile flash memory plus 128 MB volatile storage. Images can be commanded as full-frame or sub-frame and the camera has autofocus and autoexposure capa-bilities. MAHLI can also acquire 720p, ~7 Hz high definition video. Onboard processing includes options for Bayer pattern filter interpolation, JPEG-based compression, and focus stack merging (z-stacking). Malin Space Science Systems (MSSS) built and will operate the MAHLI. Alliance Spacesystems, LLC, designed and built the lens mechanical assembly. MAHLI shares common electronics, detector, and software designs with the MSL Mars Descent Imager (MARDI) and the 2 MSL Mast Cameras (Mastcam). Pre-launch images of geologic materials imaged by MAHLI are online at: http://www.msss.com/msl/mahli/prelaunch_images/.
91. ARAIII. GCRE reactor building (ARA608) at 48 percent completion. ...
91. ARA-III. GCRE reactor building (ARA-608) at 48 percent completion. Camera faces west end of building; shows roll-up door. High bay section on right view. Petro-chem heater stack extends above roof of low-bay section on left. Excavation for 13, 8 kv electrical conduit in foreground. January 20, 1959. Ineel photo no. 59-322. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
The effect of relativistic Compton scattering on thermonuclear burn of pure deuterium fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemizad, A.; Nazirzadeh, M.; Khanbabaei, B.
The relativistic effects of the Compton scattering on the thermonuclear burn-up of pure deuterium fuel in non-equilibrium plasma have been studied by four temperature (4T) theory. In the limit of low electron temperatures and photon energies, the nonrelativistic Compton scattering is valid and a convenient approximation, but in the high energy exchange rates between electrons and photons, is seen to break down. The deficiencies of the nonrelativistic approximation can be overcome by using the relativistic correction in the photons kinetic equation. In this research, we have utilized the four temperature (4T) theory to calculate the critical burn-up parameter for puremore » deuterium fuel, while the Compton scattering is considered as a relativistic phenomenon. It was shown that the measured critical burn-up parameter in ignition with relativistic Compton scattering is smaller than that of the parameter in the ignition with the nonrelativistic Compton scattering.« less
NASA Astrophysics Data System (ADS)
Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak
2015-01-01
In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Pang, Chin-Sheng; Hwu, Jenn-Gwo
2014-01-01
Improvement in the time-zero dielectric breakdown (TZDB) endurance of metal-oxide-semiconductor (MOS) capacitor with stacking structure of Al/HfO2/SiO2/Si is demonstrated in this work. The misalignment of the conduction paths between two stacking layers is believed to be effective to increase the breakdown field of the devices. Meanwhile, the resistance of the dielectric after breakdown for device with stacking structure would be less than that of without stacking structure due to a higher breakdown field and larger breakdown power. In addition, the role of interfacial layer (IL) in the control of the interface trap density (D it) and device reliability is also analyzed. Device with a thicker IL introduces a higher breakdown field and also a lower D it. High-resolution transmission electron microscopy (HRTEM) of the samples with different IL thicknesses is provided to confirm that IL is needed for good interfacial property.
Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen
NASA Astrophysics Data System (ADS)
Kato, Kimihiko; Kondo, Hiroki; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki
2011-06-01
We have demonstrated the control of interfacial properties of Pr-oxide/Ge gate stack structure by the introduction of nitrogen. From C- V characteristics of Al/Pr-oxide/Ge 3N 4/Ge MOS capacitors, the interface state density decreases without the change of the accumulation capacitance after annealing. The TEM and TED measurements reveal that the crystallization of Pr-oxide is enhanced with annealing and the columnar structure of cubic-Pr 2O 3 is formed after annealing. From the depth profiles measured using XPS with Ar sputtering for the Pr-oxide/Ge 3N 4/Ge stack structure, the increase in the Ge component is not observed in a Pr-oxide film and near the interface between a Pr-oxide film and a Ge substrate. In addition, the N component segregates near the interface region, amorphous Pr-oxynitride (PrON) is formed at the interface. As a result, Pr-oxide/PrON/Ge stacked structure without the Ge-oxynitride interlayer is formed.
Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers
NASA Astrophysics Data System (ADS)
Zhai, Xuechao; Jin, Guojun
2013-09-01
Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.
NASA Technical Reports Server (NTRS)
Gould, R. J.
1979-01-01
Higher-order electromagnetic processes involving particles at ultrahigh energies are discussed, with particular attention given to Compton scattering with the emission of an additional photon (double Compton scattering). Double Compton scattering may have significance in the interaction of a high-energy electron with the cosmic blackbody photon gas. At high energies the cross section for double Compton scattering is large, though this effect is largely canceled by the effects of radiative corrections to ordinary Compton scattering. A similar cancellation takes place for radiative pair production and the associated radiative corrections to the radiationless process. This cancellation is related to the well-known cancellation of the infrared divergence in electrodynamics.
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang; ...
2015-11-13
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gara, Alana; Heidelberger, Philip
Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.
Electron momentum density and band structure calculations of α- and β-GeTe
NASA Astrophysics Data System (ADS)
Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.
2011-12-01
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.
Combining joint models for biomedical event extraction
2012-01-01
Background We explore techniques for performing model combination between the UMass and Stanford biomedical event extraction systems. Both sub-components address event extraction as a structured prediction problem, and use dual decomposition (UMass) and parsing algorithms (Stanford) to find the best scoring event structure. Our primary focus is on stacking where the predictions from the Stanford system are used as features in the UMass system. For comparison, we look at simpler model combination techniques such as intersection and union which require only the outputs from each system and combine them directly. Results First, we find that stacking substantially improves performance while intersection and union provide no significant benefits. Second, we investigate the graph properties of event structures and their impact on the combination of our systems. Finally, we trace the origins of events proposed by the stacked model to determine the role each system plays in different components of the output. We learn that, while stacking can propose novel event structures not seen in either base model, these events have extremely low precision. Removing these novel events improves our already state-of-the-art F1 to 56.6% on the test set of Genia (Task 1). Overall, the combined system formed via stacking ("FAUST") performed well in the BioNLP 2011 shared task. The FAUST system obtained 1st place in three out of four tasks: 1st place in Genia Task 1 (56.0% F1) and Task 2 (53.9%), 2nd place in the Epigenetics and Post-translational Modifications track (35.0%), and 1st place in the Infectious Diseases track (55.6%). Conclusion We present a state-of-the-art event extraction system that relies on the strengths of structured prediction and model combination through stacking. Akin to results on other tasks, stacking outperforms intersection and union and leads to very strong results. The utility of model combination hinges on complementary views of the data, and we show that our sub-systems capture different graph properties of event structures. Finally, by removing low precision novel events, we show that performance from stacking can be further improved. PMID:22759463
Detection and Imaging of the Crab Nebula with the Nuclear Compton Telescope
NASA Astrophysics Data System (ADS)
Bandstra, M. S.; Bellm, E. C.; Boggs, S. E.; Perez-Becker, D.; Zoglauer, A.; Chang, H.-K.; Chiu, J.-L.; Liang, J.-S.; Chang, Y.-H.; Liu, Z.-K.; Hung, W.-C.; Huang, M.-H. A.; Chiang, S. J.; Run, R.-S.; Lin, C.-H.; Amman, M.; Luke, P. N.; Jean, P.; von Ballmoos, P.; Wunderer, C. B.
2011-09-01
The Nuclear Compton Telescope (NCT) is a balloon-borne Compton telescope designed for the study of astrophysical sources in the soft gamma-ray regime (200 keV-20 MeV). NCT's 10 high-purity germanium crossed-strip detectors measure the deposited energies and three-dimensional positions of gamma-ray interactions in the sensitive volume, and this information is used to restrict the initial photon to a circle on the sky using the Compton scatter technique. Thus NCT is able to perform spectroscopy, imaging, and polarization analysis on soft gamma-ray sources. NCT is one of the next generation of Compton telescopes—the so-called compact Compton telescopes (CCTs)—which can achieve effective areas comparable to the Imaging Compton Telescope's with an instrument that is a fraction of the size. The Crab Nebula was the primary target for the second flight of the NCT instrument, which occurred on 2009 May 17 and 18 in Fort Sumner, New Mexico. Analysis of 29.3 ks of data from the flight reveals an image of the Crab at a significance of 4σ. This is the first reported detection of an astrophysical source by a CCT.
Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars
NASA Technical Reports Server (NTRS)
Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.
2012-01-01
We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.
NASA Astrophysics Data System (ADS)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.
2004-09-01
Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.
NASA Astrophysics Data System (ADS)
Guidal, M.
2010-09-01
We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES Collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the accent="true">H˜Im Compton Form Factor. We present its t- and ξ-dependencies. We also find improvement on the determination of two other Compton Form Factors, HRe and HIm.
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J.; van Lint, V.; Sherwood, S.
This report is a compilation of two previous sets of pretest calculations, references 1 and 2 and the grounding and shielding report, reference 3. The calculations performed in reference 1 were made for the baseline system, with the instrumentation trailers not isolated from ground, and wider ranges of ground conductivity were considered. This was used to develop the grounding and shielding plan included in the appendix. The final pretest calculations of reference 2 were performed for the modified system with isolated trailers, and with a better knowledge of the ground conductivity. The basic driving mechanism for currents in the modelmore » is the motion of Compton electrons, driven by gamma rays, in the air gaps and soil. Most of the Compton current is balanced by conduction current which returns directly along the path of the Compton electron, but a small fraction will return by circuitous paths involving current flow on conductors, including the uphole cables. The calculation of the currents is done in a two step process -- first the voltages in the ground near the conducting metallic structures is calculated without considering the presence of the structures. These are then used as open circuit drivers for an electrical model of the conductors which is obtained from loop integrals of Maxwell`s equations. The model which is used is a transmission line model, similar to those which have been used to calculate EMP currents on buried and overhead cables in other situations, including previous underground tests, although on much shorter distance and time scales, and with more controlled geometries. The behavior of air gaps between the conducting structure and the walls of the drift is calculated using an air chemistry model which determines the electron and ion densities and uses them to calculate the air conductivity across the gap.« less
Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state
Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...
2015-12-10
We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less
Neutron Compton scattering from selectively deuterated acetanilide
NASA Astrophysics Data System (ADS)
Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.
NASA Astrophysics Data System (ADS)
Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.
2016-06-01
We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
Retinal fundus imaging with a plenoptic sensor
NASA Astrophysics Data System (ADS)
Thurin, Brice; Bloch, Edward; Nousias, Sotiris; Ourselin, Sebastien; Keane, Pearse; Bergeles, Christos
2018-02-01
Vitreoretinal surgery is moving towards 3D visualization of the surgical field. This require acquisition system capable of recording such 3D information. We propose a proof of concept imaging system based on a light-field camera where an array of micro-lenses is placed in front of a conventional sensor. With a single snapshot, a stack of images focused at different depth are produced on the fly, which provides enhanced depth perception for the surgeon. Difficulty in depth localization of features and frequent focus-change during surgery are making current vitreoretinal heads-up surgical imaging systems cumbersome to use. To improve the depth perception and eliminate the need to manually refocus on the instruments during the surgery, we designed and implemented a proof-of-concept ophthalmoscope equipped with a commercial light-field camera. The sensor of our camera is composed of an array of micro-lenses which are projecting an array of overlapped micro-images. We show that with a single light-field snapshot we can digitally refocus between the retina and a tool located in front of the retina or display an extended depth-of-field image where everything is in focus. The design and system performances of the plenoptic fundus camera are detailed. We will conclude by showing in vivo data recorded with our device.
What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions
NASA Technical Reports Server (NTRS)
Elvis, Martin
2000-01-01
We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.
NASA Astrophysics Data System (ADS)
Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.
2014-12-01
The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction algorithms, and develop a novel approach to time-lapse quantification of radionuclide dynamics in the soil-plant system. The aim is to underpin the development of a new generation of Compton radiometers equipped to provide high resolution, dynamic measurements of radionuclides in terrestrial biogeochemical environments.
NASA Astrophysics Data System (ADS)
Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy
2015-05-01
Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.
Self-Catalyzed Growth of Axial GaAs/GaAsSb Nanowires by Molecular Beam Epitaxy for Photodetectors
2015-06-01
blende structure with mixture of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically...a) TEM image of the core NW (b) HR-TEM image displaying the stacking faults and twinning defects. (c)SAED pattern showing the ZB crystal structure...of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically etched substrates. For
NASA Astrophysics Data System (ADS)
Sikora, Mark; Compton@HIGS Team
2017-01-01
The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.
NASA Astrophysics Data System (ADS)
Sikora, Mark
2016-09-01
The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.
Short protection device for stack of electrolytic cells
Katz, Murray; Schroll, Craig R.
1985-10-22
Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.
Yang, Daoguo; Zhang, Guoqi; Chen, Liangbiao; Liu, Dongjing; Cai, Miao; Fan, Xuejun
2018-01-01
The effects of graphene stacking are investigated by comparing the results of methane adsorption energy, electronic performance, and the doping feasibility of five dopants (i.e., B, N, Al, Si, and P) via first-principles theory. Both zigzag and armchair graphenes are considered. It is found that the zigzag graphene with Bernal stacking has the largest adsorption energy on methane, while the armchair graphene with Order stacking is opposite. In addition, both the Order and Bernal stacked graphenes possess a positive linear relationship between adsorption energy and layer number. Furthermore, they always have larger adsorption energy in zigzag graphene. For electronic properties, the results show that the stacking effects on band gap are significant, but it does not cause big changes to band structure and density of states. In the comparison of distance, the average interlamellar spacing of the Order stacked graphene is the largest. Moreover, the adsorption effect is the result of the interactions between graphene and methane combined with the change of graphene’s structure. Lastly, the armchair graphene with Order stacking possesses the lowest formation energy in these five dopants. It could be the best choice for doping to improve the methane adsorption. PMID:29389860
Yang, Ning; Yang, Daoguo; Zhang, Guoqi; Chen, Liangbiao; Liu, Dongjing; Cai, Miao; Fan, Xuejun
2018-02-01
The effects of graphene stacking are investigated by comparing the results of methane adsorption energy, electronic performance, and the doping feasibility of five dopants (i.e., B, N, Al, Si, and P) via first-principles theory. Both zigzag and armchair graphenes are considered. It is found that the zigzag graphene with Bernal stacking has the largest adsorption energy on methane, while the armchair graphene with Order stacking is opposite. In addition, both the Order and Bernal stacked graphenes possess a positive linear relationship between adsorption energy and layer number. Furthermore, they always have larger adsorption energy in zigzag graphene. For electronic properties, the results show that the stacking effects on band gap are significant, but it does not cause big changes to band structure and density of states. In the comparison of distance, the average interlamellar spacing of the Order stacked graphene is the largest. Moreover, the adsorption effect is the result of the interactions between graphene and methane combined with the change of graphene's structure. Lastly, the armchair graphene with Order stacking possesses the lowest formation energy in these five dopants. It could be the best choice for doping to improve the methane adsorption.
Monte Carlo simulations of relativistic radiation-mediated shocks - I. Photon-rich regime
NASA Astrophysics Data System (ADS)
Ito, Hirotaka; Levinson, Amir; Stern, Boris E.; Nagataki, Shigehiro
2018-02-01
We explore the physics of relativistic radiation-mediated shocks (RRMSs) in the regime where photon advection dominates over photon generation. For this purpose, a novel iterative method for deriving a self-consistent steady-state structure of RRMS is developed, based on a Monte Carlo code that solves the transfer of photons subject to Compton scattering and pair production/annihilation. Systematic study is performed by imposing various upstream conditions which are characterized by the following three parameters: the photon-to-baryon inertia ratio ξu*, the photon-to-baryon number ratio \\tilde{n}, and the shock Lorentz factor γu. We find that the properties of RRMSs vary considerably with these parameters. In particular, while a smooth decline in the velocity, accompanied by a gradual temperature increase is seen for ξu* ≫ 1, an efficient bulk Comptonization, that leads to a heating precursor, is found for ξu* ≲ 1. As a consequence, although particle acceleration is highly inefficient in these shocks, a broad non-thermal spectrum is produced in the latter case. The generation of high-energy photons through bulk Comptonization leads, in certain cases, to a copious production of pairs that provide the dominant opacity for Compton scattering. We also find that for certain upstream conditions a weak subshock appears within the flow. For a choice of parameters suitable to gamma-ray bursts, the radiation spectrum within the shock is found to be compatible with that of the prompt emission, suggesting that subphotospheric shocks may give rise to the observed non-thermal features despite the absence of accelerated particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.
1979-03-15
An interesting empirical relationship between zero point Compton profile anisotropies ..delta..J (0) and nuclear charges is noted. It is shown that, for alkali halide molecules AB, to a good approximation ..delta..J (0) =N ln(Z/sub b//Z/sub a/).
Compton Dry-Cask Imaging System
None
2017-12-09
The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/
Relativistic thermal plasmas - Effects of magnetic fields
NASA Technical Reports Server (NTRS)
Araki, S.; Lightman, A. P.
1983-01-01
Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.
On the line-shape analysis of Compton profiles and its application to neutron scattering
NASA Astrophysics Data System (ADS)
Romanelli, G.; Krzystyniak, M.
2016-05-01
Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.
NASA Astrophysics Data System (ADS)
Smith, Brent M.; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Jiang, Linhua; Dijkstra, Mark; Koekemoer, Anton M.; Bielby, Richard; Inoue, Akio K.; MacKenty, John W.; O’Connell, Robert W.; Silk, Joseph I.
2018-02-01
We present observations of escaping Lyman Continuum (LyC) radiation from 34 massive star-forming galaxies (SFGs) and 12 weak AGN with reliably measured spectroscopic redshifts at z≃ 2.3{--}4.1. We analyzed Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) mosaics of the Early Release Science (ERS) field in three UVIS filters to sample the rest-frame LyC over this redshift range. With our best current assessment of the WFC3 systematics, we provide 1σ upper limits for the average LyC emission of galaxies at < z> = 2.35, 2.75, and 3.60 to ∼28.5, 28.1, and 30.7 mag in image stacks of 11–15 galaxies in the WFC3/UVIS F225W, F275W, and F336W, respectively. The LyC flux of weak AGN at < z> = 2.62 and 3.32 are detected at 28.3 and 27.4 mag with S/Ns of ∼2.7 and 2.5 in F275W and F336W for stacks of 7 and 3 AGN, respectively, while AGN at < z> = 2.37 are constrained to ≳27.9 mag at 1σ in a stack of 2 AGN. The stacked AGN LyC light profiles are flatter than their corresponding non-ionizing UV continuum profiles out to radii of r≲ 0\\buildrel{\\prime\\prime}\\over{.} 9, which may indicate a radial dependence of porosity in the ISM. With synthetic stellar SEDs fit to UV continuum measurements longward of {{Ly}}α and IGM transmission models, we constrain the absolute LyC escape fractions to {f}{esc}{abs}≃ {22}-22+44% at < z> = 2.35 and ≲55% at < z> = 2.75 and 3.60, respectively. All available data for galaxies, including published work, suggests a more sudden increase of {f}{esc} with redshift at z≃ 2. Dust accumulating in (massive) galaxies over cosmic time correlates with increased H I column density, which may lead to reducing {f}{esc} more suddenly at z≲ 2. This may suggest that SFGs collectively contributed to maintaining cosmic reionization at redshifts z≳ 2{--}4, while AGN likely dominated reionization at z≲ 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
NASA Technical Reports Server (NTRS)
Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark;
2011-01-01
We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.
Reliability prediction of large fuel cell stack based on structure stress analysis
NASA Astrophysics Data System (ADS)
Liu, L. F.; Liu, B.; Wu, C. W.
2017-09-01
The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
NASA Astrophysics Data System (ADS)
Chang, P. K.; Hwu, J. G.
2018-02-01
Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.
Compton spectra of atoms at high x-ray intensity
NASA Astrophysics Data System (ADS)
Son, Sang-Kil; Geffert, Otfried; Santra, Robin
2017-03-01
Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.
Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity
NASA Astrophysics Data System (ADS)
Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio
2016-10-01
The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.
Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe
2007-09-01
In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.
Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer.
Li, Ming-Hui; Luo, Quan; Xue, Xiang-Gui; Li, Ze-Sheng
2011-03-01
G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3'-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.
NASA Astrophysics Data System (ADS)
Laveissière, G.; Todor, L.; Degrande, N.; Jaminion, S.; Jutier, C.; di Salvo, R.; van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; de Leo, R.; Deur, A.; D'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fonvieille, H.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde-Wright, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; Lerose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A.; Papandreou, Z.; Pasquini, B.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vanderhaeghen, M.; van de Vyver, R.; van der Meer, R. L.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2004-09-01
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions PLL-PTT/ɛ and PLT, and the electric and magnetic generalized polarizabilities (GPs) αE(Q2) and βM(Q2) at momentum transfer Q2=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from πN intermediate states.
NASA Astrophysics Data System (ADS)
Fonvieille, H.; Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Di Salvo, R.; Van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; De Leo, R.; Deur, A.; d'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A. M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; LeRose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Pasquini, B.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vanderhaeghen, M.; Van der Meer, R. L. J.; Van De Vyver, R.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2012-07-01
Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep→epγ. This paper gives a detailed account of the analysis which has led to the determination of the structure functions PLL-PTT/ɛ and PLT and the electric and magnetic generalized polarizabilities (GPs) αE(Q2) and βM(Q2) at values of the four-momentum transfer squared Q2=0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q2 range and point to their nontrivial behavior.
Polarization reconstruction algorithm for a Compton polarimeter
NASA Astrophysics Data System (ADS)
Vockert, M.; Weber, G.; Spillmann, U.; Krings, T.; Stöhlker, Th
2018-05-01
We present the technique of Compton polarimetry using X-ray detectors based on double-sided segmented semiconductor crystals that were developed within the SPARC collaboration. In addition, we discuss the polarization reconstruction algorithm with particular emphasis on systematic deviations between the observed detector response and our model function for the Compton scattering distribution inside the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Izumi, N.; Landen, O. L.
2016-08-03
Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less
Technical report on the surface reconstruction of stacked contours by using the commercial software
NASA Astrophysics Data System (ADS)
Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo
2007-03-01
After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.
Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron
2017-09-01
Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, Michael C.; Weber, Thomas M.
2017-11-01
A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a goodmore » candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We presentmore » the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.
We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung; ...
2017-10-25
α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C.
1981-01-01
The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.
Ab initio study of point defects near stacking faults in 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Ab initio study of point defects near stacking faults in 3C-SiC
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...
2016-07-02
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki
2014-06-21
The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n{sup +}-GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarizationmore » sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.« less
Measurement and simulation of a Compton suppression system for safeguards application
NASA Astrophysics Data System (ADS)
Lee, Seung Kyu; Seo, Hee; Won, Byung-Hee; Lee, Chaehun; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Park, Geun-Il; Park, Se-Hwan
2015-11-01
Plutonium (Pu) contents in spent nuclear fuels, recovered uranium (U) or uranium/transuranium (U/TRU) products must be measured in order to secure the safeguardability of a pyroprocessing facility. Self-induced X-Ray fluorescence (XRF) and gamma-ray spectroscopy are useful techniques for determining Pu-to-U ratios and Pu isotope ratios of spent fuel. Photon measurements of spent nuclear fuel by using high-resolution spectrometers such as high-purity germanium (HPGe) detectors show a large continuum background in the low-energy region, which is due in large part to Compton scattering of energetic gamma rays. This paper proposes a Compton suppression system for reducing of the Compton continuum background. In the present study, the system was configured by using an HPGe main detector and a BGO (bismuth germanate: Bi4Ge3O12) guard detector. The system performances for gamma-ray measurement and XRF were evaluated by means of Monte Carlo simulations and measurements of the radiation source. The Monte Carlo N-Particle eXtended (MCNPX) simulations were performed using the same geometry as for the experiments, and considered, for exact results, the production of secondary electrons and photons. As a performance test of the Compton suppression system, the peak-to-Compton ratio, which is a figure of merit to evaluate the gamma-ray detection, was enhanced by a factor of three or more when the Compton suppression system was used.
FULL SPECTRAL SURVEY OF ACTIVE GALACTIC NUCLEI IN THE ROSSI X-RAY TIMING EXPLORER ARCHIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu
2013-08-01
We have analyzed spectra for all active galactic nuclei (AGNs) in the Rossi X-ray Timing Explorer archive. We present long-term average values of absorption, Fe line equivalent width (EW), Compton reflection, and photon index, and calculate fluxes and luminosities in the 2-10 keV band for 100 AGN with sufficient brightness and overall observation time to yield high-quality spectral results. We compare these parameters across the different classifications of Seyferts and blazars. Our distributions of photon indices for Seyfert 1s and 2s are consistent with the idea that Seyferts share a common central engine; however, our distributions of Compton reflection humpmore » strengths do not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. We conclude that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. We find that Compton reflection is present in {approx}85% of Seyferts and by comparing Fe line EW's to Compton reflection hump strengths we have found that on average 40% of the Fe line arises in Compton thick material; however, this ratio was not consistent from object to object and did not seem to be dependent on optical classification.« less
CHAMP - Camera, Handlens, and Microscope Probe
NASA Technical Reports Server (NTRS)
Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.
2005-01-01
CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.
NASA Astrophysics Data System (ADS)
Koizumi, Akihisa; Kubo, Yasunori; Motoyama, Gaku; Yamamura, Tomoo; Sakurai, Yoshiharu
2018-06-01
We have measured directional Compton profiles on the (001) plane in URu2Si2 single crystal at several temperatures. Two-dimensional electron occupation number densities (2D-EONDs) were obtained from the profiles through electron momentum reconstruction and Lock-Crisp-West folding analyses. We have also performed band calculations based on 5f-electron itinerant and localized models and derived theoretical 2D-EONDs for comparison. The experimental 2D-EOND at 300 K is well described by the localized model, and the 2D-EOND at 10 K is consistent with the theoretical one based on the itinerant model. The difference between 2D-EONDs at 30 and 100 K reflects a gradual change in the electronic structure, which reveals some of the crossover phenomena from localized to itinerant states. The change from localized to itinerant states is also reflected in a B(r) function, which is obtained in the reconstruction analysis and is an autocorrelation function of the wave function in the position space. The process by which the electronic structure in URu2Si2 changes is demonstrated through a series of experimental results.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C
2013-10-08
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.
2016-05-31
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Study of Compton suppression for use in spent nuclear fuel assay
NASA Astrophysics Data System (ADS)
Bender, Sarah
The focus of this study has been to assess Compton suppressed gamma-ray detection systems for the multivariate analysis of spent nuclear fuel. This objective has been achieved using direct measurement of samples of irradiated fuel elements in two geometrical configurations with Compton suppression systems. In order to address the objective to quantify the number of additionally resolvable photopeaks, direct Compton suppressed spectroscopic measurements of spent nuclear fuel in two configurations were performed: as intact fuel elements and as dissolved feed solutions. These measurements directly assessed and quantified the differences in measured gamma-ray spectrum from the application of Compton suppression. Several irradiated fuel elements of varying cooling time from the Penn State Breazeale Reactor spent fuel inventory were measured using three Compton suppression systems that utilized different primary detectors: HPGe, LaBr3, and NaI(Tl). The application of Compton suppression using a LaBr3 primary detector to the measurement of the current core fuel element, which presented the highest count rate, allowed four additional spectral features to be resolved. In comparison, the HPGe-CSS was able to resolve eight additional photopeaks as compared to the standalone HPGe measurement. Measurements with the NaI(Tl) primary detector were unable to resolve any additional peaks, due to its relatively low resolution. Samples of Approved Test Material (ATM) commercial fuel elements were obtained from Pacific Northwest National Laboratory. The samples had been processed using the beginning stages of the PUREX method and represented the unseparated feed solution from a reprocessing facility. Compton suppressed measurements of the ATM fuel samples were recorded inside the guard detector annulus, to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Photopeak losses were observed in the measurements of the dissolved ATM fuel samples because the spectra was recorded from the source in very close proximity to the detector and surrounded by the guard annulus, so the detection probability is very high. Though this configuration is optimal for a Compton suppression system for the measurement of low count rate samples, measurement of high count rate samples in the enclosed arrangement leads to sum peaks in both the suppressed and unsuppressed spectra and losses to photopeak counts in the suppressed spectra. No additional photopeaks were detected using Compton suppression with this geometry. A detector model was constructed that can accurately simulate a Compton suppressed spectral measurement of radiation from spent nuclear fuel using HPGe or LaBr3 detectors. This is the first detector model capable of such an accomplishment. The model uses the Geant4 toolkit coupled with the RadSrc application and it accepts spent fuel composition data in list form. The model has been validated using dissolved ATM fuel samples in the standard, enclosed geometry of the PSU HPGe-CSS. The model showed generally good agreement with both the unsuppressed and suppressed measured fuel sample spectra, however the simulation is more appropriate for the generation of gamma-ray spectra in the beam source configuration. Photopeak losses due to cascade decay emissions in the Compton suppressed spectra were not appropriately managed by the simulation. Compton suppression would be a beneficial addition to NDA process monitoring systems if oriented such that the gamma-ray photons are collimated to impinge the primary detector face as a beam. The analysis has shown that peak losses through accidental coincidences are minimal and the reduction in the Compton continuum allows additional peaks to be resolved. (Abstract shortened by UMI.).
Spectra of clinical CT scanners using a portable Compton spectrometer.
Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S
2015-04-01
Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
NASA Astrophysics Data System (ADS)
Que, Yande; Xiao, Wende; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun
2015-12-01
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.
Hidden baryons: The physics of Compton composites
NASA Astrophysics Data System (ADS)
Mayer, Frederick J.
2016-06-01
A large fraction of the mass-energy of the Universe appears to be composed of Compton composites. How is it then that these composites are not frequently observed in experiments? This paper addresses this question, and others, by reviewing recent publications that: 1) introduced Compton composites, 2) showed how and where they are formed and 3) explained how they interact with other systems. Though ubiquitous in many physical situations, Compton composites are almost completely hidden in experiments due to their unique interaction characteristics. Still, their presence has been indirectly observed, though not interpreted as such until recently. Looking to the future, direct-detection experiments are proposed that could verify the composites' components. It is with deep sadness that I dedicate this paper to my mentor, collaborator, and friend, Dr. John R. Reitz, who passed away within days of the publication of our paper “Compton Composites Late in the Early Universe”.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
The structural basis for enhanced silver reflectance in Koi fish scale and skin.
Gur, Dvir; Leshem, Ben; Oron, Dan; Weiner, Steve; Addadi, Lia
2014-12-10
Fish have evolved biogenic multilayer reflectors composed of stacks of intracellular anhydrous guanine crystals separated by cytoplasm, to produce the silvery luster of their skin and scales. Here we compare two different variants of the Japanese Koi fish; one of them with enhanced reflectivity. Our aim is to determine how biology modulates reflectivity, and from this to obtain a mechanistic understanding of the structure and properties governing the intensity of silver reflectance. We measured the reflectance of individual scales with a custom-made microscope, and then for each individual scale we characterized the structure of the guanine crystal/cytoplasm layers using high-resolution cryo-SEM. The measured reflectance and the structural-geometrical parameters were used to calculate the reflectance of each scale, and the results were compared to the experimental measurements. We show that enhanced reflectivity is obtained with the same basic guanine crystal/cytoplasm stacks, but the structural arrangement between the stack, inside the stacks, and relative to the scale surface is varied when reflectivity is enhanced. Finally, we propose a model that incorporates the basic building block parameters, the crystal orientation inside the tissue, and the resulting reflectance and explains the mechanistic basis for reflectance enhancement.
ERIC Educational Resources Information Center
Straus, Emily E.
2009-01-01
This article discusses the role of education within communities and underscores the changing nature of minority groups in the United States. It specifically examines the struggle between African Americans and Latinos over education, employment, and empowerment in Compton, California. The story of Compton and its school district exposes…
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvadori, P.
1962-10-31
The proton (p ) and gamma energy and angular distributions from the elastic (Compton) interaction p + gamma -- p + gamma are calculated. The results are tabulated for 25-Mev gamma increments, from 300 to 1500 Mev. (T.F.H.)
Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment
ERIC Educational Resources Information Center
Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.
2012-01-01
We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…
G. E. M. Jauncey and the Compton Effect
NASA Astrophysics Data System (ADS)
Jenkin, John
In late 1922 Arthur Holly Compton (1892-1962) discovered that an X-ray quantum of radiation undergoes a discrete change in wavelength when it experiences a billiard-ball collision with a single atomic electron, a phenomenon that became known as the Compton effect and for which he shared the Nobel Prize in Physics for 1927. But for more than five years before he made his discovery, Compton had analyzed X-ray scattering in terms of classical electrodynamics. I suggest that his colleague at Washington University in St. Louis, G. E. M. Jauncey (1888-1947), helped materially to persuade him to embrace the quantum interpretation of his X-ray scattering experiments.
A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furui, Shun’ya; Fukazawa, Yasushi; Ohno, Masanori
We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differencesmore » due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.« less
Measuring Multi-Megavolt Diode Voltages
NASA Astrophysics Data System (ADS)
Pereira, N. R.; Swanekamp, S. B.; Weber, B. V.; Commisso, R. J.; Hinshelwood, D. D.; Stephanakis, S. J.
2002-12-01
The voltage in high-power diodes can be determined by measuring the Compton electrons generated by the diode's bremsstrahlung radiation. This technique is implemented with a Compton-Hall (C-H) voltmeter that collimates the bremsstrahlung onto a Compton target and bends the emitted Compton electron orbits off to the side with an applied magnetic field off to Si pin diode detectors. Voltage is determined from the ratio of the Compton electron dose to the forward x-ray dose. The instrument's calibration and response are determined from coupled electron/photon transport calculations. The applicable voltage range is tuned by adjusting the position of the electron detector relative to the Compton target or by varying the magnetic field strength. The instrument was used to obtain time-dependent voltage measurements for a pinched-beam diode whose voltage is enhanced by an upstream opening switch. In this case, plasmas and vacuum electron flow from the opening switch make it difficult to determine the voltage accurately from electrical measurements. The C-H voltmeter gives voltages that are significantly higher than those obtained from electrical measurements but are consistent with measurements of peak voltage based on nuclear activation of boron-nitride targets.
Cassette less SOFC stack and method of assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhardt, Kerry D
2014-11-18
A cassette less SOFC assembly and a method for creating such an assembly. The SOFC stack is characterized by an electrically isolated stack current path which allows welded interconnection between frame portions of the stack. In one embodiment electrically isolating a current path comprises the step of sealing a interconnect plate to a interconnect plate frame with an insulating seal. This enables the current path portion to be isolated from the structural frame an enables the cell frame to be welded together.
Interaction driven quantum Hall effect in artificially stacked graphene bilayers
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-01-01
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387
Interaction driven quantum Hall effect in artificially stacked graphene bilayers.
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-04-21
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.
2000-01-09
JSC2003-E-15407 (9 Jan. 1990) --- A 35mm still camera located in the umbilical well of the Space Shuttle Columbia took this photograph of the external fuel tank (ET) after it was dropped from the launch stack as the shuttle headed for Earth-orbit on Jan. 9, 1990 for the STS-32 mission. Several large divots are visible near the forward ET/orbiter bipod and smaller divots are visible on the H2 tank acreage. The vertical streak and the horizontal bands were the results of repairs done prior to launch.
PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...
PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
New disk nova candidate in M 31
NASA Astrophysics Data System (ADS)
Henze, M.; Pietsch, W.; Burwitz, V.; Rodriguez, J.; Bochinski, J.; Busuttil, R.; Haswell, C. A.; Holmes, S.; Kolb, U.
2012-02-01
We report the discovery of a possible nova in the south-western disk of M 31 on a 5x120s dithered stacked CCD image obtained with the Open University PIRATE Planewave CDK17 0.43m Dall-Kirkham f/6.7 telescope at the Observatorio Astronomico de Mallorca (Costitx, Spain), using an SBIG STX 16803 CCD Camera (with a Kodak 4k x 4k chip with 9 microns sq. pixels) and Baader clear filter, on 2012 Feb 15.803 UT with a R magnitude of 17.5 (accuracy of 0.2 mag).
New optical nova candidate in the M 31 disk
NASA Astrophysics Data System (ADS)
Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.; Pietsch, W.,
2014-07-01
We report the discovery of a possible nova in the disk of M 31 on two 4x200s stacked R filter CCD images, obtained with the the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.;
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
Displacement and deformation measurement for large structures by camera network
NASA Astrophysics Data System (ADS)
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
NASA Astrophysics Data System (ADS)
Janiak, M.; Sikora, M.; Moderski, R.
2016-05-01
We present a detailed Fermi/LAT data analysis for the broad-line radio galaxy 3C 120. This source has recently entered into a state of increased γ-ray activity which manifested itself in two major flares detected by Fermi/LAT in 2014 September and 2015 April with no significant flux changes reported in other wavelengths. We analyse available data focusing our attention on aforementioned outbursts. We find very fast variability time-scale during flares (of the order of hours) together with a significant γ-ray flux increase. We show that the ˜6.8 yr averaged γ-ray emission of 3C 120 is likely a sum of the external radiation Compton and the synchrotron self-Compton radiative components. To address the problem of violent γ-ray flares and fast variability we model the jet radiation dividing the jet structure into two components: the wide and relatively slow outer layer and the fast, narrow spine. We show that with the addition of the fast spine occasionally bent towards the observer we are able to explain observed spectral energy distribution of 3C 120 during flares with the Compton upscattered broad-line region and dusty torus photons as main γ-rays emission mechanism.
High-Accuracy Analysis of Compton Scattering in Chiral EFT: Proton and Neutron Polarisabilities
NASA Astrophysics Data System (ADS)
Griesshammer, Harald W.; Phillips, Daniel R.; McGovern, Judith A.
2013-10-01
Compton scattering from protons and neutrons provides important insight into the structure of the nucleon. A new extraction of the static electric and magnetic dipole polarisabilities αE 1 and βM 1 of the proton and neutron from all published elastic data below 300 MeV in Chiral Effective Field Theory shows that within the statistics-dominated errors, the proton and neutron polarisabilities are identical, i.e. no iso-spin breaking effects of the pion cloud are seen. Particular attention is paid to the precision and accuracy of each data set, and to an estimate of residual theoretical uncertainties. ChiEFT is ideal for that purpose since it provides a model-independent estimate of higher-order corrections and encodes the correct low-energy dynamics of QCD, including, for few-nucleon systems used to extract neutron polarisabilities, consistent nuclear currents, rescattering effects and wave functions. It therefore automatically respects the low-energy theorems for photon-nucleus scattering. The Δ (1232) as active degree of freedom is essential to realise the full power of the world's Compton data.Its parameters are constrained in the resonance region. A brief outlook is provided on what kind of future experiments can improve the database. Supported in part by UK STFC, DOE, NSF, and the Sino-German CRC 110.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
NASA Astrophysics Data System (ADS)
Bialas, David; Zitzler-Kunkel, André; Kirchner, Eva; Schmidt, David; Würthner, Frank
2016-09-01
Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.
Optical activity in chiral stacks of 2D semiconductors
NASA Astrophysics Data System (ADS)
Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.
2018-03-01
We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.
Using Monte-Carlo Simulations to Study the Disk Structure in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Y.; Zhang, S. N.; Zhang, X. L.; Feng, Y. X.
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broad-band spectra in hard state with BeppoSAX is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power- law component and a broad excess feature above 10 keV (disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently.We propose that the additional soft component is due to the thermal Comptonization process between the s oft disk photon and the warm plasma cloud just above the disk.i.e., a warm layer. We use Monte-Carlo technique t o simulate this Compton scattering process and build several table models based on our simulation results.
Laveissière, G; Todor, L; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C-C; Chen, J-P; Chudakov, E; Cisbani, E; Dale, D S; de Jager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quémenér, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van De Vyver, R; Van der Meer, R L J; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z-L
2004-09-17
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.
Proposal for GPD studies at COMPASS
NASA Astrophysics Data System (ADS)
Burtin, E.
2011-10-01
The study of nucleon structure through Generalised Parton Distributions (GPD) is one major part of the future COMPASS-II physics program [1] and can be performed using exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Meson Production. The high energy of the muon beam allows to measure the xB-dependence of the t-slope of the DVCS cross section. The use of positive and negative polarised muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H. The sensitivity of both measurements is examined and confronted to existing models or global fits of the data. Preliminary beam test data were analyzed and demonstrated the feasibility of the identification of the DVCS reaction using the COMPASS experimental set-up.
Prospects for DVCS measurements using the COMPASS spectrometer at CERN
NASA Astrophysics Data System (ADS)
Kouznetsov, O.
2011-07-01
The study of exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) is one major part of the future COMPASS program to investigate nucleon structure through Generalized Parton Distributions (GPD). The high energy of the muon beam allows to measure the xBj-dependence of the t-slope of the DVCS cross section and to study nucleon tomography. The use of positive and negative polarized muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H. As a second phase a transversely polarized proton target will be used to collect data to constrain the GPD E. In preparation of the future measurements two DVCS test runs were performed in 2008 and 2009.
Order-disorder twinning model and stacking faults in alpha-NTO.
Schwarzenbach, Dieter; Kirschbaum, Kristin; Pinkerton, A Alan
2006-10-01
Crystals of the recently published [Bolotina, Kirschbaum & Pinkerton (2005). Acta Cryst. B61, 577-584] triclinic (P\\overline1) structure of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (alpha-NTO) occur as fourfold twins. There are Z' = 4 independent molecules per asymmetric unit. We show that the structure contains layers with 2-periodic layer-group symmetry p2(1)/b 1 (1). This symmetry is lost through the stacking of the layers, which is a possible explanation for Z' = 4. A layer can assume four different but equivalent positions with respect to its nearest neighbor. Twinning arises through stacking faults and is an instructive example of the application of order-disorder theory using local symmetry operations. The near-neighbor relations between molecules remain unchanged through all twin boundaries. The four structures with maximum degree of order, one of which is the observed one, and the family reflections common to all domains are identified. Rods of weak diffuse scattering confirm the stacking model.
The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate
NASA Astrophysics Data System (ADS)
Takahashi, T.; Kobayashi, T.
1983-12-01
The possibility of the formation of a metastable cubic (diamond) structure and its role in freezing of a supercooled water droplet on an ice substrate are discussed in terms of two-dimensional nucleation. The mode of stacking sequence of new layers formed by two-dimensional nucleation is divided into single and multi-nucleation according to the degree of supercooling and to the size of the supercooled droplet. In the case of single nucleation a frozen droplet develops into a complete hexagonal single crystal or an optically single crystal (containing discontinuous stacking faults). In the case of multi-nucleation attention is paid to the size effect and the stacking direction of the nucleus to calculate the waiting time in the nucleation. Then the frozen droplets are crystallographically divided into three categories: completely single crystals, optically single crystals (containing a small cubic structure, i.e. stacking faults) and polycrystals with a misorientation of 70.53° between the c-axes.
The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.
Olson, W K
1975-01-01
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529
Sakhavand, Navid; Shahsavari, Rouzbeh
2015-03-16
Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Shin, E-mail: ssaito@ecei.tohoku.ac.jp; Nozawa, Naoki; Hinata, Shintaro
An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100−x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u} = K{sub u1} + K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x = 20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400 °C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub} = 400 °C.more » A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x = 50 at. %, whereas easily formed in the film with x = 20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4 × 10{sup 7 }erg/cm{sup 3} at around x = 20 at. %, whereas K{sub u2} takes the maximum of 0.7 × 10{sup 7 }erg/cm{sup 3} at around x = 40 at. %, which results in the maximum of 1.8 × 10{sup 7 }erg/cm{sup 3} of K{sub u} at x = 30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x = 30–60 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.« less
Crystal structure of stacking faults in InGaAs/InAlAs/InAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trunkin, I. N.; Presniakov, M. Yu.; Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com
Stacking faults and dislocations in InGaAs/InAlAs/InAs heterostructures have been studied by electron microscopy. The use of different techniques of transmission electron microscopy (primarily, highresolution dark-field scanning transmission electron microscopy) has made it possible to determine the defect structure at the atomic level.
Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors.
Yoon, Yeoheung; Lee, Keunsik; Baik, Chul; Yoo, Heejoun; Min, Misook; Park, Younghun; Lee, Sae Mi; Lee, Hyoyoung
2013-08-27
An anti-solvent for graphene oxide (GO), hexane, is introduced to increase the surface area and the pore volume of the non-stacked GO/reduced GO 3D structure and allows the formation of a highly crumpled non-stacked GO powder, which clearly shows ideal supercapacitor behavior. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan
2017-11-01
The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.
A Compton scatter attenuation gamma ray spectrometer
NASA Technical Reports Server (NTRS)
Austin, W. E.
1972-01-01
A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.
Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging
NASA Astrophysics Data System (ADS)
Turecek, Daniel; Jakubek, Jan; Trojanova, Eliska; Sefc, Ludek; Kolarova, Vera
2018-07-01
Positron emission tomography (PET) is a nuclear medicine functional imaging technique. It is used in clinical oncology (medical imaging of tumors and the search for metastases), and pre-clinical studies using animals. PET uses small amounts of radioactive materials (radiotracers) and a special photon sensitive camera. Most of these cameras use scintillators with photomultipliers as detectors. However, these detectors have limited energy sensitivity and large pixels. Therefore, the false signal caused by a scattering poses a significant problem. In this work we study properties of position, energy and time sensitive semiconductor detector of Timepix3 type and its applicability for PET measurements. This work presents an initial study and evaluation of two Timepix3 detectors with 2 mm thick CdTe sensors used in simplified geometry for PET imaging. The study is performed on 2 samples - a capillary tube and a cylindrical plexiglass phantom with cavities. Both samples are filled with fluodeoxyglucose (FDG) solution that is used as a radiotracer. The Timepix3 offers better properties compared to conventional detectors - high granularity (55 μm pixel pitch), good energy resolution (1 keV at 60 keV) and sufficient time resolution (1.6 ns). The spectral sensitivity of Timepix3 together with coincidence/anticoincidence technique allows for significant reduction of background signal caused by Compton scattering and internal X-ray fluorescence of Cd and Te.
The very good property for parabolic vector bundles over curves
NASA Astrophysics Data System (ADS)
Soibelman, Alexander
2018-06-01
The purpose of this note is to extend Beilinson and Drinfeld's "very good" property to moduli stacks of parabolic vector bundles on curves of genuses g = 0 and g = 1. Beilinson and Drinfeld show that for g > 1 a trivial parabolic structure is sufficient for the moduli stacks to be "very good." We give a sufficient condition on the parabolic structure for this property to hold in the case of nontrivial parabolic structure.
Compton scattering collision module for OSIRIS
NASA Astrophysics Data System (ADS)
Del Gaudio, Fabrizio; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luís
2017-10-01
Compton scattering plays a fundamental role in a variety of different astrophysical environments, such as at the gaps of pulsars and the stagnation surface of black holes. In these scenarios, Compton scattering is coupled with self-consistent mechanisms such as pair cascades. We present the implementation of a novel module, embedded in the self-consistent framework of the PIC code OSIRIS 4.0, capable of simulating Compton scattering from first principles and that is fully integrated with the self-consistent plasma dynamics. The algorithm accounts for the stochastic nature of Compton scattering reproducing without approximations the exchange of energy between photons and unbound charged species. We present benchmarks of the code against the analytical results of Blumenthal et al. and the numerical solution of the linear Kompaneets equation and good agreement is found between the simulations and the theoretical models. This work is supported by the European Research Council Grant (ERC- 2015-AdG 695088) and the Fundao para a Céncia e Tecnologia (Bolsa de Investigao PD/BD/114323/2016).
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas
1995-01-01
A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.
A first-principles study of the electrically tunable band gap in few-layer penta-graphene.
Wang, Jinjin; Wang, Zhanyu; Zhang, R J; Zheng, Y X; Chen, L Y; Wang, S Y; Tsoo, Chia-Chin; Huang, Hung-Ji; Su, Wan-Sheng
2018-06-25
The structural and electronic properties of bilayer (AA- and AB-stacked) and tri-layer (AAA-, ABA- and AAB-stacked) penta-graphene (PG) have been investigated in the framework of density functional theory. The present results demonstrate that the ground state energy in AB stacking is lower than that in AA stacking, whereas ABA stacking is found to be the most energetically favorable, followed by AAB and AAA stackings. All considered model configurations are found to be semiconducting, independent of the stacking sequence. In the presence of a perpendicular electric field, their band gaps can be significantly reduced and completely closed at a specific critical electric field strength, demonstrating a Stark effect. These findings show that few-layer PG will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices owing to its tunable band gap.
Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- andmore » ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.« less
NASA Astrophysics Data System (ADS)
Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan
2015-07-01
The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
NASA Astrophysics Data System (ADS)
Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw
2014-04-01
Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.
NASA Astrophysics Data System (ADS)
You, Bei; Bursa, Michal; Życki, Piotr T.
2018-05-01
We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.
Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets
NASA Astrophysics Data System (ADS)
McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander
2017-05-01
Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.
Fabrication of high gradient insulators by stack compression
Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo
2014-04-29
Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.
The structure of ice crystallized from supercooled water
NASA Astrophysics Data System (ADS)
Murray, Benjamin
2013-03-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)
New polytypes of LPSO structures in an Mg-Co-Y alloy
NASA Astrophysics Data System (ADS)
Jin, Q. Q.; Shao, X. H.; Hu, X. B.; Peng, Z. Z.; Ma, X. L.
2017-01-01
The magnesium alloys containing long-period stacking ordered (LPSO) structures exhibit excellent mechanical properties. Each LPSO structure is known to contain either AB‧C‧A or AB‧C building block and feature its own stacking sequences. By atomic-scale high-angle annular dark field scanning transmission electron microscopy, we find the co-existence of AB‧C‧A and AB‧C building block in a single LPSO structure of the as-cast Mg92Co2Y6 (at.%) alloy, leading to the formation of six new polytypes of the LPSO structures determined as 29H, 51R, 60H, 72R, 102R and 192R. The lattice parameter of each LPSO structure is derived as ? and ? (n presents the number of basal layers in a unit cell). The stacking sequences and the space groups of these newly identified LPSO structures are proposed based on the electron diffraction and atomic-scale aberration-corrected high-resolution images. A random distribution of Co/Y elements in the basal planes of AB‧C‧A and AB‧C structural units is also observed and discussed.
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Formation of bulk refractive index structures
Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.
2003-07-15
A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.
Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energiesmore » relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less
Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.
First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less
The Compton generator revisited
NASA Astrophysics Data System (ADS)
Siboni, S.
2014-09-01
The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.
Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement
NASA Astrophysics Data System (ADS)
Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe
2017-11-01
Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.
2017-10-01
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ˜21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.
First principles investigation of nitrogenated holey graphene
NASA Astrophysics Data System (ADS)
Xu, Cui-Yan; Dong, Hai-Kuan; Shi, Li-Bin
2018-04-01
The zero band gap problem limits the application of graphene in the field of electronic devices. Opening the band gap of graphene has become a research issue. Nitrogenated holey graphene (NHG) has attracted much attention because of its semiconducting properties. However, the stacking orders and defect properties have not been investigated. In this letter, the structural and stacking properties of NHG are first investigated. We obtain the most stable stacking structure. Then, the band structures for bulk and multilayer NHG are studied. Impact of the strain on the band gaps and bond characteristics is discussed. In addition, we investigate formation mechanism of native defects of carbon vacancy (VC), carbon interstitial (Ci), nitrogen vacancy (VN), and nitrogen interstitial (Ni) in bulk NHG. Formation energies and transition levels of these native defects are assessed.
Building generic anatomical models using virtual model cutting and iterative registration.
Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W
2010-02-08
Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.
4D Sommerfeld quantization of the complex extended charge
NASA Astrophysics Data System (ADS)
Bulyzhenkov, Igor E.
2017-12-01
Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.
A glimpse of gluons through deeply virtual compton scattering on the proton.
Defurne, M; Jiménez-Argüello, A Martí; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Hyde, C E; Iqbal, S; Itard, F; Kang, H; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Mazouz, M; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Camacho, C Muñoz; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P
2017-11-10
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.
Studying the Warm Layer and the Hardening Factor in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.
Deeply virtual Compton scattering with a positron beam
NASA Astrophysics Data System (ADS)
Girod, François-Xavier; Elouadrhiri, Latifa; Burkert, Volker D.
2018-05-01
The hard electroproduction of a photon off a hadron in the Bjorken regime, Deeply Virtual Compton Scattering, unravels three-dimensional information on the partonic structure of the hadron. The imaginary part of the amplitude is more particularly sensitive to the spatial distribution of quarks as functions of the light cone momentum fraction. On the other hand, the real part of the amplitude is less constrained experimentally, and provides access to the D-term. Here we present preliminary results for the extraction of the D-term from unpolarized cross-sections and beam spin asymmetries measured with the CEBAF Large Acceptance Spectrometer at 6 GeV. We discuss some aspects of the associated physics interpretation, and give prospects for future measurements. The availability of a Positron beam at Jefferson Lab will provide access to the Beam Charge Asymmetry for this reaction, which will crucially enable us to keep under control the systematical and model uncertainties in this framework.
On stars, galaxies and black holes in massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enander, Jonas; Mörtsell, Edvard, E-mail: enander@fysik.su.se, E-mail: edvard@fysik.su.se
In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes andmore » stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.« less
NASA Technical Reports Server (NTRS)
Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.
1979-01-01
A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.
Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT
NASA Astrophysics Data System (ADS)
Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro
2015-04-01
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.
Development and calibration of fine collimators for the ASTRO-H Soft Gamma-ray Detector
NASA Astrophysics Data System (ADS)
Mizuno, T.; Kimura, D.; Fukazawa, Y.; Furui, S.; Goto, K.; Hayashi, T.; Kawabata, K. S.; Kawano, T.; Kitamura, Y.; Shirakawa, H.; Tanabe, T.; Makishima, K.; Nakajima, K.; Nakazawa, K.; Fukuyama, T.; Ichinohe, Y.; Ishimura, K.; Ohta, M.; Sato, T.; Takahashi, T.; Uchida, Y.; Watanabe, S.; Ishibashi, K.; Sakanobe, K.; Matsumoto, H.; Miyazawa, T.; Mori, H.; Sakai, M.; Tajima, H.
2014-07-01
The Soft Gamma-ray Detector (SGD) is a Si/CdTe Compton telescope surrounded by a thick BGO active shield and is scheduled to be onboard the ASTRO-H satellite when it is launched in 2015. The SGD covers the energy range from 40 to 600 keV with high sensitivity, which allows us to study nonthermal phenomena in the universe. The SGD uses a Compton camera with the narrow field-of-view (FOV) concept to reduce the non-Xray background (NXB) and improve the sensitivity. Since the SGD is essentially a nonimaging instrument, it also has to cope with the cosmic X-ray background (CXB) within the FOV. The SGD adopts passive shields called "fine collimators" (FCs) to restrict the FOV to <= 0.6° for low-energy photons (<= 100 keV), which reduces contamination from CXB to less than what is expected due to NXB. Although the FC concept was already adopted by the Hard X-ray Detector onboard Suzaku, FCs for the SGD are about four times larger in size and are technically more difficult to operate. We developed FCs for the SGD and confirmed that the prototypes function as required by subjecting them to an X-ray test and environmental tests, such as vibration tests. We also developed an autocollimator system, which uses visible light to determine the transmittance and the optical axis, and calibrated it against data from the X-ray test. The acceptance tests of flight models started in December 2013: five out of six FCs were deemed acceptable, and one more unit is currently being produced. The activation properties were studied based on a proton-beam test and the results were used to estimate the in-orbit NXB.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David E.; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as a means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper provides definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies are discussed.
Optoelectronic interconnects for 3D wafer stacks
NASA Astrophysics Data System (ADS)
Ludwig, David; Carson, John C.; Lome, Louis S.
1996-01-01
Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.
1995-04-11
A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Syrbu, S. A.
The crystal and molecular structure of p-(decaoxybenzylidene)-p'-toluidine C{sub 10}H{sub 21}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} is studied. The molecule is nearly planar. In the crystal packing, loose regions formed by aliphatic fragments of molecules alternate with pseudostacks of aromatic fragments of molecules that are related by the centers of symmetry. The stacks are built of dimers, in which molecules are linked by {pi}-stacking interactions between benzene rings. There are no weak directional interactions between dimers in a stack. The presence of a single structure-forming element in the crystal, namely, the {pi}-stacking interactions in the dimers, along with the similarity ofmore » the crystal packing to that of the C{sub 8}H{sub 17}O-homologue, which forms a nematic mesophase on melting, indicate that the crystals under study should exhibit nematic properties.« less
Theoretical analysis of stack gas emission velocity measurement by optical scintillation
NASA Astrophysics Data System (ADS)
Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong
2014-04-01
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Maevskiĭ, A A; Sukhorukov, B I
1976-11-01
A spectrophotometric study, based on the concentration relationship of electron absorption spectra, of the effects of salts which stabilize and destabilize the water structure on the constant (K) of adenosine: stacking association has been carried out. A significant decrease of K was observed in NaClO4 which embodied strong destabilizing effect. Opposite effect was observed on other salts studied. According to K value the stacking-interaction of adenosine in the range of salt concentration 0 divided by 3M for different anions and cations are arranged in rows: SO4--greater than Cl- greater than ClO4-; Na+ greater than Li+greater than K+. The data obtained suggest that the effect of salts on thermostability of various oligo- and polynucleotides and on B leads to C DNA transition may be essentially concerned with the effect of both cations and anions of salts on the stacking-interaction of bases.
Method to fabricate a tilted logpile photonic crystal
Williams, John D.; Sweatt, William C.
2010-10-26
A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.
The CaGeO3 Ca3Fe2Ge3O12 garnet join: an experimental study
NASA Astrophysics Data System (ADS)
Iezzi, Gianluca; Boffa-Ballaran, Tiziana; McCammon, Catherine; Langenhorst, Falko
2005-06-01
Germanate garnets are often used as isostructural analogues of silicate garnets to provide insight into the crystal chemistry and symmetry of the less accessible natural garnet solid solutions. We synthesised two series of germanate garnets at 3 GPa along the joinVIIICa
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-01-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-08-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.
Three-dimensional digital breast histopathology imaging
NASA Astrophysics Data System (ADS)
Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.
2005-04-01
We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation stage produces visible discontinuities between adjacent features. Both of these effects can distract the viewer from the perception of diagnostically important features. Here we describe the system design and discuss methods for the correction of these artefacts. In addition, we outline our approach to rendering the processing and display of these large images computationally feasible.
Microchannel cooling of face down bonded chips
Bernhardt, Anthony F.
1993-01-01
Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.
Microchannel cooling of face down bonded chips
Bernhardt, A.F.
1993-06-08
Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.
2016-02-16
The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and themore » first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.« less
NASA Astrophysics Data System (ADS)
Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.
2017-01-01
Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.
Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles
Yoon, Hyungchul; Hoskere, Vedhus; Park, Jong-Woong; Spencer, Billie F.
2017-01-01
Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach. PMID:28891985
Scientists Contemplate Tilting of Rock Layers on Mars
NASA Technical Reports Server (NTRS)
2005-01-01
Gazing across the landscape of the 'Columbia Hills' in Gusev Crater on Mars, scientists working with NASA's Mars Exploration Rover Spirit think they have been seeing hints of tilted rock layers across the area traversed by the rover. At 'Larry's Lookout,' pictured here, ridges of rock are stacked atop each other and tilted. Similar rock ridges are visible in the distance across the 'Tennessee Valley.' One possible explanation for these ridges is that they were formed by tilted layers of sediment that were more resistant to erosion and now stand in relief above the surrounding surface. Scientists hope to better understand the structure of the hills and perhaps determine how they were formed by observing how the orientation of layers in these outcrops changes throughout the region. Hypotheses include that the Columbia Hills are the remains of an ancient volcano, a remnant of an old impact crater formed by an asteroid or comet, or delta deposits formed where water flowed into Gusev Crater early in its history. Each of these hypotheses leads to a different prediction regarding bedding orientation and structure. Hills on the distant horizon may be the rim of a large impact crater many miles to the east of the Columbia Hills. Spirit took this image with its navigation camera on martian day, or sol, 438 (March 27, 2005).Progress Update: Stack Project Complete
Cody, Tom
2017-12-12
Progress update from the Savannah River Site. The 75 foot 293 F Stack, built for plutonium production, was cut down to size in order to prevent injury or release of toxic material if the structure were to collapse due to harsh weather.
Compton-thick AGN at high and low redshift
NASA Astrophysics Data System (ADS)
Akylas, A.; Georgantopoulos, I.; Corral, A.; Ranalli, P.; Lanzuisi, G.
2017-10-01
The most obscured sources detected in X-ray surveys, the Compton-thick AGN present great interest both because they represent the hidden side of accretion but also because they may signal the AGN birth. We analyse the NUSTAR observations from the serendipitous observations in order to study the Compton-thick AGN at the deepest possible ultra-hard band (>10 keV). We compare our results with our SWIFT/BAT findings in the local Universe, as well as with our results in the CDFS and COSMOS fields. We discuss the comparison with X-ray background synthesis models finding that a low fraction of Compton-thick sources (about 15 per cent of the obscured population) is compatible with both the 2-10keV band results and those at harder energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Takumi, E-mail: onot@scf.che.tohoku.ac.jp; Watanabe, Masaru; Sato, Yoshiyuki
2016-08-15
A flow-type cell was developed for measuring Compton scattering spectra of heat-sensitive aqueous solution. Compton scattering spectra of water and ethanol were measured in the region from ambient conditions to 623 K and 20 MPa. Compton profiles derived from measurement with the flow-type cell were comparable with those in the literature. Results obtained from the flow-type cell showed that delocalization of electronic charge density of water and ethanol at high temperatures occurred. Delocalization of the electronic charge density of ethanol was greater than that of water at high temperature, which is consistent with the prior works that use proton NMRmore » chemical shifts to describe hydrogen bonding.« less
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, A. W.; Boggs, S. E; Chiu, C. L.
2017-10-20
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. Wemore » find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.« less
Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.
Milani, Ali A; Panahi, Issa M; Briggs, Richard
2007-01-01
Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.
Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking
McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.
2014-01-01
Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606
A novel camera localization system for extending three-dimensional digital image correlation
NASA Astrophysics Data System (ADS)
Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher
2018-03-01
The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.
NASA Astrophysics Data System (ADS)
Tripathi, Shweta
2016-10-01
In the present work, a two-dimensional (2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS™ device simulator to affirm and formalize the proposed device structure.
NASA Astrophysics Data System (ADS)
Das, Aniruddha
2017-11-01
5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.
Xiao, Senbo; Xiao, Shijun; Gräter, Frauke
2013-06-14
Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.
Ji, Hong-Mei; Zhang, Wen-Qian; Wang, Xu; Li, Xiao-Wu
2015-01-01
The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction. PMID:28793557
Conductance of carbon based macro-molecular structures
NASA Astrophysics Data System (ADS)
Stafström, S.; Hansson, A.; Paulsson, M.
2000-11-01
Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.
Is the High-Energy Emission from Centaurus A Compton-Scattered Jet Radiation?
1994-01-01
Is the High-Energy Emission from Centaurus A Compton-Scattered Jet Radiation? J. G. Skibo1, C. D. Dermer and R. L. Kinzer E. O. Hulburt Center for... Centaurus A is beamed radiation from the active nucleus which is Compton-scattered into our line- of-sight. We derive the spectrum and degree of...the scattering medium. We t the OSSE data from Centaurus A with this model and nd that if the scatterers are not moving relativistically, then the
Least-Squares Deconvolution of Compton Telescope Data with the Positivity Constraint
NASA Technical Reports Server (NTRS)
Wheaton, William A.; Dixon, David D.; Tumer, O. Tumay; Zych, Allen D.
1993-01-01
We describe a Direct Linear Algebraic Deconvolution (DLAD) approach to imaging of data from Compton gamma-ray telescopes. Imposition of the additional physical constraint, that all components of the model be non-negative, has been found to have a powerful effect in stabilizing the results, giving spatial resolution at or near the instrumental limit. A companion paper (Dixon et al. 1993) presents preliminary images of the Crab Nebula region using data from COMPTEL on the Compton Gamma-Ray Observatory.
Dynamics-based Nondestructive Structural Monitoring Teclrniques
2012-05-21
plate made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the...at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The prepregs were cut in pieces...with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs then went into a vacuum
Dynamics-based Nondestructive Structural Monitoring Techniques
2012-06-21
made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the thickness of...using facilities available at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The... prepregs were cut in pieces with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs
Zhao, Binwu
2017-01-01
The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017
Moss, W.C.
1997-10-07
A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.
Moss, William C.
1997-01-01
A thermoacoustic device having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity is disclosed. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material.
SEGR in SiO$${}_2$$ –Si$$_3$$ N$$_4$$ Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javanainen, Arto; Ferlet-Cavrois, Veronique; Bosser, Alexandre
2014-04-17
This work presents experimental SEGR data for MOS-devices, where the gate dielectrics are are made of stacked SiO 2–Si 3N 4 structures. Also a semi-empirical model for predicting the critical gate voltage in these structures under heavy-ion exposure is proposed. Then statistical interrelationship between SEGR cross-section data and simulated energy deposition probabilities in thin dielectric layers is discussed.
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
Curtiss, W C; Vournakis, J N
1984-01-01
Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.
NASA Astrophysics Data System (ADS)
Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.
1998-02-01
New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode
NASA Technical Reports Server (NTRS)
Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger
2011-01-01
We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine
2012-01-01
We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.
Atom Interferometry: A Matter Wave Clock and a Measurement of α
NASA Astrophysics Data System (ADS)
Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger
2012-06-01
Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.
A Compton scattering technique to determine wood density and locating defects in it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondon, Akash, E-mail: akashtondonnsl@gmail.com; Sandhu, B. S.; Singh, Bhajan
A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from {sup 137}Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voidsmore » in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method.« less
Importance of Doppler broadening in Compton scatter imaging techniques
NASA Astrophysics Data System (ADS)
Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.
2001-12-01
Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.
Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...
2014-11-05
Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less
Testing of a Shrouded, Short Mixing Stack Gas Eductor Model Using High Temperature Primary Flow.
1982-10-01
problem but of less significance than the heated surfaces of shipboard structure. Various types of electronic equipments and sensors carried by a combatant...here was to validate current procedures by comparison with previous data it was not considered essential to rein- stall these sensors or duplicate...sec) 205 tABLE XIX Mixing Stack Temperatura Data, Model B Thermocouple Axial Mixing Stack Temperature _ mbjr Posii--- .. (I IF) . Uptake 180 850 950
Internal reforming fuel cell assembly with simplified fuel feed
Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.
2001-01-01
A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. L.; Han, Y. F., E-mail: yfhan@sjtu.edu.cn, E-mail: bdsun@sjtu.edu.cn; Zhou, W.
2015-01-26
Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energymore » in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.« less
Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei
2016-12-01
The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip K.; Mondal, Santanu; Debnath, Dipak
2015-10-01
It has long been proposed that low-frequency quasi-periodic oscillations (QPOs) in stellar-mass black holes or their equivalents in supermassive black holes are the result of resonances between infall and cooling timescales. We explicitly compute these two timescales in a generic situation to show that resonances are easily achieved. During an outburst of a transient black hole candidate, the accretion rate of the Keplerian disc as well as the geometry of the Comptonizing cloud change very rapidly. During some period, a resonance condition between the cooling timescale (predominantly by Comptonization) and the infall timescale of the Comptonizing cloud is roughly satisfied. This leads to low-frequency quasi-periodic oscillations (LFQPOs) of the Compton cloud and the consequent oscillation of hard X-rays. In this paper, we explicitly follow black hole candidate H1743-322 during its 2010 outburst. We compute the Compton cooling time and infall time over several days and show that QPOs take place when these two roughly agree within ˜50 per cent, i.e., the resonance condition is generally satisfied. We also confirm that for the sharper LFQPOs (i.e. higher Q-factors) the ratio of the two timescales is very close to 1.
A test of local Lorentz invariance with Compton scattering asymmetry
Mohanmurthy, Prajwal; Narayan, Amrendra; Dutta, Dipangkar
2016-12-14
Here, we report on a measurement of the constancy and anisotropy of the speed of light relative to the electrons in photon-electron scattering. We also used the Compton scattering asymmetry measured by the new Compton polarimeter in Hall~C at Jefferson Lab to test for deviations from unity of the vacuum refractive index (more » $n$). For photon energies in the range of 9 - 46 MeV, we obtain a new limit of $$1-n < 1.4 \\times 10^{-8}$$. In addition, the absence of sidereal variation over the six month period of the measurement constrains any anisotropies in the speed of light. These constitute the first study of Lorentz invariance using Compton asymmetry. Within the minimal standard model extension framework, our result yield limits on the photon and electron coefficients $$\\tilde{\\kappa}_{0^+}^{YZ}, c_{TX}, \\tilde{\\kappa}_{0^+}^{ZX}$$, and $$c_{TY}$$. Though, these limits are several orders of magnitude larger than the current best limits, they demonstrate the feasibility of using Compton asymmetry for tests of Lorentz invariance. For future parity violating electron scattering experiments at Jefferson Lab we will use higher energy electrons enabling better constraints.« less
The impact of neutron star spin on X-ray spectra
NASA Astrophysics Data System (ADS)
Burke, M. J.; Gilfanov, M.; Sunyaev, R.
2018-02-01
We investigate whether the intrinsic spin of neutron stars (NSs) leaves an observable imprint on the spectral properties of X-ray binaries. To evaluate this, we consider a sample of nine NSs for which the spins have been measured that are not accreting pulsars (for which the accretion geometry will be different). For each source, we perform spectroscopy on a majority of RXTE hard-state observations. Our sample of sources and observations spans the range of the Eddington ratios LX/LEdd ˜ 0.005-0.100. We find a clear trend between the key Comptonization properties and the NS spin for a given accretion rate. Specifically, at a given L/LEdd, for more rapidly rotating NSs we find lower seed photon temperatures and a general increase in Comptonization strength, as parametrized by the Comptonization y parameter and amplification factor A. This is in good agreement with the theoretical scenario whereby less energy is liberated in a boundary layer for more rapidly spinning NSs, resulting in a lower seed photon luminosity and, consequently, less Compton cooling in the corona. This effect in extremis results in the hard states of the most rapidly spinning sources encroaching upon the regime of Comptonization properties occupied by black holes.
NASA Astrophysics Data System (ADS)
Santos, C. Almeida; Costa, C. Oliveira; Batista, J.
2016-05-01
The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Chemical-mechanical stability of the hierarchical structure of shell nacre
NASA Astrophysics Data System (ADS)
Sun, Jinmei; Guo, Wanlin
2010-02-01
The hierarchical structure and mechanical property of shell nacre are experimentally investigated from the new aspects of chemical stability and chemistry-mechanics coupling. Through chemical deproteinization or demineralization methods together with characterization techniques at micro/nano scales, it is found that the nacre of abalone, haliotis discus hannai, contains a hierarchical structure stacked with irregular aragonite platelets and interplatelet organic matrix thin layers. Yet the aragonite platelet itself is a nanocomposite consisting of nanoparticles and intraplatelet organic matrix framework. The mean diameter of the nanoparticles and the distribution of framework are quite different for different platelets. Though the interplatelet and intraplatelet organic matrix can be both decomposed by sodium hydroxide solution, the chemical stability of individual aragonite platelets is much higher than that of the microstructure stacked with them. Further, macroscopic bending test or nanoindentation experiment is performed on the micro/nanostructure of nacre after sodium hydroxide treatment. It is found that the Young’s modulus of both the stacked microstructure and nanocomposite platelet reduced. The reduction of the microstructure is more remark than that of the platelet. Therefore the chemical-mechanical stability of the nanocomposite platelet itself is much higher than that of the stacked microstructure of nacre.
NASA Astrophysics Data System (ADS)
Hsieh, Yu-Lin; Lee, Chien-Chieh; Lu, Chia-Cheng; Fuh, Yiin-Kuen; Chang, Jenq-Yang; Lee, Ju-Yi; Li, Tomi T.
2017-07-01
A symmetrically stacked structure [(a-Si:H(n+)/a-Si:H(i)/CZ wafer (n)/a-Si:H(i)/a-Si:H(n+)] was used to optimize the growth process conditions of the n-type hydrogenated amorphous silicon [a-Si:H(n+)] thin films. Here a-Si:H(n+) film was used as back surface field (BSF) layer for the silicon heterojunction solar cell and all stacked films were prepared by conventional radio-frequency plasma-enhanced chemical vapor deposition. The characterizations of the effective carrier lifetime (τeff), electrical and structural properties, as well as correlation with the hydrogen dilution ratio (R=H2/SiH4) were systematically discussed with the emphasis on the effectiveness of the passivation layer using the lifetime tester, spectroscopic ellipsometry, and hall measurement. High quality of a stacked BSF layer (intrinsic/n-type a-Si:H layer) with effective carrier lifetime of 1.8 ms can be consistently obtained. This improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
Genetics Home Reference: erythrokeratodermia variabilis et progressiva
... P, Campanelli C, Compton JG, Bale SJ, DiGiovanna JJ, Uitto J. Genetic heterogeneity in erythrokeratodermia variabilis: novel ... Itin P, Hohl D, Epstein EH Jr, DiGiovanna JJ, Compton JG, Bale SJ. Mutations in the human ...
Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2
Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...
2015-11-16
Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less
Cluster galaxy dynamics and the effects of large-scale environment
NASA Astrophysics Data System (ADS)
White, Martin; Cohn, J. D.; Smit, Renske
2010-11-01
Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations, showing that the strong correlation of measures with mass and the large scatter in mass at fixed observable mitigate line-of-sight projections.
π-π stacking tackled with density functional theory
Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia
2007-01-01
Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less
A publicly available SSC+EC code.
NASA Astrophysics Data System (ADS)
Georganopoulos, M.; Perlman, E. S.; Kazanas, D.; Wingert, B.; Castro, R.
2004-08-01
We present a time-dependent one zone SSC+EC code that takes into account the KN-cross section, and calculates self-consistently all orders of Compton scattering. In particular, it produces separate results for the first order Compton component, and for the total Compton emission. The kinetic equation is solved using a stable implicit scheme, and the user can select from a range of physically motivated temporal electron injection profile. The code is written in C, is fully documented and will soon be publicly available through the Internet, along with a set of IDL visualization routines.